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Abstract

Paired Kidney Exchanges (PKE) programs increase the number of kidney trans-

plants by arranging swaps of living donors among patients who have an incompatible

donor. The number of transplants performed can be dramatically increased with

the participation of compatible donor-patient pairs. We analyze matching rules that

provide incentives to patients with compatible donors to enroll in PKE programs

by giving them chances to get a kidney with higher expected graft survival. Our

results are based on the observation that the characteristics of the donor which have

a major impact on the expected graft survival in living donor kidney transplanta-

tion –namely, donor’s age and health status– affect all compatible patients in the

same way and therefore call for a natural restriction on the domain of patients’

preferences. Hence, we define a restricted domain of patients’ preferences such that

patients prefer to get a younger (and healthier) kidney to an older one. We identify

non manipulable and (constrained) efficient matching rules in this setting.
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1 Introduction

The literature of allocation of indivisible objects in economies without money has found a

remarkable application in the design of Paired Kidney Exchange (PKE) programs. These

programs try to overcome the incompatibility (between blood or tissue-types) of living

donor-patient pairs by arranging swaps of donors among several pairs ([4, 5, 25]). Besides

the difficulties of finding mutually compatible donor-patient pairs, the design of PKE

programs needs to address many constraints that are absent in the standard allocation

problems. PKE programs usually involve the cooperation and coordination of transplanta-

tion units of different medical centers. All the participants in a kidney exchange (donors

and patients) need to be readied for surgery at the same time and multiple operating

rooms and teams of surgeons have to work simultaneously.1 At this point, real-life PKE

programs have generally focused on maximizing the number of compatible simultaneous

exchanges among two donor-patient pairs, although swaps among more than two pairs

have been occasionally carried out. In order to solve situations where a donor-patient pair

is involved in more than one viable exchange, PKE programs usually rely on (sequentially)

giving priority to some patients in a similar fashion employed for the allocation of kidneys

obtained from cadaveric donors.2

In spite of all the difficulties, PKE programs are a remarkable example of how to gen-

erate efficiency enhancement exchanges without any need of monetary compensations. It

is common view however that PKE programs could attain even better outcomes if more

donor-patient pairs participate in those programs. Clearly, the more donor-patient pairs

available in the pool, the greater is the probability of identifying mutually compatible

kidney exchanges and the better is the match between donors and recipients. An imme-

1There is also an increasing interest on the practice of non-simultaneous, extended altruistic-donor

chains. In these cases, a donor chain starts from an altruistic donor who wish to donate a kidney to

someone in need of a kidney transplant without having a related recipient ([2, 22, 33]).
2This is the case for the New England Paired Kidney Exchange NEPKE (Roth et al. [26, 27]). Other

centralized kidney exchange programs implemented in different countries as Korea, Netherlands, and

Spain follow similar protocols ([12, 19, 21]).
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diate way to enlarge this pool is to provide incentives to compatible patient-donor pairs

to enroll in PKE programs. Compatible pairs are usually excluded from PKE programs

although they may be very helpful in finding additional mutually compatible swaps for

incompatible pairs ([7, 27, 28].) To this end, it is necessary to give to the patient of a

compatible pair the chance of a better match that increases the expected survival of the

graft with respect to her compatible willing donor kidney. Medical research supports the

idea different compatible kidneys may lead to substantially different outcomes in terms

of expected survival of the graft. In fact, the age and health status of the donor have

a major impact on the expected survival of the graft ([7, 8, 32]). For instance, recent

studies by Øien et al. [16] highlight that age and health status also play a crucial role in

case of living donations. Donor age greater than 65 is a risk factor for graft loss in all

time periods after transplantation.3

In this paper, we suggest a protocol such that compatible pairs are willing to par-

ticipate to PKE programs since patients have the chances to be matched with younger

donors than their compatible related donors and therefore can receive a kidney with higher

expected graft survival. The existence of such rules is far from being obvious. Previous

works ([15, 26]) have shown that it is hard to abandon the dichotomous preference domain,

where it is assumed that patients are indifferent between any pair of compatibles kidneys.

In fact, if quality concerns regarding the compatible kidneys are taken into consideration,

there are no rules that are efficient and induce patients to truthfully reveal their prefer-

ences in an unrestricted preference domain. This negative result depends on the presence

of feasibility constraints in the maximum number of exchanges that can be simultaneously

performed. However, since donors’ age and health status affect all patients in the same

direction, they call for a natural restriction on patients’ preferences over kidneys. In this

restricted preference domain we are able to design rules which satisfy strong normative

requirements and take into account the different quality of the available kidneys.

3There is some controversy on the medical literature regarding the effects of other medical features as

closeness of tissue types between patient and donors on the survival of the graft ([4, 9, 17, 18]).
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We incorporate the implications of donors’ features on patients’ preferences in a PKE

framework. We analyze a model of non-monetary exchange of indivisible goods with initial

endowments where patients’ preferences are naturally restricted. Patients preferences over

donors’ kidneys depend on the mutual compatibility and on the quality of the kidney.

The compatibility between a donor and a patient depends on multiple issues that are

not publicly observable and are private information for the patients. The quality of the

donors’ kidney depend on directly observable features as age and health status of the

donor. The pool of donors’ kidneys can be partitioned in equivalence classes of kidneys

of the same quality. Thus, for each pair of kidneys belonging to different classes, every

patient for which those kidneys are compatible, ranks those kidneys in the same way. We

dub such domains as age-based preferences, because they reflect the idea that patients

prefer younger compatible donors to older compatible donors.

PKE programs periodically use the medical details of donors and patients in order to

find compatible exchanges in the pool of donor-patient pairs. Of course, this information

needs to be elicited from the patients (or they doctors) and patients may have incentives

to provide false information in order to improve their chances of getting a better outcome

in the process. Hence, we model PKE protocols as rules that map patients’ preferences

over kidneys (or the medical features of patients and donors) to assignments of the donors’

kidneys to the patients. We analyze rules defined on the domain of age-based preferences

that satisfy the individual rationality,4 efficiency restricted by the logistic constraints on

the number of donor-patient pairs involved in the exchanges, and strategy-proofness.5 We

first show that those properties are incompatible for rules that admit simultaneous swaps

involving more than two donor-patient pairs. Hence, without loss of generality, we focus

on rules that only admit pairwise exchanges. We present a family of rules –age-based

priority rules–that adapt the real-life protocols to our restricted domain of preferences.

4A rule satisfies individual rationality if patients never prefer the initial situation to the assignment

prescribed by the rule.
5A rule satisfies strategy-proofness if patients never have incentives to provide a false report of their

preferences.
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According to age-based priority rules, patients select the assignments they prefer from

the set of individually rational assignments, and patients’ positions in the sequential

choice procedure is determined by the quality of their donors. Specifically, if patients can

strictly rank all compatible kidneys, then the age-based priority rule is the unique rule

that satisfies individual rationality, 2−efficiency, and strategy-proofness. If patients may

be indifferent among kidneys, then age-based priority rules still fulfill those properties. We

also analyze the relevant extension of the problem in which patients may have more than

one potential donor. In this scenario, it seems desirable to investigate rules that never

provide incentives for the patients to withhold some of their potential donors. We extend

the definition of age-based priority rule and fine-tune these rules in order to accomplish

to this goal.

Our paper contributes to two branches of the matching literature. On the one hand,

the literature on kidney exchange, on the other, the literature on strategy-proof allocation

of indivisible goods in economies without money when agents have private endowments.

The literature on kidney exchange started by Roth et al. [25], that shows the potential

benefits of PKE in terms of increments in the number of kidneys transplantation. This pa-

per assumes that patients’ preferences are not restricted and they do not take into account

feasibility constraints in the minimum number of operations required in the exchange. Al-

ternatively Roth et al. [26, 27] present the theoretical model that supports the priority

protocols applied in the NEPKE. These papers explicitly introduce the problem of feasi-

bility constraints and preference domain restrictions in PKE. Basically, they analyze the

incentives and equity properties of priority rules when kidneys exchanges are restricted to

involve only two donor-patient pairs and patients are indifferent among compatible kid-

neys. In that framework, Roth et al. [29] show that efficiency gains could be attained (and

almost exhausted) if kidney exchanges among three donor-patient pairs were admitted,

under the assumption that compatibility issue only depends on blood–type compatibil-

ity. Hatfield [10] characterizes all the rules that satisfy and constrained efficiency and

strategy-proofness for arbitrary feasibility restrictions. Ünver [33] explicitly incorporates
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a dynamic analysis of the problem, investigating the design of efficient exchange programs

still assuming that patients consider all compatible kidneys to be homogeneous. Ausubel

and Morrill [2]6 We depart from these papers in introducing a richer domain of prefer-

ences that admits strict preference over compatible kidneys, and that inevitably narrows

the class of rules that satisfy our properties. Finally, Nicoló and Rodŕıguez-Álvarez [15]

show that these properties are incompatible for unrestricted preferences under feasibility

constraints and analyze patients’ behavior if they are extremely risk averse. In this paper,

we show that such incompatibility can be avoided if patients preferences are restricted to

be age-based.

