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1 Introduction

There are many reasons why smaller communities, villages, cities, regions decide to give up some
independence and to join a bigger community. Two of the most pervasive arguments for joining a
federation are the more efficient provision of public goods, which are non-rival at the federal level,
and the sharing of risk among risk averse regions. In general, both arguments call for more than
one level of government. In the public good case, having several jurisdictions leads to a trade-off
between the efficient level of public good provision and the heterogeneity of the population. When
sharing risk, having a superior jurisdiction allows regions to commit themselves to honor the risk
sharing arrangement, even if ex-post the region not affected by the loss has an incentive to defect.1

The present paper focuses on the risk sharing aspect in a federation. Consider regions or states
within a country or a federation that can be hit by a shock leading to losses that occur with an
exogenous probability and in a stochastically independent way.2 For instance, the Japanese regions
of Tokyo and Osaka are at high risk of an earthquake or the US states of Missouri and Louisiana
face the risk of floods. In both examples, the regions are part of a superior jurisdiction which
allows risk consolidation on an aggregate level. This has a positive effect on all regions’ expected
payoff, if the regions are risk averse. Apart from that, an individual region can also undertake
investments to lower the size of the loss. In the case of an earthquake, the region can impose
appropriately stable building regulations. For flood protection, the region can build levees and
dikes to prevent flooding. In both cases, the investments to reduce the size of the loss are costly
and reduce income. Such a situation where the probability of the loss is given but the size of
the loss can be influenced by investing in a public good is a self-insurance situation (Ehrlich and
Becker, 1972). Being part of a federation, there is a double incentive not to invest in self-insurance.
First, in case disaster strikes, the affected region can rely on support from the central government,
which redistributes income from the region not being hit by a shock to the region hit by a shock.
Second, due to this insurance effect within the federation, the investment in self-insurance becomes
a public good and the regions contribute to this public good privately. Under normal circumstances,
there is underprovision of this public good. A similar situation is faced by sovereign countries and
supra-national organizations. If all countries face a potential loss, the countries are better off if
they pool the risk. However, the independent countries face the same incentive problem as the
dependent regions. Individually, each country has an incentive to minimize the own investment
in loss reduction, while from a common point of view it would still be efficient to invest in the
public insurance good. The problem is exacerbated here because the individual sovereign countries
cannot in principle be coerced to contribute to the public good, so participation in the insurance
scheme must be ex ante voluntary. One can think of international agreements as delivering a
self-commitment device that ex-ante makes all individual countries better off.

In this paper we study the interaction between public self-insurance and central government’s
transfers. We compare the first-best situation where the central government can also determine the

1See Kocherlakota (1996) and Genicot and Ray (2003) for an analysis of self-enforcing risk sharing arrangements
without commitment.

2Throughout the paper, we will focus without loss of generality on regions within a federation, but our analysis also
applies to boroughs joining a city or to sovereign countries joining a supra-national organization like the European
Union.
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regional government’s choices with a second-best situation where the regional government is free to
act under the transfer system the central government has chosen. We have no explicit public goods
and no related direct spillover effect. Our simple model has no taxation and no redistribution and
purely selfish regions. Uncertainty can be mitigated by self-insurance investment, and it is this
self-insurance effort which has a public good character. Given the insurance effect in a federation
due to risk consolidation, the intuitive result follows that in a federation the first-best self-insurance
level is always smaller than in an autarky situation. Since the cost of the loss is shared, risk averse
regions are willing to take bigger risks, i. e., they reduce their self-insurance efforts. However,
given the federal transfer mechanism, the individual regions have an incentive to further reduce
the self-insurance effort suboptimally if there is no central government with full information and
coercive power. The Nash equilibrium of the private contributions to public self-insurance in a non-
cooperative setting is always smaller than the first-best equilibrium level. If the central government
takes this incentive situation into account, it will redesign the regional insurance mechanism with
the aim of increasing the self-insurance effort choice of the individual regions. The resulting second-
best self-insurance efforts in the non-cooperative setting will still be lower than the first-best effort
level, leading to second-best redistribution transfers that are always larger (in absolute terms) than
the corresponding first-best transfers. The welfare results are ambiguous and being member of
a federation is not always in the interest of the individual region. On the positive side, there is
the consolidation of risk. On the negative side, this risk reduction creates a Samaritan’s Dilemma
(Buchanan, 1975) between insurance and redistribution by reducing the incentive to invest in
public self-insurance.3 Which effect prevails depends on the regional payoff functions and on the
probabilities of the loss. It follows that some risks are better pooled, some are not. A possible
solution is to fix the redistribution transfers independently of the loss. For fixed transfers, the
central government may reach the first-best outcome.

The issue of risk sharing in a federation has been studied both empirically and theoretically.
Sala-I-Martin and Sachs (1992) and Asdrubali et al. (1996) analyze risk sharing among US states.
They find that the capital market and the credit market appear to be the most important mech-
anism for risk sharing. However, both papers consider the federal government as an important
complement for risk sharing. Persson and Tabellini (1996a, 1996b) study risk sharing arrange-
ments in a political economy setting with a local and a national government. The local policy
redistributes across individuals and affects the probability of aggregate shocks, whereas the federal
policy shares international risk. Their results indicate a trade off between federal risk sharing and
moral hazard and federal risk sharing and redistribution, respectively. Both papers focus on polit-
ical economy outcomes under alternative fiscal constitutions. Lockwood (1999) considers the fact
that local public goods may give rise to spill over effects. He studies the central government’s trade
off between providing insurance and offering direct corrective incentives for local public goods. His

3Konrad (1994) presents a model where individuals know that a public good is to be privately provided in the
future. This distorts effort incentives, because the individuals aim to reduce their disposable income to shift the
burden of the public good provision to the other individuals. Similarly, Coate (1995) argues that unconditional
transfers to the poor by the altruistic rich have negative efficiency effects. However, in our setting there is no
altruism. By providing a federal insurance mechanism, the federal government sets the wrong incentives for the
regions to choose the efficient self-insurance level. This leads to an inefficiently low level of self-insurance and to an
inefficiently large loss.
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approach focus on insurance through the provision of a public good, while in our setting, insurance
itself is the public good.

Mansoorian (2000) considers risk sharing among individuals within and across regions in a
federation with population mobility and infinite horizons. He finds that the regional authorities will
not fully exploit gains from interregional risk sharing when population mobility is imperfect. In the
Nash equilibrium there is complete risk sharing among the individuals within each region. Regional
authorities who care on their reputation may be able to commit to an efficient allocation. Aronsson
and Wikström (2003) analyze risk sharing arrangements in an optimal taxation framework. Two
levels of government provide public goods and expenditures are financed via a labor income tax
with a tax base being responsive to the private agent’s labor supply decisions. The labor supply
decisions as well as the choices of income tax rates are carried out under uncertainty because the
localities may experience random productivity shocks. Part of the central government’s decision
problem is to provide tax revenue sharing between the local governments. The optimal degree
of revenue sharing depends on whether or not the localities differ with respect to labor supply
incentives.

