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1 Introduction

There are many important social, political, and economic systems in which people face a
choice between seeking immediate personal gain at the expense of others or cooperating
to a lesser mutual benefit. In such contexts, it might be expected that an agent acting
in his own interest ought to choose an uncooperative strategy. This intuition is amplified
when people can act under pseudonyms, such as over the Internet, since an agent that
develops a reputation for being uncooperative can, if he chooses, simply re-enter the system
with a new identity. However, the continuing success of online interaction networks such
as eBay (www.ebay.com) indicates that a group of anonymous agents need not devolve
into a steady-state of predominantly uncooperative behavior. There is a large body of
experimental evidence demonstrating that cooperation is a robust empirical phenomenon
(see, for example, [2, 14, 18]). In fact, many systems with a high degree of anonymity and in
which agents change partners over time are characterized by a high, but less than complete,
level of cooperation. We find that such behavior can be explained as constituting a simple
stationary equilibrium under a simple network formation model.

The main elements of our model are as follows. Agents enter the system over time
and have finite lives. All strategic interactions are bilateral and described by a Prisoner’s
Dilemma (PD). A random matching process presents agents with opportunities to form new
relationships. In every period, each agent chooses a behavior, cooperation or defection, and
receives the sum of payoffs from the corresponding PDs with each of its partners. An agent
plays the same action with each of his partners in a given round. This is the case when,
e.g., the behavior under consideration is not relationship-specific, but a characteristic of
an agent’s general behavior. This behavior can also be motivated in the presence of local
information, whereby a defection on a single partner would likely be recognized and reacted
to by all of an agent’s partners. In this case optimal behavior would amount to defecting on
all partners or on no partners. At any time, each agent has the opportunity to sever any of
its relationships.

The discretion to sever a relationship plays a key role by providing a mechanism with
which to threaten punishment for uncooperative behavior. In fact, because of anonymity,
this is the only effective mechanism for punishment: if at any point an agent becomes
disconnected in the graph of relationships, other agents are not able to track its identity and
thus in all future relationships this agent cannot be associated with its previous actions. In
this way, agents are not able to credibly maintain a reputation for a particular behavior or
to be punished due to a negative reputation.

For example, consider an online community. Agents seek partners with whom to prof-
itably interact, such as for trading goods or engaging in joint activities. At any point in
time agents can choose to conduct honest business (cooperate) or to cheat their partners
for a gain (defect). If one of an agent’s partners defects, the worst punishment that can be
enacted is to sever the relationship. One might wish to, in addition, broadcast the agent’s
defection so as to enable further community punishment. But the agent who defected does
not have an identity that can be tracked by his future partners, and so bears no negative
consequence of his defection beyond the loss of those relationships.
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The equilibria on which we focus involve simple and intuitive behavior. In particular, we
exhibit equilibria in which agents are consistent in that they choose either to perpetually
defect or to perpetually cooperate. In light of this behavior, optimal decisions regarding
the formation and severance of relationships are also easy to describe. In particular, a
relationship is severed when, and only when, a defection is observed. Such a social norm is
very natural: defection is not tolerated, and cooperation is rewarded with the opportunity for
future interactions. Under consistent behavior, this social norm is the only rational response
governing the dynamics of relationships. Conversely, we are able to show further that, under
appropriate conditions, consistent behavior is the only rational response to the social norms
regarding relationships.

1.1 Summary of results

Our main goal is to analyze the dynamics of behavior and of the network that evolve ac-
cording to this social norm. We show that there always exists an equilibrium with consistent
behavior. Of course, as with any model of repeated PD interactions, universal defection
remains one possible outcome. More interestingly, under certain natural assumptions on the
parameters of the PD payoffs and the discount factor, these equilibria also support a second
outcome with cooperative behavior. Depending on the parameters, the level of cooperation
may or may not be universal. When it is not, the model predicts the coexistence of cooper-
ative and uncooperative agents. In either case, the equilibrium outcome is stable, in that if
the proportion of cooperative behavior is perturbed, optimal decisions of entering agents will
eventually return the system to its original state. We provide an explicit characterization of
stationary equilibria and comparative statics on the model’s parameters.

The key mechanism that supports the possibility of cooperative behavior at equilibrium
is that defection is punished by the loss of relationships. This natural punishment works as
follows. In our model, each agent can immediately gain access to a certain (exogenously fixed)
number of relationships by sponsoring them. Additional relationships can be formed only
by waiting for relationships to be proposed and sponsored by others, which takes time. The
incentive to cooperate, then, comes from the ability to attract a large network of profitable
relationships over time. We think of these accumulated relationships as social capital.1 An
agent who defects builds no social capital because of these punishments. He is always able
to sponsor some relationships and profit from them when he happens to find cooperators,
but after every period he loses all his relationships and returns to being isolated. When the
model supports the coexistence of cooperation and defection, it is because the gains from
accumulated relationships that a cooperator expects are equal to the gains achievable by
perpetually defecting on a smaller (and changing) set of partners.

The behavior that we have described thus far, while fairly general, requires some paramet-
ric assumptions to justify. After characterizing a class of equilibria that support a stationary

1There is a debate in the literature about how to define and measure “social capital”. See [21] for a
review. We want only to offer an intuitive term in the context of our model for the gradual accumulation of
profitable relationships.
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outcome with cooperative behavior, we turn to the issue of describing behavior more gener-
ally. We have two results that go some distance towards assessing optimal behavior when
the requisite assumptions for the simple stationary equilibria do not hold.

First, the assertion that the behavior of consistently choosing to either cooperate or defect
is the best response to the social norm governing relationship dynamics requires that the
cost to a cooperator of being defected on is high enough relative to the gain to defecting on
a cooperator. When this condition is not met, inconsistent behavior can be expected. We
characterize the form that such behavior takes. In particular, an agent who has cooperated
in the past may find it optimal to defect and re-enter the system under a new pseudonym.
This strategy of building up a network of partners and then cheating them, however, appears
only in a limited form. A cooperating agent has a profitable opportunity to defect only if
the number of cooperators to whom he sponsors a link is high enough relative to the number
of relationships sponsored by other cooperators. For many parameters, the bound on this
ratio is tight enough that a cooperator defects only when he has, in fact, no relationships
sponsored by others. This fact is consistent with our interpretation of relationships sponsored
by others as social capital. Moreover, we find that it is never profitable for an agent to set out
to build relationships with the intention of eventually exploiting her partners via defection;
rather, the choice to defect is rationalized only for an agent who, through unexpected random
circumstance, finds himself socially impoverished in that the majority of his relationships
are sponsored by himself and not others.

Second, cooperating agents face uncertainty at the beginning of a relationship, since they
have no information about the history of their new partner. If there are sufficiently few coop-
erators in the population, then the agent may be unwilling to accept new relationships. Even
in a society with a non-trivial fraction of cooperators, when a new relationship is sponsored
by another agent, the probability that it comes from a cooperator is lower than when the
agent sponsors the relationship himself. This is because defectors, in every period, form a
complete set of new relationships, whereas cooperators gradually accumulate stable relation-
ships over time, and hence search for new partners less often. Thus the set of relationships
being sponsored in any period is biased to those coming from defectors. It may therefore be
rational to reject proposed links and participate only in relationships initiated by oneself. We
characterize the condition under which it is optimal to accept new relationships from others,
which is an important aspect for the equilibrium we describe. When that condition is not
met, an interesting equilibrium emerges.2 In particular, with the coexistence of cooperators
and defectors, cooperating agents accept new relationships only with a certain probability.
This has the effect of insulating cooperators to some extent from the outside world. It is also
the necessary ingredient to properly incentivize cooperation. Without this barrier, defection
becomes too tempting, and the equilibrium would collapse to a state of all defection.

2The full description and analysis of this equilibrium does not appear in this preliminary working draft,
but will appear in a forthcoming version of the paper.

