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1 Introduction

This paper addresses the issue of designing an optimal policy within a mone-
tary dynamic general equilibrium set-up with myopic households, where the
Bank can equivalently choose to monitor (short-term and long-term) rates or
the corresponding money supply. Our main conclusion is that, given any pol-
icy on the long-term loans market, an unbounded growth of money supply on
the short-term loans market is unavoidable if the economy is to escape from
any (local) liquidity trap. By itself, this result might not render the “ortho-
dox” wisdom on inflation-targeting invalid. On the contrary, we even show
that, when long-term rates are taken as exogenously given, then the mon-
etary policy on short-term rates suffices to drive a globally unique trading
process (both in nominal and real terms), confirming the standard opinion
according to which inflation-targeting may indeed suffice to drive inflation.
Our finding on the necessary unbounded growth of money supply is also in
accordance with the huge, empirically observed growth rate of the world-wide
M0 aggregate: 15% per year on average, since 2000, and 30% since 2008.

Our result on the necessary explosion of monetary supply, however, stands
sharply in contrast with the now classical literature devoted to the Taylor
rule once one realises that, in our model, an “optimal” monetary policy must
induce an unbounded inflation as measured by the GDP deflator).1 As a
consequence, a literal application of Taylor rule would require the Central
Bank to reduce the quantity of money injected into the economy, necessarily
leading the latter into a (local) liquidity trap.

1.1. Myopic retrading with money

To make these points, we consider a cash-in-advance economy with het-
erogeneous households and several consumption goods. The cash-in-advance
constraint à la Clower is only used for clarity. As emphasized in Remark 2.5
infra, we could as well rephrase our all set-up in terms of bid-ask spreads in
a fashion similar to Duffie (1990). On the other hand, the cash-in-advance
constraint can be interpreted as the consequence of money being the unique
medium of exchange among all the marketed goods. That commodities can-
not trade directly against each other can be explained as a consequence of
underlying transaction costs (see, e.g., Dubey & Geanakoplos (2003b, section
17)).2 The presence of several commodities and heterogeneous households

1The “Great Moderation” of commodity prices is not at odds with this theoretical
conclusion. It might well be the case, indeed, that, during the 1990s, inflationary pressures
have migrated from the commodity markets to financial markets (where average returns
are much higher). So that the expansionist monetary policy of Central Banks might have
fed the recursive financial bubbles which have grown and burst since twenty years. In
the stylized economy considered in this paper, we do not introduce financial assets. In a
companion paper, we show the migration of inflation from commodity to financial markets.

2Following Dubey & Geanakoplos (2003b), we could allow certain commodities (but not
all) to trade among each other. At the cost of reformulating the gains-to-trade assumption
in terms of sufficiently missing links among commodities in comparison to the ratio between
“outside” and “inside” money, our main results would remain intact.
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allows one to reach clear conclusions about economic welfare. The Central
Bank is supposed to conduct a traditional monetary policy by controling
spot interest rates while long-term rates are considered exogenously fixed.
Equivalently, the Bank’s policy can be viewed as monitoring the quantity of
money injected on the short-term loan markets (see Remark 2.7 below).

We depart from the standard General Equilibrium (get) framework by
imposing an upper-bound on the size of permitted trades: Each time period,
households can perform only small-scale trades. This is tantamount to as-
suming that the speed of trades is bounded. (By contrast, standard get
implicitly assumes the speed of trades to be infinite as any order of any size
can be a priori performed.) As agents cannot reach their optimal consump-
tion within one single round of trades (as they would in standard get), this
opens the room for retrading. Thus, in this paper, households can (re)trade
the same storable goods during a finite number, T , of rounds. Clearly,if there
are enough trading rounds, any order of any size can be replicated by means
of several rounds of small-size orders. It therefore seems, at first glance, that
our finite-speed restriction, besides being more realistic than the infinite-
speed framework of standard get, should not induce dramatic changes. It
does, however, have a dramatic effect since it reduces the set of equilibrium
paths to a singleton, not only in real, but also in nominal variables.

Our second departure with intertemporal GET is that we assume agents
to be myopic: Each of them trades, each period, so as to maximize her current
utility in the short-run. The economic rationale for such a myopic behavior is
not new: Even chess international grandmasters do not calculate more than
four or five moves ahead, and it has been argued that, under quite reason-
able circumstances and unless one is ready to assume that everybody shares
perfect foresight, seeing further into the future does not mean seeing better.3

On the other hand, there is a large body of evidence that agents forecasts are
not consistent with the paradigm of rational expectations.4 We show that, if
there are enough gains-to-trade via money, trades will asymptotically vanish
near some Pareto point. Therefore, the dynamics of this paper belongs to
models of transition-to-equilibrium in line with Smale (1976), Champsaur &
Cornet (1990), Bottazzi (1994), Giraud & Tsomocos (2010) and Bonnisseau
& Orntangar (2010).5

There are two sources of money: In the initial period, a long-term loan
market opens, where households can borrow money by selling long-term
bonds, maturing at some horizon T ; then, at every subsequent time, short-
term loan markets open allowing households to borrow some additional a-
mount of money, at some short-term nominal rate r(t) clearing the money
market. That is, there is no outside money in our model: All the available

3See, e.g., Gray & Geanakoplos (1991) and the literature therein.
4See, e.g., Roberts (1997), Forsells and Kenny (2002), Adam and Padula (2009), to

name but a few.
5See also Farmer & Geanakoplos (2008) for a plaidoyer in favor of transition-to-

equilibrium models.
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money is inside, and has been created by the Central Bank (whose budget is
balanced at the end of period T ). This departs from the approach developed
by Dubey & Geanakoplos (2003a) or Giraud & Tsomocos (2010), in which
households were assumed to own some pocket money, free and clear of any
debt. Nevertheless, the traders’ myopia enable to view long-term debt as
playing in the short-run the role of outside money in the previously cited
papers.

An important and realistic feature of our model is that all exchange must
be physically carried out between two instruments. If a household wants to
buy a house with money, then it must turn over the money. This leads natu-
rally to the idea that market actions form prices. The price of good ` in terms
of money is simply the total amount of money chasing ` at the market, giving
rise to a strategic market game.6 Since we work with a continuum of agents,
we follow Dubey & Geanakoplos (2003a) in recasting the monetary equilib-
ria in terms of more familiar budget sets where individuals regard prices and
interest rates as fixed. But the fundamental aspect of a game, that every
choice of players’ strategies engenders an outcome, is fully honored. When
compared with Dubey & Geanakoplos (2003a), we even go one step further
in this direction by imposing that, at a monetary equilibrium, whenever no
commodity is supplied by the players’ actions, then nobody trades. This is
reminiscent of the well-known autarkic Nash equilibrium which survives in
most of the strategic market games studied in the literature.7 The advantage
of doing so is that we recover existence of our extended monetary equilibrium
even when standard monetary equilibrium à la Dubey-Geanakoplos fails to
exist. The non-existence of standard monetary equilibria shows up as a local
liquidity trap in terms of our extended solution concept.

1.2. Money non-neutrality and Taylor rule

We show that the quantity of money injected in the short-run loan mar-
ket by the Bank must increase at some rate which essentially depends upon
the interplay between cash balances arising from long-term and short-term
debts. To be more precise, at every τ−local monetary equilibrium, spot in-
terest rates must stand below the ratio between long-term and short-term
cash balances. Moreover, we provide a discrete-time counterpart of the result
obtained in Giraud & Tsomocos (2010): If the Central Bank and households
take long-term rates as given, then, a short-term oriented monetary policy
will induce a unique monetary trading process. As uniqueness obtains not
only for real variables (as in Bonnisseau & Orntangar (2010)) but also for
nominal ones (as in Giraud & Tsomocos (2010), this partly confirms the
traditional wisdom: At first glance, Inflation targeting seems to make sense
since comparative dynamics can be performed (not only locally but even
globally). Clearly, this is due to the fact that, in this paper, the long-term

6See Giraud (2003) for an introduction, as well as the whole special issue.
7See Weyers (2003) for an attempt to get rid of this autarkic outcome by refining the

strategic equilibrium concept.
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debt is taken as exogenously given and of finite maturity T , while the gov-
ernment’s budget is always balanced at the end of last period T (default is
not permitted). Thus, within this setting, our results confirm standard fis-
cal theory (cf. Woodford [?]). Any change in the long-term debt, however,
induces a non-trivial change in the corresponding monetary path. This pa-
rameterization of trading paths with long-term debt reconciles our result with
the strong indeterminacy obtained in other models with no outside money
(cf. Drèze & Polemarchakis (2000), Bloise et alli (2005), Bloise & Reichlin
(2008). This indeterminacy can therefore be interpreted as equivalent to the
existence of an infinite number of long-term debt levels that are compatible
with our equilibrium conditions.

The lesson to draw from our paper, however, is not “monetarist” in
essence: we show that money is non-neutral, neither in the short-, nor in
the long-run. We stress that, at variance with standard results obtained in
the so-called “New-Keynesian” model,8 money has real effects even though
there are no nominal rigidities. On the other hand, for a monetary equi-
librium to involve effective trades, the quantity of circulating money must
evolve according to a measure of gains to trade (first introduced by Dubey &
Geanakoplos (2003a)). That is: Monetary expansion must be related to the
“real” sector of the economy – which contrasts with both standard inflation-
targeting and money-targeting policies. Finally, we also prove that, for a
monetary trading process to converge to some Pareto-efficient rest-point, liq-
uidity must increase in such a way that spot interest rates remain lower than
current gains-to-trade. A consequence is that, as the economy is approaching
the Pareto curve, short-term rates must converge to zero. Otherwise stated:
Liquidity must explode to infinity. And so do commodity prices along the
unique monetary trade path.

The consequences for the traditional approach of monetary policy in terms
of Taylor’s rule are striking, though intuitively quite simple. Most macro-
economic models in which monetary policies are discussed rely on the fiction
of a single representative household or a single consumption commodity. In
both cases, efficiency issues disappear and the measure of gains-to-trade is
trivially constant. Therefore, a condition in terms of gains-to-trade such as
the one we emphasize here (borrowed from Dubey & Geanakoplos (2003a))
could not emerge. On the other hand, a naive implementation of Taylor’s
rule in our multiple-commodity world populated by heterogenous households
would inevitably lead the economy to a (local) liquidity trap. As soon as
prices increase, indeed (and we show that if the economy is to escape from any
trap, prices must increase), the Bank would raise its short-term rate (instead
of reducing it, as this paper recommends). Sooner or later, this will leave
short-term nominal interest rates above the threshold of current gains-to-
trade, and brings the economy into a liquidity trap, from which the sole road
out rests on a significant increase in the amount of circulating money. This

8See Clarida, Gali, and Gertler (1999) for an early survey, and Woodford (2003) for a
synthesis.
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point might provide a plausible explanation of the Fed’s recent quantitative
easing policy. It stands in sharp contrast with the conclusion obtained, for
instance, by Molnar & Santoro (2005) on optimal monetary policy when
households don’t conform to the rational expectations paradigm but are still
learning. There, indeed, it turns out that an optimal monetary policy should
be more aggressive when agents don’t follow rational expectations than when
they do. Here, we show that, when agents are entirely myopic, whether
aggressive or not, a standard rule such as the one recommended by Taylor is
inefficient.