In their seminal contribution, Ehrlich and Becker (1972) coined the terms self-insurance and
self-protection for situations where the size of the loss and the probability of the loss can be influ-
enced. Newer contributions in the insurance literature (Kunreuther and Heal (2003), Muermann
and Kunreuther (2008), Lohse et al., forthcoming) and the public economics literature (Ihori and
McGuire (2007), Ihori and McGuire, 2010) have extended the analysis of self-insurance and self-
protection to the case where they are the outcome of a collective effort. In a recent paper, closest
to ours, Goodspeed and Haughwout (2007) apply the Persson and Tabellini setting to examine the
effects of natural disasters in a federation where local levels may influence the probability of the
related losses in a self-protection manner. In line with Bordignon et al. (2001) they show that when
the federal government is committed to full insurance against disasters, the local level has incentives
to under invest in costly protective measures since the benefit of a reduction of the probability of
the loss is shared by all. Compared to a first-best setting, second-best transfer levels (and the cor-
responding local investment levels) can be greater or smaller depending on the relative probability
of a disaster. Our self-insurance model applies and extends Goodspeed and Haughwout’s approach
to a self-insurance situation.

The remainder of the paper is organized as follows. In the next section, we analyse a region’s
situation in case of autarky. In Section 3 we derive the first-best federation equilibrium where
the central authority is able to implement and enforce an income transfer mechanism between the
regions after the loss has been realized. However, in the second-best federation equilibrium in
Section 4, the central government designs a second-best transfer scheme taking into account the
regions’ best-response behaviour to the announced transfer scheme. We consider both, variable and
fixed transfers and provide a welfare analysis, too. Section 5 concludes.
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2 The case of autarky

Consider two isolated regions indexed by i = 1, 2, each of them ruled by its own government.4

In every period, region i earns from its citizens a constant tax revenue given by R. The regions
are assumed to be symmetric in the sense that their tax revenue R is equal. This allows to focus
entirely on insurance incentives and rules out redistribution motives. The time structure comprises
two periods. In each period j = 1, 2 region i has income Yij , where the first index refers to the
region i = 1, 2 and the second index stands for the period j = 1, 2.

In the first period, income is certain. Income in the second period is uncertain, because with
probability p there occurs a loss L. Such a situation will be referred to as a loss situation L leading
to low future income. In contrast, with probability 1−p the regions end in a high income situation
H with no loss. Crucially, each region may influence the size of the loss L by investing Ii (at a
normalized price of one per unit of I) to reduce the size of the potential loss L in the second period,
L(Ii). We assume I < L(Ii) to avoid a corner solution I = 0.

The income level in period 1 is given by

Yi1 = R− Ii, i = 1, 2. (1)

Utility from this income is derived from a strictly monotonically increasing and strictly concave
utility function u(Yi1) = u(R− Ii). The uncertain income in period 2 is

Yi2 =

{
R− L(Ii) with probability p,

R with probability 1− p.
(2)

Utility from second period income stems from a strictly monotonically increasing and strictly con-
cave utility function v(·).5 The loss probabilities of the two regions are stochastically independent
from each other.6 Realistically, we assume that the loss is decreasing in the self-insurance invest-
ment with diminishing returns, e. g., ∂L(I)/∂I < 0 and ∂2L(I)/∂I2 > 0. For the sake of simplicity
and without loss of generality, we assume that there is no borrowing and no discounting.

In the case of isolated and independent regions, which we will call autarky, each regional gov-
ernment chooses its level of self-insurance investment Ii to maximize the sum of utilities in periods
1 and 2

max
Ii

Ui := u(R− Ii) + pv(R− L(Ii)) + (1− p)v(R), (3)

where the first summand is the first period utility, and the other two summands are the expected
utility in the second period. Ui denotes the total intertemporal utility of region i.

4In the following, we will always speak of regions and of a central government, but our model applies to any
pairing of hierarchical administrative institutions, e. g. countries and supra-national organization like the EU, or
villages within larger regions. By considering only two entities, there are no problems of subgroup formations who
may destabilize risk sharing arrangements as in Genicot and Ray (2003).

5By denoting second-period utility differently than the first-period one, we just want to avoid confusion in the
analysis, but we do not make any assumption on different degrees of risk aversion etc.

6Here we make the usual assumption in the literature that the risks are not correlated across the regions. If they
were, then insurance would lose much of its appeal since a loss would affect all regions more or less equally and there
would be no true risk consolidation. Kunreuther and Heal (2003) analyze the case of interdependent risks in a static
setting.
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The condition describing implicitly the payoff maximising self-insurance level under autarky
(denoted by superscript A) is7

∂u(R− IAi )

∂Yi1

∂Yi1
∂Ii

= −p∂v(R− L(IAi ))

∂Yi2

∂Yi2
∂L

∂L(IAi )

∂Ii
, (4)

By the symmetry of the regions we obtain IA1 = IA2 = IA. The left hand side (LHS) is the marginal
cost of loss reduction in units of marginal utility in period one. The right hand side (RHS) gives
the marginal benefit of loss reduction, i. e, the expected decrease of the loss, in units of marginal
utility in period two. Hence, regional governments optimally choose the self-insurance effort to
equalize probability adjusted marginal utilities over time. To allow an easy comparison with later
conditions, we will use condition (4) rearranged as follows:

∂u(R− IAi )

∂Yi1
· ∂Yi1
∂Ii

∂L(IAi )

∂Ii

= −p∂v(R− L(IAi ))

∂Yi2

∂Yi2
∂L

, (5)

and prove the following lemma that will be used frequently in our analysis:

Lemma 1
The marginal utility cost of self-insurance, measured in units of marginal loss reduction, i. e., the
LHS of equation (5), is an increasing function of self-insurance investment. The marginal benefit
of loss reduction, measured in units of marginal utility in period two, i. e., the RHS of equation
(5), is a decreasing function of self-insurance investment.

Proof. See Appendix.
Lemma 1 is also related to the concavity of the payoff function (3) in I. The latter proves that

condition (5) describes a utility maximum.

3 The first-best federation equilibrium

3.1 The time structure

Suppose now that both regions are part of a broader unit or country ruled by a benevolent central
government. This central authority is able to implement and enforce a income transfer mechanism
between the regions after the loss has been realized. This redistribution scheme is described by
transfers T i

MN , M,N ∈ (H,L). The superscript i denotes the region. The index MN denotes the
state of region 1 (M) and region 2 (N), where M and N can both be equal to L (region has been
hit by a loss and has a low income) and H (region is in a high income situation). We assume that
the transfers are self financing and that the central government does not profit from its efforts, such
that for a given outcome MN :

T 1
MN + T 2

MN = 0, M,N ∈ {H,L}. (6)

This assumptions means, in effect, that T 1
MN = −T 2

MN always holds. This allows us to drop
the superscripts and to simplify our notation, since the transfer received by region M will always

7This payoff function is strictly concave in I, see Appendix.
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equal the transfer paid by region N and viceversa. Without loss of generality, we will adopt the
perspective of region 1, i. e., we will add the transfer to the payoff of region 1 and subtract it from
the payoff of region 2. Of course, this is just a notation issue, since transfers can be either positive
or negative.