Regarding the literature on strategy-proof allocation of objects, there is a bast body

of research that studies the agents’ incentives in the so called housing markets proposed

by Shapley and Scarf [30]. Shapley and Scarf [30] show that when agents are endowed

with a unique object the set of (strict) core assignments (in the sense that no group of

agents can improve by swapping objects among themselves) coincides with the competitive

equilibrium correspondence. When preferences are strict, the core is single-valued ([24])

and the rule that selects the core allocation has many desirable properties. ([3, 14, 23]).

In fact, it is the only rule that satisfies individual rationality, (unconstrained) Pareto-

efficiency, and strategy-proofness([13, 31]). However, most of the desirable properties do

not hold anymore when indifferences are admitted and/or there are feasibility constraints.

The (strict) core itself may not exist ( [30]), Pareto efficiency and group strategy-proofness

turn out to be incompatible ([6]). The recent papers by Jaramillo and Manjunath [11] and

Alcalde-Unzu and Molis [1] show that there are rules that satisfy individual rationality,

Pareto-efficiency, and strategy-proofness, but they never satisfy anonymity. We contribute

to this literature by analyzing a domain restriction where there exist rules, which satisfy

most of the desirable properties, in presence of weak preferences and feasibility. Finally,

6Besides Ünver [33], Zenios [34] also considers PKE in a dynamic setting. Zenios focuses on the

optimal assignment of donor-patient pairs to direct exchange programs or indirect exchange programs,

where patients may exchange their incompatible donor to gain priority in the waiting list. In this paper

the planner perfectly knows patients’ preferences and no information has to be elicited.

6



Pápai [20] studies trades in general markets where individuals are endowed with multiple

heterogeneous indivisible goods and a feasible allocation is a reallocation of the indivisible

goods among the agents. Given the nature of the problem we study, we also consider the

case when individuals may have multiple donors in their initial endowment but we assume

that only one object is exchanged. Moreover, we depart from [20] by assuming that agents

may have private information not only regarding their preferences but also the set of initial

objects. Hence, we also focus on agents’ incentives to truthfully report the information

about both their preferences and their initial endowment.

Before we start the formal analysis, we outline the remainder of this paper. In Section

2, we present the model of kidney assignment problems and basic notation. In Section 3,

we introduce the concept of age–based preferences. In Section 4, we analyze the framework

where each patient may have only one willing donor. In Section 5, we extend the analysis

to the multiple donor case. In Section 6, we present concluding remarks and further

applications of the framework. In the Appendix, we collect all the proofs.

2 Basic Notation

Consider a finite society consisting of a set N = {1, . . . , n} of patients (n ≥ 3) who need

a kidney for transplantation. Each patient has a potential donor, and Ω = {ω1, . . . , ωn}

denotes the set of kidneys available for transplantation. For each patient i ωi refers to

the kidney of patient i’s donor. We assume for the moment that all available kidneys are

obtained through living donors and each patient has only one potential donor.7

Each patient i is equipped with a complete,reflexive, and transitive preference relation

%i on Ω. We denote by�i the associated strict preference relation and by∼i the associated

indifference relation. Let P denote the set of all preferences. We call %∈ PN a preference

profile. For each T ⊆ N and each %∈ PN , %T∈ PT denotes the restriction of the

profile % for the members of T . We usually assume that patients’ preferences are further

7We dispense with the later assumption in Section 5.
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restricted, so for each patient i her preferences belong to a subset Di ⊂ P . We denote by

D ≡ ×i∈NDi ⊆ PN a domain of preferences over kidneys.

An assignment is a bijection from kidneys to patients. We denote an arbitrary a

as an n-tuple of pairs a = [(1, ω), . . . , (n, ω′)] such that for each i, j ∈ N , i 6= j and each

ω, ω′ ∈ Ω, if (i, ω), (j, ω′) ∈ a, then ω 6= ω′. For each patient i and each assignment a,

ai denotes the kidney assigned to i by a. For each assignment a, if a patient is assigned

her donor’s kidney (ai = ωi), we interpret that either she continues in dialysis or –if she

is compatible with her donor– she receives her donor’s kidney. Let A be the set of all

assignments.

In every assignment, kidneys are allocated by forming exchange cycles of patient–

donors couples. In each cycle, every patient receives a kidney from the donor of some

patient in the cycle and simultaneously her donor’s kidney is transplanted to another

patient in the cycle.

For each assignment a, let πa be the finest partition of the set of patients such that

for each p ∈ πa and each i ∈ p, there are j, j′ ∈ p, with ai = ωj and aj′ = ωi.
8

Clearly, for each assignment a the partition πa is unique and well-defined. We define

the cardinality of a as the maxp∈πa #p.

The cardinality of an assignment refers to the size of the largest cycle formed in the

assignment. Of course, the concept of cardinality is crucial for our notion of feasibility.

For each k ∈ N, k ≤ n, we say that the assignment a is k–feasible if a’s cardinality

is not larger than k. Let Ak be the set of all k–feasible assignments.

An interesting case of feasibility restrictions appears when only immediate exchanges

between two couples are admitted. An assignment a is a pairwise-exchange assignment

(a ∈ A2) if a satisfies that if for some i, j ∈ N (i, ωj) ∈ a, then (j, ωi) ∈ a.

8Note that j = j′ and i = j = j′ and then ai = ωi are allowed.
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In this paper, we are interested in rules that select a (kidney) assignment for each

preference profile. Hence, a rule defined in the domain D is a mapping ϕ : D → A.

Finally, we present formal definition of the standard desirable conditions for rules.

Individual Rationality. For each i ∈ N and each %∈ D, ϕi(%) %i ωi.

k–Efficiency. For each %∈ D, ϕ(%) ∈ Ak and there is no a ∈ Ak such that for each

i ∈ N ai %i ϕi(%) and for some j ∈ N , aj �j ϕj(%).

Strategy-Proofness. For each i ∈ N , each %∈ D, and each %′i∈ Di,

ϕi(%) %i ϕi(%′i,%−i).

3 Age-Based Preferences

In this section we present a new domain restriction that is directly inspired by the structure

of paired kidney exchange. Before we describe the domain restriction, we introduce some

useful notation.

For each patient i and each preference %i∈ P , we define i’s set of desirable kid-

neys D(%i) ≡ {ω ∈ Ω | ω �i ωi}, and analogously i’s set of undesirable kidneys

ND(%i) ≡ {ω ∈ Ω \ {ωi} | ωi %i ω} .

We interpret each patient’s set of desirable kidneys as all those kidneys which lead

to an improvement with respect to her donor’s organ. Of course, if the patient is not

compatible with her donor (and the transplantation is not viable), then the set of desirable

kidneys includes all the compatible available kidneys. On the other hand, if the patient is

compatible with her donor, then the set only includes the compatible organs that strictly

improve upon her own donor’s organ.

Kidney transplantations from living donors have excellent long-term outcome irre-

spective of matching according to HLA type ([4, 9]). However, donor’s characteristics,

9



like age or health status have a significant impact on graft survival. We incorporate this

fact by assuming that patients divide the set of desirable kidney in subsets of kidneys of

homogeneous quality (indifference classes). Therefore, patients are not always indifferent

between pairs of compatible kidneys. Specifically, the quality of the match depends on

characteristics of the donors which are observable by the transplant coordinator (TC) and

these characteristics affect all patients in the same direction. In fact, donor’s age turns

out to represent the most relevant characteristic to determine the probability of long-term

graft survival in case of living donations too.

Let denote by Π = {Π(1), . . . ,Π(l)} be a partition of Ω. For each patient i ∈ N , the

preference relation %i∈ P is a Π-based preference if for each ω, ω′ ∈ D(%i) and for

each ω̄, ω̄′ ∈ ND(%i):

(i) ω ∈ Π(j) and ω′ ∈ Π(k) and j < k imply ω �i ω′, and

(ii) ω, ω′ ∈ Π(j) implies ω ∼i ω′.

(iii) ωi �i ω̄ and ω̄ ∼i ω̄′.

Let DΠ
i denote the set of all Π-based preferences for patient i and let DΠ ≡ ×i∈NDΠ

i .

According to Π-based preferences, Π divides (in decreasing order) the set of available

kidneys in subsets of homogeneous quality kidneys. For expositional clarity, from now on

we assume that Π partitions the set of available organs for transplantation according to

the donors’ age. We call the induced preference domain DΠ the Π-age-based preference

domain. Thus, Π(1) contains the highest quality kidneys, Π(2) the second highest quality

kidneys, and Π(l) the lowest quality kidneys. In the simplest setting, the set of available

kidneys is divided in two disjoint subsets, young donors and mature donors. This partition

induces a natural restriction on patients’ preferences. Whether being a young or a mature

donor kidney does not determine the compatibility between the donor and the patient,

a desirable kidney from a young donor is preferred to a desirable kidney from a mature

donor. Moreover, patients are indifferent between any pair of desirable kidney from young

(mature) donors.
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We assume that the partition Π is public information. Patients report which is the

set of desirable (i.e. compatible) kidneys. It is worth to highlight that since we focus

on rules that satisfy individual rationality, all the relevant information that is private for

patient i is contained in her sets of desirable and undesirable kidneys. For each %i∈ DΠ,

if both ω, ω′ ∈ D(%), the order in which i ranks ω with respect to ω′ only depends on the

elements of the partition Π they belong to.

Throughout the paper we rule out degenerate situations where the set of kidneys is

partitioned in two sets and one of them contains a unique element.