The paper is organized as follows: the next section lays out the basic
stone of our model, namely the concept of τ -local monetary equilibrium.
Section 3 develops our discrete-time monetary exchange process. Section 4
sets forth the main result of the paper. More technical material is relegated
to the Appendix.

2 Monetary economy

Let us start with a static, Arrow-Debreu exchange economy with L ≥ 1
commodities and N ≥ 1 heterogenous households (each of them being repre-
sented by a continuum of unit length of identical clones).9 The consumption
sets are RL

+, preferences of consumer i are represented by a utility function
ui : RL

+ → R, and the initial vector of endowments is denoted ei ∈ RL
+.

An individual i is endowed with cash balances µi ≥ 0 (acquired by different
ways to be detailed later on in the paper). If he wishes so, i can also borrow
some additional cash, mi, at the short-term nominal rate r. Let M denote
the total amount of money injected by the Bank on the loan market, and
µ :=

∑
i µi, the aggregate “outside money”. Individual i then can purchase

commodities under the cash-in-advance constraint:

p · z+
i ≤ µi +mi, (1)

where zi := xi − ei stands for the net trade of i (where ei is an exogenously
given initial endowment of consumption goods). He also accumulates end-
of-period balances through receipts from the sale of commodities, p · z−i . At
the end of a trade round, i has to be able to pay back his debt, (1 + r)mi.
Hence, he settles his current debt according to:

∆(1) + p · z−i ≥ (1 + r)mi. (2)

where ∆(1) stands for the difference between the right- and the left-hand
sides of (1).Taken together, (1) and (2) imply :

9In RL, S denotes the unit simplex and ‖x‖ =
∑`
h=1 |xh| for all x ∈ RL. For any given

vector x, x+ (resp. x−) stands for the vector whose components are x+k := max{0, xk}
(resp. x−k := max{0,−xk}).

6



p · zi ≤ µi − rmi. (3)

A monetary economy is then characterized by its monetary parameters
M , (µi)i, and will be denoted by:(

E(e), (µi),M
)

where E(e) := (R`
+, ui, ei)

m
i=1 is the underlying “real” exchange economy. We

now define a monetary equilibrium. At such an equilibrium, agents regard
macrovariables (prices, p, and interest rate, r) as fixed (i.e., uninfluenced by
their own actions). The action of player i consists in borrowing money, mi,
offering a vector, z−i ∈ RL

+, for sale, in exchange for z+
i ∈ RL

+. Given an action

profile, the outcome, (xi)i ∈
(
RL

+

)N
, is the final allocation of households.

Definition 2.1 (p∗, r∗, (m∗i , z
∗
i , x

∗
i )i) ∈ RL

++ × R+ × (R+ × RL × RL
+)m is

an extended monetary equilibrium (eme for short) of the monetary economy(
E(e), (µi),M

)
if

(i) For all i = 1, . . . , N , (z∗i ,m
∗
i ) is a solution of


maximize ui(zi + ei) s.t.:
p∗ · z+

i ≤ µi +mi

p∗ · zi ≤ µi − rmi

mi ≥ 0, zi ≥ −ei.

(ii) If
∑

i z
∗−
i = 0, then m∗i = 0 and x∗i = ei for every i, while (r, p) ∈ RL+1

+

are arbitrary.

(iii) Else, x∗i = ei + z∗i ∀i, and
∑N

i=1m
∗
i = M ;

∑N
i=1(x∗i − ei) = 0.

Note that, whenever µi = m∗i = 0, then, i cannot trade: z∗+i = z∗−i = 0.
A eme with no trade at all (i.e., x∗i = ei, all i) is called autarkic. Otherwise,
it is said to be effective. At an autarkic eme, money has no value, and its
market “price” is arbitrary.

Remark 2.1 If one replaces condition (ii) by x∗i = ei + zi for every action
profile, then we get the definition of a monetary equiibrium (me) as intro-
duced by Dubey & Geanakoplos (2003a). In particular, every effective eme is
a me in the sense of Dubey & Geanakoplos (2003a), and vice-versa. Instead,
our condition (ii) says that, whenever the players’ actions lead to a null ag-
gregate supply, nobody trades. This condition seems natural, especially if
we think in terms of some underlying strategic market game (with each type
i being represented by a continuum of identical agents).10 Indeed, in such a
game, the action of player i would consist, say, in some bid bki and supply,
qki , for each commodity k = 1, ..., L. Prices would given by

10See Giraud (2003) for an introduction.
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pk =

∑
i b
k
i∑

i q
k
i

1{∑i q
k
i >0},

where 1{∑i q
k
i >0} = 1 if the condition,

∑
i q
k
i > 0, is fulfilled, = 0 otherwise.

The final allocation of player i would be

xki = eki − qki +
bki
pk

1{pk>0}.

In such a game, no-trade is always a Nash equilibrium, how far initial endow-
ments are from being Pareto-optimal : if every player supplies no commodity
and bids nothing (qki = bki = 0, every i and every k), then there is nothing to
be traded, and it is a best-reply to refrain from supplying anything. Here,
following Dubey & Geanakoplos (2003a), we define the action, (z+

i , z
−
i ), of

a player in a somewhat different way. The relationship with the rules just
described is obvious (z+

i = qi and pkz
−
i (k) = bki ), but, by doing so, we can get

rid of the autarkic Nash equilibrium whenever gains-to-trade are sufficient
to provide the needed incentive for players to trade together. On the other
hand, as we shall see, by adding (ii), we recover no-trade as an eme when-
ever gains-to-trade are too low (with respect to the ratio between outside and
inside money). The absence of condition (ii) in the definition of monetary
equilibria in Dubey & Geanakoplos (2003a) is responsible for their existence
failure when gains-to-trade are low. For the ease of notations, we simply call
eme our extended monetary solution concept.

Remark 2.2 So far, we assumed that the Central Bank is committed to
inject some quantity, M , of inside money, while interest rate, r, forms en-
dogenously so as to clear the loan market. As in Dubey & Geanakoplos
(2003a,b), we could conversely assume that the Central Bank fixes the rate
r and stands ready to buy bank bonds in order to clear the loan market.
More precisely, every effective eme with M > 0 can be translated into an
equilibrium where r = µ/M is exogenous and M , endogenous. Reciprocally,
every equilibrium with some exogenous r > 0 is equivalent to an eme with
M = µ/r exogenous.

There is no loss of generality in assuming that no agent has the null
endowment and every marketed commodity is actually present in the econ-
omy (i.e., ei > 0, every i, and

∑
i ei >> 0). We posit the following weak

assumptions on the “real” sector.

Assumption (C). For all i, ui(·) is continuous, concave and strictly increas-
ing on RL

+.

Remark 2.3 Under Assumption (C), since preferences are strictly mono-
tonic, at an effective eme, constraints (1) and (3) are binding and the follow-
ing holds:
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(i) For each i, m∗i =
p∗ · z∗−i
1 + r∗

, i.e., each household borrows exactly te

amount of inside money it can afford thanks to its sale recipes.
(iii) When binding, the constraints (1) and (3) are equivalent to:

p∗ · z∗+i = µi +m∗i and p∗ · z∗−i = (1 + r∗)m∗i (4)

We shall use the following notation for every commodity price vector p
and interest rate r : (p, r) · (xi,mi) := p · xi + rmi.

Remark 2.4 Constraints (4) are equivalent to

p · (xi − ei)+ = µi +
p · (xi − ei)−

1 + r

mi =
p · (xi − ei)−

1 + r
,

which are, in turn, equivalent to

(p, r) · (xi,mi) = p · ei + µi

mi =
p · (xi − ei)−

1 + r
(5)

With the previous notations and remarks in hand, we can rephrase the
definition of eme in the following way (which is equivalent to Def. 2.1., under
assumption (C)):

Definition 2.2 (p∗, r∗, (m∗i , z
∗
i , x

∗
i )) ∈ RL

++ × R+ × (R+ × RL × RL
+)N is a

eme of (E(e), (µi),M) if

(i)For all i, (z∗i ,m
∗
i ) is a solution of


maximize ui(ei + zi) subject to:
(p∗, r∗) · (zi + ei,mi) = p∗ · ei + µi
p∗ · z−i = (1 + r∗)mi

mi ≥ 0, zi ≥ −ei.

(ii) If
∑

i z
∗−
i = 0, then m∗i = 0 and x∗i = ei for every i, while (r, p) ∈ RL+1

+

are arbitrary.

(iii) Else, x∗i = ei + z∗i ∀i, and
∑N

i=1m
∗
i = M ;

∑N
i=1 z

∗
i = 0.

Let us end this subsection with an alternate characterization of each
agent’s budget set. The next Lemma is interesting in its own right as it
allows to get rid of the non-differerentiability of the cash-in-advance con-
straint.

Lemma 2.1 For every (p, r) ∈ RL+1
+ and (mi, µi) ∈ R2

+, the three following
sets of constraints are equivalent:11

11For p = (p1, .., pL), p−k denotes the (L− 1)-vector (p1, ..., pk−1, pk+1, ..., pL).
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(a) p · z+
i ≤ mi + µi and p · zi ≤ µi − rmi;

(b) p · z+
i − 1

1+r
p · z−i ≤ µi;

(c) (0) p · zi ≤ µi and (k) pk · zki + 1
1+r

p−k · z−ki ≤ µi for every k = 1, ..., L.

Proof of Lemma 2.1.
(a) ⇐⇒ (b) is Lemma 1 in Dubey & Geanakoplos (2003a).
(b) ⇒ (c). Take xi such that zi = xi − ei verifies (b). First,

p · zi ≤ p · z+
i −

1

1 + r
· z−i ≤ µi.

Hence, constraint (0) is verified. Second,

pkz
k
i +

1

1 + r
p−k · z−ki ≤ pkz

k
i + p−k · [z−ki ]+ − 1

1 + r
p−k · [z−ki ]−

≤ p · z+
i −

1

1 + r
p · z−i

≤ µi.

So that every constraint (k) is fulfilled, k = 1, ..., L.
(c) ⇒ (b) The budget set, B(c), induced by constraint (c) is a convex

and compact polyhedron. Its extreme points are given by the following allo-
cations:

- Suppose that i does not sell any item (i.e., z−i = 0) and sells all her cash,
µi, for the purchase of commodity k ∈ {1, ..., L}. This provides L extreme
points which all verify (b) since:

p · z+
i −

1

1 + r
p · z−i = p · zi ≤ µi.

