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Novel Approach to the Schooling ProblemI

José Alcalde1, Antonio Romero-Medina2

Abstract

This paper proposes the notion of ε-stability to conciliate Pareto efficiency and

fairness. We propose the use of a centralized procedure, the Exchanging Places

Mechanism. It endows students a position according with the Gale and Shapley

students optimal stable matching as tentative allocation and allows the student to

trade their positions. We show that the final allocation is ε-stable, i.e. efficient,

fair and immune to any justifiable objection that students can formulate.
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1. Introduction

In many countries local authorities coordinate the admission process to

allocate the children, entering public education, a place in a primary school.

Different cities use distinct procedures to do such a task. Almost all of then
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take into account the parents’ interests for the schools and build priority

as preference for, otherwise indifferent, centers. When this priority list is

not enough to break all relevant ties the municipalities use a sort of random

process to break the ties.

The usual way to deal with the problem of how students would be pri-

oritized is solved by building a function that associates each student a score

for each school. The scoring functions, or the priority orderings they induce,

are constructed to reduce the well-known efficiency-equity trade-off (Roth,

1982). First, to reach a (Rawlsian) efficiency, when allocating places to stu-

dents, the Public Administration tries to reduce the cost in which households

incur, due to the children’s attendance to the school by accurately describing

school areas and other relevant criteria, as the presence of siblings. Second,

and once efficient equivalence classes has been established, a fair lottery is

used to break ties inside each such an efficiency category. The fact that all

the students have the same (ex-ante) probability of being ranked at any po-

sition, inside their class, induces a kind of ex-ante internal equity relative to

each efficiency category.

Therefore, we can think that students’ priorities are decided following an

efficient intra-equitable criterion. Nevertheless, it is hard to argue that this

criterion is fully equitable since some agents are ex-ante prioritized, relative

to the final ranking. Furthermore, the particular procedure use to match

students and schools’ places, could induce inefficient allocations.

The literature on this issue concentrates on three allocation mechanisms:

the Boston mechanism, the Student-Optimal Stable mechanism and the Top

Trading Cycle.
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The first one or “Boston mechanism” coincides with the “Now-or-Never

mechanism” introduced by Alcalde (1996) to implement the set of stable

allocations in undominated Nash equilibria. The main properties that this

mechanism exhibits are:

(1) When agents do not play strategically, i.e. when the preferences that

they declare are their true preferences, the allocation it suggests is Pareto

efficient.

(2) When agents act strategically,3 the expected allocations are stable. Fur-

thermore, any stable allocation can be decentralized by a Nash equilib-

rium.

The second mechanism that has been explored is the Student-Optimal Stable

mechanism, SOSM hence for, which coincides with the realization of the De-

ferred Acceptance algorithm in which students send proposals to the schools.

This mechanism, introduced by Gale and Shapley (1962), always selects a

stable allocation. Moreover, all the students (weakly) prefer this allocation

to any other stable allocation. Furthermore, when this mechanism is used,

students have no interest on playing strategically.

The third mechanism was proposed, under the name of “Top Trading Cy-

cles” mechanism, TTCM henceforth, by Abdulkadiroğlu and Sönmez (2003).

It is inspired in the homonym algorithm used by Shapley and Scarf (1974) to

3The result by Alcalde (1996) is established for undominated strategies. This is because

in the framework analyzed in this paper, agents in both sides of the market are allowed

to select strategically their actions. Nevertheless, in the problem modeled in the present

paper, since schools are not allowed to act strategically, there is no need to assume that

agents use undominated strategies to reach the result.
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prove the existence of stable allocations in their “Housing Markets” model. It

is remarkable that this mechanism always selects Pareto efficient allocations

and that students have no interest on misrepresent their true characteristics.

Nevertheless, the way in which it has been described yields to consider the

TTCM as hardly used in practice. In our opinion, it is not easy to convince

the students (or their relatives) about the intuition behind such an allocation

procedure.

The redesign that has been introduced in several markets has proposed

the SOSM as the best option for school markets, i.e. for almost one sided-

markets with indifferences. However, as Erdil and Ergin (2008), Kesten

(2010) and Abdulkadiroğlu et al. (2009) agrees, the welfare lost due to select

the SOSM can be troubledly large. The alternative is to move to a Pareto

efficient mechanism such the TTCM. However, it can be argued against the

TTCM that some priorities as, for example, the priority obtaining for having

siblings attending the same school, should not be exchangeable. It can also

be said that the TTCM dilutes the impact of priorities that do not belongs

to parents but to the district. Kesten (2010) address this problem proposing

an intermediate approach: an efficiency adjusted SOSM, the Efficiency Ad-

justed Deferred Acceptance Mechanism or EADAM, that allows a student to

consent to waive a certain priority that has no effect on his assignment.

In this paper we present an alternative way to deal with the problem. We

propose a new solution concept, to be called ε-stability. Our solution concept

is inspired in the usual way in which Public Decision-Makers act. In fact,

what it seems to be the main objective for the Public School Administrators

is to allocate students optimally. This can be one of the main reasons sup-
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porting systems like the (former) mechanism used in the Boston area. The

idea behind ε-stability aims to improve the inefficient solution obtained if we

impose the equity criterion to be fulfilled.