Assumption. The partition of the set of kidneys Π is such that either #Π ≥ 3 or

Π = {Π(1),Π(2)} and #Π(1) ≥ 2 and #Π(2) ≥ 2.

Without any loss of generality and in order to simplify notation, henceforth, we assume

that for each partition Π, for each i, j ∈ N , with ωi ∈ Π(l) and ωj ∈ Π(l′), i < j implies

Π(l) ≤ Π(l′).

4 Priority Rules and Age–Based Preferences

In this restricted age-based domain, we show that positive results may emerge and we are

able to present rules that satisfy individual rationality, k-efficiency, and strategy-proofness.

We can escape impossibility results because donor’s characteristics have a common effect

on patients’ preferences. However, we start this section with an impossibility result that

highlights the tension between k-efficiency and strategy-proofness. Even in the restricted

age-based environment, we have to focus on rules that only admit pairwise exchanges.

Theorem 1. For each partition Π and each k ∈ N such that 3 ≤ k ≤ n − 1, no rule

ϕ : DΠ → Ak satisfies individual rationality, k-efficiency, and strategy-proofness.

The literature on kidney exchange has focused on priority mechanisms which are com-

monly used in most transplant centers to allocate cadaver organs ([26, 27]). In this section,
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we analyze how priority mechanisms need to be tailored in the age-based preferences en-

vironment.

A priority ordering σ is a permutation of patients (σ : N → N) such that the k-th

patient in the permutation is the patient with the k-th priority. Let σ∗ denote the natural

priority ordering (for each i ∈ N , σ∗(i) = i). For each partition Π and each priority

ordering σ, we say that σ respects Π if for each i, j ∈ N with ωi ∈ Π(l), ωj ∈ Π(l′), l < l′

implies σ(i) < σ(j).

For each %∈ PN , and each l ≤ n, let I(%) ≡ {a ∈ A2 | for each i ∈ N ai %i ωi}

denote the set of all individually rational pairwise assignments.

Priority Algorithm. Fix a permutation of the patients σ, and a preference profile

%∈ PN :

• Let Mσ
0 (%) = I(%).

• For each k ≤ n, let Mσ
k ⊆Mσ

k−1 be such that:

Mσ
k(%) =

{
a ∈Mσ

k−1 | for no b ∈Mσ
k−1(%), bσ−1(k) �σ−1(k) aσ−1(k)

}
.

Note that Mσ
n is well defined, non-empty, and essentially single-valued.9

Let D be an arbitrary domain of preferences. A rule ϕ is a pairwise priority rule if

there is a priority ordering σ such that for each %∈ D, ϕ(%) ∈Mσ
n(%). We denote by ψσ

the pairwise priority rule with priority ordering σ. Analogously, let ψ∗ ≡ ψσ
∗
. Finally, for

every partition Π and priority ordering σ, the pairwise priority rule ψσ is an age-based

priority rule if σ respects Π.

At this point, before we continue with the analysis of priority rules, we introduce

definitions related to the concept of the core in PKE problems.

9A set is essentially single-valued if either it is single-valued, or if it contains more than one element,

all the patients are indifferent between any two elements in the set. That is, for each patient i, each

%∈ PN , and each a, a′ ∈Mσ
n(%), ai ∼i a′i.
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For each pair of pairwise assignments a, b ∈ A2, each coalition T ⊆ N , and each

%∈ PN , a weakly dominates b via T at % if:

(i) For each i ∈ T , there is j ∈ T such that ai = ωj,

(ii) for each i ∈ T , ai %i bi,

(iii) there is j ∈ T , such that aj �j bj.

In this case we say that coalition T weakly blocks b under % via a. For each %∈ PN ,

an assignment a ∈ A2 is in the strict core of the pairwise exchange problem associated

to % if a it is not weakly dominated by any assignment b ∈ A2. Similarly, a strongly

dominates b via T at % if:

(i) For each i ∈ T , there is j ∈ T such that ai = ωj,

(ii) for each i ∈ T , ai �i bi.

An assignment a ∈ A2 is in the weak core of the pairwise exchange problem associated

to % if a it is not strongly dominated by any assignment b ∈ A2.10

We first consider situations where patients are never indifferent between two acceptable

kidneys. Let Π∗ denote the complete partition according to the natural order, that is,

Π∗ ≡ {Π(1), . . . ,Π(n)} = {{1}, . . . , {n}}. When the set of available kidneys is finely

partitioned and each indifference class consists of a single donor, the partition induces

strict preferences over the set of available kidneys. Note that since preferences are strict,

for each %∈ DΠ∗ , Mσ∗
n (%) is always single-valued. In our next result, we state the close

relation between age-based priority rules and the strict core in the domain DΠ∗ .

Proposition 1. For each %∈ DΠ∗, ψ∗(%) is the unique assignment in the strict core of

the pairwise exchange problem associated to %.

10Note that the notions of strict and weak core coincide if preferences are strict.
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With Proposition 1 at hand, we characterize the age-based priority rule as the unique

rule that satisfies individual rationality, pairwise k-efficiency, and strategy-proofness in

DΠ∗ .

Theorem 2. A rule ϕ : DΠ∗ → A2 satisfies individual rationality, 2-efficiency and

strategy-proofness if and only if ϕ is the age-based priority rule ψ∗.

The previous result does not extend to coarser partitions of the set of available kidneys.

For arbitrary partitions Π, there are many profiles of age based preferences such that the

strict core is empty. The arguments in the proof of Theorem 2 only apply to domains that

always generate non-empty strict cores (See Sönmez [31]). This fact notwithstanding, with

the arguments in the proof of Proposition 1, it is immediate to check that every age-based

priority rule selects an assignment in the weak core. We devote the rest of this section

to highlight the relevance of age-based priorities in the general framework by analyzing

the implications of additional properties that incorporate the notion of group incentive

compatibility.

Group Strategy-Proofness. For each %∈ D, there is no T ⊆ N and %′T∈ DT such

that for each i ∈ T , ϕi(%′T ,%N\T ) �i ϕi(%).

Group strategy-proofness requires that truthful report of preferences be a dominant

strategy for each patient, and coalitions of patients never have incentives to coordinate

to jointly misreport their preferences. Note that our definition of group strategy-proofness

only considers situations in which all the members of a deviating coalition strictly im-

prove upon the initial report.11 Group strategy-proofness is a relevant property for kidney

assignment rules for the following reason. Patients belonging to the same transplant unit

often know each others very well and have strong emotional relations among them, which

makes quite reasonable to assume that they could and want to jointly misreport their

11A stronger definition of group strategy-proofness that admits that some members of the coalition to

remain indifferent would be incompatible with other properties in our framework. See [6].
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preferences if this could benefit all of them. Moreover often patients’ preferences are re-

ported by their doctors to TC. Doctors can easily help the exchange of information and

the coordination among their patients.

If patients may be indifferent between desirable kidneys, then only age-based priority

rules satisfy strategy-proofness among all priority rules. Furthermore, age-based priority

rules do not provide incentives for any group of agents to misreport their preferences.

Theorem 3. For each partition Π and each priority ordering σ, the priority rule ψσ

satisfies strategy-proofness in DΠ if and only if σ respects Π and ψσ is an age-based

priority rule. Moreover, if σ respects Π, then the age-based priority rule ψσ satisfies

group strategy-proofness in DΠ.

Theorem 3 shows the relevance of age-based priority rules in the class of priority rules

and their nice properties in terms of group incentives. We conclude this sections providing

further evidence on the central position of age-based priority rules among the rules that

satisfy individual rationality, 2-efficiency, and strategy-proofness in the domain of age-

based preferences with indifferences. To perform this task, we consider the following

property.

Non-Bossiness. For each i ∈ N , each %∈ D, and each %′i∈ Di, ϕi(%) = ϕi(%′i,%−i)
implies ϕ(%) = ϕ(%′i,%−i)

Non-Bossiness requires that if any patient i gets the same kidney under two preference

profiles which differ only for patient i’s preferences, then all patients get the same kidney

under the two profiles. In fact, a rule that violates non-bossiness could be prone to (illegal)

bribes among donor-patient pairs. If a patient i changes her report of preferences and

she affects the outcome of patient j, then i may have incentives to accept any monetary

compensation from j to reverse her report. This property seems particularly compelling

in our setting where only pairwise exchange are admissible and monetary transactions are

prohibited.
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It is clear also that age-based priority rules satisfy non-bossiness. Moreover, non-

bossiness in combination with our initial properties has interesting implications. First,

this set of axioms precludes the maximization of the number of mutually compatible

swaps.

Lemma 1. If ϕ : DΠ → A2 satisfies individual rationality, 2-efficiency, strategy-proofness,

and non-bossiness then for each i, j ∈ N and %∈ DΠ, ωi ∈ D(%j) and ωj ∈ D(%i) imply

either ϕi(%) %i ωj or ϕj(%) %j ωi (or both).

It is worthy to note that Lemma 1 above hods by replacing strategy-proofness and

non-bossiness with group strategy-proofness.

Example 1. Let N = {1, 2, 3, 4} and Π(1) = {ω1, ω2}, Π(2) = {ω3, ω4}. Consider the

preference profile %∈ DΠ such that

%1 %2 %3 %4

ω2 ω1 ω1 ω2

ω3 ∼1 ω4 ω3 ∼1 ω4 ω3 ω4

ω1 ω2 . . . . . .