- Next, suppose that i sells a positive amount of her initial endowment.
The remaining extreme points of the budget set induced by (b) correspond
to the L allocations where i buys only good k (and sells all her other goods
in order to finance that purchase), i.e., zki > 0 and z−ki = −e−ki . Then,

p · z+
i −

1

1 + r
p · z−i = pjz

k
i −

1

1 + r
pj[z

−k
i ]−

= pjz
k
i +

1

1 + r
pjz
−k
i

≤ µi,

so that each of these additional L extreme points verifies (b). Thus, the
budget set, B(b), induced by (b) (also a convex polyhedron) contains all the
extreme points of B(c). It therefore contains B(c). �

A corollary of formulation (b) in Lemma 2.1 is that, if r = µi = 0, each i,
then a eme coincides with a Walrasian equilibrium. This is so, in particular,
if M > 0 and µ = 0.
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Remark 2.5 Another consequence is that our approach in terms of a cash-
in-advance constraint à la Clower could be equivalently written in terms of
a bid-ask spread between buying and selling prices: This wedge is given by
p − 1

1+r
p, i.e., by the ratio, r

1+r
, between buying and selling prices. This

remark reconciles the cash-in-advance viewpoint with the one defended by
Foley (1970), Hahn (1971) or Duffie (1990).

2.1 Gains-to-trade

Let us now recall the measure, γ(·), of local gains-to-trade (see Dubey &
Geanakoplos (2003a)). Let zi ∈ RL be a net trade vector of i, with positive
component representing purchases and negative ones representing sales. For
any scalar γ ≥ 0, define the vector zi(γ) ∈ RL whose kth component is given
by:

zki (γ) := min
{
zki ,

zki
1 + γ

}
k = 1, ..., `. (6)

The vector zi(γ) entails a diminution of purchases in zi by the fraction 1/(1+
γ). There are gains to γ-diminished trades in E if there exist net trades (zi)i
that are feasible (i.e., such that

∑
i zi = 0), and such that ui(ei + zi(γ)) ≥

ui(ei) for all i with at least one inequality being strict. In words, it should
be possible for households to Pareto-improve on no-trade in spite of the γ-
handicap on trades. The measure γ(e) is the supremum of all handicaps
that permit Pareto-improvement. Clearly, e is Pareto-optimal if, and only
if, γ(e) = 0. Notice that gains-to-trade depend only on the “real” sector of
E , and not on its monetary sector.

As in Dubey & Geanakoplos (2003a) or Giraud & Tsomocos (2010), the
following is a key assumption for guaranteeing that money has a positive
value at a eme (hence, for solving Hahn’s celebrated paradox).

Gains-to-trade hypothesis (GT).

The aggregate quantity of inside money, M , verifies:

µ

γ(e)
< M. (7)

Theorem 2.1 Under (C),
(i) Every effective eme verifies:

r = µ/M, (8)

and the following version of the Quantity Theory of Money holds:

11



M + µ = p ·
∑
i

z+
i . (9)

(ii) If (GT) is in force, the monetary economy
(
E(e), (µi)i,M

)
admits an

effective eme, (p, r, (zi, xi,mi)).
(iii) When M → +∞, then, at the limit, an effective eme allocation coincides
with a Walrasian equilibrium allocation of the “real” economy, E(e).

Proof of Theorem 2.1
(i) At an effective eme, each budget constraint, p·zi ≤ µi−rmi, is binding

(see Remark 2.3). Summing over i yields: 0 = p ·
∑

i zi = µ− r
∑

imi = µ−
rM. Hence, r = µ/M . Similarly, each individual cash-in-advance constraint
must be binding. Summing over i yields (9).

(ii) Suppose (GT) is in force. We follow the proof of Theorem 2 in Dubey
& Geanakoplos (2003a) with a small change at the end. Introduce an ex-
ternal player who places ε > 0 on every market. As a consequence, our
definition of an extended monetary equilibrium reduces to the one adopted
in Dubey & Geanakoplos (2003a). Prove the existence of a ε-eme by a stan-
dard fixed-point argument on the space of action profiles. When letting
ε → 0+, two cases occur. Either prices, p(ε), remain bounded — in which
case, by extracting a subsequence, one shows that the limit is a eme. Or,
prices are unbounded. In this latter case, whenever trades are effective for
every ε > 0, then, γ(x(ε)) ≤ rε = µε/Mε according to Theorem 4 in Dubey
& Geanakoplos (2003a). It follows from Lemma 3 in this paper that γ(·) is
a lower-semi-continuous function, so that the last inequality passes to the
limit: γ(e) = γ(x(0)) ≤ lim infε→0+ γ(x(ε)) ≤ limε→0+ r(ε) = r(0) = µ/M —
which contradicts (GT).

(iii) The proof is essentially the same as in Dubey & Geanakoplos (2003a),
and is given only for the sake of completeness. Consider a sequence of ef-
fective eme prices, (p(k))k associated to the sequence (mi(k))i,k →k→∞ ∞.
The corresponding sequence, x(k) = e + z(k), of allocations lies within the
(compact) feasible set (

∑
i zi(k) = 0). Normalize each price vector

q(k) :=
1∑

` p`(k)
p(k).

The limit price (of some subsequence) q = limk→∞ q(k) supports the limit
eme-allocation, x := limk→∞ x(k) as a Walrasian equilibrium. Indeed, sup-
pose, first, that µ = 0. Then, r = 0 and formulation (b) of each individual
budget constraints in Lemma 2.1 shows that each household’s budget set
reduces to the Walrasian one. Now, if µ > 0, the same argument holds once
it is realized that net trades, (zi), are uniformly bounded by initial endow-
ments. Hence, (9) implies that prices must explode to infinity, p(k) → ∞
while r(k)→ 0+. The purchasing power of cash, µi, hence tends to zero, and
we are back to the previous situation. �

12



The intuition is as follows: If the gains-to-trade assumption is in force,
money has value and effective trades will take place. That is, money must
be available at a sufficiently low cost, r, for it to correctly play its role as
a “grease that turns the wheels of commerce”. The threshold above which
r induces too much friction for money to have a positive value (and for the
economy to escape from the autarkic outcome) is not independent from the
real sector of the economy: It turns out to be given precisely by the measure
of gains-to-trade. On the other hand, at an effective equilibrium, the interest
rate is given by the ratio, µ/M , between (aggregate) “outside” and “inside”
money. This provides a lower-bound on the quantity of money, M , that must
be injected by the Bank for markets to function correctly. Indeed, (8) means
that, at equilibrium, (GT) is equivalent to µ/M > r∗.

Notice that, here, the cash balances (µi)i are treated as exogeneously
given “outside money”. In section 3 below, they shall be reinterpreted as
long-term debts.

Remark 2.6 Notice also that, as long as we are only concerned with exis-
tence, strict monotonicity of preferences is not needed. A weaker notion (the
having-wanting assumption) would suffice, as shown by Dubey & Geanako-
plos (2003a). At first glance, this comes somehow as a surprise, since strict
monotonicity serves as well, among other things, as a substitute for the stan-
dard, but utterly unrealistic, survival assumption (ei >> 0). Indeed, it is well
known (cf. e.g., McKenzie (1959, 1961)) that strict monotonicity can replace
the survival assumption provided that each household owns at least one com-
modity (i.e., ei > 0 ∀i), as these two conditions ensure that p · ei > 0 ∀i.
In our monetary set-up, however, a non-trivial amount of initial owned cash,
µi > 0, suffices to ensure that agent i has some non-trivial wealth when en-
tering the market. So that the survival assumption is not necessary anyway.

2.2 Monetary local economy

In the next section, we shall suppose that households can trade (and re-
trade) the same L long-lived commodities.12 Moreover, at each time period,
the volume of trades will be bounded by some (exogenously given) phys-
ical/institutional limit, captured by means of a parameter, τ . The next
building block for our dynamics is the study of τ -local monetary equilibria,
to which we now turn.

Definition 2.3 For all τ ∈ (0; 1]N , (p∗, r∗, (m∗i , z
∗
i , x

∗
i )) is a τ -local extended

monetary equilibrium of (E(e), (µi),M) if

12Thus, unlike the standard “Walrasian tâtonnement”, trades will take place before a
rest-point has been reached.
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(i) For all i, (z∗i ,m
∗
i ) is a solution of


maximize ui(zi + ei) s.t.
p∗ · z+

i = τi(µi +mi)
p∗ · z−i = τi(1 + r)mi

zi ≥ −τiei and mi ≥ 0.

(ii) If
∑

i z
∗−
i = 0, then m∗i = 0 and x∗i = ei for every i.

(iii) Else, x∗i = ei + zi ∀i, and
∑N

i=1m
∗
i = M ;

∑N
i=1(x∗i − ei) = 0.

A τ -local eme is a monetary equilibrium of a monetary τ−local economy
(Eτ (e), (µi),M) in which each agent spends at most a fraction (1− τi) of her
money for purchase purposes, and where net trades are forced to stay within
a neighborhood of zero (whose size depends upon τ). Note that, when τi = 1
(resp. τi = 0), for every i, we are back to a standard eme (resp. we have an
autarkic equilibrium). The parameter τi may depend upon i, reflecting the
differences between agents in their participation to markets.

As τ is close to 0, the size of permitted trades in a τ -local eme shrinks to 0.
Thus, the shape of (concave) preferences becomes close to their first-order lin-
ear approximation around ei. The next definition captures this intuition. As
in Bonnisseau & Orntangar (2010), we associate to each monetary economy

(E(e), (µi),M) an auxiliary economy, denoted by
(
Êτ (e), (µi),M

)
, obtained

after having replaced each utility function, ui(·), by an approximation of its
variation rate:

uτi(xi) =
ui

(
ei + τi(xi − ei)

)
− ui(ei)

τi
. (10)

Remark 2.7 One easily checks that:

1) If
(
p∗, r∗, (x∗i ,m

∗
i )
)

is a τ -local eme of (E(e), (µi),M), then
(
p∗, r∗, (ei+

τ−1
i (x∗i − ei),m

∗
i )
)

is a eme of (Eτ (e), (µi),M) .

2) Conversely if
(
p∗, r∗, (ξ∗i ,m

∗
i )
)

is a eme of (Eτ (e), (µi),M), then
(
p∗, r∗, (ei+

τi(ξ
∗
i − ei),m

∗
i )
)

is a τ -local eme of (E(e), (µi),M).