4



1.2 Literature studying related phenomena

Our model contributes to the long line of work seeking to understand the robust phenomenon
of cooperation in repeated social interactions. When the partners in the game are fixed over
time and the game is repeated indefinitely, an application of the Folk Theorem can explain
cooperation (or any mutually beneficial payoff) [1, 10], via, e.g., trigger strategies, and
can be extended to accommodate imperfect monitoring [9].3 However when agents change
partners over time, such a threat is no longer effective because a pair of agents may very
well never meet again. Instead, community enforcement procedures can be used to sustain
cooperation [12, 15]. In these equilibria, if the model allows for public reputations, then
the community can always defect against an agent with a reputation of defection. However,
this mechanism for sustaining cooperation is unsatisfactory in the domain of anonymous
interactions: threat of retaliation is not a deterrent when an agent can re-enter the network
as a new user at any time.

When agents are anonymous and histories are not publicly observable, a community can
nevertheless still enforce cooperation by agreeing to defect on all partners as soon as any
defection is observed [12, 7]. In this way, from a cooperative state, a deviating defector
starts a contagion and will thus eventually be punished for the initial defection. This kind of
community enforcement does not provide a natural explanation for the stable coexistence of
cooperative and defective behavior. When anonymity is due to the use of pseudonyms that
can be changed, an alternative approach to community enforcement is to penalize players
using new pseudonyms (who are either genuinely new or using a recently acquired identity).
This builds a level of trust in agents by forcing them to “pay their dues” [8]. This penalty
de-incentivizes agents from taking new pseudonyms, at the cost of reduced efficiency in
interactions with new participants.

In all of the work cited above, partnerships are formed exogenously (though possibly
stochastically). When agents have choice over their partners or in the length of the relation-
ship, new insights arise [4, 11, 13, 20]. In developing long-term relationships, agents have the
opportunity to gradually build trust with their partners. This trust becomes an asset, and
the threat of losing it produces incentives to cooperate. This mechanism operates without
information flow (i.e., there are no public reputations), and without relying on contagious
defection strategies.

We employ such an approach, in which agents have discretion over maintaining their
relationships. As such, agents’ behavior influences the network dynamics. Our mechanism
for sustaining cooperation can be identified with the notion of social capital, taken to mean
an agent’s accumulated network of partners.4 Here, the reason to cooperate comes from
the fact that, through cooperation, one can gradually build up a social network consisting of
other cooperators. Since the matching process we employ entails delay, the threat of severing
a relationship can incentivize cooperative behavior.5

3There are less closely related papers that support cooperation through evolutionary approaches [16] or
in stochastic models with boundedly rational agents [3].

4Vega-Redondo [22] studies social capital in a stochasticly evolving network.
5There is a large literature on matching models. See [6, 5] for important contributions.
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This is an expression of a very general idea that can be traced at least to [19]. In their sem-
inal work, firms incentivize workers to exert effort via the threat of termination. Termination
is an effective punishment because, in equilibrium, there exists non-trivial unemployment.
Thus, it is precisely the aggregate market outcome of unemployment that produces incen-
tives for good behavior in specific worker-firm relationships. Many papers have built on the
theme that losing a relationship has a cost that is determined endogenously along with the
behavior within relationships. The cost can come in many forms, such as being cast into
a matching market with frictions, having to start a new relationship that requires specific
investment [17], or having to start small in a new relationship [23, 24].

While our work shares a common element with this literature, the threat of punishment in
our model is effective precisely because agents benefit from accumulating multiple partners,
i.e., our notion of social capital. This difference with the papers cited above is important. It
allows for a novel interaction of strategic behavior with the dynamics of the social network.
This, in turn, allows us to provide a characterization of the coexistence of cooperation and
defection in equilibrium, and in that sense our analysis is the first of its kind.

The remainder of the paper is organized as follows. The model is described in Section 2.
Section 3 characterizes simple stationary equilibrium outcomes. Section 4 develops the con-
ditions under which our characterization of equilibrium behavior holds in a more general
strategic setting, while Section 5 describes the way in which equilibrium outcomes change
when these conditions are not met. We conclude and provide comments for further research
in Section 6. An Appendix contains a formal development of the model.

2 A model of strategic interactions in a social network

For ease of exposition, we describe the basic elements of our model in this section. A formal
development is presented in the Appendix.

All strategic interactions are governed by a prisoner’s dilemma with the following payoff
matrix.

C D
C 1,1 -b,1+a
D 1+a,-b 0,0

We take a, b > 0 and a − b < 1 so that, while mutual cooperation is the uniquely efficient
outcome, defection is strictly dominant.

There is a continuum of agents, which we associate with points from the unit interval
N = [0, 1].6 Agents interact repeatedly on an evolving directed network. Time is discrete.

6The primary reason to work with a continuum of agents is to guarantee that agents are “atomless”, so
that no individual can unilaterally affect expected aggregate behavior. This property is well-motivated in
large networks, as one then expects a player to ignore the marginal effects that his behavior imposes on the
system. We use a continuum of agents (as opposed to a countably infinite set) so that one can more readily
define distributions over the set of players. Our results (i.e. equilibria) also hold in an approximate sense
for a finite set of N players, with approximation errors vanishing as N grows large.
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At each date each agent independently dies with a given probability 1 − δ, in which case it
is replaced by a new agent.7 We speak of the age of an agent as the number of dates since
its birth. Each agent i chooses an action αi ∈ {C, D} at each date of its life. Agents observe
the aggregate proportion, q, of C behavior in the population after each date.

Every agent sponsors a number K ≥ 1 of connections to other agents. Thus an agent is
generally involved both in relationships that it sponsors (outlinks) and also in relationships
sponsored by others (inlinks), resulting in a directed graph of interactions. When a connec-
tion is proposed, the partner is chosen uniformly at random from the population, and the
connection is then accepted or rejected by the chosen partner. Once accepted, each connec-
tion persists to the subsequent date unless one of the partners dies or chooses to sever the
connection. When a connection is broken, the agent who sponsored it, provided he survives,
re-matches with another agent, chosen uniformly at random, at the next date.

At each date an agent receives a payoff equal to the sum of the outcomes of the stage
game played with each of his (in and out) partners, according to the chosen actions of the
two agents and the payoff matrix given above. Agents seek to maximize the present value of
expected lifetime payoffs.

To summarize, each time period proceeds according to the following order of events:

1. New agents are born.
2. Actions are chosen.
3. Outlinks are proposed to other agents.
4. Potential inlinks are accepted or rejected.
5. The stage game is played and payoffs are realized.
6. Agents sever any links that they choose to.
7. Death occurs.

3 Simple Behavior and stationary outcomes

Our goal is to understand equilibrium behavior. An agent’s strategy maps observed histories
to (probability distributions over) actions. The actions involve, on each turn: the choice of
which proposed links to accept, whether to cooperate or defect, and which links, if any, to
break. We focus on Markov behavior, in the sense that agents do not condition their actions
on a common labeling of time. In other words, while each agent is aware of the number
of rounds that have passed since he first entered the system, he does not use any universal
description of time (e.g. the number of rounds since the system first began, etc.). A formal
development of strategies is contained in the Appendix.

We begin the analysis by considering a setting in which three assumptions are imposed
on strategies.

Assumption 1 Consistent (C): An action from {C, D} is chosen at birth (possibly mixing).
At all future dates, the agent plays the action it chose at the previous date.

7The conclusion that at each date, a proportion δ of the population survives, almost surely, relies on an
exact law of large numbers for a continuum of random variables. See, e.g., Judd (1985).
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Assumption 2 Unforgiving (U): A connection is severed immediately whenever the partner
chooses D.

Assumption 3 Trusting (T): All proposed inlinks are accepted and a link is not severed in
a period when the partner chooses C.

Consistency prohibits strategies that, for instance, allow an agent to cooperate until some
stopping condition is met, and then defect. It also allows us to speak of “cooperators” and
“defectors”. The unforgiving and trusting assumptions completely determine the behavior
of agents with respect to managing their set of relationships.

Throughout, we will restrict attention to symmetric equilibria. Under Assumptions 1-
3, this means that the behavior of all agents can be completely described by a function
φ : [0, 1] → [0, 1] with the interpretation that φ(q) specifies the probability that an agent
chooses C at its birth when it observes the state q. We will refer to strategies that satisfy
Assumptions 1-3 as simple strategies.

These strategies are restrictive at the individual level, but they are flexible enough to
permit interesting aggregate behavior. In particular, we will demonstrate that it is possible
to sustain cooperation, sometimes (depending on parameters) in coexistence with defectors.
We then show that under appropriate conditions these outcomes, with behavior satisfying
Assumptions 1-3, can be supported by equilibria without a priori restrictions on the strategy
space. Finally, we are able to say a fair amount about behavior and the evolution of the
system in cases where these conditions do not hold.