The concept of ε-stability adapts the idea of exchange-proofness of an

allocation, introduced by Alcalde (1995), to the context of School Allocation

Problems. The purpose of such a notion is to guarantee the efficiency of

allocations. To introduce ε-stability, let us consider that each student has

been allocated a place in some school. And let us assume that there is

no student justifiably envying some other student’s place. Under such a

consideration, one might well assume that students owns or have some rights

on their places and that they are free to exchange their rights if they wished

to. A solution is ε-stable if no group of students have interest on exchanging

their school places. The way to reach our objective is simple. We start by

allocating each student at the best school she can reach, provided that the

allocation must be stable. This job can be done by applying the students-

propose deferred algorithm designed by Gale and Shapley (1962). Then, let

us consider the Walrasian market where agents are the students, commodities

are the schools’ places; and each agent’s initial endowment is her best stable

allocation, as previously stated. This market has the formal structure of a

“Housing Market”, as modeled by Shapley and Scarf (1974). Therefore, let

us allow the students to exchange their places. As a consequence of this

interaction an efficient allocation is reached, in which all the students will

be, at least, as well as in any stable allocation and where there will no be

additional incentives to trade. This allocation would be ε-stable.

When analyzing the related literature, the paper by Balinski and Sönmez
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(1999) can be viewed as the starting point on a large, recent, literature on

solutions for the so called student allocation problem.4 Balinski and Sönmez

(1999) formalized the way in which students should be allocated to the dif-

ferent available positions in the education system. What it is important in

their model, and imposes a new way to explore how to study the problem,

related to the Matching Theory introduced by Gale and Shapley (1962), is

that agents in a side of the market (schools, colleges, institutions, etc.) have

no preferences on which their mates are. These agents just declare some lists

describing students’ priorities when the allocation of some place is contested.

These priorities are obtained to reach allocation efficiency. For instance, at

primary school level, when students can be considered, from an academic

point of view, as undistinguished, the only variables that are considered lie

on family background (related or not to the schools) as walking distance, sib-

ling, per-capita household income, etc.; for higher education, since students’

characteristics are differentiated, students’ academic skills are used to decide

priorities. Note that, from a Social perspective, the use of academic skills as

a relevant variable lies on allocative efficiency. This is because the success of

students’ effort is more likely if they exhibit the appropriate skills to follow

some particular studies.

Given theses primitives, Balinski and Sönmez (1999) provided a way to

associate a solution concept in this family of problems to the classical notion

4Some authors made a formal distinction between the model by Balinski and Sönmez

(1999) and the school allocation problem presented in Ergin and Sönmez (2006). Never-

theless, for our purposes, when the schools do not act strategically, and their only role is

providing educational services, we can treat both literatures as coincident.
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of stability introduced by Gale and Shapley (1962). This idea is nice, original

and has been useful to introduce some important reforms in the admission

systems used at the Elementary School in some areas in the US.5 The key no-

tion introduced by Balinski and Sönmez (1999) is their fairness criterion.6 It

implicitly assumes that some students are the usufructuary of certain places.

Nevertheless, in their model, students are not free to exchange their rights

on using the places. However there is evidence that agents are often allow

to improve the initial allocation by exchanging their rights. This evidence is

abundant both in the ranges of civil servants and army. For instance, civil

servants are allowed to exchange their places in Spain,7 and a similar ex-

change can be done in the US Army under the so-called Enlisted Assignment

Exchanges (SWAPS).8 And, following a similar spirit, i.e. allowing agents to

exchange goods they are not the owners, but they retain some rights, it can

be found some socially accepted systems like several international students

exchange programs, or the recent kidney exchange9 programs. Also, our pro-

cedure shares some similitudes with the proposals by the Ecole Démocratique

5See, for instance the papers by Abdulkadiroğlu et al. (2009), relative to the New York

City High School Match, or Abdulkadiroğlu et al. (2006) for the Boston Public School

Match.
6This criterion is also called non justified envy by Haeringer and Klijn (2009). We

consider both expressions as equivalent throughout the paper.
7Art. 62 in the Spanish law that rules civil servants or Law 315/1964, B.O.E 15.02.1964.

This regulation can be obtained from http://www.ua.es/oia/es/legisla/funcion.htm.
8The reader is gathered to http://usmilitary.about.com/od/armyassign/a/swap for fur-

ther information on this matter.
9Transplant services in Ronald Reagan UCLA Medical Center provides some informa-

tion via the web page http://transplants.ucla.edu/body.cfm?id=112
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to reform the actual system in the French-Speaking Belgium area.10

The rest of the paper is organized as follows. Section 2 introduces the

basic framework and provides some definitions which are classical in the lit-

erature. Section 3 proposes how to modify the allocation system, provided

that colleges are free to exhibit any way to prioritize students. Section 4

introduces a discussion on the equilibrium concept. It also proposes a pro-

cedure selecting, for each School Allocation Problem, a ϕ-stable allocation.

The way in which this mechanism is described points out how the actual

Boston system might be re-reformed. Section 5 studies the strategic prop-

erties of the mechanism. Conclusions are gathered to Section 6. Finally, all

the proofs are relegated to the Appendix.