Note that [(1, ω3), (2, ω4), (3, ω1), (4, ω2)] ∈ I(%). However, for every rule ϕ that satisfies

individual rationality, 2-efficiency, strategy-proofness, and non-bossiness,

ϕ(%) = [(1, ω2), (2, ω1), (3, ω3), (4, ω4)].

Adding non-bossiness to the set of desirable properties of the matching rule has a

second important consequence. In fact these four properties call for rules that always

pick assignments in the weak core of the associated pairwise exchange problem.

Proposition 2. If ϕ : DΠ → A2 satisfies individual rationality, 2-efficiency, strategy-

proofness, and non-bossiness then for each %∈ DΠ, ϕ(%) selects an assignment in the

weak core of the of the pairwise exchange problem associated to %.
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While a full characterization of the rules that satisfy individual rationality, 2-efficiency,

strategy-proofness, and non-bossiness, seems to be out of reach, we can take a further

important step in understanding the structure of such rules.

In order to simplify the exposition, we conclude this section analyzing the case in

which there are only two types of donors, young and mature. Thus, Π = {Π(1),Π(2)}. In

this simple scenario, we can provide a clear description of the implications of individual

rationality, 2-efficiency, strategy-proofness, and non-bossiness. The results presented here

can be immediately extended to the general framework with arbitrary types of kidneys.

Since the extension calls for additional notations and the interpretation is not straight-

forward, we leave it for the interested reader and it is relegated to the Appendix.

For each a ∈ A2, define:

M1,1(a) ≡ {i ∈ N |ai 6= ωi & ωi ∈ Π(1) and ai ∈ Π(1)} ,

M1,2(a) ≡

i ∈ N
∣∣∣∣∣∣ai 6= ωi &

either ωi ∈ Π(1) and ai ∈ Π(2)

or ωi ∈ Π(2) and ai ∈ Π(1)

 ,

M2,2(a) ≡ {i ∈ N |ai 6= ωi & ωi ∈ Π(2) and ai ∈ Π(2)} .

A rule ϕ is a sequential matching maximizing rule if for each %∈ DΠ:

i) #M1,1(ϕ(%)) ≥ #M1,1(a), for each a ∈ I(%),

ii) #M1,2(ϕ(%)) ≥ #M1,2(a′), for each a′ ∈ I(%) such that a′i = ϕi(%) for each i ∈

M1,1(ϕ(%)),

iii) #M2,2(ϕ(%)) ≥ #M2,2(a′′), for each a′′ ∈ I(%) such that a′′i = ϕi(%) for each

i ∈ [M1,1(ϕ(%)) ∪M1,2(ϕ(%))].

Note that age-based priority rules are sequential matching maximizing rules. A sequen-

tial matching maximizing rule does not select an assignment that maximizes the number

of compatible kidneys exchanges. Instead, it selects an assignment such that maximizes
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the number of swaps that imply the exchanges involving only young donor pairs. Then,

it sequentially applies the same logic to the remaining donor-patient pairs. Thus, given

the exchanges of among young donor pairs, it maximizes the number of swaps between

young donor pairs and mature donor pairs. Finally, given the exchanges arranged in the

previous stages, a sequential matching maximizing rule maximizes the number of swaps

between mature donor pairs.

Proposition 3. If ϕ : DΠ → A2 satisfies individual rationality, 2-efficiency, strategy-

proofness, and non-bossiness, then ϕ is a sequential matching maximizing rule.

It is worth to note that Proposition 3 implies that there may be assignments in the

weak core that are never selected by a rule that satisfies our set of axioms. Consider

N = {1, 2, 3, 4, 5, 6} and Π = {Π(1),Π(2)} = {{ω1, ω2, ω3, ω4}, {ω5, ω6}}. Let %∈ DΠ be

such that D(%1) = {ω2, ω3}, D(%2) = {ω1, ω4}, D(%3) = {ω1, ω5}, D(%4) = {ω2, ω6},

D(%5) = {ω3} , and D(%6) = {ω4}. Let a = ((1, ω2), (2, ω1), (3, ω5), (4, ω6), (5ω3), (6, ω4)).

Clearly, a is in the weak core of the pairwise exchange problem. It involves three com-

patible swaps, but only one among patients with a donor in Π(1). Hence, a cannot be

selected because it is possible to carry out two exchanges involving donor-patients pairs

in Π(1).12

5 Multiple Donors

Sometimes patients in the waiting list may find more than one potential donors. If patients

with multiple potential donors are keen to participate to PKE programs, algorithms have

to take account of this aspect. Even if only one among the potential donors of a patient

donates her kidney, the fact that a patient have many potential donors can greatly increase

the chances to find mutually compatible pairs. Since it is reasonable to assume that the

information about how many potential donors a patient have is private information, rules

should provide incentives to patients to reveal this valuable information. In order to

12For instance, consider the assignment b = ((1, ω3), (2, ω4), (3, ω1), (4, ω2), (5ω5), (6, ω6)).
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analyze this general case, we need to slightly modify the framework and to incorporate

some additional notation.

Let N = {i, . . . , n} be a set of patients and Ω = {ω1, . . . , ωn′} be a set of available

kidneys from living donors, n ≤ n′.13 For each patient i let Ωi denote the set of kidneys

from i’s donors. Clearly, ∪i∈nΩi = Ω and for each patient j 6= i, Ωi ∩ Ωj = ∅.

In the multiple donor case, we analyze patients’ incentives to manipulate by reporting

different set of potential donors. Hence, the set of donors is as an argument of the kidney

assingment rule. For each patient i let Ki be the set of non-empty subsets of Ωi. Hence,

Ki ∈ Ki is a set of donors reported by patient i to the TC. Abusing notation, let K ≡

×i∈NKi and we denote by K = (K1, . . . , Kn) a generic element of K, let Ω = (Ω1, . . . ,Ωn).

Abusing notation, for each K ∈ K and for each S ⊆ N , KS denotes the restriction of K

to the members of S.

The definition of assignment needs to be extended in order to accommodate the

multiple donors case. An (generalized) assignment a is an n-tuple of pairs a =

[(1, ω), . . . , (n, ω′)] such that

(i) for each i, j ∈ N , i 6= j and each ω, ω′ ∈ Ω, if (i, ω), (j, ω′) ∈ a, then ω 6= ω′;

(ii) for each i ∈ N , if for some j ∈ N , aj ∈ Ωi, then ak /∈ Ωi for all k 6= j.

We need to introduce this second requirement to convey the idea that for each patient at

most one donor donates her kidney.

For each K ∈ K, we say that an assignment a is K-feasible if for each i, j ∈ N ,

ai ∈ Ωj implies ai ∈ Kj. Making slight abuse of notation, let A(K) be the set of all

K-feasible (generalized) assignments, and for each k ≤ n let Ak(K) be the set of all K-

feasible (generalized) assignments with cardinality smaller or equal to k. Let S ⊆ N . A

reduced assignment aS is an assignment among the members of S. For a partition of

13Note that kidneys’ indexes do not longer refer to the patient who introduces the donor in the pool.

19



N , {S, S ′, . . . , S ′′} and a list of reduced assignments aS, aS′ , . . . , aS′′ , we abuse notation

and refer to the assignment formed by the reduced assignments as [aS, aS′ , . . . , aS′′ ].

A generalized (kidney assignment) rule is a mapping Φ : D×K → A such that

for each %∈ D and each K ∈ K, Φ(%,K) ∈ A(K).

The definition of k-efficiency directly applies to the multiple donor scenario. Individual

rationality may be immediately extended just by applying its logic to all the potential

donors of each patient.

Individual Rationality for generalized rules. For each i ∈ N , each %∈ D, each

K ∈ K, and each ω ∈ Ki, Φi(%,K) %i ω.

The extension of the notion of strategy-proofness is more delicate. In the general

framework, it is necessary to take into account patients’ incentives to manipulate the

PKE outcome by withholding their potential donors.

Extended Group Strategy-Proofness (EGSP). There are no T ⊆ N , %∈ D, %′T∈
DT , and K′T ∈ ×i∈TKi, such that for each i ∈ T , Φi(%′T ,%N\T , (K

′
T ,ΩN\T )) �i Φi(%,Ω) .

In the multiple donors scenario, we assume that patients only care about the kidney

they may receive and do not have preferences over whom be the willing donor involved

in the kidney exchange. Hence, patients’ preferences are still defined over all potential

donors Ω. Here, the assumption on the irrelevance of the donor for patients’ preferences

allows to focus on the case in which patients could misreport the set of their potential

donors in order to get a better kidney. In order to conclude with the description of

patients’ preferences, we say that a kidney is desirable for patient i if it improves upon all

i’s potential donors’ kidneys. That is, for each patient i, i’s set of desirable kidneys is

the set D(%i) ≡ {ω ∈ Ω | ∀ω′ ∈ Ωi, ω �i ω′} . With this definition of desirable kidneys,

for each partition Π = {Π(1), . . . ,Π(l)} of Ω, the notion of age-based preferences in the

multiple donor scenario simply replicates the definition in the single-donor case.
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The results in the previous section directly apply to the multiple donor framework.