3.1 Simple stationary equilibria

We are interested in determining when a particular level of cooperation q can be sustained
as a stationary outcome of the system under Assumptions 1-3. Note, however, that a given
value of q does not capture the entire state of the network, even in expectation. Other
factors, such as the degree distributions and age distribution of the agents, impact expected
payoffs because they influence the rates at which links with cooperators and defectors can be
expected to arise. This motivates us to define a particular set of configurations of the system,
the steady-state at q, Lq, to be the collection of states that result with positive probability
when the fraction of cooperators is q, and agents have been applying a strategy for which
φ(q) = q for an infinite number of rounds. A steady-state Lq captures all payoff-relevant
information.

For a steady-state to be supported as an equilibrium outcome, it is necessary that the
strategy φ(q) = q be optimal when the system is in state Lq. In this case, the fact that
all agents apply φ implies that the system remains in state Lq. We will therefore say that
q ∈ [0, 1] is a simple stationary equilibrium if, given that the system is in state Lq at all
times, the application of a strategy that chooses cooperation with probability q at birth is
optimal.

Let us briefly discuss the conditions under which there can exist a simple stationary
equilibrium at q. Note first that to sustain a simple stationary equilibrium at q = 0, it must
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be that all new agents choose defection as their consistent action. Thus, there is always a
simple stationary equilibrium at q = 0 because the expected lifetime utility from defection
is greater than the expected lifetime utility from cooperation, given that all agents in the
system defect. A simple stationary equilibrium at q = 1 requires that all agents choose
cooperation, and hence the expected lifetime utility of cooperation must be at least that
of defection. Finally, a simple stationary equilibrium at q ∈ (0, 1) requires mixing. Such a
strategy is optimal if and only if the expected utilities of lifelong cooperation and lifelong
defection are equal.

We conclude that, in order to characterize the stationary equilibria, it is enough to derive
expressions for the expected utility of cooperation and of defection as a function of q, under
the assumption that the state of the system is fixed at Lq. This is extremely useful for the
analysis, since the state Lq pins down all aspects of the system that are relevant for expected
utilities. There then exists a simple stationary equilibrium at each value of q for which the
required relationship between these utilities holds.

3.2 Expected Utilities

We now derive the expected utilities associated with the (consistent) choices of cooperation
and defection at an agent’s birth. These utilities depend on the model’s parameters, (a, b, δ).
They depend as well on the proportion of cooperative agents in society, q. Since we are
interested in simple stationary equilibria, we work under the assumption that the system
is in state Lq and remains so over the agent’s lifetime. If q is to be an simple stationary
equilibrium it is rational for agents to compute their expected utilities assuming that the
system remains in Lq.

The main task in computing expected utilities is to keep track of the expected number
of inlinks and outlinks between agents of different behaviors, C and D, as a function of age.
Define nOut

XY (s) as the expected number of outlinks from an agent of type X at age s to agents
of type Y , X, Y ∈ {C, D}. The expected number of links from a cooperator of age s to other
cooperators can be computed recursively according to

nOut
CC (s) = δnOut

CC (s − 1) + q(K − δnOut
CC (s − 1)).

The first term retains the existing links with cooperators who remain alive, while the second
term takes all links from the previous period that were broken (due to death or defection)
and re-matches them, obtaining a fraction q of new cooperators. Setting nOut

CC (−1) = 0 and
solving produces

nOut
CC (s) = qK

(

1 − (δ(1 − q))s+1

1 − δ(1 − q)

)

.

The remaining links sponsored by a cooperator go to defectors, so that nOut
CD (s) = K−nOut

CC (s).
For defectors, as mentioned, the case is much simpler, and depends only on the population
frequency of cooperators. We have nOut

DC (s) = qK and nOut
DD(s) = (1 − q)K.

We derive next the expected number of inlinks from both types of nodes as a function of
age. To do so, we compute the number of inlinks an agent expects to receive from agents of
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either behavior at each date. Notice that the probability that a randomly selected node is
age s is p(s) = (1 − δ)δs. Then, the expected number of inlinks an agent will receive from
cooperators and defectors at each date are, respectively,

rC = q

∞
∑

s=0

p(s)
(

K − δnOut
CC (s − 1)

)

= qK
(1 − δ2)

1 − δ2(1 − q)
,

rD = (1 − q)K.

Notice that the calculation of rC requires the assumption that the system is in a steady-state,
since it presumes that for every age s, the proportion of age-s agents that cooperate is q.
(The calculation for rD, on the other hand, is valid for any state consistent with q since the
number of outlinks sent by a defector is independent of age.)

Define nIn
XY (s) as the expected number of inlinks an agent of type X at age s has from

agents of type Y , X, Y ∈ {C, D}. For CC links, we have the recursive relationship

nIn
CC(s) = δnIn

CC(s − 1) + rC .

Setting nIn
CC(−1) = 0 and solving produces

nIn
CC(s) = rC

1 − δs+1

1 − δ
.

The remaining calculations are straightforward since they all involve defectors whose links
are re-set every period. We have nIn

CD(s) = nIn
DD(s) = rD and nIn

DC(s) = rC .
Finally, we can now define the expected lifetime utility of consistently cooperating or

defecting. To that end we compute the expected payoff at a particular age s by summing
the payoffs over the expected set of connections. We have

πC(s) =
(

nOut
CC (s) + nIn

CC(s)
)

− b
(

nOut
CD (s) + nIn

CD(s)
)

,

πD(s) = (1 + a) ·
(

nOut
DC (s) + nIn

DC(s)
)

.

Expected normalized lifetime utilities are then simply uX = (1 − δ)
∑∞

s=0 δsπX(s), X ∈
{C, D}. Simplifying the expressions and scaling by the factor 1/K delivers

uC =
2q − b(1 − q)(2 − δ2(2 − q))

1 − δ2(1 − q)
,

uD =
(1 + a)q(2 − δ2(2 − q))

1 − δ2(1 − q)
.

We remark that δ plays two distinct roles in the model. First, it determines the turnover
rate at which agents enter and leave the system. Because of this, δ has a direct effect on the
evolution of the system, holding fixed the behavior of all agents. It is in this role only that
δ appears in our analysis until we come to the computation of uC and uD. Second, δ affects
the preferences of agents because it represents the effective temporal discount rate. Thus for
any given system dynamics, δ influences optimal behavior.
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3.3 Characterization of simple stationary equilibria

Each agent chooses at birth C or D so as to maximize his expected utility. In order to
characterize optimal choices under Assumptions 1-3 we are interested in comparing uC and
uD as a function of q under various parameterizations of the model. It is convenient to define
∆(q; a, b, δ) = uD − uC .

For given (a, b, δ), the values of q for which ∆(q; a, b, δ) = 0 are precisely the set of
interior simple stationary equilibria.8 This is so because, for such a value of q, mixing with
probability q at birth is optimal provided the system remains in Lq, which it in fact will
under the proposed strategy. For any other value of q, either uC or uD is strictly optimal
under the assumption that the system remains in Lq, but then given that choices must be
optimal, the system will not remain in Lq.

Notice that ∆(0; a, b, δ) > 0, so that q = 0 is always a simple stationary equilibrium.
That is, if there are sufficiently few cooperators, then it cannot be optimal to commit to
cooperation. On the other hand, if q = 1, then we will see that cooperation is sustained
in certain settings, e.g., if the expected lifetime is sufficiently long and the gain from de-
fecting against a cooperater is sufficiently small, then the long-term value from accumulated
cooperator links is outweighed by the short-term gains from defection.

We are now able to characterize the mixtures of cooperation and defection that can be
sustained in a simple stationary equilibrium. We are particularly interested in those simple
stationary equilibria that are stable. A simple stationary equilibrium is stable if the system
returns to it after sufficiently small perturbations of q, given that agents apply strategies in
which they maximize utilities as calculated by uC and uD above. Note that this definition of
stability can be viewed as bounding the rationality of the agents, as the utility calculations
assume the system is at a steady-state at the current (perturbed) value of q, whereas the
implied dynamics of the system in response to the perturbation are not, in fact, in steady-
state. However, as long as the perturbation is sufficiently small, we assume that the error
due to this approximation is small enough to justify our assumption that agents do not take
it into account.