2. The School Allocation Problem

This section is devoted to introduce some formalisms related to the School

Allocation Problem. This family of problems faces two set of non-empty

disjoint agents to be called Students and Schools. The set of Students is

denoted by S, and has n individuals, i.e. S = {s1, . . . , si, . . . , sn}. The set of

Schools is denoted by C, and has m elements, i.e. C = {c1, . . . , cj, . . . , cm}.

Each school has a number of seats (or places), to be distributed among

the students, that will be called its capacity. Let qcj ≥ 1 denote school cj’s

capacity; and let Q =
{
qc1 , . . . , qcj , . . . , qcm

}
the vector summarizing schools’

capacities. Schools are also endowed a priorities linear ordering over the set

of students. Let πcj ∈ Rn be the students’ ordering for school cj and Π the

10We would like to acknowledge Estelle Cantillon for pointing us out these similarities.

The proposals by the Ecole Démocratique can be found at its web page (in French).
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(m× n)-matrix summarizing these priorities. Formally, πcj is described as

a n-dimensional vector such that for each k ∈ {1, . . . , n} there is a unique

student si for which πcjsi = k; given this description, the j-th row for matrix

Π coincides with vector πcj .

Note that, under our description, no school would consider a student to

be inadmissible. Notice that most schools systems impose such a restriction

in the way that the schools rank their potential students. Nevertheless, our

model might capture the possibility of a student to be inadmissible at a low

cost: just by introducing a new variable for each school defining the priority

level of the last admissible student.

On the other side, each student has linear preferences over the set of

schools, so that no student will consider two different schools as equivalent

(or indifferent), and no school is neither considered as inadmissible by any

student. Let ρsi denote the schools’ ranking induced by student si’s prefer-

ences,11 and Φ the (n×m)-matrix summarizing these rankings. Note that

our model assumes that each student considers all the school as admissible.12

Nevertheless, we can also reformulate this model by assuming that each stu-

dent might consider some schools as unacceptable. The essence of this paper

is the same in both frameworks.

Therefore, a School Allocation Problem can be described by listing the

elements above: SAP = {S, C; Φ,Π, Q}. We will say that a School Allocation

Problem is non-scarce whenever there is enough places to allocate all the

11I.e., ρsicj = 3 indicates that student si considers that cj is her third-best school.
12Here, we can also invoke legislative regulations establishing that school attendance is

compulsory for the children of certain ages.
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students ∑
cj∈C

qcj ≥ n.

Given a School Allocation Problem, SAP , a solution for it is an applica-

tion µ that matches students and schools’ places. Such a correspondence is

called a matching. Formally,

Definition 1. A matching for SAP , a School Allocation Problem, is a cor-

respondence µ, applying S ∪ C into itself, such that:

1. For each si in S, if µ (si) 6= si, then µ (si) ∈ C;

2. For each cj in C, µ (cj) ⊆ S, and |µ (cj)| ≤ qcj ;
13 and

3. For each si in S, and any cj in C, µ (si) = cj if, and only if, si ∈ µ (cj).

The central solution concept used through the literature is stability, as

defined by Balinski and Sönmez (1999). This stability notion coincides with

the pair-wise stability introduced by Gale and Shapley (1962). Under our

considerations (i.e., each school is acceptable for any student and vice versa),

stability is defined as follows.

Definition 2. A matching for SAP , say µ, is said stable if there is no

student-school pair (si, cj) such that

1. µ (si) = si, or ρsicj < ρsiµ(si); and

2. |µ (cj)| < qcj , or πcjsi < πcjsh for some sh ∈ µ (cj).

13Throughout this paper |T | will denote the cardinality of set T .
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Throughout this paper, we adopt the convention that ρsiµ(si) = m + 1

whenever µ (si) = si.

The idea of instability comes basically from the notion of justified envy.

(See Haeringer and Klijn, 2009). Let us consider a matching µ, and let us

assume that student si prefers to study at school cj rather that developing

her educative formation at her actual school µ (si). If si has a priority higher

than some of the actual students attending school cj, or this school is still

having some vacant, she might claim that the allocation process has been

unfair.

A second notion that has also been analyzed in this framework is that

of efficiency. To introduce appropriately this concept, let us remember that

the only role for the schools is to provide educational services needed by the

students. Therefore the natural notion of efficiency, as proposed by Balinski

and Sönmez (1999) for this framework, is Pareto efficiency (from the students’

point of view).

Definition 3. Given a School Allocation Problem, SAP , we say that match-

ing µ is Pareto efficient if for any other matching µ′ there is a student, say

si, such that

ρsiµ(si) < ρsiµ′(si).

Note that, for any non-scarce School Allocation Problem, stability and/or

efficiency of a matching µ implies that, for each student si, µ (si) ∈ C.

A matching mechanism is a regular procedure that associates to each

School Allocation Problem a matching for such a problem. A matching

mechanismM is said to be stable if, for any given problem, it always selects
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a stable matching. Similarly, we say that a matching mechanism is Pareto

efficient whenever its outcome is always Pareto efficient, related to its input.