Hence, we focus on pairwise exchanges and age–based priority rules. However, because

patients may have donors whose kidneys belong to different classes of the partition Π,

there are alternative extensions of the notion of age-based priority rules to the multiple

donor case. We devote this section to show the difficulties that arise in this setting and

how to tailor age-based priority rules in order to preserve the nice properties they have

in the single-donor scenario.

Example 2. Let N = {1, 2, 3}, Ω = {ω1, . . . , ω6}, Π = {Π(1),Π(2)} such that Π(1) =

{ω1, ω2}, Π(2) = {ω3, ω4, ω5, ω6} and Ω1 = {ω1, ω4}, Ω2 = {ω2, ω5} and Ω3 = {ω3, ω6}.

Let the generalized rule Φ be defined in such a way that , for each K ∈ K, Φ(· ,K) is a

priority rule with priority ordering σ∗. Hence, Φ assigns priority to patients with a donor

in Π(1). Let %∈ DΠ be such that D(%1) = {ω3}, D(%2) = {ω6} and D(%3) = {ω2, ω4}.

Let K,K′ be such that K = Ω, K ′j = Ωj for j ∈ {1, 2} and K ′3 = {ω6}. Note that

Φ(%,K) = [(1, ω3), (2, ω2), (3, ω4)],

but

Φ(%,K′) = [(1, ω1), (2, ω6), (3, ω2)].

Hence, Φ3 (%,K′) �3 Φ3(%,K) , and Φ violates EGSP. Moreover, patient 3 could obtain

the same outcome just by reporting %′3∈ DΠ
3 such that D(%′3) = {ω2}.

With multiple donors, it is necessary to define a multi-stage mechanism in order to

maintain the non-manipulability of the age-based priority rule. For instance, in the case

that potential kidneys can be divided in young and mature kidneys, Theorem 3 suggests

that patients with young donors have priority over patients with mature donors. However,

it is not immediate to assign the priorities when patients may simultaneously have young

and mature donors. The problem steams from the fact that a patient may have donors

belonging to different elements of the partition Π. In order to preserve strategy-proofness,

it is necessary that better kidneys are offered first. Before we define the multiple-donor

generalization of age-based priority rules, we introduce additional notation.
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For each preference profile %∈ P and each profile of available kidneys K ∈ K, let

I(%,K) denote the set of all individually rational pairwise assignments when the set

of available kidneys is given by K. For each coalition of patients S, we denote by

I(%S,KS | S) the set of individually rational reduced assignments for S under % and

K. Finally for each T ⊂ N and each permutation of the patients σ, we say that the

permutation σ̄ : T → {1, . . . , T} is the reduction of σ to T if for each i, j ∈ T , σ(i) < σ(j)

implies σ̄(i) < σ̄(j).

Let Π = {Π(1), . . . ,Π(l)} be a partition of Ω. Fix %∈ DΠ and K ∈ K. Let Σ =

{σ1, . . . , σl} be a list of permutations of the patients. For each preference profile %, the

generalized priority rule generated by the list of permutations Σ proceeds according to

the following algorithm:

Let N(1) ≡ N and

MΣ,1
0 ≡


a ∈ I(%,K | N(1)) such that

∀ i, j ∈ N(1), if ai ∈ Ωj and σ1(i) < σ1(j),

then aj ∈ Π(1)

 .

For each k = 1, . . . , N(1),

MΣ,1
k ≡

{
a ∈MΣ,1

k−1 | for no b ∈MΣ,1
k−1, bσ−1

1 (k) �σ−1
1 (k) aσ−1

1 (k)

}
.

Note that MΣ,1
N(1) is not empty and essentially single-valued.

Intuitively, according to the priority mechanism, the patients with higher priority offer

to swap their donors’ kidneys in Π(1) to the other patients (maybe receiving a kidney

not in Π(1).) By the definition of MΣ,1
N(1) and the fact that it is essentially single-valued,

for every a ∈MΣ,1
N(1), the set of patients who do not receive a kidney from other patients’

donors is the same. In the following stages, the algorithm proceeds by iteratively applying

the same logic to the unmatched patients who are allowed to sequentially offer kidneys in

the remaining elements of the partition Π.

Once N(1), MΣ,1
0 , and MΣ,1

N(1) are defined, for each m = 2, . . . , l; let N(m) = {i ∈

N(m − 1) | ∀ a ∈ MΣ,(m−1)
N(m−1) , ai ∈ Ωi}, M(m − 1) = N(m − 1) \ N(m), let σ̄m be the
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restriction of σm to N(m), and let

MΣ,m
0 ≡


aN(M) ∈ I(%N(m),KN(m) | N(m)) such that

∀ i, j ∈ N(m), if ai ∈ Ωj and σ̄m(i) < σ̄m(j),

then aj ∈ Π(m)

 .

For each k = 1, . . . , N(m),

MΣ,m
k ≡

{
aN(m) ∈MΣ,m

k−1 | for no b ∈MΣ,m
k−1 , bσ̄−1

m (k) �σ̄−1
m (k) aσ̄−1

m (k)

}
.

A (generalized) rule Φ : DΠ × K → A2 is a generalized priority rule if there is a

list of permutations Σ = {σ1, . . . , σl} such that for each %∈ DΠ, for each m = 1 . . . , l,

for each am ∈ MΣ,m
N(m), Φ(%) =

[
Φ(%)M(1), . . . ,Φ(%)M(l)

]
and Φ(%)M(m) = amM(m) . For

a partition Π, Ψ : DΠ ×K → A2 is a generalized age-based priority rule if Ψ is a

generalized priority rule and for each i, j ∈ N , for each m = 1, . . . , l Ωi ∩Π(m) 6= ∅ and

Ωj ∩ Π(m) = ∅ implies σm(i) < σm(j).

Theorem 4. Consider an assignment problem with multiple donors and a partition of

the set of available kidneys Π. A generalized age-based priority rule Ψ : DΠ × K → A2

satisfies individual rationality, 2-efficiency, and EGSP.

Before concluding this section it is worthy to point out that our rules are immune to

other form of misrepresentation of the information about the set of donors a part from

withholding some potential donors. We focus on it only because, according to our opinion,

is the only relevant aspect on a practical ground.

Remark 1. Note that (generalized) age-based priority rules are also immune to manip-

ulation by the introduction of dummy donors. That is, a patient does not improve by

presenting a donor whose kidneys are not compatible with any other patient. If a pa-

tient incorporates a “dummy” donor whose kidney is not compatible with the remaining

patients, Ψ may give more priority for assigning the “dummy” donor but by individual
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rationality, this is irrelevant for the final outcome of the algorithm. That is, consider

patient i and let Ωi = Ω̄i ∪ {ω}. Let %∈ DΠ be such that such that for each patient j 6= i,

ω /∈ D(%j). Then, Ψ(%,Ω) = Ψ(%, (ΩN\{i}, Ω̄i)).

6 Conclusion

In this paper we provide a theoretical framework to design PKE protocols that encourage

compatible pairs to participate into PKE program. The relatively low number of kidney

paired exchanges in the US performed with respect to the number of transplants from

living donors makes clear that there are still significant barriers to utilization.

We believe that the participation of compatible pairs may represent the most im-

portant factor in expanding the number of kidney paired exchanges. As regards the

US system, different proposals have been presented in order to increase the chance of

an incompatible pair of finding a compatible match: the introduction of a nationwide

PKE registry, the use of matching algorithms that include three-way matches and of non-

directed (altruistic) donors. Some of these strategies can be carried out together, but

others cannot. Specifically, our paper enlightens the difficulties in implementing incentive

compatible algorithms that allow three-way matches in our age-based preference domain,

at least if compatibility is private information of the patients and their doctors.

Therefore, it is compelling to predict the impact of allowing compatible pairs to par-

ticipate to PKE programs, in order to understand which type of proposal may be more

effective in increasing the number of transplants and their quality. A recent study by

Gentry et al. [7] uses simulated data to prove that there could be large benefits for both

incompatible pairs and compatible pairs if compatible pairs were willing to participate

to KPE programs. The reason why expanding the pool through participation by com-

patible pairs could be a very successful strategy, is mostly driven by the blood group

imbalance in the pool of incompatible pairs. Most of group O-donors can directly donate

to their intended recipients, and so group-O recipients in the KPE pool must rely on a
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scarce number of compatible donors and rarely can find a match. Hence, participation

of compatible pairs could dramatically reduce such imbalance and would nearly double

the match rate for incompatible pairs (28.2% to 64.5% for a single-center program and

37.4% to 75.4% for a national program). Compatible pairs could also benefit from par-

ticipation. Having defined the benefit of participation as the possibility of being matched

with a donor at least ten years younger than the related donor (and not considering other

potential benefits as an increase in HLA matching),14 a single compatible pair would have

a 34% chance of finding a better match in a single center program and 48% in a national

registry, while if all compatible pairs were willing to participate to a PKE program still

11.7% (single-center) and 14.7% of these compatible pairs would find a more favorable

match.15 In conclusion, Gentry et al. [7] presents an important supporting argument for

the introduction of an algorithm, as we suggest in this paper, that encourages compatible

pairs participation in PKE programs.