The transfers TMN can be fixed to a specific amount T̂ , or they can be conditional on the size
of the loss L. This realization is not known yet when the transfer scheme is designed. When the
transfer payments are calculated, the loss will have occurred or not, and so the size of the loss can
be used to compute the transfer payments according to the central government’s scheme.

The time structure of our model is as follows:

1. In the first stage, the central government designs and commits to a redistribution scheme for
the regions.

2. In the second stage, regional governments choose an investment level I1 and I2 taking into
account the central government’s announced scheme.

3. In the third and final stage, income is realized and the regions have suffered a loss or not.
Transfers are realized according to the scheme chosen in Stage 1.

If the central government implements a redistribution scheme, income in the second period for
region 1 is given as

Y12 =


R− L(I1) + TLL with probability p2,

R− L(I1) + TLH with probability p(1− p),
R+ THL with probability (1− p)p,
R+ THH with probability (1− p)2,

(7)

and for region 2:

Y12 =


R− L(I2)− TLL with probability p2,

R− L(I2)− THL with probability (1− p)p,
R− TLH with probability p(1− p),
R− THH with probability (1− p)2,

(8)

We assume throughout the paper that the self-insurance investment levels I1 and I2 are not
observable. If the self-insurance investment I was observable, a central government aiming to
implement an investment level Î could simply setup the following transfer scheme:

T =

{
T̂ for Î
0 else

(9)

and in effect coerce the regions to choose Î.8

8While one may argue that self-insurance may be observable, for our results it suffices to assume that the
investment level I is not verifiable, so the central government cannot implement a transfer scheme directly dependent
on the self-insurance level. We believe this assumption to be quite realistic in practice.
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3.2 First-best transfers

Let us analyze first as a benchmark case the case of an economic federation with a benevolent
central government that has the power to choose both the transfer scheme and the self-insurance
effort levels of the regions. Alternatively, such a scenario resembles a centralized country in which
the regional government has no decision power. For this first-best outcome where the central
government is able to dictate both the transfer scheme and the self-insurance effort choices, we can
analyze the decisions one after the other as follows. Since the central government controls every
decision, it does not matter whether the regional transfers are fixed or conditional on the size of
the loss. The benevolent central government will always maximize the joint welfare of its regions.

The central government’s first-best welfare maximization problem with respect to the efficient
transfers TMN is:

max
TMNM,N∈{H,L}

W = U1 + U2 = u(R− I1) + u(R− I2)

+ p2(v(R− L(I1) + TLL) + v(R− L(I2)− TLL))

+ (1− p)2(v(R+ THH) + v(R− THH)) (10)

+ (1− p)p (v(R+ THL) + v(R− L(I2)− THL))

+ p(1− p) (v(R− L(I1) + TLH) + v(R− TLH)) ,

where we have already used that transfers are self-funding. The first order conditions are:9

∂v(R− L(I1) + TLL)

∂Y12
=
∂v(R− L(I2)− TLL)

∂Y22
, (11)

∂v(R+ THH)

∂Y12
=
∂v(R− THH)

∂Y22
, (12)

∂v(R+ THL)

∂Y12
=
∂v(R− L(I2)− THL)

∂Y22
, (13)

∂v(R− L(I1) + TLH)

∂Y12
=
∂v(R− TLH)

∂Y22
. (14)

Transfers are chosen such that second-period marginal utilities are equalized. This requires that
second-period income is identical across regions, implying a complete income equalization. If none
of the regions has suffered a loss, there will be nothing to redistribute and transfers will be zero,
THH = 0. In the case only one region is affected by a loss, transfers exhibit a transfer from the
region H that is not affected by a loss to the region L being affected by the loss. Full risk-sharing
leads to R + THL = R − L(I2) − THL and R − L(I1) + TLH = R − TLH , respectively. It follows
that THL = −1

2L(I2) and TLH = 1
2L(I1). If both regions have experienced a loss, there may be a

transfer if the regions have chosen different self-insurance levels. However, we will see below that
9The second order condition holds because the cross partial derivatives are zero and the Hessian matrix is a

diagonal matrix. The diagonal elements are the second order derivatives of the objective function (10) with respect
to TLL, THH , THL, and TLH , which are negative by the concavity of u and v. Thus the Hessian matrix is negative
definite.
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the first-best entails equal self-insurance investment levels also leading to zero transfers, TLL = 0,
for this case.

The central government sets the first-best regional government’s investment level in loss reduc-
tion Ii, i = 1, 2 by maximizing the joint payoff of the regions, for given ex-post equalization of
income levels:

max
I1,I2

W = u(R− I1) + u(R− I2)

+ p2(v(R− L(I1) + TLL) + v(R− L(I2)− TLL))

+ (1− p)2(v(R) + v(R)) (15)

+ (1− p)p2v(R− 1

2
L(I2))

+ p(1− p)2v(R− 1

2
L(I1))

where we have already inserted first-best income equalizing transfers. The first order conditions
with respect to Ii, i = 1, 2 are10

∂u(R− I1)
∂Y11

∂Y11
∂I1

∂L(I1)

∂I1

= −p2∂v(R− L(I1) + TLL)

∂Y12

∂Y12
∂L
− p(1− p)∂v(R− 1

2L(I1))

∂Y12

∂Y12
∂L

(16)

∂u(R− I2)
∂Y21

∂Y21
∂I2

∂L(I2)

∂I2

= −p2∂v(R− L(I2)− TLL)

∂Y22

∂Y22
∂L
− p(1− p)∂v(R− 1

2L(I2))

∂Y22

∂Y22
∂L

(17)

Conditions (16) and (17) are symmetric. It follows that I1 = I2, and TLL = 0 is a solution to
the maximization problem. For I1 = I2, conditions (16) and (17) are identical and collapse to the
single condition

∂u(R− I∗)
∂Yi1

∂Yi1
∂I

∂L(I∗)
∂I

= −p2∂v(R− L(I∗))
∂Yi2

∂Yi2
∂L
− p(1− p)∂v(R− 1

2L(I∗))
∂Yi2

∂Yi2
∂L

. (18)

which implicitly defines the first-best level of self-insurance I∗. To sum up, I1 = I2 = I∗ and
TLL = 0, THL = −TLH = T ∗ = −1

2L(I∗) are a solution to the first-best problem. It is the only
solution, because the objective function (15) is strictly concave and continuously differentiable, so
the optimization problem has only one local maximum. This local maximum is also the global
maximum because TLL = 0 and THH = 0 are already at the boundary and because THL and TLH
cannot be at the border given that the autarky solution is an interior solution.