It is easy to see that there are stable matching mechanisms. In fact, any

of the versions of the deferred-acceptance algorithms proposed by Gale and

Shapley (1962) associates a stable matching for the related School Allocation

Problem. On the other hand, the now-or-never mechanism introduced by

Alcalde (1996) always selects a Pareto efficient matching when the proposals

are made by the students.14

The first question that we deal with is the possibility of designing match-

ing mechanisms that always select stable and Pareto efficient allocations. As

Proposition 1 states it is a well known result that it might be an impos-

sible task to conciliate the “fairness” notion involving stability and Pareto

efficiency.

Proposition 1. There is no matching mechanism selecting a stable and

Pareto efficient allocation for each School Allocation Problem.

What Proposition 1 suggests is the need of proposing a new solution con-

cept that accurately combines the notions of fairness, reflected by stability,

and Pareto efficiency.

3. ε-Stability: A New Solution Concept

In this section we propose a new solution concept for the School Allocation

Problem. It tries to reduce the trade-off between equity (in terms of stability)

14The now-or-never mechanism is also known as the Boston mechanism because it was

used in the Boston school district.
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and efficiency. The central idea to reach our objective is just to restrict which

are the statements, made by some student, that are considered “admissible”

to induce instability of an allocation.

Following a large tradition on cooperative games, it is fairly important

to be precise when defining which objections (made by a set of agents) are

admissible and which are not. This is the essence of the concept of Bargaining

Set introduced by Aumann and Maschler (1964), and the solutions concepts

that appeared following that paper. The idea behind the Bargaining Set is

that any agent is free to formulate an objection against an allocation. What

she should do is to propose an alternative allocation fitting some properties.

Then, if an agent formally presents an objection against an allocation, any

other agent might formulate an objection against this new proposal in the

same fashion that previously did the former agent. That is, any other agent

might counter-object. What ϕ-stability of an allocation imposes is that:

1. no agent will object against this allocation, or

2. any objection presented by an agent will be counter-objected.

In this paper we capture the idea behind stability considering as valid

only objections against an allocation that cannot be counter-objected. To

illustrate our proposal, let us analyze the following example.

Example 1. Let us consider the following School Allocation Problem. S =

{1, 2, 3}; C = {a, b, c}; Q = (1, 1, 1); and the ranking and priorities matrices

are

Φ =


1 3 2

2 3 1

2 3 1

 , and Π =


3 2 1

2 1 3

1 3 2


13



Note that matching µ, with µ (1) = a; µ (2) = b; and µ (3) = c is not stable.

This is because student 2 claims that she has priority, related to student 1,

for studying at school a. Now, let us propose to student 2 the following deal:

“If you are able to propose a matching, preferred by you to

µ, and no other student would claim that the new proposal is

unfair (as you did when µ was proposed), the new matching will

be implemented.”

The conclusion will be that student 2 will not be able to propose an

alternative matching.

Therefore, and adapting the arguments above relative the Bargaining Set,

the process that ϕ-stability captures can be informally described as follows.

Let us consider a matching µ. Then, any student is free to claim that such an

allocation is, from her point of view, unfair. Nevertheless, her criticism has

to be supported by proposing an alternative matching. The new proposal is

accepted only if no student is able to show, using identical arguments, that

the new matching unfair too.

Definition 4. [Fair Objection]

Let SAP be a School Allocation Problem, and let µ be a matching for such

a problem. A fair objection from student si ∈ S against µ is a pair (si, µ
′)

such that

1. ρsiµ′(si) < ρsiµ(si), and

2. |µ′ (µ′ (si))| < qµ′(µ′(si)), or πµ′(si)si < πµ′(si)sh for some sh ∈ µ′ (µ′ (si)).
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Definition 5. [Counter-Objection]

Let (si, µ
′) be a fair objection against matching µ. A counter-objection from

student sh against (si, µ
′) is a pair (sh, µ

′′) that constitutes a fair objection

against matching µ′.

We say that (si, µ
′) is a justified fair objection against µ if it cannot be

counter-objected

Definition 6. [ϕ-Stability]

Let SAP be a School Allocation Problem. We say that matching µ is ϕ-stable

if any objection against it can be counter-objected.

Therefore, the idea of ϕ-stability for µ is that when some student might

claim that such a matching is unfair, she is unable to propose an alternative

solution that no student would consider an unfair matching.

Note that, for any School Allocation Problem, SAP , the set of ϕ-stable

matchings is a super-set of the set of stable matchings. Therefore, the next

statement follows.

Proposition 2. Let SAP be a School Allocation Problem. Then, it has a

ϕ-stable matching.

What it is also relevant is that, in general, there are School Allocation

Problems having ϕ-stable matchings that are not stable. Notice that match-

ing µ, proposed in Example 1, is unstable, but it is ϕ-stable for the related

problem.

The central solution concept that we propose in this section, ε-stability,

comes from the confluence of two solution ideas, namely Pareto efficiency

and ϕ-stability.
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Definition 7. [ε-Stability]

Let SAP be a School Allocation Problem. We say that matching µ is ε-stable

if it is Pareto efficient and ϕ-stable for SAP .

The next question that we deal with is the existence of ε-stable alloca-

tions. Even though that the sets of Stable and Pareto efficient matchings

might not intersect (Proposition 1), when we concentrate on ϕ-stable alloca-

tions, instead on stable ones, such an intersection is always non-empty.