We would like to end the paper by commenting on further possible applications of our

framework. Although our model is directly inspired by the structure of PKE problems, it

applies to other problems of centralized allocation of indivisible goods without money. A

pertinent example is the holidays vacant houses swap networks. These networks usually

arrange pairwise swaps due to administrative restrictions. Agents’ preferences may be

based on the location or size and quality (facilities) of the house. Normally, different

agents may consider different locations as attractive or not (so some house exchanges

are not compatible). However, every agent ranks the houses in each location taking into

account only the facilities of each house. So while which location turns out be attractive

for an agent is her private information, how agents rank houses in the same location it is

14Another potential benefit taken into consideration for female recipient is the reduction of high im-

munological risk donor/recipient combination (child-to-mother or husband-to-wife) due to exposure in

uterus to paternal HLA antigens.
15Since compatible pairs compete for a fixed number of incompatible pairs with young donors, the

potential benefit of a compatible pairs of enrolling in a PKE program is decreasing in the number of

compatible pairs participating in the program.
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easy to predict and such a ranking is the same for all agents interested in this location.

7 Appendix

Proof of Theorem 1. The arguments follow the proof of [15, Theorem 1].

Let 3 ≤ k ≤ n − 1. Assume, by way of contradiction, that there are a partition Π

and a rule ϕ that satisfies individual rationality, k-efficiency, and strategy-proofness in

DΠ. Without loss of generality, by our Assumption, let ω1 ∈ Π(l), ω2 ∈ Π(l′), ωk ∈ Π(l̄)

and ωk+1 ∈ Π(l̄′) with l < l′ and l̄ < l̄′.16 Let Table 1 represent patients’ preferences over

compatible kidneys according to the preference profile %∈ DΠ.

%1 %2 . . . %k−1 %k %k+1

ω2 ω3 . . . ωk ωk+1 ω1

ω1 ω2 . . . ωk+1 ωk ω2

. . . . . . . . . ωk−1 . . . ωk+1

. . . . . . . . . . . . . . . . . .

Table 1: %, Theorem 1.

Let %′∈ DΠ be such that for each i 6= k − 1, %i=%′i, and D(%′k−1) = {ωk}. Under

profile %′, by individual rationality, either no object is assigned to any patient 1, . . . , k+1,

or patient k + 1 receives ω2, patient 1 receives ω1, and every other patient i receives ωi+1

(the kidney of her next to the right neighbor). By k-efficiency :

ϕ(%′) =


(1, ω1),

(i, ωi+1), ∀i = 2, . . . , k

(k + 1, ω2)

 .
16For instance, we can assume that ω1 ∈ Π(1) and {ω2, ωk} ∈ Π(2), and ω−k + 1 ∈ Π(3). Alternatively,

we can have {ω1, ωk} ⊆ Π(1) and {ω2, ωk+1} ⊆ Π(2), and apply a convenient relabeling of patients and

donors in order to satisfy our notational assumption. (See page 7, definition of Π.)
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By strategy-proofness, ϕk−1(%) %k−1 ϕk−1(%′) = ωk. Note that, according to %k−1, ωk

is patient k − 1’s preferred kidney. Then, ϕk−1(%) = ωk. By k-efficiency and individual

rationality, ϕ(%) = ϕ(%′).
Let %′′∈ DΠ be such that for each i 6= k + 1, %j=%′′j and D(%′′k+1) = {ω1}. The same

arguments we employed to determine ϕ(%′) apply here to obtain:

ϕ(%′′) =


(i, ωi+1)(modulo k + 1), ∀i /∈ {k, k − 1}

(k − 1, ωk+1),

(k, ωk)

 .
Note that ω1 = ϕk+1(%′′) = ϕ(%′′k+1,%−(k+1)) �k+1 ϕk+1(%) = ω2 , which contradicts strategy-

proofness.

Proof of Proposition 1. Let %∈ DΠ∗ . Because preferences over desirable kidneys and each

patients’ donor kidney are strict, it is clear that the priority mechanism selects a unique

assignment. Let b ∈ A2, b 6= ψ∗(%). We prove that b is not in the core. Assume first that

b /∈ I(%). There is j ∈ N such that ωj �j bj. Let a ∈ A2 such that aj = ωj. Clearly, a

weakly dominates b via coalition {j}. Next, assume that b ∈ I(%). Let i be the patient

such that ψ∗(%)i 6= bi and for each i′ < i, ψ∗i′(%) = bi′ . Note that ψ∗(%) ∈ Mσ∗
i (%),

for each i′ < i, ψ∗i′(%) = bi′ , and b ∈ I(%) imply that ψ∗i (%) %i bi. Because preferences

over acceptable kidneys are strict, ψ∗i (%) �i bi. Let j ∈ N be such that ψ∗i (%) = ωj (and

ψ∗j (%) = ωi). Since for each i′ < i, ψ∗i′(%) = bi′ , ωi = ψ∗(%)j �j bj. Hence, ψ∗(%) weakly

dominates b via {i, j}. Finally, we prove that there is no b ∈ A2 such that b weakly

dominates ψ∗(%). Assume to the contrary there is b ∈ A2 and T ⊆ N such that b weakly

dominates ψ∗(%) via T . Define the set T ′ ≡ {i ∈ T, such that bi �i ψ∗i (%)}. We first

prove that 1 /∈ T ′. By the definition of the priority algorithm, for each b ∈ A2, such that

b1 �1 ψ
∗
1(%), b /∈ I(%). Hence, 1 /∈ T . Analogously, for patient 2, for each b ∈ A2, such

that b2 �2 ψ
∗
2(%), either b /∈ I2(%), or b2 = ψ∗1(%). Note that for each i ∈ N and each

%i∈ DΠ∗ , the kidneys that i prefers to ψ∗i (%) are those that come either from a donor

whose patient finds ωi as undesirable under %, or from the donor of a patient j such that
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j < i (σ(j)∗ < σ∗(i)). Since patient 1 does not improve patient 2’s donor kidney, 2 /∈ T ′.

Repeating the argument iteratively for each i = 2, . . . , n we obtain that T ′ = {∅}, which

contradicts that b weakly dominates ψ∗(%) via T .

Proof of Theorem 2. By definition ψ∗ satisfies individual rationality, and 2-efficiency.

Hence we check that ψ∗ satisfies strategy-proofness in DΠ∗ . Let %∈ DΠ∗ and let %′1∈ DΠ∗
1

be such that ψ∗1(%′1,%−1) 6= ψ∗1(%). Without loss of generality, let ψ∗1(%′1,%−1) = ωj

and ψ∗1(%) = ωi. If i > j, then, by the definition of ψ∗, ωj /∈ (D(%1) ∪ {ω1}). Since

ψ∗ satisfies individual rationality, ψ∗1(%) �1 ψ∗1(%′1,%−1). If i < j, since %1∈ DΠ∗

and ψ∗ satisfies individual rationality, ψ∗1(%) �1 ψ∗1(%′1,%−1). Hence, for each %′1∈
DΠ∗ ,ψ∗1(%) %1 ψ

∗
1(%′1,%−1) . Let i ∈ N be such that ψ∗1(%) = ωi and ψ∗i (%) = ω1. Be-

cause ψ∗ satisfies individual rationality, ω1 ∈ D(%i) Since %i∈ DΠ∗
i , for each ω ∈ Ω\{ω1},

ψ∗i (%) �i ω. Therefore, for each %′i∈ DΠ∗
i , ψ∗i (%) %i ψ

∗
i (%′i,%−i) . Consider now patient

2. By the definition of ψ∗, for each i ∈ N such that ωi �2 ψ
∗
2(%), either ω2 /∈ D(%i) or

ωi = ψ∗1(%). Therefore, by the definition of ψ∗, for each %′2∈ DΠ∗ , ψ∗2(%) %2 ψ
∗
2(%′2,%−2) .

Repeating the same argument as many times as necessary, we obtain that ψ∗ satisfies

strategy-proofness in DΠ∗ .

Next, we prove necessity side. Let ϕ be a rule that satisfies strategy-proofness, indi-

vidual rationality, and 2-efficiency. Note that, for each i ∈ N , each a ∈ A2, and each

%i∈ DΠ∗ , ai ∼i ωi if and only if ai = ωi. Moreover, for each i ∈ N , each a ∈ A2, and each

%i∈ DΠ∗ such that ai %i ωii there is %′i∈ DΠ∗ such that

(i) for each b ∈ A2 \ {a}, bi %i ai if and only if bi %′i ai,

(ii) for each b ∈ A2 \ {a}, ai %i bi if and only if ai %′i bi,

(iii) for each b ∈ A2 \ {a}, ai �i bi if and only if ai �′i bi, and ai %′i ωi %′i bi.

Hence, the domain DΠ∗ satisfies Assumptions A–B on the domain of preferences proposed

by Sönmez [31]. By [31, Theorem 1], if there is a rule ϕ that satisfies individual rationality,

2-efficiency, and strategy-proofness in DΠ∗ , for each %∈ DΠ∗ , ϕ selects an assignment in

the (strict) core of the pairwise exchange problem associated to %. We have just seen
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that ψ∗ satisfies individual rationality, 2-efficiency, and strategy-proofness in DΠ∗ . By

Proposition 1, for each %∈ DΠ∗ , ψ∗(%) is the unique assignment in the core of the

pairwise kidney exchange problem associated to %. Therefore, ϕ = ψ∗.