The LHS of equation (18) represents the marginal cost of self-insurance due to an income
decrease in the first period. The RHS displays the marginal benefit from such self-insurance,
given by the marginal expected increase in period 2 utility. In contrast to the case of autarky,

10Again, the Hessian matrix is a diagonal, negative definite matrix, see Appendix, so the payoff function is concave
in I1 and I2.
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the presence of the transfers has inserted an externality because now the one region’s investment
affects the utility of the other region. Investments in self-insurance in region i also benefit region
j (i 6= j), because the utility and income equalizing transfer is smaller. This marginal benefit only
accrues in the situation where one region suffers a loss and the other region is spared. Therefore,
the positive externality is weighted with the probability p(1−p) for this case. The first-best transfer
T ∗ = −1/2L(I∗) ensures that the ex-post income levels are equalized.

To compare the self-insurance effort level under autarky with the first-best level in a federation,
we have to compare the self-insurance levels IA and I∗ resulting from conditions (5) and (18), for
which we will use the shorthand notation LHSA(IA) = RHSA(IA) and LHS∗(I∗) = RHS∗(I∗),
respectively.

Proposition 1 (First-best federation equilibrium)
The first-best self-insurance level in a federation is smaller than the efficient level under autarky,

I∗ < IA, (19)

and a region’s utility in a federation is higher than under autarky,

U∗ > UA, (20)

where U∗ and UA denote the intertemporal utility of each individual region in a first-best federation
situation and under autarky, respectively.

Proof. To compare the self-insurance effort level under autarky with the first-best level in a federa-
tion, we have to compare the self-insurance levels IA and I∗ resulting from conditions (5) and (18).
The LHS of both conditions are equal, so any difference in I will result from the RHS. For a given
self-insurance level Î, the RHS∗ is smaller than the RHSA, since the transfer T ∗ increases the
argument and decreases marginal utility in the case where one region is hit by a loss and the other
region is not. It follows that the LHS must be smaller, too, which by Lemma 1 means that the
self-insurance investment level I is smaller. Thus, the I∗ that solves condition (18) is smaller than
the IA that solves condition (5). To compare the utility levels, consider the levels under autarky
UA with first-best self-insurance level in a federation U∗:

UA(IA) = u(R− IA) + pv(R− L(IA)) + (1− p)v(R) (21)

U∗(I∗) = u(R− I∗) + p2v(R− L(I∗)) + (1− p)2v(R) + 2(1− p)pv(R− 1

2
L(I∗)). (22)

It follows that

UA(IA) < u(R− IA) + p

(
pv(R− L(IA)) + (1− p)v(R− 1

2
L(IA))

)

+ (1− p)
(

(1− p)v(R) + pv(R− 1

2
L(IA))

)
= u(R− IA) + p2v(R− L((IA))) + (1− p)2v(R) + 2(1− p)pv(R− 1

2
L(IA))

= U∗(IA) < U∗(I∗),

(23)
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R− L(IA) R− 1
2
L(IA) R

v(R− L(IA))

v(R− 1
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v(R)
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y

Figure 1: The concavity of the payoff function ensures that the first best payoff in a federation is
higher than under autarky (insurance effect).

where the first inequality follows by the concavity of v (see Figure 1) and the second inequality
follows from the fact that I∗ maximizes W which given the definition of W in (15) implies I∗

maximizes U∗. QED.
The intuition behind Proposition 1 is clear. In autarky, a region earns the full marginal benefit

of its self-insurance effort. In contrast, in a federation, with a probability p(1 − p) one region is
affected by a loss and the other region is not, in which case the ex-post rich region pays a transfer
to the ex-post poor region. This redistribution reduces the marginal benefit of self-insurance. The
regions have an incentive to build a federation and to consolidate the risk, but this risk consolidation
reduces the efficient level first-best level of self-insurance. However, their welfare level increases,
since they have an additional instrument to consolidate the risk, namely the insurance in the
federation.

3.3 First-best and non-cooperative regions for a variable transfer scheme

Consider now the situation where the central government is not able to impose a self-insurance level
on the regions and that the two regions act non-cooperatively for a given transfer scheme announced
by the the central government. Is the first-best outcome feasible? Each region maximizes its own
regional payoff in a non-cooperative way, taking the central governments’ transfer scheme and the
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behaviour of the other region as given (Nash behaviour). First we look at the case where the central
government has chosen a variable transfer conditional on the size of the loss. The first-best transfer
is TLH = 1/2L(I1) and THL = −1/2L(I2) if one of the regions suffers a loss and the other does
not. If both regions end up in the same state, transfers are zero, THH = TLL = 0. This transfer
scheme is taken into account by region 1 when calculating its payoff

U∗1 = u(R− I1) + p2v(R− L(I1)) (24)

+p(1− p)v(R− 1/2L(I1)) + (1− p)pv(R− 1/2L(I2)) + (1− p)2v(R).

Region 2’s payoff is analogous. Since both regions are symmetric and the transfer scheme is also
symmetric, the interior payoff maximising solution is identical for both regions. It follows that both
regions will choose the same self-insurance effort and will have the same income before the possible
realization of the loss. If both regions end up in the same state, transfers are zero, THH = TLL = 0.
Consider without loss of generality region 1. It chooses the investment level to maximise the payoff
given by (24). The FOC implicitly describing the non-cooperative choice IN1 is:

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

∂L(IN )

∂I1

= −p2∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L
− 1

2
p(1− p)∂v(R− 1/2L(IN1 ))

∂Y12

∂Y12
∂L

, (25)

where the superscript N denotes the self-insurance effort in the non-cooperative Nash behaviour
setting. The second-order conditions hold again due to the concavity of u and v and the assumptions
about L(I).

The structure of condition (25) is similar to the structure of the first-best condition (18) and
the terms can be interpreted in a similar way. However, when choosing the self-insurance effort
level, region 1 only takes into account the effect on its utility in stage 2 and disregards the positive
externality on region 2. Therefore, the marginal benefit for the situation when there is an income
transfer (for which the probability is p(1− p)) is half as big as in the first-best situation.

Proposition 2 (Free-riding incentive)
Suppose the central government designs a transfer scheme with a variable transfer that depends
on the loss and that equalizes ex-post income levels. If the regions choose their self-insurance
effort non-cooperatively in a Nash way, both regions choose the same self-insurance level IN1 (T ∗) =

IN2 (T ∗) = IN (T ∗) which is smaller than the first-best level I∗ in a federation:

IN (T ∗) < I∗. (26)

Proof. To establish (26), we compare the non-cooperative self-insurance level IN with the first-
best level I∗, and thus use conditions (25) and (18). The RHSN (I) for the non-cooperative
equilibrium with first-best transfers (25) is smaller than the RHS∗(I) for the first-best condition
(18), RHSN (I) < RHS∗(I), because the former non-cooperative condition does not include the
positive externality of the self-insurance investment. In an analogous way to the proof of Proposition
1 it follows that IN (T ∗) < I∗. QED.