Theorem 1. Let SAP be a School Allocation Problem. Then, it has a

matching µ which is ε-stable.

4. The Exchanging Places Mechanism and ε-Stability

This section proposes an algorithm that always selects a ε-stable match-

ing. Therefore it can be seen as a constructive proof for Theorem 1.

The mechanism that we propose can be introduced as a combination

of two algorithms. The first one is the classic students-proposing deferred

acceptance algorithm. The second one follows the idea reflected in the Gale’s

Top Trading Cycle, introduced by Shapley and Scarf (1974).

Since the deferred acceptance algorithm is well-known in the literature,

we concentrate on a description of how the second algorithm works. First,

we need some additional definitions.

Definition 8. Let SAP be a School Allocation Problem, and µ a matching.

For si given, let δsi a ranking of the set of students.15 We say that δsi µ-agrees

15This is, for each k ∈ {1, . . . , n} there is one, and only one, student sh such that

δsish = k.
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ρsi if, and only if,

1. δsisi < δsish , for each sh 6= si such that µ (sh) /∈ C,

2. δsisi < δsish , for each sh 6= si such that µ (sh) = µ (si), and

3. for each two students sh and sl, with µ (sh) , µ (sl) ∈ C \ µ (si),

δsish < δsislwhenever ρsiµ(sh) < ρsiµ(sl).

By extension, if we denote by Σ the matrix whose i-th row is δsi , we say

that Σ µ-agrees Φ whenever for each student si, δsi µ-agrees ρsi .

Definition 9. [Students’ Incidence Matrix]

Let S be the set of students, and let Σ be a matrix of students’ rankings,

whose i-th row represents si’s ranking. For each subset of students S ′ ⊆ S

we define its incidence matrix as the (|S ′| × |S ′|)-matrix that associates, to

each si and sh in S ′, the value

IΣ
S′ (si, sh) =

 1 if δsish < δsislfor each sl ∈ S ′ \ {sh}

0 otherwise

Definition 10. Let Σ be a matrix of students’ rankings, and S ′ ⊆ S be a

subset of students. A Cycle for the incidence matrix IΣ
S′ is a (non-empty)

ordered set of students in S ′, {s1, . . . , si, . . . , st} such that, for each i ≤ t−1,

IΣ
S′
(
si, si+1

)
= IΣ

S′
(
st, s1

)
= 1.

Note that, since for each subset of students S ′ each row of its incidence

matrix has a unique element whose value is 1, it is easy to see that

1. IΣ
S′ has, at least one cycle, and
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2. each student si ∈ S ′ is involved in, at most, one cycle.

We are now ready to introduce the workings for the Top Trading Cycle

algorithm in our framework.

Definition 11. [The µ-Σ-Top Trading Cycle Algorithm]

Let SAP be a School Allocation Problem, and µ a matching. Let Σ be a

matrix µ-agreeing the students’ ranking matrix Φ. The µ-Σ-Top Trading

Cycle algorithm, µ-Σ-TTCA henceforth, works as follows:

(Step 1) Let us consider the students’ incidence matrix IΣ
S , and let S1 be the

students belonging to a cycle for IΣ
S . Then associate each student

si ∈ S1 her mate

µTTC (si) = µ (sh) , where sh satisfies IΣ
S (si, sh) = 1.

Let S1 = S \ S1. If S1 = ∅ the algorithm ends, and matching µTTC is

implemented. Otherwise, go to Step 2.

(Step k) Let us consider the students’ incidence matrix IΣ
Sk−1

, and let Sk ⊆ Sk−1

be the students belonging to a cycle for IΣ
Sk−1

. Then associate each

student si ∈ Sk her mate

µTTC (si) = µ (sh) where sh satisfies IΣ
Sk−1

(si, sh) = 1.

Let Sk = Sk−1 \ Sk. If Sk = ∅ the algorithm ends, and matching µTTC ,

as described throughout steps 1 to k, is implemented. Otherwise, go

to Step k + 1.

The algorithm ends at the step t for which St = ∅.

18



Note that, since the set of students is finite and, for each step k, |Sk+1| <

|Sk|, this algorithm always ends in a finite number of steps.

Relative to the output of the µ-Σ-TTCA, for any given µ and each matrix

Σ, we can guarantee that the following properties are satisfied:

1. µTTC is Pareto efficient;

2. for each student si,

ρsiµTTC(si) ≤ ρsiµ(si).

3. µ = µTTC if, and only if, the former matching is Pareto efficient; and

4. if students are asked to reveal their rankings to implement matching

µTTC , they will obtain no advantage from misrepresenting their rank-

ings.

Note that the above properties can be seen as a conclusion derived from

theorems 4 and 5 in Alcalde-Unzu and Molis (2011).

We can now establish the following result.

Theorem 2. Let SAP be a School Allocation Problem, and µSO its student

optimal stable matching. Let ΣSO be a matrix µSO-agreeing the students’

rankings matrix Φ. Then the matching µTTC obtained by applying the µSO-

ΣSO-TTCA is ε-stable.