For the next result, we need to strengthen Assumption (C) in the following
classical way (see, e.g., Balasko (1988)):

Assumption (D).

a) (Smooth monotonicity) ui is C3 on an open subset of RL con-
taining RL

++, and ∇ui(xi) ∈ RL
++ for all xi ∈ RL

++;

b) (Differentiable strict quasi-concavity) for all xi ∈ RL
++ and

for all zi ∈ RL \ {0}, one has [∇ui(xi) · zi = 0] ⇒ [zi ·
D2ui(xi)(zi) < 0];
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Theorem 2.2 Under Assumptions (D) and (GT ), there exists τ̃ > 0 suf-
ficiently small so that, for all τ ∈ (0, τ̃ ]N , the economy

(
E(e), (µi),M

)
has

exactly one effective τ -local eme.

We emphasize that, here, global uniqueness holds not only in “real” terms
(trades and relative price ratios) but also in “nominal” ones (the absolute
level of prices). This stands in contrast to Bonnisseau & Orntangar (2010)
where global uniqueness obtains only in relative prices, and to Dubey &
Geanakoplos (2003a) where, without any bound on monetary trades, nominal
uniqueness obtains only locally and generically.

Let us prepare for the proof of Theorem 2.2 with the following Lemma.

Lemma 2.2 There exists τ > 0 so that, for every 0 ≤ τ ≤ τ and every
τ -local eme, (p, r, x,m), if xki > eki for some individual i and some good k,
then:

(a) Either, at (p, r, x,m), i does not sell any item (i.e., zi ≥ 0), in which
case:

1

pk

∂

∂xk
uτii (ei + zi) ≥

1

p`

∂

∂x`
uτii (ei + zi) ∀` = 1, ..., L. (11)

(b) else, z`i < 0 for some good ` 6= k, and

1

(1 + r)pk

∂

∂xk
ui(ei + τi(zi)) ≥

1

p`

∂

∂x`
ui(ei + τi(zi)) (12)

(ii) In both cases, whenever the inequality is strict for some good ` 6= k,
then x`i = 0.

Proof of Lemma 2.2.
According to Lemma 2.1, the individual maximization programm is equiv-

alent to:

(P) =


maximizezi u

τ
i (zi + ei) subject to:

p · zi ≤ µi
pk · zki + 1

1+r
p−k · z−ki ≤ µi k = 1, ..., L

Karush-Kuhn-Tucker theorem implies that any solution x∗i of (P) must
therefore also solve the following linearized problem:

(Q) =


maximizeξ ∇uτi (xi) · ξi subject to:
p · (ξi − x∗i ) ≤ 0
pk · (ξki − x∗ki ) + 1

1+r
p−k · (ξ−ki − x∗−ki ) ≤ 0 k = 1, ..., L

Equations (26) and (27) in the Appendix (section 6.2) applied on (Q)
imply that, if z∗i > 0 (i.e., i does only uses her cash, τµi to buy goods, and
does not sell any item), then

∂
∂xk

uτi (xi)

pk
≥

∂
∂x`
uτi (xi)

p`
∀` = 1, ..., L.
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This, in turn, is equivalent to (11). Alternatively, if there exists somme good
` 6= k such that z`i < 0:

∂
∂xk

uτii (xi)

(1 + r)pk
≥

∂
∂x`
uτii (xi)

p`
,

and inequality (12) follows.
(ii) follows from (26) and (27) in the Appendix, applied on (Q).

�

Proof of Theorem 2.2.
We take inspiration from Gale (1976). Suppose that (p, r, ((xi,mi)) and

(q, r, (yi,m
′
i)) are two eme of (Eτ (e), (µi),M) and that p 6= q. We claim that

there must be some proper subset of households S ⊂ {1, ..., N} such that, if
LS ⊂ {1, ..., L} is the subset of goods held by at least one member of S:

LS := {` / ∃i ∈ S | e`i > 0},

then, e`j = 0 for all j /∈ S and ` ∈ LS, and
∑

S xi =
∑

S yi =
∑

S ei. In
words, members of S initially own all the goods in LS (and only these goods)
and they trade only among themselves, be it under x or under y.

Suppose, for a moment, that the claim is true. Evidently, a 1-agent
economy cannot admit any effective eme. Suppose therefore that E contains
two households, N = 2. Then, if at some eme, (p, r, (xi,mi)), E admits some
independent subset S, S must be a singleton and xi = ei for every i – so
that, again, all eme must be autarkic. Thus, no two-agent economy can
admit independent subsets at any eme. It follows that (nominal) uniqueness
of effective eme obtains for N = 2. We then proceed by induction on the
number, N , of consumers. Suppose that nominal uniqueness of effective eme
obtains for every population of size 1 ≤ k ≤ N , and consider an economy
(E , (µi),M) with N + 1 households. Consider some eme, (p, r, (xi,mi)), and
suppose that S ⊂ {1, ..., N + 1} is an independent subset. For any vector

x ∈
(
RL

+

)N
, denote by x|S := (xi)i∈S its restriction to the sub-population S.

Since S is independent, (p, r, (x|S,m|S)) must be a eme of the sub-economy
obtained by disregarding consumers not in S and by injecting the adequate
quantity, MS =

∑
Smi = (p/1 + r) ·

∑
S(xi − ei)

−, of “helicopter money”
on the short-loan market. In particular, since the budget constraint of each
member of S is binding, p ·

∑
S zi =

∑
s(µi − rmi). As S is independent,∑

S zi = 0, so that r =
∑

S µi/
∑

Smi. Hence, (p, r, (x|S,m|S)) is a eme
of (ES, µS,MS), and, by assumption, p is unique. Since utilities are strictly
quasi-concave, uniqueness of the equilibrium allocation follows.

We now prove the claim. Since p 6= q, they cannot be proportional either.
Indeed, suppose there was some t > 0 such that p = tq. Then the budget
constraint (b) in Lemma 2.1 would imply

tq · (xi − ei)
+ − t

1 + r
q · (xi − ei)

− = µi,
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which means that there exists cash borrowing strategies, (m̃i)i, such that(
q, r, (ei + 1

t
(xi − ei)), (m̃i)

)
is a third τ -local eme. But q · 1

t
(xi − ei)

− =
τi(1 + r)m̃i, every i, implies that m̃i = 1

t
mi. And

∑
i m̃i =

∑
imi = M leads

to t = 1. Therefore, it suffices to prove that p and q are not proportional.
Let λ := max` q`/p` and H := {` : q`/p` = λ}. Since p and q are not

proportional, H is a proper subset of {1, ..., L}. If λ ≤ 1 this means that
qh ≤ ph for every h. Hence, by interverting the role of p and q if necessary,
we can assume that λ ≥ 1. Now, let S := {i = 1, ..., N | yi` > 0 for some
` ∈ H}. We first show that, for every i ∈ S, if xih > 0, then h ∈ H. Suppose,
indeed, that i ∈ S and h /∈ H. Then, qh/ph < λ. Since yi` > 0 and xi` > 0
for some ` ∈ H, one has, applying Lemma 2.2:

- either i is in Case (a) under q and

∂
∂x`i
uτii (yi)

q`
≥

∂
∂xhi

uτii (yi)

qh
>

∂
∂xhi

uτii (yi)

λph
;

- or i is in Case (b) under q and

∂
∂x`i
uτii (yi)

(1 + r)q`
≥

∂
∂xhi

uτii (yi)

qh
>

∂
∂xhi

uτii (yi)

λph
.

In both cases, multiplying by λ > 0 yields:

∂
∂x`i
uτii (yi)

p`
>

∂
∂x`i
uτii (yi)

(1 + r)p`
>

∂
∂xhi

uτii (yi)

ph
. (13)

Next, Assumption (D) guarantees that, for each k = 1, ..., L, the partial
derivative mapping xi 7→ ∂

∂xki
ui(ei + τi(xi − ei)) locally uniformly converges

towards the constant ∂
∂xki

ui(ei) as τ → 0+. More precisely, applying the

Taylor rule and Prop. 3.1. of Bonnisseau & Orntangar (2010) to xi 7→
∂
∂xki

ui(ei + τi(xi − ei)) yields the existence of some compact Ki
k ⊂ RL con-

taining ei, for which, for every ε > 0, there exists τ such that, for all τ ≤ τ ,
and all xi ∈ Ki

k,

|| ∂
∂xki

ui(ei + τi(xi − ei))−
∂

∂xki
ui(ei)|| ≤ ε.

Thus, for τ small enough, (13) translate into the analogous inequalities taken
at the base point xi (instead of yi):

∂
∂x`i
uτii (xi)

p`
>

∂
∂x`i
uτii (xi)

(1 + r)p`
>

∂
∂xhi

uτii (xi)

ph
.

Applying Lemma (2.2) (ii), we conclude that xih = 0.
Suppose, now, with no loss of generality, that H =: {1, ..., `} ⊂ {1, ..., L}.

For any vector x ∈ RL, write x|` for its truncation (x1, ..., x`). Since members
of S only receive goods in H at p, their whole wealth must be spent on
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commodities in H. But since they receive only goods in H, this means that,
at p, they sell at least their entire endowments of goods not in H. Let us
denote by ω̃i the vector defined by:

ω̃i` :=

{
ωi` if ` /∈ H
0 otherwise.

One must have:

∑
S

(
µi +

p · ω̃i
1 + r

)
≤

N∑
i=1

p|` · ω|`. (14)

On the other hand, the members of S must be able to afford all the com-
modities in H at prices q. The maximal wealth they can dispose of in order
to do this would result from the sale of their entire endowments not in H.
Therefore,

∑
S

(
µi +

q · ω̃i
1 + r

)
≥

N∑
i=1

q|` · ω|` = λp|` ·
N∑
i=1

ω|`. (15)

Multiplying (14) by λ > 0, and substracting it from (15) yields:

(1− λ)
∑
S

µi +
∑
S

(q − λp) · ω̃i
1 + r

≥ 0.

Since λ ≥ 1, while qh − λph ≤ 0 for every good h, the inequality being strict
for h /∈ H, we get ωih = 0 for every i ∈ S and every h /∈ H. It follows that
S is independent.

�

Theorem 2.2 focuses on effective eme. We now turn to autarkic equilibria.
Utilities are said to be separable if ui(xi) =

∑
` u

`
i(x

`
i). Cobb-Douglas and

log-linear utilities are separable.

Proposition 2.1 Under (D),
(i) when µ/M > γ(e), no-trade is the unique τ -local eme for τ sufficiently

small.
(ii) When µ/M ≥ γ(e), no-trade is a τ -local eme for τ small enough.

Moreover, if utilities are separable and strictly concave, it is the unique τ -
local eme.

(iii) Conversely, under (D) and (GT), autarky cannot be a τ -local eme
for τ sufficiently small.