The intuition is that in the second stage the regional governments take into account the transfers
set by the central government when they take the non-cooperative decision about how much to
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invest in the first period in loss reduction and, consequently, invest too little in self-insurance effort
in Stage 2. If the self-insurance effort levels I1 and I2 are not observable and not verifiable and/or
the central government has no power to coordinate the regional governments towards the first-best
outcome, the first-best outcome is not feasible. The regions may be sovereign countries and the
central government may be a supranational organization. It follows that the central government
takes into account the behaviour of the regions and when designing a a second-best transfer scheme
in Stage 1.

4 The second-best federation equilibrium

As shown in the previous section, the first-best equilibrium is not feasible if regions act non-
cooperatively. The central government has to take into account such behavior when designing its
transfers. The resulting situation is a second-best setting.

4.1 The second-best transfers

We solve the game backwards and start from Stage 2, the last stage where an action is taken.
Without loss of generality we consider region 1. Its payoff maximising non-cooperative choice for
a given transfer scheme is:

U1 = u(R− I1) + p2v(R− L(I1)) (27)

+p(1− p)v(R− L(I1) + TLH) + (1− p)pv(R− THL)) + (1− p)2v(R).

It chooses the investment level I1 to maximise the payoff given by (27). The FOC implicitly
describing the non-cooperative choice IN1 is:

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

∂L(IN )

∂I1

+ p2
∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L

+ p(1− p)∂v(R− L(IN1 ) + TLH)

∂Y12

∂Y12
∂L

= 0, (28)

where the superscript N denotes the self-insurance effort in the non-cooperative Nash behaviour
setting. The second-order conditions hold again due to the concavity of u and v and the assumptions
about L(I). This FOC defines a reaction function IN1 (TLH) for region 1. Lemma 2 shows that this
reaction function has a strictly negative slope.

Lemma 2
Consider a Nash non-cooperative setting where one region suffers a loss and the other does not. If
the central government increases (in absolute terms) the ex-post transfer from the richer, no loss
region to the poorer, loss affected region, the regions have an incentive to decrease their investment
in self-insurance, i. e.

∂IN1
∂TLH

< 0 and
∂IN2
∂THL

> 0. (29)

Proof. See Appendix.
These reaction functions from Lemma 2 represent the individual non-cooperative response of the

regions for a given transfer scheme of the central government. Intuitively, the self-insurance efforts
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in a non-cooperative situation decrease if the ex-post transfers increase because self-insurance is
a public good and the regions are contributing privately to it. In such contributions games, the
individual agents do not take into account the positive externality produced upon the other players
and thus reduce their effort compared with the first-best level.

In Stage 1, the central government designs a transfer scheme to maximize the joint payoff of the
regions, taking into account the regions’ reaction functions IN1 (TLH) and IN2 (THL). The second-best
maximization problem

max
TLH ,THL

WSB = u(R− IN1 (TLH)) + u(R− IN2 (THL)) (30)

+p2
(
v(R− L(IN1 (TLH))) + v(R− L(IN2 (THL)))

)
+ (1− p)22v(R)

+(1− p)p
(
v(R+ THL) + v(R− L(IN2 (THL))− THL)

)
+p(1− p)

(
v(R− L(IN1 (TLH)) + TLH) + v(R− TLH)

)
.

has the first order conditions with respect to TLH (SB denotes second-best)

p(1− p)∂v(R− TSB
LH )

∂Y22
= p(1− p)∂v(R− L(IN1 (TSB

LH )) + TSB
LH )

∂Y12
(31)

+
∂IN1
∂TLH

·
[
∂u(R− IN1 (TSB

LH ))

∂Y11

∂Y11

∂IN1

+p2
∂v(R− L(IN1 (TSB

LH )))

∂Y12

∂Y12
∂L
· ∂L
∂IN1

+p(1− p)∂v(R− L(IN1 (TSB
LH )) + TSB

LH )

∂Y12

∂Y12
∂L
· ∂L
∂IN1

]
An analogous symmetric condition obtains for the derivative with respect to THL, which we omit
for the sake of brevity.11 The last three lines contain the individual maximization of a region and
are equal to zero following FOC (28), such that (32) simplifies to12

p(1− p)∂v(R− TSB
LH )

∂Y22
= p(1− p)∂v(R− L(IN1 (TSB

LH )) + TSB
LH )

∂Y12
(32)

Proposition 3 (Second-best federation equilibrium)
If the central government designs a second-best transfer scheme with variable transfers taking into
account the regions’ best-response behavior to the anounced transfer scheme,

1. the second-best transfers are always strictly greater in absolute terms than the corresponding
first-best transfers,

TSB
LH = −TSB

HL =: TSB > T ∗,

2. the self-insurance level in the second-best non-cooperative setting is smaller than in the first-
best situation

IN (TSB) < I∗,
11The second order condition holds if WSB is a concave function in TLH and THL. A sufficient condition for

concavity of the second best maximization problem is ∂L
∂IN1

· ∂IN1
∂TLH

< 1, which holds in the present model, see
Appendix.

12Alternatively, we could have applied the envelope theorem to obtain (32) directly.
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3. and the second-best transfers are equal in relative terms to the corresponding first-best trans-
fers, i. e. in both situations the transfers are equal to half the loss:

TSB =
1

2
L(IN (TSB)).

Proof. To proof the first part, consider the simplified second best condition (32), which we repeat
here for the sake of clarity and to introduce the notation LHSSB and RHSSB:

LHSSB :=
∂v(R− TSB)

∂Y22
=
∂v(R− L(IN1 (TSB)) + TSB)

∂Y12
=: RHSSB. (33)

LHSSB is increasing in TSB, while RHSSB is decreasing in TSB. This second result follows from
∂IN1
∂TLH

· ∂L
∂IN1

< 1 (see Appendix). The corresponding FOC for the first best transfer T ∗ is condition

(14):

LHS∗ :=
∂v(R− T ∗)

∂Y22
=
∂v(R− L(I∗) + T ∗)

∂Y12
=: RHS∗. (34)

Now substitute T ∗ for TSB in RHSSB and let us compare the resulting RHSSB(T ∗) to RHS∗(T ∗).
By Proposition 2, IN (T ∗) < I∗. such that L(IN (T ∗)) > L(I∗). The loss becomes larger and the
argument smaller, so marginal utility increases and we obtain RHS∗(T ∗) < RHSSB(T ∗). Suppose
now TSB < T ∗. Then it follows

LHS∗(T ∗) = RHS∗(T ∗) < RHSSB(T ∗) < RHSSB(TSB) = LHSSB(TSB) = LHS∗(TSB). (35)

The first inequality obtains from the result above. The second inequality follows from our assump-
tion TSB < T ∗ and from the fact that RHSSB is decreasing in T since ∂L

∂IN1
· ∂IN1
∂TLH

< 1. The
inequality chain above means

LHS∗(T ∗) < LHS∗(TSB), (36)

which is equivalent to T ∗ < TSB, since the LHS of both first best and second best conditions are
increasing in the transfer T . This contradicts the assumption TSB < T ∗ and proves TSB > T ∗.