Summarizing the process that we have introduced in this section, let us

propose a formal description for the Exchanging Places Mechanism. To de-

scribe how this procedure operates, let fix the set of students S, and define,
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for each student si, an exchanging-priorities vector ωsi that will be under-

stood as a rule for prioritizing exchanges.16 In other words, let us imagine

that student si is located a place at school cj, and she would like to exchange

her place to some student attending to school ct. What ωsi describes is how

si orders the students having a place at ct to (sequentially) propose them

such an exchange. Given this vector for each student, we summarize this

information by defining a matrix of rankings Ω.

The “Exchanging Places Mechanism” operates as follows. Given a School

Allocation Problem, SAP , and matrix Ω, let µSO be the students optimal

stable matching for SAP , and ΣSO a matrix µSO-agreeing students’ rankings

matrix Φ, which is obtained by preserving the priorities established in Ω.

Then, apply the µ-Σ-TTCA for µ = µSO and Σ = ΣSO. The result of this

procedure is the outcome for the Exchanging Places Mechanism.

Definition 12. [The Exchanging Places Mechanism]

We define the Exchanging Places Mechanism, EPM henceforth, as the func-

tion that associates to each School Allocation Problem, SAP , and (n× n)-

ranking matrix, Ω,17 the matching µ∗ which is obtained by applying the

µ-Σ-TTCA, where

1. µ is the student optimal stable matching for SAP , and

16ωsi can be determined by the local school committee when establishing a students

ordering to be used for breaking ties in schools’ scores. For instance, and in order to make

up for the draw effect, each student’s vector ωsi might represent the ordering reversing

the draw result.
17By “ranking matrix” we mean that it satisfies that for each row i, and any two different

columns j, and h, Ωij 6= Ωih.
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2. Σ is the matrix µ-agreeing the students’ ranking matrix Φ that, for each

si and any two students sh and s` in S \ {si} such that µ (sh) = µ (s`),

Σih < Σi` if, and only if Ωih < Ωi`.

To conclude this section, let us propose the following example to show

how the EPM works.

Example 2. Let us consider the following Schools Allocation Problem. S =

{1, 2, 3, 4, 5, 6, 7, 8}, C = {a, b, c, d}, the capacity for each school is 2; and

the Rankings and Priorities matrices are

Φ =



2 1 3 4

2 4 1 3

3 2 1 4

4 2 3 1

1 4 2 3

1 2 3 4

1 2 4 3

2 1 3 4



; and Π =


2 3 8 1 7 4 6 5

6 2 1 5 8 4 3 7

7 5 6 8 2 3 1 4

8 5 3 4 1 2 7 6



Let us assume that, for each student, the vector of exchanging priorities is

ω = {1, 2, 3, 4, 5, 6, 7, 8}. The EPM proceeds as follows.

1. Let us calculate the student optimal stable matching, µSO. The ap-

plication of the students-proposing deferred acceptance algorithm is

summarized in the following table18

18A row in the table indicates the applications that each school receives at such a step.

The students marked in red are the ones whose application is refused, whereas the students

marked in green are tentatively accepted by the school.
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Step a b c d

1 5, 6, 7 1, 8 2, 3 4

2 6, 7 1, 8 2, 3, 5 4

3 6, 7 1, 3, 8 2, 5 4

4 6, 7, 8 1, 3 2, 5 4

5 6, 8 1, 3, 7 2, 5 4

6 1, 6, 8 3, 7 2, 5 4

7 1, 6 3, 7 2, 5, 8 4

8 1, 2, 6 3, 7 5, 8 4

9 1, 2 3, 6, 7 5, 8 4

10 1, 2 3, 7 5, 6, 8 4

11 1, 2 3, 7 5, 6 4, 8

µSO := 1, 2 3, 7 5, 6 4, 8

2. Matrix ΣMO is the following

ΣMO =



3 4 1 7 5 6 2 8

4 3 7 5 1 2 8 6

5 6 3 7 1 2 4 8

7 8 3 1 5 6 4 2

1 2 7 5 3 4 8 6

1 2 3 7 6 5 4 8

1 2 4 5 7 8 3 6

3 4 1 8 5 6 2 7



;
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3. and the successive incidence matrices are19

IΣSO

S =



0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0



; and thus S1 = {2, 6, 7, 8} ;

IΣSO

S1 =


0 1 0 0

1 0 0 0

1 0 0 0

0 0 1 0

 ; and thus S2 = {7, 8} ;

IΣSO

S2 =

 1 0

1 0

 ; and thus S3 = {8} .

Since S3 is a singleton, matrix IΣSO

S3 will have a cycle containing the unique

element in such a set.

Therefore, and following the order in which cycles has been reached, we have

that

(1.1) student 1 will get the place that µMO assigns to student 3; the latter

will take the one assigned to student 5, which will obtain the place that

19Each cycle in a matrix is marked by using one color (red or blue) for all the elements

belonging to that cycle.
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1 got;

(1.2) student 4 will keep the place that µMO assigned to her;

(2.1) students 2 and 6 will exchange the seats that µMO assigned to them;

(3.1) student 7 will retain her place; and

(4.1) since no student prefers 8’s place to her own, this agent will remain in

her place.

To conclude this example, and with the aim of presenting a comparative for

the application of some allocation procedures, relative to the data proposed

in the present example, let us consider the following table. It associates each

student two items: the school in which she gets a place (in blue), and the

position of such school in the student’s ranking (in red).