Generically, the set of stable simple stationary equilibria fall into three categories. First,
it is possible that ∆(q; a, b, δ) > 0 for all q, in which case all-defection is the unique simple
stationary equilibrium, and it is stable. For any a, b, this will be the case for sufficiently
small δ. Second, it may be that there is a unique q− for which ∆(q; a, b, δ) = 0, above
which ∆(q; a, b, δ) < 0. In this case, all-defection (q = 0) and all-cooperation (q = 1)
are the two stable simple stationary equilibria, while q− is an unstable simple stationary
equilibrium. Finally, it may be that ∆(q; a, b, δ) < 0 for an interior region of q ∈ (q−, q+),
and positive otherwise. In this case q+ is a stable simple stationary equilibrium that involves
the co-existence of cooperators and defectors (and q− is again an unstable simple stationary
equilibrium). See Figure 1 for an illustration of utility curves uC and uD corresponding to
each of these scenarios. The following result fully characterizes these possibilities.

8This argument is readily extended to q = 0, 1.
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(a) (b) (c)

Figure 1: Utility curves corresponding to different patterns of equilibrium occurance. (a) Only the
all-defection state is an equilibrium. (b) The all-cooperate and all-defect states are at equilibrium,
and there is an unstable equilibrium for some q ∈ (0, 1). (c) The all-defect state is an equilibrium,
as well as two interior equilibria: the rightmost stable, the leftmost unstable.

Proposition 1 For all (a, b, δ), q = 0 is a stable simple stationary equilibrium. The remain-
ing simple stationary equilibria are as follows:
If a > 1, then:

(i) if b < 2 and δ is sufficiently large, there exist two interior simple stationary equilibria:
one stable and one unstable, with the stable simple stationary equilibrium involving
more cooperators.

(ii) otherwise (b ≥ 2 or δ not large enough) there is only the q = 0 simple stationary
equilibrium.

If a < 1, then:

(iii) if δ is sufficiently large then q = 1 is a stable simple stationary equilibrium, and there
exists an unstable interior simple stationary equilibrium.

(iv) if δ is sufficiently small then only the q = 0 state is a simple stationary equilibrium.
(v) if b < a(1+ a), then there exists an intermediate range of δ for which there are two in-

terior simple stationary equilibria: one stable, and one unstable, with the stable simple
stationary equilibrium involving more cooperators.

Proof. First, ∆(0; a, b, δ) = 2b > 0, so that q = 0 is always a stable simple sta-
tionary equilibrium. Next, internal simple stationary equilibria must satisfy the condition
∆(q; a, b, δ) = 0. Solving for δ produces

δ∗(q; a, b) =

√

2 (aq + b(1 − q))

(2 − q) ((1 + a)q + b(1 − q))
.

To find interior simple stationary equilibria, we need to characterize for all a, b those δ such
that δ∗(q; a, b) = δ for some q ∈ (0, 1). In the following arguments, we derive the shape
of the curve δ∗(q; a, b), proving that for any a, b, the shape will be similar to that drawn
in Figure 2. Those values of δ that do not cross the curve describe systems with q = 0 as
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Figure 2: Graph of δ∗(q; a, b).

the only simple stationary equilibrium; those that cross it once result in a single unstable
interior simple stationary equilibrium and a stable simple stationary equilibrium at q = 1;
those that cross it twice result in two interior simple stationary equilibria, one stable and
one unstable. Due to the shape of the curve, there are never more than two interior simple
stationary equilibria.

To describe δ∗(q; a, b), we first note that given a, b > 0, δ∗(q; a, b) is bounded away from
zero for all q. Furthermore, taking derivatives we see that for any a, b > 0 and q ∈ [0, 1],
∆(q; a, b, δ) is strictly decreasing in δ. Hence, for sufficiently small δ (δ <

√

a
1+a

suffices),
uD dominates uC for all q, and the only simple stationary equilibrium is q = 0, proving the
second claim in part (ii) and part (iv). We next show that δ∗(q; a, b) is single-peaked (with
the possibility of the peak at the boundary, in which case it is monotonic), and hence there
can be at most two interior simple stationary equilibria q ∈ (0, 1).

Claim 1 The function δ∗(q; a, b) is single-peaked on the interval [0, 1].

Proof of Claim.

As is clear from the representation above, δ∗(q; a, b) has a unique point of discontinuity, and
it is strictly greater than one. Thus, δ∗(q; a, b) is continuous on the unit interval. It is also
continuously differentiable on the same interval. Thus to prove the claim, it is sufficient to
show that δ∗(q; a, b) has at most one local optimum in [0, 1].

Because δ∗(q) is bounded away from zero, its derivative has the same zeros as the deriva-

tive of (δ∗(q))2. Setting ∂(δ∗(q))2

∂q
= 0 produces a quadratic in q. Call the solutions q1 and q2.

We must show that at most one solution falls inside the unit interval. If a = b then it is easy
to see that q1 = q2 = 1 − b/2. If a = b + 1 then q1 = −b −

√

b(b + 2)/2 < 0. Otherwise, the
solutions are

−b

a − b
±

√

(1 + a − b)(2a − b)b

(1 + a − b)(a − b)
.

Call this Q1±Q2. If Q2 is not real, we are done, so assume it is. If a−b > 0 then Q1−Q2 < 0.
On the other hand, if a − b < 0 then Q1 > 1 so at least one of the solutions is greater than
one. This proves the claim.
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It is easily seen that δ∗(0; a, b) = 1 and δ∗(1; a, b) =
√

2a
1+a

, which is less than one if and

only if a < 1. Also,

∂δ∗(q; a, b)

∂q
|q=0 =

b − 2

4b
,

∂δ∗(q; a, b)

∂q
|q=1 =

a(1 + a) − b

(1 + a)2
√

2a
1+a

.

Recall that a stable interior simple stationary equilibrium occurs for some (a, b, δ) when
δ∗(q; a, b) = δ for two distinct values of q. From the above expressions, we see that stable
interior simple stationary equilibria exist for some δ, provided that b < 2 and b < a(1 + a).
We consider two cases based on the value of a.

1. If a > 1, the condition for existence of an interior stable simple stationary equilib-
rium reduces to requiring b < 2. Such a simple stationary equilibrium exists for all
sufficiently large δ because δ∗(1; a, b) > 1. This proves parts (i) and (ii).

2. If a < 1 then, since a(1 + a) < 2, a stable interior simple stationary equilibrium exists
for some δ whenever b < a(1 + a), proving part (v). However, now it is the case that
δ∗(1; a, b) < 1, which implies that a stable interior simple stationary equilibrium does
not exist for δ > δ∗(1; a, b). Rather, for δ > δ∗(1; a, b), there is an unstable interior
simple stationary equilibrium, and q = 1 is a stable simple stationary equilibrium,
proving part (iii).

�

Each of the above conditions occurs for reasonable ranges of parameters; see Figure 1 for
some typical examples.

We are particularly interested in stable equilibria that support (full or partial) coopera-
tion. Roughly, there are two main factors driving the existence of these outcomes.

(a) In societies with nearly universal cooperation, the utility of cooperation cannot be far
behind that of defection, i.e., uD(q) is not much greater (if at all) than uC(q) near
q = 1).

(b) If uC(1) < uD(1), then as defectors enter a mostly-cooperator system, the utility of
defecting decreases faster than the utility of cooperating, i.e., the derivative of uD(q)
is greater than that of uC(q) near q = 1.

A cooperator gains utility by building a network of relationships. Given sufficient time,
the neighborhood of a cooperator limits to a particular size, at which point the death rate
of neighbors matches the rate of finding other cooperators. A major factor in the payoff of
a cooperator is the amount of time necessary to approach this limiting neighborhood size,
relative to the expected lifetime. This quantity is influenced by the fraction q of cooperators
in the system, but this influence suffers diminishing returns: when there are few cooperators
present, a small increase has a large effect on the number of cooperators expected to meet
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each other; when there are many cooperators, they will quickly approach their limiting
neighborhood sizes, and thus the addition of more cooperators has little effect.