The second part follows from IN1 (TSB) < IN1 (T ∗) < I∗, where the first inequality is due to
the fact that TSB > T ∗ by part 1 and that IN is decreasing in T by Lemma 2, while the second
inequality is due to Proposition 2.

To show the third and last part of the proposition, consider again the FOC (32). By the
concavity of the maximization program, if the marginal utilities in LHSSB and RHSSB are equal,
the arguments must be equal, too:

R− TSB
LH = R− L(IN1 (TSB

LH )) + TSB
LH (37)

Rearranging leads to the third part of the proposition. QED.
Since the loss is always greater, the insurance transfers are also larger. Ex post, the central gov-

ernment always aims to equalize income levels across regions and it has no instrument to incentivate
the individual regions to increase their self-insurance efforts ISBN , which depend negatively on the
transfer level. Although the second-best transfers are equal to the corresponding first-best transfers
in relative terms (i. e., relative to the realized loss), TSB = 1

2L(IN (TSB)), due to the insurance
pooling in the federation the second-best self-insurance levels are always smaller in absolute terms
than in the first-best situation: IN (TSB) < I∗.
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4.2 Welfare analysis

A regions’ utility level in the second-best outcome is

USB(IN (TSB)) = u(R−IN (TSB))+p2v(R−L((IN (TSB))+(1−p)2v(R)+2(1−p)pv(R−1

2
L(IN (TSB))).

(38)
This utility level is always strictly smaller than the first-best level in a federation, since according to
Proposition 3, the second-best self-insurance effort is smaller than the first-best,ISB = IN (TSB) <

I∗. By Proposition 1, this also means that the self-insurance effect is smaller than in autarky,
IN (TSB) < IA. It remains to establish whether the regions’ payoff is smaller in the second-
best situation or under autarky. Two effects are at work. Under autarky, each region chooses the
individually efficient self-insurance level. However, there is no pooling of the risk like in a federation.
Being risk averse, this non-pooled risk carries a greater risk premium than in a federation. Joining
a federation means that the risks are pooled (positive effect). However, it introduces a Samaritan’s
dilemma kind of effect and leads the regions to reduce their self-insurance effort (negative effect).
It turns out that, depending on the parameters, each effect may dominate. In other words, joining
a federation may increase, but also decrease the individual region’s welfare.

Proposition 4 (Utility in the second-best federation equilibrium)
Utility of a region in the second-best federation equilibrium can be smaller or greater than welfare
under autarky:

USB(IN (TSB)) R UA(IA), (39)

depending on the preferences of the regions and specially depending on the probability p of the loss
outcome.

Proof. Remember from (21) that UA(IA) = u(R−IA)+pv(R−L(IA))+(1−p)v(R). It suffices
to show by construction that depending on the probability p, sometimes welfare is higher under a
second-best federation and sometimes under autarky. Suppose p = 0. Then we obtain

USB(ISB) = u(R− ISB) + v(R) > u(R− IA) + v(R) = UA(IA), (40)

because ISB < IA. By continuity, there exists an ε > 0 such that p = ε and the inequality (40)
still holds. Suppose now p = 1. It follows

USB(ISB) = u(R− ISB) + v(R− L((ISB) < u(R− IA) + v(R− L(IA)) = UA(IA) (41)

⇐⇒ u(R− ISB)− u(R− IA) < v(R− L(IA))− v(R− L((ISB) (42)

(R− ISB −R+ IA) · u′(ŷ) < (R− L(IA)−R+ L(ISB)) · v′(ỹ) (43)

with ŷ ∈ [R− ISB, R− IA] and ỹ ∈ [R− L(IA), R− L(ISB)]

⇐⇒ (IA − ISB) · u′(ŷ) < (L(ISB)− L(IA)) · v′(ỹ), (44)

where the step with ŷ and ỹ follows from the Mean Value Theorem and the last inequality holds
because IA− ISB < L(ISB)−L(IA) by our assumptions regarding the loss function L and u′(ŷ) <

u′(ỹ) by the concavity of the payoff functions u(·) = v(·). Figure 2 illustrates this second case, the
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∆2
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u(y), v(y)

y

Figure 2: If the loss is sufficiently likely, the concavity of the payoff function ensures that the
payoff in a federation is higher than under autarky, i. e. that the insurance effect dominates the
disincentive effect.

distance ∆1 is always smaller than ∆2. Again, by continuity, there exists an ε > 0 such that for
p = 1 − ε the inequality (41) still holds. This proves that welfare can be higher under autarky or
in the second best equilibrium. QED.

The ambiguity of Proposition 4 reflects the countervailing effects at work. Under autarky, each
region has the right incentive to choose the efficient self-insurance level. Under a federation, the
risk consolidation has a positive effect, but this risk reduction causes a Samaritan’s dilemma and
decreases the incentive to spend the first-best level of self-insurance effort. It depends on the
specific parameters of the payoff function and on the probability distribution of the loss whether
the autarky or the federation setting lead to a higher payoff for the regions.

4.3 Policy implications

Until now, we have assumed a variable transfer in the second-best setting. In the first-best full
information situation, it does not matter whether the central government implements a variable
transfer (which varies with the loss to equalize ex-post income levels across the regions) or whether
the central government implements a fixed transfer, which in the following we will denote with an
upper bar. Both transfers lead to the same first-best self-insurance effort levels. However, in a
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second-best non-cooperative setting, the design of the transfer scheme has a big effect and fixed
and variable transfers do not lead to the same second-best outcome.

The previous sections have analysed the case of a variable transfer. Suppose that the central
government has chosen a fixed transfer given by THL = −TLH = T

∗
= −1

2L(I∗). Then, the payoff
for region 1 is

U∗1 = u(R− I1) + p2v(R− L(I1)) (45)

+p(1− p)v(R− L(I1) + T
∗
LH) + (1− p)pv(R+ T

∗
HL) + (1− p)2v(R).

Region 1 chooses the investment level I1 to maximise the payoff (45). The region’s FOC implicitly
describing the non-cooperative choice IN1 is:

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

∂L(IN )

∂I1

= −p2∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L
− p(1− p)∂v(R− L(IN1 ) + 1

2L(I∗))
∂Y12

∂Y12
∂L

, (46)

Proposition 5
Consider a federation where the central government designs and implements a transfer scheme with
fixed transfers given by the first-best transfer levels THL = −TLH = T

∗
= −1

2L(I∗). If the regions
choose their self-insurance effort non-cooperatively in a Nash way, both regions choose the same
self-insurance level IN1 (T

∗
) = IN2 (T

∗
) = IN (T

∗
) which coincides with the first-best level I∗:

IN (T
∗
) = I∗. (47)

Proof. For IN1 = I∗, the first-order conditions (18) and (46) are identical and are equal to zero
at IN1 = I∗. By the concavity of the objective function, this must be the only maximum of the
function. QED.