Proof of Proposition 2.1.
(i) Given some τ > 0, consider the subset of allocations that are feasible

and individually rational:

Aτ (x) :=
{

(yi) ∈ RN`
+ |

∑
i(yi − ei) = 0, yi ≥ (1− τ)ei ∀i,
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and ui(yi) ≥ ui(xi), i = 1, ..., N
}
.

Define the τ -localized upper gains-to trade as: Γτ (e) := sup{γ(y) | y ∈
Aτ (e)}. Repeating verbatim the proof of Theorem 6 in Dubey & Geanakoplos
(2003a) adapted to τ -localized trades (i.e., which verify yi ≥ (1−τ)ei), yields:
As soon as µ

M
> Γτ (e), then no effective τ -local eme exists.

On the other hand, when τ = 0, then A0(x) = {e} and Γ0(e) = γ(e).
Now, suppose that µ

M
> γ(e). The application τ 7→ Γτ (e) is continuous. In-

deed, the correspondence τ ⊂→ Aτ (x) is clearly continuous (given the continu-
ity of utility functions ui(·)), and takes values within the (compact) feasible
set. On the other hand, γ(·) is a continuous function (given the differentia-
bility of utilities). Continuity of τ 7→ Γτ (e) follows from Berge maximum
theorem. It implies, for τ sufficiently small:

µ

M
> Γτ (e) ≥ γ(e).

Hence, for τ sufficiently small, no effective τ -local eme exists. Next, we prove
that no-trade is a τ -local eme. According to the very definition of γ(e), the
second welfare theorem yields a price vector p ∈ RL

+ such that (e, p) is a
Walrasian equilibrium of E(e). Hence, since r > γ(e), for every household i
and every pair, (k, `), of goods, one has:

∂
∂x`i
ui(ei)

/
p`

∂
∂xki

ui(ei)
/
pk
≤ 1 + γ(e) < 1 + r. (16)

For every good k = 1, .., L, the uniform convergence, proven in Lemma
2.2, of the partial derivatives of τ -localized utilities, ∂

∂x`i
uτii (·), towards the

k-coordinate of the gradient, ∇ui(ei), implies that (19) holds for τ -localized
utilities when τ is sufficiently small:

∂
∂x`i
uτii (ei)

/
p`

∂
∂xki

uτii (ei)
/
pk

< 1 + r. (17)

This means that no individual i has any incentive to sell commodity k
against commodity ` — she would improve her welfare by slightly reducing
her bank loan, the amount of good k she sells and curtailing her demand
for good `. Thus, if the prevailing price system is p, the solution of each
household’s i program of τ -local utility-maximization yields z∗−i = m∗i = 0,
together with some z∗+i such that p · z∗+i = µi. According to condition (ii) in
the definition of an eme, it follows that xi = ei, turns this action profile into
an (autarkic) τ -local eme.

(ii) If µ
M
≥ γ(e), the proof of (i) holds as well, proving that no-trade

is a τ -local eme for τ small enough. On the other hand, when utilities are
separable and strictly concave, Theorem 7 in Dubey & Geanakoplos (2003a)
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shows that an effective me exists if, and only if, µ
M
> γ(e). Therefore, when

µ
M

= γ(e), and utilities are separable and strictly concave, then no-trade is
the unique τ -local eme for τ small enough.

(iii) Suppose that (GT) and (D) hold, and that no-trade is a τ -local eme,
however small τ may be. Consider a sequence τ(k)→ 0+. For every integer
k, one must have, for every (i, k, `):

∂
∂x`i
u
τi(k)
i (ei)

/
p`

∂
∂xki

u
τi(k)
i (ei)

/
pk

< 1 + r. (18)

Otherwise, agent i would have an incentive to increase her demand for com-
modity k and her offer of commodity `. Taking the limit yields:

∂
∂x`i
ui(ei)

/
p`

∂
∂xki

ui(ei)
/
pk
≤ 1 + r. (19)

This being true for every triple (i, k, `), we can consider any cycle of trades
among households — a cycle, cn, is a sequence of distinct commodities
(`1, ..., `n) and agents (i1, ..., in) where ik buys `k and sells `k+1 (with `n+1 :=
`1). For such a cycle, cn, one has:

n∏
k=1

[ ∂

∂x
`k+1

ik

uik(eik)
/ ∂

∂x`kik
uik(eik)

]
≤ (1 + r)

1
n .

Taking the maximum in the previous inequality among the (finite) set of
cycles leads to:

(1 + γ(e))
1
n ≤ (1 + r)

1
n .

A contradiction with (GT). Thus, there exists some τ small enough, so that,
for every τ ≤ τ , no-trade is not a τ -local eme.

�

Thus, under (D), given initial endowments e, the situation is as follows
(for τ sufficiently small):

• If r < γ(e), there exists a unique τ -local eme, which is effective.

• If r = γ(e), no-trade is a τ -local eme. It is the unique one if
utilities are strictly concave and separable.

• If γ(e) < r, no-trade is the unique τ -local eme.
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3 Monetary policy under myopia

We are now ready to describe the trading process, and to examine the impact
of households’ myopia on monetary policy. In this section, we shall stick to
the conventional understanding of monetary policy, and therefore assume
that r is taken as given both by the Bank and by households. The next
section will explore the consequences of dropping this restriction.

3.1 Long-term debt

The market for long-term loans opens only once, at time t = 0. A quantity
M > 0 of money is supplied by the Bank on this market. An individual i
acquires cash balances µi(1) ≥ 0 by borrowing on the long-term loans market
in exchange for bonds at the rate of interest r, according to the constraints

bi + µi(1) = 0 and
∑
i

µi(1) = M.

From t ≥ 1 on, the long-term loan market remains closed. Long-term debt
must have been entirely paid back at maturity T . M and r will be taken
as exogenously given throughout the paper (more on this at the end of the
Introduction). From now on, we fix a monetary policy,

(
M(t)

)
t=1,...,T

, of the

Bank, consisting in injecting M(t) ≥ 0 on the short-term loan market, at
each period t = 1, ..., T . A spot interest rate, r(t) ≥ 0, forms, so as to clear
the current short-term loan market. Thus, throughout the trading process,
the yield curve faced by traders is the simplest possible one, as it consists
only in two points: the current one (time t), and the maturity T .

At the end of each period 1 ≤ t ≤ T , i must settle the coupons of the
bonds bi sold at time 0. For simplicity, the value of each coupon is assumed to
equal a fraction of the interests which are due on her long-term debt, r

T
µi(1).

The profit of the Bank at time t is then given by the sum of its profit on the
short term loan market, r(t)M(t), plus its current profit on the long-term
market, r̄

T
M :

π(t) := r(t)M(t) +
r

T
M.

At the beginning of period t + 1, household i receives a dividend income
corresponding to a portion, θiπ(t), of the time t-profit of the Bank, where
θi ≥ 0 is an exogeneous share such that

∑
i θi = 1. Hence, for t ≤ T − 1, the

cash balances of individual i at the beginning of t+ 1 are given by:

µi(t+ 1) := µi(t) + θiπ(t)− p(t) · zi(t)− r(t)mi(t)−
r

T
µi(1) (20)

where zi(t) := xi(t) − xi(t − 1) is the exchange vector. Thus, while in the
static framework of the previous sections, each µi was interpreted as outside
money, now µi(t) is viewed as the amount of cash available to agent i at the
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beginning of period t given her long-term debt and the history of her trading
strategies. Equation (20) provides the dynamics of µi(·) for each agent i. It
implies, in particular, that an exogenous change of long-term rates, r, leaves
the aggregate quantity µ(t) unchanged for every t, hence has no impact on
spot rates. This is, of course, a simplistic reduction of the “conundrum”
between short-term and long-term rates due to the postulated myopia of
agents.13

At the end of period T (or at the beginning of a subsequent, fictitious
period T + 1, that serves for accounting purposes), household i receives a
last dividend, θiπ(T ) and settles its debt by paying back µi(1) to the Central
Bank.

3.2 A discrete trading process

Let
ME : E× [0; µ̂]× R −→ RL

++ × R+ × (RL
+)N

be the short-term equilibrium map which associates to each collection (e, (µi),M)
the unique τ−local monetary equilibrium (cf. Theorem 1.1. supra). Let M̂E
denote the canonical projection of ME on the price and commodities spaces,
that is: M̂E(e, (µi),M)is the couple of equilibrium price and allocation.

Definition 3.1 A monetary exchange process controlled by (τ(t))t and the
monetary policy M(t)t is a sequence

(
p(t), r(t), x(t), µ(t)

)
in RL+1

+ × E ×
[0, µ̂]N × R, such that (20) holds and:(

p(t+ 1), x(t+ 1)
)

= M̂E(x(t), µ(t),M(t)) t = 1, ..., T − 1, (21)

with x(0) := e and p(0) ∈ RL
+.

Remark 3.1 At time t, the τ -local eme verifies: µi(t) = p(t)zi(t)+r(t)mi(t).
Hence, (20) can be rewritten as

µi(t+ 1) := θiπ(t)− r

T
µi(1) (22)

Along an exchange process, (22) is supposed to hold at every period t: Default
is not allowed in this paper. Notice that the solution of (22) no more depends
upon real trades: Within the set-up of this paper, it is exogenously given.

For the sake of simplifying the discussion, we make the assumption that
each θi is proportional to the contribution of household i to the long-term
loans market:

Assumption (P) For each i, θi := µi(1)/M.

13Forecasts (whether “rational” or not) are introduced in a companion paper. They
enable to get a true term structure of interest rates.
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Under this restriction, since π(t) = r(t)M(t) +
r̄

T
M(t) = µ(t) +

r̄

T
M(t)

along any exchange process, (22) implies:

µi(t+ 1) = µ(t)
µi(1)

M
∀t ≤ T − 1, every i.

It follows that µ(t+ 1) = µ(t) = M for every 1 ≤ T − 1. In other words, the
quantity of money in the households’ hands at the beginning of each period
t ≤ T remains constant. Finally, at time T + 1, each household i receives
θiπ(T ) = µi(1) and pays back the same sum, µi(1) – that is, the capital of
its long-term debt.14 Hence, every economic actor’s budget turns out to be
eventually balanced along an exchange process.

Finally, we need a standard boundary condition:

Assumption (B)

a) (Boundary behavior) for all xi ∈ RL
++, the set

Ui(xi) =
{
xi ∈ RL

++ | ui(xi) ≥ ui(xi)
}

is a closed subset of RL;

b) (Survival condition) ei ∈ RL
++.

Theorem 3.1 (i) Under (C) and (P), the monetary economy E admits a

monetary exchange process
(
p(t), r(t), x(t), µ(t)

)
, whatever being the mone-

tary policy (M(t)), provided τ is small enough.

Suppose, in addition, that (D) and (B) are in force, and that (GT) holds at
each period 0 ≤ t ≤ T .