The utility of a cooperator is also affected by the losses incurred from interacting with
defectors. This effect is roughly proportional to the number of defectors in the system (as is
the total utility gained by a defector). Parameter b roughly determines the rate at which a
cooperator’s utility decreases with the proportion of defectors.

When a > 1, the expected utility obtained by a single defector in an otherwise all-
cooperator environment will be greater than the expected utility of a cooperator who has
a full neighborhood of other cooperators. That is, a q = 1 simple stationary equilibrium
cannot exist for any δ. Starting from the q = 1 state, defectors begin to enter the system. As
more defectors enter, the expected utility of each defector decreases roughly linearly. How
is the utility of the cooperators affected?

First, if b is very large, the presence of more defectors degrades the utility of the cooper-
ators heavily, due to losses that occur when interacting with defectors. If b is large enough
(larger than two), this degradation will be so severe that defecting will always be the superior
strategy, and the only simple stationary equilibrium of the system will be at q = 0.

Second, if the expected lifetime is sufficiently short, the presence of more defectors will
make it substantially less likely that cooperators will form full neighborhoods of other coop-
erators within their lifetimes, again degrading their utility and destroying the q = 1 simple
stationary equilibrium. If δ is small enough, the payoff due to forming a (partial) neigh-
borhood will never overtake the utility of defecting, and again the only simple stationary
equilibrium of the system will be at q = 0.

Third, if b is small and δ is sufficiently large, then an increase in the number of defectors
will have a small effect on the expected welfare of a cooperator. Thus, as more defectors
enter the system, the gap in welfare between defectors and cooperators will close, until at
some interior point they become equal. This is precisely the stable interior simple stationary
equilibrium described in the first half of the proposition.

When a < 1, the expected utility of a single defector in an otherwise all-cooperator
utopia will be less than the expected utility of a cooperator who has a full neighborhood of
other cooperators. That is, an all-cooperate simple stationary equilibrium exists provided δ
is sufficiently large. In such a case, there must also be an unstable internal simple stationary
equilibrium (since both the q = 0 and q = 1 states are stable, there must be some interior
state where utilities are equal).

If δ is very small, then (as in the case a > 1) cooperators will not expect to develop large
neighbourhoods of other cooperators during their lifetimes. In such a setting, it will always
be better to defect than to cooperate, and only the q = 0 state will be stable.

Finally, consider a range of δ for which cooperators expect not to fully reach their limiting
neighborhood size, but will come close. It may then be the case that a defector gains
more utility than a cooperator in the q = 1 state. However, if the losses incurred due to
exploitation are not too large, and if δ is large enough that cooperators expect to find many
other cooperators over their lifetimes (though not as many as they could hope for), then
an increase in the number of defectors will have more effect on the defectors’ utilities than
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on the cooperators’ utilities. In this case, starting from q = 1 and adding defectors to the
system, one reaches a state where the utilities of the defectors and the cooperators are equal.

Proposition 1 also enables us to state some comparative statistics relating changes in
the simple stationary equilibrium fraction of cooperators to changes in the parameters. For
given (a, b, δ), define q− as the unstable simple stationary equilibrium and q+ as the stable
simple stationary equilibrium, when they exist.

Proposition 2 Fix (a, b, δ) such that q− and q+ exist and are interior (i.e., 0 < q− < q+ <
1). Then

(i) as δ increases, q− decreases and q+ increases;
(ii) as a or b increase, q− increases and q+ decreases.

Proof. It is easy to verify that ∆(q; a, b, δ) is strictly decreasing in δ, and strictly increasing
in a and b, for all q. This, together with the fact that ∆(q; a, b, δ) is strictly decreasing in q
at q− and strictly increasing in q at q+, proves the result. �

That is, an increase in life expectancy, a decrease in gains from defecting against a
cooperator, or a decrease in the penalty of cooperating with a defector, all result in more
cooperation, in the sense that the stable simple stationary equilibrium increases and the
basin of attraction for the simple stationary equilibrium with cooperation increases.

4 Robustness

The simple stationary equilibria identified in Proposition 1 are defined in a setting that
requires agents to apply strategies that are consistent, unforgiving and trusting. This can
be thought of as an equilibrium that arises under a very natural social norm, in the spirit
of [11]. The social norm specifies how to behave in one’s relationships as well as how to
manage these relationships.

In this section we remove the assumptions from the previous section, and study optimal
behavior in the absence of social norms that restrict strategies. We find that, under appropri-
ate parametric conditions, the conventions described in Assumptions 1-3 are self-enforcing,
in the sense that they constitute equilibrium outcomes.

Before stating the result, let us describe some parametric conditions that will be required.
Notably, these conditions involve q as well as (a, b, δ). However, the analysis in this section
concerns only steady-states of the system, where the fraction q of cooperation remains con-
stant (though endogenously determined). The conditions below should be interpreted as
requirements of a particular steady-state q under consideration. The two conditions, which
we call the consistency inequality and the trusting inequality, are the following.

Definition 1 The consistency inequality is

1 + b

1 + a
> 1 − (1 − q)δ2. (1)
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Definition 2 The trusting inequality is

b <
q

(1 − q)(1 − (1 − q)δ2)
. (2)

The result we provide is that any simple stationary equilibrium q that satisfies these two
conditions also occurs as an equilibrium outcome without the assumptions of the previous
section. Each agent applies a strategy that, at every observable history, optimizes his (time-
discounted) continuation utility in expectation over future randomness and his beliefs about
the state of the system given his observations. In turn, these beliefs are consistent with the
strategy being employed (recall our focus on symmetric equilibria). A formal development
of the solution concept is provided in the Appendix.

We demonstrate that there exists a equilibrium in which, on the equilibrium path, agents
behave in a way that conforms with the norms of being consistent, trusting, and unforgiving.
In other words, we find that these norms are in equilibrium even when they are not enforced.
Recall that Lq denotes the steady-state of the system that occurs when agents apply strategies
consistent with Assumption 1-3 and new agents choose cooperation with probability q.

Theorem 1 Suppose that q ∈ [0, 1] is a simple stationary equilibrium, and that the con-
sistency and trusting inequalities are satisfied at q. Then there exists a equilibrium such
that if the system is in state Lq, all agents apply actions that are consistent, trusting, and
unforgiving. Moreover, q is a stationary level of cooperation under this strategy.

Proof. See below. �

It is possible a priori that there exist equilibrium delivering steady-states in which agents
do not behave according to Assumptions 1-3 on the equilibrium path. We demonstrate that
if we enforce one of the norms, namely that all agents apply consistent strategies, and if
the trusting inequality is satisfied at the steady-state q, then it must be that q is a simple
stationary equilibrium.

Theorem 2 Suppose that agents play only consistent strategies. If there exists a equilibrium
under which q ∈ [0, 1] is a stationary level of cooperation, and the trusting inequality is
satisfied at q, then q must be a simple stationary equilibrium.

Proof. See below. �

We interpret Theorems 1 and 2 as suggesting that our description of the likely level of co-
operation in society, as given by Proposition 1, survives largely unchanged when considering
the more general strategic setting of this section.

The remainder of this section is dedicated to the proof of Theorem 1 and Theorem 2.
We discuss the optimality of each of the three assumptions separately, and conclude by
combining these results.
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4.1 Maintenance of relationships

We first assess the norm that individuals sever a relationship only upon observing a defection.
If agents apply consistent strategies and commit to life-long cooperation or life-long defection,
the beliefs of an individual regarding the future play of his partners are easy to describe. In
fact, after a single interaction, the individual can perfectly forecast his partners’ future play.
Therefore, if other agents behave consistently, it is optimal to always maintain a relationship
after observing cooperation, and it is optimal to sever a relationship after observing defection.
Indeed, these decisions are strictly optimal: maintaining a link with a cooperator has positive
expected utility, and maintaining a link with a defector has negative expected utility (for
a cooperator). A link between two defectors must be severed because the sponsor of that
link strictly prefers to re-match and have probability q of interacting with a cooperator.
This behavior is sequentially rational and holds for off-path play in which an agent’s partner
behaves inconsistently, since consistency is defined as always taking the same behavior as
was taken in the previous round. It is therefore the case that every best response has the
property that a link is broken if and only if a defection is observed on that link.