Proposition 5 shows that implementing fixed transfers leads to the first-best outcome while vari-
able transfers that depend on the size of the loss set the wrong incentives. As a policy implication,
central governments should not aim to equalize income levels across regions, but establish fixed
transfer payments. Consider the federal transfer payments across regions in Germany. By law, the
aim of the transfers is to “equalize living standards” across the Bundesländer. Not surprisingly, the
richer states criticise that the poorer states invest too little in their well-being and rely too much
in the intra-federal transfers, since the receiving states get a higher transfer the poorer they are.
As an alternative, consider Bill Clinton’s welfare reform in the US in the 1990s. The states get a
fixed block grant from the central government and thus have an incentive to invest the first-best
effort level given the fixed transfer.

5 Conclusion

This paper analyzes the risk sharing aspect in a federation consisting of two regions. The regions
can be hit by a uniform shock leading to losses that occur with an exogenous probability and in a
stochastically independent way. To reduce the size of the loss, the regions can invest in a public
good that serves as a self-insurance device, i.e. it reduces the size of the loss for both regions at
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the same time. First, as a benchmark case, we derive the optimal level of regional self-insurance
effort in case of autarky. This situation is compared to a first-best federation equilibrium where
the central government can determine regions’ self-insurance effort as well as an equalizing transfer
scheme. The first-best self-insurance level of such federation equilibrium turns out to be smaller
than the level under autarky which shows the risk consolidation effect of the federation. However,
in case of non-cooperative regions, the first-best outcome is not feasible any more and the regions
have an incentive for free -riding. In case of a second-best setting with first the central government
designing and committing to a transfer scheme and second the regions deciding about their self-
insurance effort, in equilibrium second-best transfers are higher than first-best ones whereas the
regions’ self-insurance levels are comparatively lower.

Despite the widely held belief, that joining a federation increases a region’s welfare, we show
that this is not necessarily the case. The welfare increase due to pooling risks in a federation may
be partially or even fully outweighed by a Samaritan’s dilemma kind of effect that regions in a
federation reduce their self-insurance effort. To overcome this dilemma, the central government
should commit to fixed (rather than variable) transfers at the first-best level. This induces non-
cooperatively behaving regions to choose in turn a self-insurance effort in the same size as the
first-best.

Some caveats may apply. First, our analysis does not deal with time inconsistencies. The
question whether changes in the timing of equalizing transfers to regions necessitates an adjustment
in federal corrective policy is addressed by Köthenbürger (2007). Second, our setting focuses on
public goods with self-insurance character. The related case of public goods that serve as a public
self-protection device is analyzed by Goodspeed and Haughwout (2007).
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A Appendix

A.1 Concavity of payoff (3) under autarky

The FOC (4) with respect to Ii is

∂u(R− IAi )

∂Yi1
· ∂Yi1
∂Ii︸ ︷︷ ︸
−1

+
∂v(R− L(IAi ))

∂Yi2
· ∂Yi2
∂L︸ ︷︷ ︸
−1

· p · ∂L(IAi )

∂Ii
= 0 (48)

⇐⇒ −∂u(R− IAi )

∂Yi1
− ∂v(R− L(IAi ))

∂Yi2
· p · ∂L(IAi )

∂Ii
= 0 (49)

Taking the derivative with respect to Ii results in the following SOC, which is negative:

− ∂2u(R− IAi )

∂Y 2
i1

· ∂Yi1
∂Ii︸ ︷︷ ︸
−1

− ∂2v(R− L(IAi ))

∂Y 2
i2

· ∂Yi2
∂L︸ ︷︷ ︸
−1

·
(
∂L(IAi )

∂Ii

)2

p− ∂v(R− L(IAi ))

∂Yi2
p
∂2L(IAi )

∂I2i
(50)

=
∂2u(R− IAi )

∂Y 2
i1︸ ︷︷ ︸
−

+ p · ∂
2v(R− L(IAi ))

∂Y 2
i2

(
∂L(IAi )

∂Ii

)
︸ ︷︷ ︸

−

2

−p · ∂v(R− L(IAi ))

∂Yi2︸ ︷︷ ︸
+

· ∂
2L(IAi )

∂I2i︸ ︷︷ ︸
+︸ ︷︷ ︸

−

(51)

A.2 Proof of Lemma 1

Remember the FOC under autarky,

∂u(R− IAi )

∂Yi1
· ∂Yi1
∂Ii

∂L(IAi )

∂Ii

= −p∂v(R− L(IAi ))

∂Yi2

∂Yi2
∂L

.

The derivative of the LHS of (5) with respect to Ii is (using
∂Yi1
∂Ii

= −1 and
∂Yi2
∂L

= −1):

−︷ ︸︸ ︷
∂L(IAi )

∂Ii
· (−1) ·

−︷ ︸︸ ︷
∂2u(R− IAi )

∂Y 2
i1

· (−1)− (−1) ·

+︷ ︸︸ ︷
∂u(R− IAi )

∂Yi1
·

+︷ ︸︸ ︷
∂2L(IAi )

∂I2i(
∂L(IAi )

∂Ii

)2 > 0. (52)

The derivative of the RHS of (5) is:

− p · (−1) · ∂
2v(R− L(IAi ))

∂Y 2
i2︸ ︷︷ ︸
−

· (−1) · ∂L(IAi )

∂IAi︸ ︷︷ ︸
−

< 0. (53)
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A.3 Concavity of first-best payoff (10) in a first-best setting

To calculate the Hessian matrix of the payoff function (10) we look at the derivatives with respect
to the four variables TLL, THH , THL, and TLH . Consider first the derivatives with respect to TLL

∂(10)

∂TLL
= p2

∂v(R− L(I1) + TLL)

∂Y1L
· ∂Y1L
∂TLL︸ ︷︷ ︸
+1

+ p2
∂v(R− L(I2)− TLL)

∂Y2L
· ∂Y2L
∂TLL︸ ︷︷ ︸
−1

(54)

= = p2
∂v(R− L(I2)− TLL)

∂Y1L
− p2∂v(R− L(I2)− TLL)

∂Y2L

∂2(10)

∂T 2
LL

= p2 · ∂
2v(R− L(I1) + TLL)

∂Y 2
1L

· ∂Y1L
∂TLL︸ ︷︷ ︸
+1

− p2∂
2v(R− L(I2)− TLL)

∂Y 2
2L

· ∂Y2L
∂TLL︸ ︷︷ ︸
−1

(55)

= p2
∂2v(R− L(I1) + TLL)

∂Y 2
1L

+ p2
∂2v(R− L(I2)− TLL)

∂Y 2
2L

< 0

∂2(10)

∂TLL∂x
= 0, where x means any other variable. (56)