(ii) For every ε > 0, there exists t̄ ∈ N such that, if T ≥ t̄,

γ(x(T )) ≤ ε,

(iii) The monetary exchange process,
(
p(t), r(t), x(t), µ(t)

)
, is unique.

Moreover, the price sequence (p(t)) converges to the supporting price of the
unique (Pareto-optimal) limit-point, x∗ := limt→∞ x(t).

(iv) If, on the contrary, r > γ(x(t∗)) for some date t∗ < T , then, x(t) =
x(t+ 1) for every t∗ ≤ t ≤ T for which r > γ(x(t)).

Remark 3.2 This theorem can be interpreted as follows: Given some ad-
missible monetary path, if the number of rounds is sufficiently large, then
trades will asymptotically lead to a Pareto-optimal allocation. And the ap-
proximation can be made arbitrarily coarse by adding sufficiently may rounds

14Dropping (P) would force us to incorporate the possibility of bankruptcy in the anal-
ysis –which is left for a companion paper.
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of trades. This contrasts with Bonnisseau & Orntangar (2010) where a finite
number of rounds was sufficient to get exact efficiency. The presence of a
limited quantity of money is responsible for convergence not to be in finite
time in the present paper: In a sense, the Arrow-Debreu model depicts an
idealized world where an infinite amount of money is freely available to all
traders. If one gives up this unrealistic assumption, then, households who
borrow money lose the interest-float on their marginal purchases which dis-
courages some trades. The upshot is that an effective monetary equilibrium
allocation (wheter τ -local or not) cannot be Pareto-optimal, always leaving
room for further gains to trade.

The last result also provides us with a definition of a minimal growth rate
of money. Indeed, if M(t) grows sufficiently rapidly for (GT) to remain in
force along the whole trading path, then the economy will converge towards
a unique, efficient rest-point. On the contrary, if M(t) grows too slowly, so
that γ((t∗)) < µ/M at some time t∗, then the economy remains stuck in some
inefficient rest-point until the Bank injects sufficiently money in the system
so as to ensure that

µ

M
< γ((t∗)).

We interpret this situation as a “local liquidity trap”. Indeed, if the gov-
ernment pumps in more Bank money into the economy, but not sufficiently
many, so that γ((t∗)) < µ/M still prevails, then it does not succeed in con-
vincing agents to trade. However, there is a level of money injection that
will enable the economy to start trading again. This is the sense in which
a liquidity trap, in this paper, is only local. We see this phenomenon as
a theoretical ground for the scenario observed during the recent financial
crisis.15

Remark 3.3 Another consequence of this Theorem is that money is non-
neutral, neither in the short-, nor in the long-run. Consider, indeed, two
distinct monetary policies, (M(t)), (M ′(t)), such that, say, M(t) = M and
M ′(t) = M ′ for every t, with M > M ′ > µ/γ(e). For both policies, the
economy will end up in a local liquidity trap (for T sufficiently large). But,
in general, trades will cease at different times when (M ′(t)) or (M(t)) are
put into practice.

Let us prepare the proof of Theorem 3.1 by the following lemma – a
discrete-time and set-valued version of Lyapunov’s second method.

Lemma 3.1 Let U ⊂ Rn be a compact subset, and F : Rn → 2U a set-valued
map with a closed graph. Suppose

15Here, for simplicity, we assumed that every agent is purely myopic. In a companion
paper, we show how the phenomenon of local liquidity traps survives even if households
share rational expectations.
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∀k, x(k + 1) ∈ F (x(k)) and x(0) ∈ U.

If there exists a continuous function L : U → R and a non-empty subset
P ⊂ U such that:

- if x ∈ U \ P , L(y) < L(x) ∀y ∈ F (x);

- if x ∈ P , F (x) = {x}.

then, ∀ε > 0, ∃k ∈ N : k′ > k, d
(
x(k), P

)
< ε.

Proof of Lemma 3.1
First, if there exists some k such that x(k) ∈ P , then x(k + 1) = x(k),

and we are done. Suppose, on the contrary, that x(k) /∈ P for all k. By
compactness of U , there exists a subsequence φ(·) : N → N such that the
sequence (x(φ(k))) converges towards z ∈ U . Suppose that z /∈ P . Then,
L(y) < L(z) for every y ∈ F (z). By continuity of L and the graph-closedness
of F , there exists a neighborhood V of z such that L(F (y)) < f(z) for
every y ∈ V . On the other hand, there exists some integer k0 for which
φ(x(k0)) ∈ V , hence, L

(
F (φ(x(k0))

)
< L(z) (i.e., the inequality is true for

every y ∈ F (φ(x(k0)). So that

L
(
F (φ(x(k0 + 1))

)
< L

(
F (φ(x(k0))

)
< L(z).

This contradicts the fact that (x(φ(k)))k converges towards z. Therefore, z ∈
P . Now, P being compact, so is its (closed) tubular neigborhood N (P, ε) :=
{y ∈ U | d(y, P ) ≤ ε}. The continuous function L reaches a maximum,
say η, over N (P, ε). L(·) being decreasing, there exists some k′ such that:
∀k ≥ k′,L(x(k)) < η.

�
Proof of Theorem 3.1

(i) is a direct consequence of earlier results: For each 0 ≤ t ≤ T , either
µ
M
≥ γ(x(t)) — in which case, no-trade is an eme (Proposition 2.1 (ii))—, or

γ(x(t)) > µ
M

, and there exists some effective me (Theorem 2.1 (ii)).
(ii) It suffices to take the feasible set for U ,

U := {(xi)i ∈
(
RL

+

)N | ∑
i

(xi − ωi) = 0
}
,

the Pareto set for P , and L(t) := −
∑

i ui(xi(t)) as Lyapunov function in
order to get the desired convergence result. Indeed, the individual rationality
of each eme implies that L(·) is non-decreasing along a trade path. Moreover,
the set-valued map M̂E(·)16 clearly has a closed graph. FInally, under (GT)
and (C), we claim that the two following assertions are equivalent:

a) the τ -local eme of
(
E(x(t− 1)), (µi(t)),M(t)

)
, verifies:

16Observe that, even under (D) and (B), we cannot guarantee the uniqueness of the eme
at x, whenever µ/M = γ(x) — unless utilities are separable.
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xi(t) = xi(t− 1) ∀i;

b) x(t− 1) is Pareto-optimal (i.e., x(t− 1) ∈ P ).
Suppose that the τ -local eme, ((xi(t),mi(t)), p(t), r(t)), is effective, and yet
yields the same final utility level to each household i as would the consump-
tion of one’s initial endowment:

ui(xi(t)) = ui(xi(t− 1)) i = 1, ..., N.

By the strict quasi-concavity of preferences, any convex linear combination
yi := λxi(t)+(1−λ)xi(t−1) with λ ∈ (0, 1) would be strictly preferred by ev-
ery i to xi(t). Since (yi) would be feasible and compatible with all the individ-
ual budget constraints required for a τ -local eme, this contradicts the equilib-
rium character of ((xi(t),mi(t)), p(t), r(t)). Hence, if ((xi(t),mi(t)), p(t), r(t))
is not autarkic, it must strictly improve the individual welfare of at least one
household i. Now, if γ(x(t)) > µ

M
, we know from Theorem 2.2 that the

unique τ -local eme is effective (for τ small enough). This proves a) ⇒ b).
If γ(x(t)) = 0, then µ

M
≥ γ(x(t)), and Proposition 2.2 implies that no-

trade is a eme. By individual rationality of eme, there is no other eme.
Hence, b) ⇒ a).

(iii) We claim that, at a τ -local eme, ((xi(t),mi(t)), p(t), r(t)), any active
household i borrowing money, purchasing good k and selling only a part of
her endowment xi(t− 1) of commodity ` (thanks to the boundary condition
and for τ sufficiently small), verifies:

∂ui
∂x`i

(xi(t))

p`(t)
= (1 + r(t))

∂ui
∂xki

(xi(t))

pk(t)
. (23)

Suppose, on the contrary, that ∂ui
∂x`i

(xi(t))/p`(t) > (1 + r(t)) ∂ui
∂xki

(xi(t))/pk(t).

Then, i could improve its utility by borrowing δ > 0 additional Euros from
the Bank and spending them to purchase good `, while defraying the loan
by selling (1 + r(t))δ Euros’ worth more of good k. If the reverse inequality
holds, i would benefit by reducing slightly its bank loan and purchasing of `
while curtailing the concomitant sale of k.

On the other hand, it follows from parts (i) and (ii) of Theorem 3.1.,
that there exists some t∗ such that, from t∗ on, global gains to trade are
decreasing that is : γ(x(t+ 1)) ≤ γ(x(t)), every t ≥ t∗. Hence, (GT) implies
that r(t) → 0+ along a trade path, so that the price vector p(t) becomes
asymptotically collinear to the gradient of active households as t→∞. Since
x(t) converges towards a Pareto-optimal point (where all the household’s
gradients are colinear to the price vector sustaining this very Pareto point as
a no-trade Arrow-Debreu equilibrium), the conclusion follows.

(iv) is a direct consequence of Proposition 2.1.
�
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3.3 Taylor rule revisited

An important consequence of the last Theorem deals with the Taylor rule.
Following Taylor (1993), we describe this “rule” as specifying how much
the Central Bank should change the nominal short-term interest rate, r, in
response to divergences of actual inflation rates from target inflation rates
and of actual Gross Domestic Product (GDP) from potential GDP. The rule
can be written as follows:

r(t) = π(t) + r∗(t) + a(π(t)− π(t)) + b(y(t)− y(t)), (24)

where a, b ≥ 0, π(t) is the rate of inflation as measured by the GDP deflator,
r∗(t) is some target real interest rate, y(t) is the logarithm of real GDP
and y(t) is the logarithm of some potential output (as determined, say, by
a linear trend or any alternate rule of thumb). The GDP deflator is usually
understood as the ratio between nominal and real GDP. How should we define
it in our set-up ? Following Dubey & Geanakoplos (2003a), we consider
the value, p(t) ·

∑
i z

+
i (t), of aggregate expenditures at time t as playing the

role, in our setting with heterogeneous households and multiple commodities,
of nominal GDP. Real GDP could be approximated by the “size” of these
expenditures, say, the norm ||

∑
i z

+
i (t)||. Thus, we understand (24) with the

following interpretation:

π(t) :=
p(t) ·

∑
i z

+
i (t)

||
∑

i z
+
i (t)||

and y(t) := ln ||
∑
i

z+
i (t)||.

Corollary 3.1 Under (D), (B) and (P), for any monetary policy rule obey-
ing (24) (i.e., for any choice of the parameters a, b and the targets r∗(t) and
y(t)), there exists some T sufficiently large so that the economy remains stuck
at a local liquidity trap at some finite time t < T .