4.2 Consistent Behavior

The analysis in Section 3 was conducted under the assumption that individuals have available
to them only two (pure) strategies at their birth. Optimality, then, requires taking rational
expectations over the implied outcomes of these two actions and choosing appropriately.
There is no consideration of deviations from consistency; the choice is assumed to be made
with commitment. We now want to show that if agents play consistent and unforgiving
strategies, and the consistency inequality is satisfied, then consistent behavior is (part of) a
best response.

First notice that for a defector in a steady-state, the calculation is identical at every
round. This is so because, under the norm of unforgiving strategies, he loses all of his
connections at every period. Thus, if he decides today that perpetual defection is better
than perpetual cooperation, he will reach the same conclusion tomorrow.

For a cooperator the situation is complicated by the fact that his state (i.e. number
of in-links and out-links) changes over time. At a simple stationary equilibrium q > 0,
a cooperator is at least as happy with his choice, at birth, than he would be under the
alternative plan of defection. But, in principle, there may arise interim situations in which
a cooperator prefers to defect in a particular period, after which his optimization problem is
identical again to the one at his birth.

We now introduce notation to describe the state of an individual of age s. For a given
agent, let KI

s denote the number of in-links from cooperators at the beginning of round s,
and let KO

s denote the number of out-links to cooperators at the beginning of round s.
The next result provides a sufficient condition to guarantee that cooperators never have

a profitable deviation involving defection.

Lemma 1 Suppose q ∈ (0, 1] is a simple stationary equilibrium and the consistency inequality
holds at q. Consider an agent that has KI

s inlinks and KO
s outlinks at the beginning of round
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s, with KI
s + KO

s > 0. Then the expected utility of cooperating on all rounds starting at s is
strictly greater than the expected utility of defecting on round s and then cooperating on all
subsequent rounds when other agents play simple strategies.

Proof. We focus attention on a fixed agent i. Let φC denote the simple strategy in
which agent i cooperates each round, and let φD denote the simple strategy in which agent i
defects each round. Let φF denote the strategy in which the agent defects for one round, then
cooperates on every subsequent round (and is unforgiving and trusting on every round). For
an arbitrary age s and a given strategy φ, write u(φ, kI, kO) for the expected utility, evaluated
at the beginning of round s, of applying strategy φ when KI

s = kI and KO
s = kO, and other

players use simple strategies. To prove the lemma, we must show that u(φC, kI , kO) >
u(φF , kI , kO) whenever kI + kO > 0.

We will first show that u(φC , 0, 0) ≥ u(φF , 0, 0). To see this, note that φD and φF are
identical on their first round of play, and at the end of that first round agent i will have no
links (since other agents apply unforgiving strategies). After that first round, φF proceeds
in the same way as φC. Moreover, since q > 0 is a simple stationary equilibrium, we know
that u(φC , 0, 0) ≥ u(φD, 0, 0). Putting this together, we have

u(φF , 0, 0) − u(φD, 0, 0) = δ(u(φC, 0, 0) − u(φD, 0, 0)) ≤ u(φC, 0, 0) − u(φD, 0, 0)

from which we conclude u(φC, 0, 0) ≥ u(φF , 0, 0).
Write ∆u(φ, kI , kO) for u(φ, kI , kO)− u(φ, 0, 0), the utility gain due to adding kI in-links

and kO out-links to agent i before applying strategy φ. We next show that ∆u(φC , kI , kO) >
∆u(φF , kI , kO) for all kI + kO > 0, which will complete the proof. We note that these
utility gains are additively separable in kI and kO, so that ∆u(φC , kI , kO) = ∆u(φC , kI , 0) +
∆u(φC , 0, kO) and ∆u(φF , kI , kO) = ∆u(φF , kI , 0)+∆u(φF , 0, kO). We will therefore analyze
these gains separately.

Consider first the utility gain due to in-links. We have ∆u(φF , kI , 0) = (1 + a)kI , since
the agent gains (1 + a) from each link and loses them after his first defection. When
applying strategy φC , the gain is ∆u(φC, kI , 0) = kI

1−δ2 . This is so because the coop-
erator gets extra utility for each period of the life of the relationship. We have that
∆u(φC , kI , 0) > ∆u(φF , kI , 0) whenever 1

1−δ2 > 1 + a, which is necessary to sustain co-
operation in a simple stationary equilibrium anyway.

We turn now to out-links, where a fraction kO of the agent’s out-links are already matched
to cooperators, and the remaining out-links will be matched to the population at random.
For strategy φF , ∆u(φF , 0, kO) = (1 + a)(1 − q)kO. To see this, note that the increase in
the number of out-links to cooperators is kO + (1 − kO)q − q = (1 − q)kO, and this gain

is realized for exactly one period. For cooperators, ∆u(φC , 0, kO) = (1+b)(1−q)kO

1−(1−q)δ2 . To see
this, notice that per interaction, a cooperator gains 1 + b from interacting with a cooperator
rather than a defector, and as discussed above the node gains (1 − q)kO extra out-links to
cooperators. Finally, for a given outlink this gain is maintained as long as the node survives
(probability δ), its cooperate partner survives (probability δ), and the outlink of the node in
the scenario without the initial kO cooperate outlinks is to a defector (probability (1 − q)).

19



These events happen independently and hence have a total probability of δ2(1− q) yielding
the above formula. Thus ∆u(φC , 0, kO) > ∆u(φF , 0, kO) precisely when the consistency
inequality holds, completing the proof. �

The condition in Lemma 1 guarantees that, as a node obtains more in-links or out-
links with cooperators, the gain from those relationships is higher to a cooperator than to
a defector. Thus, a node that found it optimal to cooperate at birth necessarily finds it
optimal to cooperate at any future point in its lifetime.

4.3 Accepting links

We next address the norm that each agent, whether cooperator or defector, initially accepts
every proposed inlink. For a defector, this behavior is strictly dominant whenever q > 0
(and weakly dominant when q = 0), since defectors necessarily obtain non-negative utility
from any relationship. For cooperators, however, the rationality of this norm is not obvious,
since they receive a negative payoff if they accept an inlink initiated by a defector. One
might imagine a scenario in which there are many defectors in the population so that a
proposed inlink is likely to have come from a defecting agent. In such a case, it may be
that a cooperator suffers an expected utility loss from accepting an incoming link, and hence
should refuse all inlinks. Of course, such decisions would have a severe impact on the network,
as they prevent the formation of any profitable relationships, which are necessary to have any
hope of sustaining cooperation in equilibrium. With this in mind, we wish to characterize
the circumstances in which a cooperator’s expected utility of a new inlink is positive at a
given steady-state Lq.

Recall from Proposition 1 that we have a simple stationary equilibrium at q = 0 and
possibly q = 1, depending on parameter values. However, the issue of accepting inlinks is
not interesting in these cases, as either there are no cooperators to deviate from the norm
(when q = 0), or the utility of accepting inlinks is trivially positive (when q = 1). We
therefore focus on interior simple stationary equilibria.

We demonstrate that, whenever the trusting condition is satisfied at q, a cooperator has
strictly positive expected utility from accepting an inlink. That is, all best responses at a
simple stationary equilibrium involve agents accepting all inlinks.

Lemma 2 Suppose that q ∈ (0, 1] is a simple stationary equilibrium, the trusting inequal-
ity is satisfied, and that agents apply consistent strategies. Then, for any proposed link, a
cooperator has strictly positive expected utility for accepting the link.

Proof. Given that agents apply consistent strategies, recall from Section 3 that the expected
utility of accepting a proposed link is proportional to rC − b ∗ rD. The result therefore holds
if and only if rC − b ∗ rD > 0, which is equivalent to b < q

(1−q)(1−(1−q)δ2)
, as required. �

We remark that the act of re-matching an outlink upon the end of a previous relationship
is built into the model. However, were this to become an endogenous choice, it would
be strictly optimal to re-match an outlink immediately whenever the trusting condition is
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satisfied. This is true because the probability of an outlink reaching a cooperator is q,
whereas the probability that a new inlink comes from a cooperator is less than q, due to the
fact that defectors send more outlinks per period than cooperators.

4.4 Equilibria with Unrestricted Behavior

We are now ready to complete the proofs of Theorem 1 and Theorem 2.