Proof of Theorem 3. Consider a partition Π and a priority ordering σ that does not re-

spect Π. Let i, j ∈ N , k, k′ ∈ N be such that ωi ∈ Π(k), ωj ∈ Π(k′), l ≤ l′, and

σ(i) > σ(j). Let m ∈ N such that for some k′′ ≥ k′, ωm ∈ Π(k′′) and σ(j) < σ(m) (the

existence of m is guaranteed by our Assumption. Let %∈ DΠ be such that D(%i) = {ωm},

D(%j) = {ωm} , and D(%m) = {ωi, ωj} . Clearly, ψσm(%) = ωj. Let %′m∈ DΠ
m be such that

D(%′m) = {ωi} . Then, ψσm(%′m,%−m) = ωi , and ψσm(%′m,%−m) �m ψσm(%) , which proves

that ψσ violates strategy-proofness.

Next, we prove that if σ respects Π, then ψσ satisfies group strategy-proofness. In

order to simplify notation, we consider the natural priority ordering σ∗. The arguments

apply directly for arbitrary priority orderings that respect Π. Assume to the contrary

that ψ∗ violates group strategy-proofness. Then, there is T ⊆ N , %∈ DΠ, %′T∈ ×i∈TDΠ
i

such that for each i ∈ T , ψ∗i (%′T ,%N\T ) �i ψ∗i (%) . Let patient j ∈ T be such that

for each k ∈ T , j ≤ k. Since j ∈ T , %j 6=%′j and ψ∗j (%′T ,%N\T ) �j ψ∗j (%) , necessarily

ψ∗ij(%′T ,%N\T ) 6= ψ∗j (%) . There are two possibilities:

(i) For each i < j, ψ∗i (%′T ,%N\T ) = ψ∗i (%) and for some patient k, ωk = ψ∗j (%′T ,%N\T ) .

By the definition of ψ∗, ωj ∈ D(%′k)\D(%k) and ωk �k ωj. Because %k 6=%′k, k ∈ T .

However, by ψ∗’s individual rationality, ψ∗k(%) %k ωk �k ωj = ψ∗k(%′T ,%N\T ) , which

contradicts k ∈ T .

(ii) There is i < j such that ψ∗i (%′T ,%N\T ) 6= ψ∗i (%) . Let i′ < j be such that for each

i < i′ ψ∗i (%′T ,%N\T ) = ψ∗i (%) . If ψ∗i′(%′T ,%N\T ) �i′ ψ∗i′(%) , by the definition of

age-based priority rule, there is k ∈ T such that ωi′ /∈ D(%k) and ωi′ ∈ D(%′k) and

ψ∗i′(%′T ,%N\T ) = ωk However, by individual rationality, ϕk(%) %k ωk �k ωi′ = ψ∗k(%′T ,%N\T ) ,

which contradicts k ∈ T . Finally, if ψ∗i′(%) %i′ ψ
∗
i′(%′T ,%N\T ) , then there is k′ ∈ T

such that ψ∗i′(%) = ωk′ . By the definitions ψ∗ and i′, ωi′ ∈ D(%k′) \D(%′k′) , and for

each %k′∈ DΠ, ωi′ = ψ∗k′(%) %k′ ψ
∗
k′(%′T ,%N\T ) , which contradicts k ∈ T .
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Because both cases exhaust all the possibilities, this suffices to prove group strategy-

proofness.

Proof of Lemma 1. Assume to the contrary that there are i, j ∈ N and %∈ DΠ such

that ωi ∈ D(%j) and ωj ∈ D(%i) but ωi �j ϕj(%) and ωj �i ϕi(%). Let %′i∈ DΠ
i

be such that D(%′i) = {ωj, ϕi(%)} . By individual rationality and strategy-proofness,

ϕi(%) = ϕi(%′i,%−i). By non-bossiness, ϕ(%) = ϕ(%′i,%−i). Let %′j∈ DΠ
j be such that

D(%′j) = {ωi, ϕj(%)} . Repeating the previous reasoning, ϕ(%′{i,j}%−{i,j}) = ϕ(%) . Let

%′′i∈ DΠ
i be such that D(%′′i ) = {ωj}. By individual rationality and strategy-proofness,

ϕi(%′′i ,%′j,%−{i,j}) = {ωi} . By individual rationality, ϕj(%′′i ,%′j,%−{i,j}) ∈ {ωj, ϕj(%′{i,j}%−{i,j})} .

By 2-efficiency, ϕj(%′′i ,%′j,%−{i,j}) = ϕj(%′{i,j}%−{i,j}) . Finally, let %′′j∈ DΠ
j be such that

D(%′′j ) = {ωi}. By individual rationality and strategy-proofness, ϕj(%′′{i,j},%−{i,j}) = {ωi}

and ϕi(%′′{i,j},%−{i,j}) = {ωi} , which violates 2-efficiency.

At this point we change the order in which we present the proofs with respect to

the main text. First, we present a prove a general version of Proposition 3 (Proposition

4). Then, the proof of Proposition 2 immediately follows from Proposition 4. Before, we

introduce some notation, that generalizes the definition of sequential matching maximizing

rules to arbitrary partitions Π of the set of donors.

For each a ∈ A2, each j, k ∈ N with j ≤ k and k ≤ l, define:

Mj,k(a) ≡

i ∈ N
∣∣∣∣∣∣ai 6= ωi &

either ωi ∈ Π(j) and ai ∈ Π(k)

or ωi ∈ Π(k) and ai ∈ Π(j)

 .

That is, Mj,k(a) contains the patients with a donor in Π(j) who receive a kidney in Π(k)

and the patients with a donor in Π(k) who receive a kidney in Π(j). For each a ∈ A2, let

P1,1(a) ≡ ∅ and define recursively for each j, k ∈ N , such that {j, k} 6= {1, 1}, j ≤ k and

k ≤ l:

Pj,k(a) ≡

 Pj,k−1(a) ∪Mj,k−1(a) if j < k,

Pj−1,l(a) ∪Mj−1,l(a) if j = k.
.
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Proposition 4. If ϕ satisfies individual rationality, 2-efficiency, strategy-proofness, and

non-bossiness, then for each %∈ DΠ, each j, k ∈ N with =j ≤ k and k ≤ l,

#Mj,k(ϕ(%)) ≥ #Mj,k(a),

for each a ∈ I(%) such that for each i ∈ Pj,k (ϕ(%)), ai = ϕi(%).

Proof of Proposition 4. We prove first the result for {i, j} = {1, 1}. Then, the arguments

can be replicated iteratively to prove the general result.

Assume to the contrary that ϕ satisfies individual rationality, 2-efficiency, strategy-

proofness, and non-bossiness but there is %∈ DΠ and an assignment a ∈ I(%) such that

#M1,1(a) > #M1,1(ϕ(%)). (Note that for each a′ ∈ A2, P1,1(a′) = ∅.) Let b = ϕ(%).

Without any loss of generality, there is a set T ⊂ N and m,n ∈ N \ T such that for each

i ∈ T ∪ {m,n}, ωi ∈ Π(1), ϕm(%) /∈ Π(1), ϕn(%) /∈ Π(1) and:

(i) For each h ∈ T , there is h′ ∈ T \ {j} such that ϕh(%) = ωh′ .

(ii) For each g ∈ T ∪ {m,n}, there is g′ ∈ (T ∪ {m,n}) \ {g} such that ag = ωg′ .

(See Figure 1.)

Assume first that T = ∅. In this case, am = ωn and an = ωm. Since a ∈ I(%), ωm ∈

D(%n) and ωn ∈ D(%m). Because ϕm(%) /∈ Π(1) and ϕn(%) /∈ Π(1), this contradicts

Lemma 1.

Assume T 6= ∅. Let %′∈ DΠ be such that for each i /∈ T ∪ {m,n}, D(%′i) = ϕi(%)

and for each i′ ∈ T ∪ {m,n}, %′i′=%i′ . Let i /∈ T ∪ {m,n}. By individual ratio-

nality, ϕi(%′i,%−i) ∈ {ωi, ϕi(%)} . By strategy-proofness, ϕi(%′i,%−i) %′i ϕi(%) . Then,

ϕi(%′i,%−i) = ϕi(%) and by non-bossiness, ϕ(%′i,%−i) = ϕ(%). Repeating the same ar-

gument exchanging the preference of a patient at a time, we obtain ϕ(%′) = ϕ(%). Let

%′′m∈ DΠ
m be such that D(%′′m) = am ∈ Π(1). By individual rationality, ϕm(%′′m,%−m) ∈

{ωm, am}. By strategy-proofness, ϕm(%′) %′m ϕm(%′′m,%−m). Hence, ϕm(%′′m,%−m) = ωm.

We have to consider three cases.
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Π(1) Π(2) Π(1) Π(2)

a ϕ(!) = b

T1

ωT1

m
ωm

i
ωi

T1

ωT1

m
ωm

i
ωi

T2

ωT2

n
ωn

j
ωj

T2

ωT2

n
ωn

j
ωj

Figure 1: Proof of Proposition 4, T = {T1, T2}, a ∈ I(%), ϕ(%) = b.