An analogous result obtains for the variable THH : the second derivative is negative and the cross
partial derivative is zero. Consider now the derivative with respect to THL:

∂(10)

∂THL
= (1− p)p∂v(R+ THL)

∂Y1H
· ∂Y1H
∂THL︸ ︷︷ ︸

1

+ (1− p)p∂v(R− L(I2)− THL)

∂Y2L
· ∂Y2L
THL︸ ︷︷ ︸
−1

(57)

= (1− p)p∂v(R+ THL)

∂Y1H
− (1− p)p∂v(R− L(I2)− THL)

∂Y2L
(58)

∂2(10)

∂T 2
HL

= (1− p)p∂
2v(R+ THL)

∂Y 2
1H

+ (1− p)p∂v
2(R− L(I2)− THL)

∂Y 2
2L

< 0 (59)

∂2(10)

∂THL∂x
= 0, where again x means any other variable. (60)

Again, we obtain for TLH an analogous result with a negative second derivative is and a zero
cross partial derivative. The Hessian matrix of the first-best maximization problem (10) is

∂2(10)

∂T 2
LL

0 0 0

0
∂2(10)

∂T 2
HH

0 0

0 0
∂2(10)

∂T 2
HL

0

0 0 0
∂2(10)

∂T 2
LH


(61)

This is a diagonal matrix where all the elements in the diagonal are negative. Thus, the matrix is
negative definite and the solution described by the FOCs is a local maximum.

In a similar way, the Hessian matrix of the payoff function (15) with respect to I1 and I2 is also

22



a diagonal, negative definite matrix, since

∂(16)

∂I1
=
∂2u(·)
∂Y 2

11

(
∂Y11
∂L

)2

+ p2
∂2v(·)
∂Y 2

12

(
∂Y12
∂L

)2( ∂L
∂I1

)2

+ p2
∂v(·)
∂Y12

∂Y12
∂L

∂2L

∂I21
(62)

+ p(1− p)∂
2v(·)
∂Y 2

12

∂Y12
∂L

(
−1

2

)(
∂L

∂I1

)2

+ p(1− p)∂v(·)
∂Y12

∂Y12
∂L

∂2L

∂I21
< 0 (63)

∂(17)

∂I2
=
∂2u(·)
∂Y 2

11

(
∂Y11
∂L

)2

+ p2
∂2v(·)
∂Y 2

12

(
∂Y12
∂L

)2( ∂L
∂I2

)2

+ p2
∂v(·)
∂Y12

∂Y12
∂L

∂2L

∂I2
(64)

+ p(1− p)∂
2v(·)
∂Y 2

12

∂Y12
∂L

(
−1

2

)(
∂L

∂I2

)2

+ p(1− p)∂v(·)
∂Y12

∂Y12
∂L

∂2L

∂I22
< 0 (65)

∂(16)

∂I2
=
∂(17)

∂I1
= 0 (66)

This proves that the solutions to the FOC of (15) correspond to maxima of the payoff (10).

A.4 Proof of Lemma 2

To show the first result, consider the FOC corresponding to the maximization of (27),

∂u(R− IN1 )

∂Y11

∂Y11
∂I1

+p2
∂v(R− L(IN1 ))

∂Y12

∂Y12
∂L

∂L(IN )

∂I1
+p(1−p)∂v(R− L(IN1 ) + TLH)

∂Y12

∂Y12
∂L

∂L(IN )

∂I1
= 0,

(67)
Apply the implicit function theorem to obtain

∂IN1
∂TLH

= −
∂FOC(67)

∂TLH
∂FOC(67)

∂IN1

. (68)

The denominator is negative due to the concavity of the objective function, so the sign of the

reaction function depends solely on the sign of
∂FOC(67)

∂TLH
, which is negative since

p(1− p) ∂
2v(R− L(IN1 ) + TLH)

∂Y 2
12︸ ︷︷ ︸
−

∂Y12
∂L︸ ︷︷ ︸
−

∂L

∂IN1︸︷︷︸
−

∂Y12
∂TLH︸ ︷︷ ︸

+

< 0. (69)

This establishes
∂IN1
∂TLH

< 0. The second result follows in an analogous way using the analogous

reaction function IN2 (THL) that describes the individual payoff maximising behaviour for region
2.13 QED.

13Note that, since the transfers are defined from the perspective of region 1, a positive transfer to region 1 when
it has been hit by a loss is given when TLH > 0. Conversely, a positive transfer for region 2 arises when THL < 0.
So both results mean that the self-insurance effort level decreases, the greater the absolute transfer to a region when
it is the only region affected by a loss.

23



A.5 Concavity of payoff (30) in a second-best setting

The FOC of (30) with respect to TLH is (32). The SOC of (30) with respect to TLH is given by

p(1− p)∂
2v(R− L(IN1 (TSB

LH )) + TSB
LH )

∂Y 2
12

(
1− ∂L

∂IN1
· ∂I

N
1

∂TLH

)
+ p(1− p)∂

2v(R− TSB
LH )

∂Y 2
22

,

which is negative if 1− ∂L

∂IN1
· ∂I

N
1

∂TLH
> 0 . We can verify this using the results above:

∂IN1
∂TLH

· ∂L
∂IN1

= −
∂FOC(67)

∂TLH
∂FOC(67)

∂IN1

· ∂L
∂IN1

= −
p(1− p)∂

2v(R−L(IN1 )+TLH)

∂Y 2
12

∂Y12
∂L

∂L
∂IN1

∂Y12
∂TLH

∂2u(R−IN1 )

∂Y 2
11

+ p2
∂2v(R−L(IN1 ))

∂Y 2
12

(
∂L(IN )
∂I1

)2
− p2 ∂v(R−L(I

N
1 ))

∂Y12

∂2L(IN )
∂I21

+p(1− p)∂2v(R−L(IN1 )+TLH)

∂Y 2
12

(
∂L(IN )
∂I1

)2
− p(1− p)∂v(R−L(I

N
1 )+TLH)

∂Y12

∂2L(IN )
∂I21

· ∂L
∂IN1

=

(
p(1− p)∂

2v(R−L(IN1 )+TLH)

∂Y 2
12

∂Y12
∂L

∂L
∂IN1

∂Y12
∂TLH

)
∂L
∂IN1

−∂2u(R−IN1 )

∂Y 2
11

− p2 ∂2v(R−L(IN1 ))

∂Y 2
12

(
∂L(IN )
∂I1

)2
+ p2

∂v(R−L(IN1 ))
∂Y12

∂2L(IN )
∂I21

−p(1− p)∂2v(R−L(IN1 )+TLH)

∂Y 2
12

(
∂L(IN )
∂I1

)2
+ p(1− p)∂v(R−L(I

N
1 )+TLH)

∂Y12

∂2L(IN )
∂I21

,

where
∂IN1
∂TLH

· ∂L
∂IN1

∈ (0, 1) follows because the denominator is greater than the numerator.
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