Theorem 1 Suppose that q ∈ [0, 1] is a simple stationary equilibrium, and that the consis-
tency and trusting inequalities are satisfied. Then there is an equilibrium such that if the
system is in state Lq, all agents apply actions that are consistent, trusting, and unforgiving
on the equilibrium path. Moreover, q is a stationary level of cooperation under this strategy.

Proof. We shall construct a symmetric equilibrium with the required properties. Recall
that a formal definition of equilibrium appears in Appendix 7, but speaking briefly we require
a strategy φ∗ and a system of beliefs β∗ about the state of the network, such that φ∗ maximizes
expected utility at all continuations given beliefs β∗, and β∗ is consistent with observations
under the assumption that other players apply strategy φ∗.

The strategy φ∗ is as follows. First, if on any round an agent observes a fraction of
cooperation other than q, the agent will choose to accept all proposed links, defect that
round, and to break all links with observed defectors at the end of the round. Note that this
behavior is optimal given that q is publicly observed and other agents also play according
to φ∗, since these behaviors are optimal given the belief that all other agents will defect.
Otherwise, if the observed fraction of cooperation is q, the agent will behave in accordance
with Assumptions 1-3. On the agent’s first round, upon observing the state q, he chooses to
cooperate with probability q, otherwise he chooses to defect.

The associated belief system β∗ is straightforward. At birth, the agent believes that the
system begins in state Lq. The agent will continue to believe that the system is in steady-
state Lq as long as the observed fraction of cooperation is q. Once a fraction of cooperation
other than q is observed, the agent will believe that any other agent also alive on that round
also observed this non-q fraction of cooperation, and will therefore defect on subsequent
rounds. Note that we have not provided a full characterization of an agent’s belief about the
state of the network, but the properties discussed are sufficient to determine whether or not
φ∗ is an optimal strategy.

We note that φ∗ satisfies the property that agents behave in accordance with Assumptions
1-3 in state Lq, and that q is a stationary level of cooperation under this strategy. It remains
to show that applying strategy φ∗ is optimal given that the observed fraction of cooperation
is q and other agents play according to φ∗. Note first that, under the assumption that the
system begins in state Lq and other agents play according to φ∗, it is consistent to believe
that the system is in state Lq given that the observed fraction of cooperation is q. It is
therefore sufficient to demonstrate that φ∗ is optimal assuming the state of the system is Lq.
Thus, for the remainder of the proof, we will assume that the system remains in state Lq at
all times and describe our strategies only for this case.
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We focus attention on a particular agent i. Write u(φ) for the expected lifetime utility of
agent i when applying strategy φ. Let φopt denote a strategy that maximizes expected utility
against the profile of all agents playing φ∗ in state Lq, and suppose for contradiction that
u(φopt) > u(φ∗). Let φC denote the trusting, unforgiving and consistent strategy in which
the agent chooses cooperation at birth, and let φD denote the similar strategy in which the
agent chooses defection.

Note first that if q = 0, then no strategy obtains positive expected utility; thus strategy
φ∗ = φD is optimal, since in this case u(φD) = 0. We therefore assume q > 0 for the
remainder of the proof.

As discussed in Section 4.1, we know that every optimal strategy breaks a link if and
only if a defection is observed on that link. In particular, φopt must satisfy this property.

For all r ≥ 1, define the random variable Tr as the age at which φopt prescribes that
agent i defect for the r’th time. We then define strategy φr

D as the strategy in which agent
i follows φopt up to and including round Tr, after which point he behaves according to φC .
Note that φr

D is a well-defined strategy, since random variable Tr defines a stopping time. We
also define strategy φr

C as the strategy in which agent i follows φopt up until round Tr, but
on round Tr and all subsequent rounds he behaves according to φC . Note that φr

C and φr
D

differ only on their actions on round Tr, in which φr
C specifies cooperation and φr

D specifies
defection. Finally, for notational convenience we will define φ0

D = φ0
C = φC .

We first claim that u(φr
C) ≥ u(φr

D) for all r ≥ 1. Strategies φr
C and φr

D are identical until
round Tr, at which point φr

C proceeds to cooperate on every subsequent round, whereas φr
D

defects for a single round and then cooperates thereafter. Lemma 1 therefore implies that
u(φr

C) ≥ u(φr
D), as agent i maximizes utility by cooperating on round Tr regardless of the

configuration of incoming and outgoing links on round Tr.
We next claim that u(φr−1

D ) ≥ u(φr
C) for all r ≥ 1. Strategies φr−1

D and φr
C are identical

until round Tr−1, after which both strategies prescribe cooperation on each turn, but φr
C does

not necessarily accept every proposed inlink. However, Lemma 2 implies that it is optimal
to accept proposed links when perpetually cooperating, and thus u(φr−1

D ) ≥ u(φr
C).

Combining these two claims, we have that u(φr−1
D ) ≥ u(φr

D) for all r ≥ 1. But φ0
D = φC ,

and limr→∞ u(φr
D) = u(φopt) (noting that the limit must exist since utilities are time-

discounted). We therefore conclude u(φ∗) ≥ u(φC) ≥ u(φopt), which is the desired con-
tradiction. �

Theorem 2 now follows easily.

Theorem 2 Suppose that agents play only consistent strategies. If there exists an equilib-
rium under which q ∈ [0, 1] is a stationary level of cooperation, and the trusting inequality is
satisfied at q, then q must be a simple stationary equilibrium.

Proof. Assume that all agents behave consistently, and that their strategies form a
equilibrium with a steady-state at q. Then, as discussed in Section 4.1, all optimal strategies
must involve breaking links if and only if a defection is observed on that link. Additionally,
Lemma 2 implies that all optimal strategies must accept all proposed links. We conclude that
all optimal strategies are trusting and unforgiving, so these must be the behaviors that arise

22



at equilibrium. Moreover, it must then be that q is a simple stationary equilibrium, since it
is a steady-state under an equilibrium of consistent, trusting, and unforgiving strategies. �

4.5 Remarks on Parameter Conditions

We now discuss the trusting inequality and the consistency inequality in more detail. It is
easy to verify that the two conditions are independent in the space of paramters (a, b, δ).
We begin by providing simple sufficient conditions that imply these inequalities. Then, we
discuss the implications for behavior when the conditions are (separately) relaxed.

The consistency inequality is always satisfied when b ≥ a.

Proposition 3 If b ≥ a, then the consistency inequality is satisfied for all q ∈ [0, 1].

Proof. Trivial. �

Next, any simple stationary equilibrium with q > 2/3 satisfies the trusting inequality.

Proposition 4 If q > 2/3 is a simple stationary equilibrium, then the trusting inequality is
satisfied at q.

Proof. We note first that the trusting inequality is trivial when q = 1, so suppose q < 1. If
q > 2

3
, then q

(1−q)(1−(1−q)δ2)
≥ q

1−q
≥ 2. Furthermore, Proposition 1 implies that b ≤ 2 (either

directly, if a > 1, or from the fact that b < a(1 + a) < 2 if a < 1). Thus b ≤ q

(1−q)(1−(1−q)δ2)

as required. �

Our next result is that, if a < 1, then every simple stationary equilibrium q > 0 satisfies
the trusting inequality. In other words, if the temptation to defect is not too large, then
rational cooperators will choose to be trusting at equilibrium, regardless of the number of
defectors in the population.

Proposition 5 Suppose that a < 1 and that q > 0 is a simple stationary equilibrium. Then
a cooperator obtains positive expected utility from accepting a proposed link.

Proof. Fix a and b and choose δ such that a positive simple stationary equilibrium q exists.
As in Proposition 4, it suffices to show that b < q

(1−q)(1−(1−q)δ2)
.