(i) ϕn(%′′m,%n) = ωn. Let b ∈ A2 be such that for each k ∈ T ∪ {m,n}, bk = ak and

for each i /∈ T ∪ {m,n}, bi = ϕi(%′′m,%n). Note the assignment b is such that all

the patients in T ∪ {m,n} receive a kidney in Π(1). Then, for each i′ ∈ N \ {m},

bi′ %′i′ ϕi′(%′′m,%′−m), bm �′′m ϕm(%′′m,%n), and bn �′n ϕn(%′′m,%n) which contradicts

2-efficiency.

(ii) ϕn(%′′m,%′−m) ∈ Π(1) \ {ωn}. By individual rationality and the definition of the

profile (%′′m,%′−m), there are is i ∈ T , such that ϕi(%′′m,%−m) = ωi. Consider the

assignment b ∈ A2 defined in the previous paragraph. For each i′ ∈ N \ {m},

bi′ %′i′ ϕi′(%′′m,%′−m), bm �′′m ϕm(%′′m,%n), and bi �′i ϕi(%′′m,%n), which contradicts

2-efficiency.

(iii) ϕn(%′′m,%n) = ϕn(%′). Let %′′n∈ DΠ
n be such that D(%′′n) = {an}. By an al-

ready familiar argument, individual rationality and strategy-proofness, imply that

ϕn(%′′{m,n},%′−{m,n}) = ωn. By individual rationality and the definition of the pro-

file (%′′{m,n},%′−{m,n}), there are at least two patients i, i′ ∈ T ∪ {m,n}, such that

ϕi(%′′{m,n},%−{m,n}) = ωi and ϕi′(%′′{m,n},%−{m,n}) = ωi′ , which implies a contradic-

32



tion with 2-efficiency.

Next, and just for the sake of completeness, we replicate the arguments to prove the

result for j = 1 and k = 2. Assume to the contrary that ϕ satisfies individual rationality,

2-efficiency, strategy-proofness, and non-bossiness but there is %∈ DΠ and an assignment

a ∈ I(%) such that for each i ∈M1,1(ϕ(%)) = P1,1(ϕ(%)), ϕi(%) = ai but

#M1,2(a) > #M1,2(ϕ(%)).

Without loss of generality there is a set T ⊂ N and a pair of patientsm,n ∈ N\T such that

for each i ∈ T ∪{m,n}, ωi ∈ (Π(1)∪Π(2), ωm ∈ Π(1), ωn ∈ Π(2), ϕm(%) /∈ (Π(1)∪Π(2)),

ϕn(%) /∈ Π(1), and:

(i) For each h ∈ T with ωh ∈ Π(1) there is h′ ∈ T with ωh′ ∈ Π(2) such that ϕh(%) =

ωh′ .

(ii) For each g ∈ T ∪ {m,n} with ωg ∈ Π(1) there is g′ ∈ T ∪ {m,n} with ωg′ ∈ Π(2)

such that ag = ωg′ .

Assume first that T = ∅. Then, repeating the argument in the proof for {i, j} = {1, 1},

we find a contradiction with Lemma 1.

Assume T 6= ∅. Let %′∈ DΠ be such that for each i /∈ T ∪ {m,n}, D(%′i) = ϕi(%).

By repeated application of individual rationality, strategy-proofness, and non-bossiness,

ϕ(%′) = ϕ(%). Let %′′m∈ DΠ
m be such that D(%′′m) = am ∈ Π(2). The arguments in the

proof of Lemma 2 imply ϕm(%′′m,%′−m) = ωm. We have to consider three cases that mimic

the proof of Lemma 2.

(i) ϕn(%′′m,%′−n) = ωn. Let b ∈ A2 be such that for each i ∈ T ∪ {m,n}, bi = ai and

for each i′ /∈ T ∪ {m,n}, bi′ = ϕi′(%′′m,%n). Note that, for each i ∈ T ∪ {m,n}

with ωi ∈ Π(1), bi ∈ Π(2) and for each i′ ∈ T ∪ {m,n} with ωi′ ∈ Π(2), bi′ ∈ Π(1).

Hence, for each i′′ ∈ N \ {m}, bi′′ %′i′′ ϕi′′(%′′m,%′−m), bm �′′m ϕm(%′′m,%n), and

bn �′n ϕn(%′′m,%n) which contradicts 2-efficiency.
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(ii) ϕn(%′′m,%′−m) ∈ Π(1). By individual rationality and the definition of the profile

(%′′m,%′−m), there is i ∈ T with ωi ∈ Π(2) such that ϕi(%′′m,%−m) = ωi. The

arguments of the previous paragraph immediately lead to a contradiction with 2-

efficiency.

(iii) ϕn(%′′m,%′−m) = ϕn(%′). Combining the arguments in the previous paragraphs with

the arguments in the proof of Lemma 2, we obtain a contradiction with 2-efficiency.

We can sequentially apply the same arguments to prove the result for j = 1 and k =

3, . . . , l. Then, the arguments in the proof for {i, j} = {1, 1} directly apply to the case

j = 2 and k = 2 and iteratively to all the remaining steps.

Proof of Proposition 3. Note that Proposition 3 is just a special case of Proposition 4 for

partitions consisting of two elements Π = {Π(1),Π(2)}.

Proof of Proposition 2. Assume to the contrary that ϕ satisfies individual rationality, 2-

efficiency, strategy-proofness, and non-bossiness, and there are a ∈ A2 T ⊂ N and %∈ DΠ

such that a strictly dominates ϕ(%) via T . Note that for each i ∈ M1,1(ϕ(%)), because

for each ω ∈ Ω, ϕi(%) %i ω, i /∈ T . Analogously, for each k = 2, . . . , l, if j ∈ M1,k(ϕ(%))

and ωj ∈ Π(k), j /∈ T .

Next, assume that there is j ∈ M1,2(ϕ(%)) with ωj ∈ Π(1) and j ∈ T . Since

ϕj(%) ∈ Π(2) and a blocks ϕ via T , there is k ∈ T such that aj = ωk ∈ Π(1). Since

k ∈ T , ak = ωj �k ϕk(%). Finally, let b ∈ I(%) be such that for each i ∈ M1,1(ϕ(%)),

bi = ϕi(%), bj = aj, bk = ak, and for each m /∈ M1,1(ϕ(%)) ∪ {j, k}, am = ωm. Clearly,

b ∈ I(%) and #M1,1(b) > #M1,1(ϕ(%)), which contradicts Lemma 2. Similarly, assume

there is j ∈ M1,3(ϕ(%)) with ωj ∈ Π(1) and j ∈ T . Since ϕj(%) ∈ Π(3) and a blocks

ϕ via T , there is k ∈ T such that aj = ωk ∈ ∪(Π(1) ∪ Π(2)). By the previous ar-

gument ωk ∈ Π(2). Since k ∈ T , ak = ωj �k ϕk(%). Finally, let b ∈ I(%) be such

that for each i ∈ (M1,1(ϕ(%)) ∪ M1,2(ϕ(%)), bi = ϕi(%), bj = aj, bk = ak, and for

each m /∈ (M1,1(ϕ(%)) ∪ M1,2(ϕ(%))) ∪ {j, k}, am = ωm. Clearly, b ∈ I(%), for each
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j ∈M1,1(ϕ(%)), bi = ϕi(%) = but

#

i ∈ N
∣∣∣∣∣∣ either ωi ∈ Π(1), bi ∈ Π(2),

orωi ∈ Π(2), bi ∈ Π(1)

 > #M1,2(ϕ(%)),

which contradicts Proposition 4. We can iteratively repeat the same argument as many

times as necessary to show that there is no i ∈ T with ωi ∈ Π(1). The reasoning also

apply for the remaining elements of the partition Π, to show that T = ∅.

Proof of Theorem 4. Let Ψ be a generalized age-based priority rule with permutations

Σ = {σ1, . . . , σl}. Individual rationality for generalized rules directly follows from the

definition of generalized age-based priority rule. For 2-efficiency, note that at each step

of the algorithm a patient chooses her best preferred assignments in a set. Moreover,

the kidneys that are a priori more desirable are the first kidneys to be assigned. Thus,

we focus on EGSP. For each %∈ DΠ, and each K′ ∈ K such that for each patient i,

K ′i ⊂ Ωi, because I(%,K′) ⊆ I(%,Ω), by the iterative definition of Ψ, for every patient

i, Ψi(%,Ω) %i Ψ(%,K′). Then, for each T ⊆ N , each %∈ DΠ, each K′T ∈ ×i∈TKi, for

each i ∈ T :

Ψi(%,Ω) %i ϕi(%, (ΩN\T ,K
′
T )). (1)

Repeating the arguments in the proof of Theorem 3, we obtain that there are no T ⊂ N ,

%∈ DΠ, %′T∈ DΠ
T and K ′ ∈ K, such that for each i ∈ T :

Ψi(%′T ,%N\T ,K
′) �i Ψi(%,K′). (2)

Combining equations (1) and (2), and letting K′ = (ΩN\T ,K
′
T ), we obtain that there are

no T ⊂ N , %∈ DΠ, %′T∈ DΠ
T , and K′T ∈ ×i∈TKi such that for each i ∈ T

Ψi(%′T ,%N\T , (ΩN\T ,K
′
T )) �i Ψi(%,Ω).
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[33] M. Ünver. Dynamic kidney exchange. Review of Economic Studies, 77:372–414, 2010.

[34] S. A. Zenios. Optimal control of a paired-kidney exchange program. Management

Science, 48:328–342, 2002.

39