Comparing Systems

1 2 3 4 5 6 7 8

Boston Mechanism b 1 c 1 c 1 d 1 d 3 a 1 a 1 b 1

Top Trading Cycles b 1 c 1 c 1 d 1 a 1 b 2 a 1 d 4

Student Optimal a 2 a 2 b 2 d 1 c 2 c 3 b 2 d 4

Exchange Places b 1 c 1 c 1 d 1 a 1 a 1 b 2 d 4

Let us note that,

(1) The solution proposed by the Boston mechanism is not ε-stable. In

fact, student 5 might fairly object this solution by proposing the student

optimal stable matching. Since the last allocation is stable, no student

will be able to counter-object;
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(2) relative to the proposal by the TTCM, and comparing it to the one

suggested by the EPM, let us observe that both allocations are effi-

cient. The main difference can be founded in a fairness criterion. Let

us concentrate on schools a, and b that are the ones in which both

allocations differ. Note that, in the former allocation, student 6 envies

students 5 and 7; and it is justifiable; for the latter allocation, 7 is the

only student justifiable envying another student. She envies 5’s allo-

cation. Therefore, form a cardinal point of view, the outcome for the

EPM is ‘fairer’ than the allocation proposed by the TTCM;

(3) finally, when comparing the SOSM and the EPM, it is easy to see that

the latter Pareto-dominates the former. Moreover, both mechanisms

induce ϕ-stable allocations.

Notice that the EPM does not coincides with the EADAM proposed by

Kesten (2010) as we can see in the following example.

Example 3. Let us consider the following School Allocation Problem. S =

{1, 2, 3, 4}; C = {a, b, c}; Q = (1, 2, 1) ; and the ranking and priorities matri-

ces are

Φ =


2 1 3

1 2 3

1 2 3

1 2 3

 , and Π =


1 2 3 4

4 1 2 3

4 3 2 1


Notice that if student 1 trades with student 2, the allocation is the one

provide by EDAM however if she trades with 3 the allocation is different an

both are possible allocations of the EPM.
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5. Strategy-Proofness

As expected being efficient the EPM proposed for the School Allocation

Problem is not strategy proof.

Example 4. Let us consider the following School Allocation Problem. S =

{1, 2, 3, 4, 5}; C = {a, b, c, d, e}; Q = (1, 1, 1, 1, 1); and the ranking and prior-

ities matrices are20

Φ =



1 2 − − 3

− 1 2 − 3

2 − 1 − 3

1 5 4 3 2

1 2 3 4 5


, and Π =



3 − 1 − 2

1 3 − − 2

5 2 4 1 3

− − − − −

− − − 1 2


The student optimal stable matching is µSO (1) = b, µSO (2) = µSO (3) =

a, µSO (4) = e, and µSO (5) = d. When we apply the TTC we obtain

µSO−TTC (1) = a, µSO−TTC (2) = b, µSO−TTC (3) = c, µSO−TTC (4) = e,

and µSO−TTC (5) = d. If student 4 misreport her preferences by setting

ρ′4 = (1, 5, 2, 4, 3), then when applying the EPM we reach that

1. µSO (1) = b, µSO (2) = e, µSO (3) = a, µSO (4) = c, and µSO (5) = d;

2. and when we apply the TTC the allocation becomes µSO−TTC (1) = b,

µSO−TTC (2) = e, µSO−TTC (3) = c, µSO−TTC (4) = a, and µSO−TTC (5) =

d.

20In the next tables, when the ranking and/or priority is not completely determined, it

is understood that any ranking and/or priority agreeing our description are likely valid to

show our result.
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Therefore the mechanism is not strategy proof.

This fact is closely related with some previous results. First, Erdil and Er-

gin (2008) show that no student-optimal stable mechanism is strategy proof.

Kesten (2010) shows that when preferences are strict, there is no strategy-

proof and Pareto efficient mechanism that Pareto dominates the deferred ac-

ceptance mechanism. Abdulkadiroğlu et al. (2009) provided a tighter bound,

i.e., even when the efficiency requirement is relaxed, no strategy-proof mech-

anism can Pareto improve upon deferred acceptance with some tie-breaking,

were the preferences strict or not. We find then that there is a trade-off

between efficiency and strategy-proofness.

6. Concluding Remarks

Let us start this section by referring the reform hold in Boston (Citing

Abdulkadiroğlu et al., 2005, Section IV).

A memorandum from Superintendent Payzant in December

2004 states that BPS plans to change the computerized process

used to assign students to schools. Although the task-force re-

port recommended that BPS adopt the TTC assignment algo-

rithm, the School Committee is interested in simulations of both

mechanisms and in understanding the extent of preference ma-

nipulation under the Boston mechanism. They are also thinking

through their philosophical position on the trade-off between sta-

bility and efficiency.
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This interest for defining a philosophical position on the trade-off between

stability and efficiency is at the origin of a modification in the mechanism used

in the Boston Area, decided by July 2005. (See Abdulkadiroğlu et al., 2006).