Proof of Corollary 3.1
Suppose that the Central Bank follows (24), and assume that the economy
never stops at some autarkic rest-point until T . According to Theorem 3.1
(i), the trade path converges to some Pareto-point as T → ∞. Hence
γ(x(t)) → 0+. For this, it must be the case, according to Theorem 3.1
(iii), that: M(t) > µ/γ(x(t)) for each t. Hence, M(t) → +∞ as t → ∞.
The Quantity Theory of Money (9) then tells us that p(t) ·

∑
i z

+
i (t) → ∞.

Since the economy eventually converges to some asymptotic (Pareto-optimal)
rest-point,

∑
i z

+
i (t) → 0+. Therefore, the ratio π(t) → +∞. This implies,

however,

r(t) = π(t)
[
1 + r∗(t)

π(t)
+ a(1− π(t)

π(t)
) + b( y(t)

π(t)
− y(t)

π(t)
)
]
→ +∞.

A contradiction with the fact that Theorem 3.1 (iii) also implies γ(x(t)) >
r(t) → 0+. Thus, following (24) must lead to some inefficient autarkic rest-
point at some finite t < T . �
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4 Appendix

4.1 Linear monetary economies

In this section, we provide some background material on monetary linear
exchange economies that may be of interest in its own right. The results
to follow also play a pivotal role for the proof of Theorem 1.1.

Let us therefore consider a linear exchange economy L with N con-
sumers, L commodities. Each consumer i is characterized by her utility
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function : ui : RL
+ → R, defined by ui(xi) := ai · xi for some vector

ai ∈ RL
+ \ {0}, and by her initial endowment, ωi ∈ RL

+ \ {0}. In the fol-
lowing, we assume with no loss of generality that, for every commodity
`, there exists i with ai` > 0 and j with ωj` > 0.

Each household i is also endowed with some outside money µi ≥ 0.
Again, there is no loss in postulating that µ :=

∑
i µi > 0.17 Some

short-run interest rate r > 0 is fixed by the Central Bank, together with
the total amount, M > 0, of inside money. Given some final allocation,
(x∗i )i, the corresponding net trades are written: z∗i := x∗i −ωi, every i. In
this Appendix, a monetary equilibrium (me) of (L, µ,M) is then a triple(
(x∗i )i, p

∗, r∗
)

such that the three following conditions hold:

(a) For every i, x∗i maximizes ai ·xi over the monetary budget
set {xi ≥ 0 | p∗ · z∗+i + 1

1+r∗
p∗ · z∗−i ≤ µi};

(b)
∑

i z
∗
i ≤ 0,

(c)
∑

i m̃i(p
∗, r∗) = M.

Exactly as in the concave situation examined in the body of this paper,
we need the gains-to-trade hypothesis borrowed from Dubey & Geanako-
plos (2003a) in order to ensure that money will have positive value at
equilibrium.

Gains-to-trade assumption (GT).– γ(ω) > µ
M

.

Observe that, if
(
(x∗i )i, p

∗, r∗
)

is a ME, then p∗ >> 0. As is well-known,
even in the barter case, the above mentioned assumptions on the real
part of the economy L are not sufficient to guarantee that the set of
Walras equilibria is non-empty. Neither are they for the existence of a
ME. Consider, for instance, the two-agent, two-good economy L, with
a1 = (1, 0), a2 = (0, 1), ω1 = (1, 0), ω2 = (2, 3), µ1 = 1, µ2 = 0, and
+∞ > r,M > 0. It is readily seen that no p >> 0 can be a ME price
vector, since household’s 2 demand would exit the attainable set, A.
Neither can (0, p2) be a ME price since, then, household’s 1 maximiza-
tion programme has no solution. Observe that, here, non-existence does
not arise because of any lack of gains-to-trade since those are clearly
positive in L, while M can be chosen arbitrarily large (and actually, µ
arbitrarily small). On the other hand, providing household 2 with some
additional outside money would’nt help to restore existence. Therefore,
we need some additional restriction akin to the irreducibility require-
ment in the barter case. If ω`i > 0, say that “agent i has `”; if the

17Remember that, in the body of the paper, outside money is reinterpreted as long-term
debt.
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restriction of ui(·) to the projection of the feasible and individually ra-
tional set to i’s consumption set, RL

+, is strictly increasing with respect
to commodity `, say that “agent i wants `”. Consider the directed graph
Γ ⊂ {1, ..., L}×{1, ..., L} on the node-set of commodities, with arc (`, k)
if there exists at least one agent i who has ` and wants k.

Having-wanting chain hypothesis (HW).– For every pair
of commodities (`, k) with ` 6= k, there exists a directed path
from ` to k in Γ.

This assumption stems from the first remark after the proof of Theorem
2 in Dubey & Geanakoplos (2003a), and is slightly stronger than the fol-
lowing monetary adaptation of the standard irreducibility requirement.
Assumption (HW) is verified, e.g., either when ai >> 0 for every i, or
when ωi >> 0 for every i.

Irreducibility assumption (I).– There do not exist proper
subsets I of the set of households {1, ..., N} and H of the set
of goods {1, ..., L}, such that ωi` = 0 whenever (i, h) ∈ I×H
and either ai` = 0 or µi = 0 whenever i /∈ I and ` /∈ H.

When µi = 0 for every i, monetary irreducibility reduces to the stan-
dard, barter one. The next two subsections are devoted to proving the
following:

Proposition 4.1 Under (HW) and (GT):

(i) There exists a ME of the economy (L, µ,M) (Dubey & Geanakoplos
(2003a), Theorem 2).

(ii) The set, ME, of monetary equilibria is homeomorphic to a convex
set (hence, it is contractible, among other things). The same holds for
the set, MEπ, of monetary equilibrium prices. Moreover, if (x, p, r) and
(y, q, r) are two ME, then, for every α ∈ [0, 1], (αx+(1−α)y, pαq1−α, r)
is also a ME of (L, µ,M).

(iii) The ME price vector is uniquely determined. That is, if(
(x∗i )i, p

∗, r∗
)

and
(
(y∗i )i, q

∗, r∗
)

are two ME, then p∗ = q∗.

(iv) The monetary equilibrium utility level of each household i is uniquely
defined. That is, if

(
(x∗i )i, p

∗, r∗
)

and
(
(y∗i )i, p

∗, r∗
)

are two ME, then
ui(x

∗
i ) = ui(y

∗
i ) for every i.

While the restriction from weakly quasi-concave preferences to linear
utilities enables to weaken the local non-satiation requirement to mere
irreducibility, in part (i) of the present Theorem (as well as in Theorem 2
ofDubey & Geanakoplos (2003a)), the stronger “having-wanting chain”
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hypothesis is needed in order to ensure that money has a positive value at
equilibrium. Parts (ii) and (iii) are the monetary counterparts of Gale’s
(1976) and Cornet’s (1989) uniqueness result. Notice, however, that,
here, thanks to the presence of money, uniqueness of the absolute level of
prices holds, and not just that of relative prices as in the barter situation.
For the same reason, uniqueness obtains under weaker assumptions than
in the barter case: We do not need the additional requirement that there
exist at least one household i with ωi >> 0, as is imposed in Cornet
(1989). Though it cannot be dispensed with in the barter case, this last
assumption is superfluous in the monetary case, as we shall see.

4.2 Geometric insight

Proof of part (ii).

In the following, we denote by vi : RL+1
+ → R the indirect utility function

of household i, defined, for every price vector p and interest rate r, by:

vi(p, r) := max
{
ai · xi | xi ≥ 0, p∗ · z∗+i +

1

1 + r
p∗ · z∗−i ≤ µi

}
.

We also denote by A the subset of attainable allocations in L:

A :=
{

(xi)i ∈ RLN
+ |

∑
i

xi ≤
∑
i

ωi
}
.

Step 1. Characterization of indirect utilities.

We begin with a characterization of vi(·, ·) that will prove useful later
on. Given (p, r), let us consider the following subset of goods:

Li(p, r) :=
{
` = 1, ..., L | ai`

(1 + r)p`
≥ aih

ph
∀h 6= `

}
.

Intuitively, Li(p, r) is the subset of goods ` that are so valuable according
to i’s preferences that she is ready to sell every other commodity h /∈ Li
in order to buy some additional amount of ` despite the bid-ask spread
introduced by the interest rate, r.

Two cases have to be distinguished.

Case A : Li(p, r) 6= ∅. Define ω̂i(p, r) as follows, for every good `:

ω̂i`(p, r) :=

{
ωi` if ` /∈ Li(p, r),
0 otherwise.
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Given (p, r), i will but sale the vector ω̂i(p, r) out of her initial endow-
ments. As for commodities in Li(p, r), i will keep her initial endowment
and buy as much as possible of these additional goods out of the cash
provided by µi and by her sales 1

1+r
p · ω̂i(p, r). Therefore, her utility

maximization programme (a) can be rewritten as:

max
{
ai · w | p · w ≤ µi +

1

1 + r
p · ω̂i(p, r) and w ≥ 0

}
.

It follows from the duality theorem of linear programming (e.g., Gale
(1960)) that i’s indirect utility function can be written as:

vi(p, r) = v̂i(p, r) + ai · [ωi − ω̂i(p, r)], (25)

with

v̂i(p, r) :=
(
µi +

1

1 + r
p · ω̂i(p, r)

)
max{ai`/p` | ` ∈ Li(p, r)

}
. (26)

Case B. If, now, Li(p, r) = ∅, there is no good that i is willing to sell
out of her initial endowments. Therefore the unique utility-improving
transaction that i can afford consists in buying additional commodities
thanks to her outside money, µi. Her maximization programme (a) is
then:

max{ai · w | p · w ≤ µi and w ≥ 0}.

So that the duality theorem, again, yields:

vi(p, r) = ṽi(p, r) + ai · ωi, (27)

with

ṽi(p, r) := µi max
{
ai`/p` | ` = 1, ..., L

}
.

The key insight is the following: For each triple (x, p, r) such that ai·xi =
vi(p, r) (i = 1, ..., N), the set of households can be partitioned into
two subsets {1, ..., N} = A ∪ B, where agents i ∈ A are in Case A
(defined supra) and each i ∈ B is in Case B. Consumers in B do not
sell any item: They just buy commodities out of their outside money.
On the other hand, since every household i ∈ A ∪ B fulfills her budget
constraint, p ·z∗i − 1

1+r
p ·z−i ≤ µi, it follows (e.g., from Lemma 1 inDubey

& Geanakoplos (2003a)) that there exist m̃i ≥ 0 (i = 1, ..., N) such
that: p · z∗i ≤ µi + m̃i (i = 1, ..., N) and

∑
i m̃i = M . Consequently,
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p ·
∑

i z
+
i ≤ µ + M for every i. But, when it is binding, the budget

constraint also implies that p · zi ≤ µi − rm̃i, for every i. Therefore,
p ·
∑

i zi ≤ 0 whenever r = µ/M . But we have already seen in the body
of this paper that this last equality must hold at any ME. It follows
that:

p ·
∑
i∈A

ω̂i(p, r) = p ·
∑
i

z−i ≤ µ+M. (28)

Step 2. An equivalent programming problem.

With this characterization of i’s indirect utility function in hand, let
us prove part (ii) of Proposition 5.1. We partly follow Cornet (1989)
taking into account the twist due to the introduction of fiat money. Let
consider the following maximization problem in which ai and ωi are fixed
parameters and

(
(xi)i, p, r

)
∈ RL(N+1)+1 is the variable of the problem:

(P) : max mini=1,...,N

[
ai · xi − vi(p, r)

]
subject to:∑

i zi ≤ 0, xi ≥ 0 (i = 1, ..., N), p >> 0;

0 ≤ r
1+r

∑
i z
−
i ≤ µ.

The condition 0 ≤ r
1+r

∑
i z
−
i ≤ µ arises from the following observation.

The aggregate debt, (1 + r)M , cannot exceed the total quantity of cir-
culating money, µ + M , since default is not permitted in this paper.
Hence, one must have: 0 ≤ r ≤ µ

M
. On the other hand, we have seen

that, at least at equilibrium, this aggregate debt cannot exceed neither
the global income earned from salings: (1 + r)M ≤ p ·

∑
i z
−
i . Condition

0 ≤ r
1+r

∑
i z
−
i ≤ µ follows.

For the ease of notations, let us denote by A the subset of (x, p, r) ∈
A × RL

++ × R+ such that 0 ≤ r
1+r

∑
i z
−
i ≤ µ. We now claim that, if

((x∗i )i, p
∗, r∗) is a ME of L, then it solves (P). Clearly, ai ·x∗i = vi(p

∗, r∗)
for every i. Hence, it suffices to show that

0 ≥ min
i

[
ai · xi − vi(p, r)

]
for every (x, p, r) ∈ A.

Suppose, on the contrary, that for some (x, p, r) ∈ A, one has: ai · xi >
vi(p, r) for every i. This implies p ·z+

i − 1
1+r

p ·z−i > µi, every i. Summing
over i gives (the first inequality arises from the feasibility of (zi)i and
p ≥ 0):
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p ·
∑
i

z−i ≥ p ·
∑
i

z+
i

> µ+
1

1 + r
p ·
∑
i

z−i .

The following contradiction follows: r
1+r

p ·
∑

i z
−
i > µ.

Step 3. Searching for convexity.

Unfortunately, the objective function in (P) is not concave in general.
As in Cornet (1989), we make a change of variable by defining, for
q = (q`)` ∈ RL:

Vi(q, r) := vi(e
q1 , ..., eqL , r) (i = 1, ..., N).

Now, the following alternate programming problem is convex:

(Q) : max(xi),q,r mini=1,...,N

[
ai · xi − Vi(q, r)

]
subject to:

∑
i zi ≤ 0, xi ≥ 0 (i = 1, ..., N), q ∈ RL;

r
1+r

eq ·
∑

i z
−
i ≤ µ,

with eq := (eq1 , ..., eqL), q ∈ RL.

Indeed, it folllows from (25) and (27) that each Vi(·, ·) can be expressed
as a supremum of convex functions.

Let us prove that every solution of ( Q ) is a ME of L. Let (x∗, q∗, r∗)
be a maximum of (Q). We first claim that:

u∗ := min
i=1,...,N

[
ai · x∗i − Vi(q∗, r∗)

]
≥ 0.

Indeed, if (x∗, q∗, r∗) is a ME, then u∗ = 0. As we know that ME exist,
u∗ yields as least 0.

It only remains to prove that every solution (x∗, q∗, r∗) of (Q) yields
a ME. For this, all we have to check is that each x∗i verifies i’s in-
dividual budget constraint. Since u∗ ≥ 0, one has, for every i (with
p = (eq1 , ..., eqL)):

p∗ · z∗+i −
1

1 + r∗
p∗ · z∗−i ≥ µi.

Summing over i, the same argument as at the end of Step 2 above enables
to deduce from (28) that
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p∗ · z∗+i −
1

1 + r∗
p∗ · z∗−i = µi (i = 1, ..., N).

As a conclusion, for (x∗, p∗, r∗), to be a ME of L is equivalent to
(x∗, p∗, r∗) being a solution of (P) or (x∗, q∗, r∗) being a solution of (Q).

Let denote MEx the set of monetary equilibrium allocations:

MEx :=
{

(xi)i ∈
(
RL

+

)N | ∃(p, r) : (x, p, r) ∈ ME
}
,

and similarly, let MEπ denote the set of monetary equilibrium prices:

MEπ :=
{
p ∈ RL

+ | ∃(x, r) : (x, p, r) ∈ ME
}
.

A consequence of equivalence juste proven between ME and solutions of
(Q) is that the two sets:

ME := {(x, q, r) | (x, eq, r) ∈ ME} and MEπ := {q | eq ∈ MEπ}

are convex. Part (ii) then follows.

We know, from Dubey & Geanakoplos (2003a) (Theorem 4) that, in
general concave economies,

γ(ω) ≥ r ≥ γ(x∗),

for every ME allocation x∗. That is, gains-to-trade after trades occured
cannot exceed the interest rate, which itself cannot exceed initial gains-
to-trade. Moreover, their Theorems 7 and 8 show that, when preferences
are separable and strictly concave, then existence of a ME implies that
γ(ω) > r ≥ γ(x∗) – which proves that GT is a necessary condition in
their set-up. In the linear model of this Appendix, the situation is slightly
different. For every x in the interior of the attainable set, it is clear
that γ(x) = γ(ω). Hence, if (x, p, r) is a ME of (L, µ,M) with µ/M <
γ(ω), since we know that r = µ/M at a ME, this means that x cannot
be interior. In other words, in all the situations covered by part (i) of
Proposition 4.1, the ME allocation will lie somewhere on the boundary of
A. By contrast with the strictly concave setting, this, however, does not
mean that no interior allocation can be a ME allocation or, equivalently,
that GT is a necessary condition. Indeed, as shown by the next example
(borrowed from Giraud & Tsomocos (2009)), a ME may exist (and be
interior) even when γ(ω) = r.

There are two agents and two commodities (N = L = 2). ω1 = ω2 =
(50, 50); private outside cash is µ1 = µ2 = C 5; inside money isM = C 90.
Utilities are u1(x1

1, x
1
2) = 10

75
x1

1 + 3
25
x1

2, and u2(x2
1, x

2
2) = 3

25
x2

1 + 10
75
x2

2.
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At the unique ME, prices are p1 = p2 = 1; interest rate is r = 1
9
;

final allocations are x1 = (50,−50), x2 = (−50, 50). Household 1 sells
commodity 2 and buys 1. For this purpose, it spends its C 5 and buys 5
units of good 1. It also borrows m̃1 = C 45 from the Bank, promising to
repay (1 + r)m̃1 = C 50. This loan is spent to buy 45 additional units of
good 1. Finally, agent 1 sells 50 units of good 2 to agent 2, and is able
to repay the Bank. Traders’ final utilities verify:

a11

p1

= (1 + r)
a12

p2

and
a22

p2

= (1 + r)
a21

p1

.

Moreover, γ(ω) = 1/9 = γ(x∗) = r = µ/M .

red

q

0

ω

q
x∗

Budget of 1

Budget of 2

q

qω1
2 + µ1

p2
+

p1x
1
1

p2(1+r) a11 · x =cst.

µ1

p1

Fig 2. An interior ME

4.3 Uniqueness

In this section, we prove parts (iii) and (iv) of Proposition 4.1. Let us
begin with the following:

Lemma 4.1 Let (p, q) ∈ RL
++ and define s` :=

√
p`q` for every `. Then,

for every r > 0,

1

2
vi(p, r) +

1

2
vi(q, r) ≥ vi(s, r) for every i,

and the inequality is strict as soon as vi(p, r) 6= vi(q, r).

Proof of the Lemma. The inequality follows from the convexity of Vi(·, r).
Suppose that, at (s, r), household i is in case A. Choose commodity `
so that
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v̂i(s, r) = (µi +
1

1 + r
s · ω̂i(s, r))

ai`
s`
. (29)

Clearly, ai` > 0. By the standard inequality between arithmetic and
geometric means, one deduces that, for every good h:

1
2

(
µiai`
p`L

+ ai`
1+r

phω̂ih(s,r)
p`

+ ai·(ωi−ω̂i(s,r))
L

)
+ 1

2

(
µiai`
p`L

+ ai`
1+r

qhω̂ih(s,r)
q`

+

ai·(ωi−ω̂i(s,r))
L

)

≥

√
µ2
i a

2
i`

p`q`L2
+

√
a2
i`

(1 + r)2

phqhω̂2
ih(s, r)

p`q`
+
ai · (ωi − ω̂i(s, r))

L

=
µiai`
s`L

+
shω̂ih(s, r)ai`

(1 + r)s`
+
ai · (ωi − ω̂i(s, r))

L
.

(30)

The end of this first part of the proof of our Lemma distinguishes be-
tween two cases: a) one of the inequalities above is strict for some com-
modity h; b) all these inequalities are in fact equalities for every h. In
the first case, summing up over h = 1, ..., L, and recalling (25) and (29)
gives:

1
2
vi(p, r) + 1

2
vi(q, r) ≥ 1

2

[(
µi + p·ω̂i(s,r)

1+r

)
ai`
p`

+ ai · (ωi − ω̂i(s, r))
]

+1
2

[(
µi + q·ω̂ih(s,r)

1+r

)
ai`
q`

+ ai · (ωi − ω̂i(s, r))
]

> µi + s·ω̂i(s,r)
1+r

ai`
s`

+ ai · (ωi − ω̂i(s, r))

= vi(s, r).

In the second case, b), one must have:

vi(p, r) ≥
(
µi +

p · ω̂i(s, r)
1 + r

)ai`
p`

+ ai · (ωi − ω̂i(s, r))

= µi +
s · ω̂i(s, r)

1 + r

ai`
s`

+ ai · (ωi − ω̂i(s, r))

= vi(s, r).

Similarly, vi(q, r) ≥ vi(s, r). But vi(p, r) 6= vi(q, r) then implies that
1
2
vi(p, r) + 1

2
vi(q, r) > vi(s, r).
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Now, if household i is in case B at (s, r), an almost identical calculus
leads to the same conclusion. Details are left to the reader.

�

Proof of Part (ii).

The proof is essentially the same as for Theorem 2.2, except that the
uniform approximation of τ -localized utilities is no more needed, since
utilities are already linear.

Proof of Part (iii). Obvious. �
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