As these authors mention, the solution was to adopt a deferred acceptance

mechanism because it is strategy-proof. Nevertheless, as we have pointed out

in the present paper, this solution is far from solving the trade-off which is

at the origin of this reform. In fact the use of such a solution can be justified

because it considers that stability is the central issue. If, moreover, the best

that agents can do is to reveal their true characteristics, it is straightforward

to conclude, as the Boston School Committee did, that the SOSM would be

adopted.

The main contribution of this paper is to provide a way for avoiding the

efficiency-equity dilemma. Our approach to escape to this trade-off between

stability and efficiency comes from a reinterpretation of the instability notion.

In this sense, the additional reform that would be introduced in systems

focusing on stability is allowing students to exchange the places that were

allocated to them in the actual system. Thus, when the Public authority does

not want to restrict the schools freedom when prioritizing students, the EPM

can be introduced to minimize the (inevitable) trade-off between efficiency

and equity.

A further aspect that can be used to promote the use of the EPM comes

from the arguments given in Abdulkadiroğlu et al. (2006). What these au-

thors report, concerning the recent changes introduced by the Boston School

Committee, is:

As far as we know, it is the first time that “strategyproof-
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ness,” a central concept in the game theory literature on mecha-

nism design, has been adopted as a public policy concern related

to transparency, fairness, and equal access to public facilities.

(Abdulkadiroğlu et al., 2006, pg. 2)

Nevertheless, strategy-proofness was not considered as a “sufficient con-

dition” justifying a modification in the mechanism used to allocate schools

places among students. In particular, the TTCM, introduced by Abdulka-

diroğlu and Sönmez (2003) was not considered by the Boston School Com-

mittee as a satisfactory proposal to modify the former system. This mecha-

nism is strategy-proof and selects efficient allocations. When comparing the

TTCM and the SOSM, which is also strategy-proof, Abdulkadiroğlu et al.

(2006) conclude the following:

While TTC is a Pareto efficient mechanism when only stu-

dents are considered, and the student-proposing deferred accep-

tance mechanism is not, the former does not Pareto dominate

the latter. One implication is, based on a stronger efficiency no-

tion (such as a cardinal efficiency notion relying on the rank order

of schools) the student-proposing deferred acceptance mechanism

may perform better than the TTC for some problems. For exam-

ple, the student-proposing deferred acceptance mechanism may

assign more students to their first choices than TTC. Moreover

while each Nash equilibrium outcome of the complete information

preference revelation game induced by the Boston mechanism is

weakly Pareto dominated by each dominant-strategy equilibrium
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outcome of the student-proposing deferred acceptance mechanism

(Ergin and Sönmez, 2006), equilibrium outcomes induced by the

Boston mechanism and TTC are not Pareto ranked. (Abdulka-

diroğlu et al., 2006, pg. 10)

Given the above comparison, we can conclude that our EPM performs

better than all the three mechanisms considered in the literature, namely

the TTC, the SOSM and the Boston mechanisms. The reason is that, using

the arguments by Abdulkadiroğlu et al. (2006), and taking into account that

the EPM Pareto dominates the SOSM, we get

1. The EPM never assigns less students to their first choices than the

SOSM do, and

2. when students do not act strategically, the EPM weakly Pareto domi-

nates the SOSM.

APPENDIX

I. A Proof for Proposition 1

To prove Proposition 1, let us consider the following School Allocation

Problem.

S = {1, 2, 3} ; C = {a, b, c} ; Q = (1, 1, 1); and the ranking and priorities

matrices are

Φ =


1 3 2

2 3 1

2 3 1

 , and Π =


3 2 1

2 1 3

1 3 2


Note that in such a problem there is only one stable matching, µ, such

that µ (1) = c; µ (2) = b; and µ (3) = a. Nevertheless, µ fails to be Pareto
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efficient since µ′ defined as µ′ (1) = a; µ′ (2) = b; and µ′ (3) = c, Pareto

dominates µ. �
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II. A Proof for Theorem 2

To prove Theorem 2, let us consider a School Allocation Problem, SAP ,

and let µSO its student optimal stable matching. By Mart́ınez et al. (2001),

we know that for any matching µ′, if ρsiµ′(si) < ρsiµSO(si) for some student ci,

then µ′ is unstable.

Now, let ΣSO be a matrix µSO-agreeing Φ, and µTTC the matching ob-

tained by applying the µSO-ΣSO-TTC algorithm. By Alcalde-Unzu and Molis

(2011), Theorem 4, we have that µTTC is efficient. Moreover, Corollary 3 in

Alcalde-Unzu and Molis (2011) also establishes that, for each student si,

ρsiµTTC(si) ≤ ρsiµMO(si).

Now, let us assume that µTTC is not ε-stable. Since it is efficient, it should

fail to be ϕ-stable. Therefore, there should be a student, si, that can fairly

object µMO via some matching, say µ′. Then, µ′ must satisfy that

ρsiµ′(si) < ρsiµTTC(si) ≤ ρsiµMO(si),

which implies that µ′ is unstable. Note that this instability implies that there

should be a student, say sh, and matching µ′′ such that sh can counter-object

µ′ via µ′′. A contradiction. �
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Abdulkadiroğlu, A., Pathak, P.A., Roth, A.E., 2009. Strategy-Proofness

versus Efficiency in Matching with Indifferences: Redesigning the NYC

High School Match. American Economic Review 99, 1954–1978.

32
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