We note first that the result is trivial when q = 1 (as cooperators can obtain only non-
negative expected utility from any interaction), so suppose q < 1. Since a < 1, Proposition
1 implies that b < a(1 + a), and hence b < 2a and b < 1 + a. Recall from the proof of
Proposition 1 that at a simple stationary equilibrium we have

δ2 =
2(aq + b(1 − q))

(2 − q)((1 + a)q + b(1 − q))
. (3)

Define Z(q; a, b) by

Z(q; a, b) :=
(2 − q)((1 + a)q + b(1 − q))

(1 − q)(2 − q + aq + b(1 − q))
.
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Substituting (3), it can be verified that q

(1−q)(1−(1−q)δ2)
= Z(q; a, b). It therefore suffices to

show that b < Z(q; a, b) at all internal SSE.
We first claim that Z(q; a, b) is increasing as a function of q. This follows immediately

from the following expression for the derivative of Z with respect to q,

∂Z(q; a, b)

∂q
=

q

(1 − q)2
+

4a − 2b

(2 − q + aq + b(1 − q))2
,

which is non-negative since b < 2a. Let q∗min denote the smallest positive simple stationary
equilibrium, over all possible choices of δ. Since Z(q; a, b) is increasing in q, it is sufficient to
show that b < Z(a, b, q∗min).

We next derive an expression for q∗min. Recall from the proof of Proposition 1 that
δ∗(q; a, b), which relates δ to q at simple stationary equilibrium, is concave and single-peaked
in the range (0, 1). Furthermore, whenever there exist 0 < q < q < 1 such that δ =
δ∗(q; a, b) = δ∗(q; a, b), q is a stable simple stationary equilibrium and q is an unstable simple
stationary equilibrium. Thus q∗min is precisely the value of q at which δ∗(q; a, b) achieves its

minimum on [0, 1]. Solving ∂δ∗(q;a,b)
∂q

= 0 for q, we obtain the pair of solutions

q =
−b ±

√

b(2a−b)
1+a−b

a − b
.

Write r(a, b) :=
√

b(2a−b)
1+a−b

. Using the facts that a < 1 and b < a(1+ a), it is a simple exercise

to show that −b+r(a,b)
a−b

∈ [0, 1] and −b−r(a,b)
a−b

6∈ [0, 1]. We conclude that

q∗min =
−b + r(a, b)

a − b
.

Substition and simplification then yields

Z(q∗min; a, b) =
b(2(1 + a) − b)2

L(a, b)

where

L(a, b) = 2(1 + a)2r(a, b) − (1 + a)b(2(1 − a) + r(a, b)) + b2(r(a, b) − (1 + a)).

Thus, to show that b < Z(q∗min; a, b), it suffices to show

(2(1 + a) − b)2 > 4(1 + a)2

(

r(a, b)

2

)

− 4(1 + a)b

(

2(1 − a) + r(a, b)

4

)

+ b2(r(a, b) − (1 + a)).
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We derive this inequality with the help of the following claim:
Claim: For all a < 1 and b < a(1 + a), it must be that r(a, b) < 2 and r(a, b) < 1 + a.
To prove the claim, we note that for fixed a, r(a, b) attains its maximum at b = 1 +

a ±
√

1 − a2. Since b < 1 + a, the admissible solution is b = 1 + a −
√

1 − a2, which yields

r(a, b) =
√

2 − 2
√

1 − a2 < 2
√

a. But 2
√

a < 2 since a < 1, and moreover 2
√

a < 1 + a by
considering the fact that (1 − √

a)2 ≥ 0. Thus r(a, b) < 2 and r(a, b) < 1 + a as required,
completing the proof of the claim.

Our claim immediately implies that r(a,b)
2

< 1, r(a, b) − (1 + a) < 1, and 2(1−a)+r(a,b)
4

∈
(0, 1). Taking

λ = max

{

r(a, b)

2
, r(a, b) − (1 + a),

2(1 − a) + r(a, b)

4

}

,

we conclude that

4(1 + a)2
(

r(a,b)
2

)

−4(1 + a)b
(

2(1−a)+r(a,b)
4

)

+b2(r(a, b) − (1 + a))

≤ 4(1 + a)2λ − 4(1 + a)bλ + b2λ

= λ(2(1 + a) − b)2

< (2(1 + a) − b)2,

completing the proof. �

Finally, we note that Proposition 5 is tight, in that it fails to hold when we remove
the assumption that a < 1. Indeed, for any given a > 1, there exists a simple stationary
equilibrium at which rational cooperators would choose to reject in-links. This follows from
the observation that, when a > 1, a simple stationary equilibrium q > 0 exists for any b < 2
and δ < 1; however, as b → 2 and δ → 1, the value of q at this simple stationary equilibrium
becomes arbitrarily small. The quantity q

(1−q)(1−(1−q)δ2)
from Proposition 4 can then be made

arbitrarily close to 1, and hence less than b.
In summary, the norm that cooperators accept all in-links is without loss for rational

agents at a simple stationary equilibrium whenever there are sufficiently many cooperators
in the network. If a < 1, it turns out that any simple stationary equilibrium must have
enough cooperators to motivate that acceptance of in-links. For the case of a > 1, there
exist simple stationary equilibria with arbitrarily few cooperators, and hence there are choices
of parameters for which rational agents would choose not to accept incoming links.

5 Additional Behaviors

We have discussed equilibria of the system subject to the consistency and trusting inequal-
ities. In this section we consider the nature of behavior when the consistency inequality is
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violated. Proposition 3 states that the consistency inequality is always satisfied when b ≥ a.
Thus, the only possibility for profitable deviation occurs when a − 1 < b < a.

Recall that we model a situation where an agent chooses one action in each period, and
plays that action with each of his current partners. However, isolating the incentives from
each relationship shows that a tension can arise in which an agent might prefer one action for
some partners and one action for others. The proof of Lemma 1 shows that the consistency
inequality implies that an agent with an existing out-link to a cooperator gains more utility
from that relationship by cooperating than by defecting and forming a new relationship. If
the consistency condition is violated, this no longer holds, and it would be profitable for an
agent to defect in a relationship that she herself sponsors. However, again recalling the proof
of Lemma 1, an agent always gains more utility from a relationship sponsored by another
cooperator by cooperating than by defecting, provided the other agent is consistent. Thus,
when the consistency condition is violated an agent would prefer to cooperate with in-link
neighbors, but defect with out-link neighbors.

We conclude that the incentive to defect is strongest when the number of out-links to
cooperators is high relative to the number of in-links from cooperators. Roughly speaking,
it is better to defect when one’s cooperating partners come from out-links, since those are
the ones that are easier to replace.

When the consistency inequality is violated, a cooperator has a profitable deviation when
the ratio of his out-links with cooperators to his in-links from cooperators is sufficiently high.
Define this ratio to be R̄ = kO/kI . We note that under expected conditions, this ratio will not
become large enough to rationalize a deviation. However, since agents maintain only a finite
number of links, cooperators will reach a state that gives them a profitable deviation with
positive probability. This happens to an agent, for instance, whenever all the cooperators
maintaining links to him die simultaneously. In practice, these situations have significant
probability only very early in the life of a cooperator, before it has had time to build a large
network of in-links.

Proposition 6 Assume that q is a simple stationary equilibrium. Assume that the trusting
inequality is satisfied at q and the consistency inequality is violated at q. Then a cooperator
has a profitable inconsistent deviation if and only if

R̄

[

(1 + a) − 1 + b

1 − (1 − q)δ2

]

>
1

1 − δ2
− (1 + a).

Proof. If the right hand side is negative, then defection dominates cooperation and the
only simple stationary equilibrium is q = 0, so assume otherwise. Then, the right hand side
is the extra gain that a cooperator realizes from an in-link with a cooperator relative to
the gain a defector realizes. The term in brackets is the extra gain a defector realizes from
an out-link to a cooperator relative to the gain a cooperator realizes, which is positive by
assumption. Then the result simply expresses that when the ratio of out-links to in-links is
high enough, the net gain to defection is positive. �

We note the following corollary. Suppose q is a simple stationary equilibrium, the trust-
ing condition holds at q, and agents apply strategies that are unforgiving, trusting, and
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consistent. Then a best response by an agent i is the following “threshold” strategy: agent
i will be unforgiving, trusting, and consistent, with the exception that if, on any round, R̄
becomes larger than the threshold described in Proposition 6, the agent will defect on that
round and restart the strategy on the following round.

What can we say about a setting in which all agents apply such a threshold strategy?9

Note that as δ becomes large, the requisite threshold on R̄ for profitable deviation increases
without bound. Thus, in the limit, deviation is profitable only in cases where a node has
no incoming links. Furthermore, due to the law of large numbers, the probability of any
agent having no incoming links decreases exponentially with the number of links sponsered
by each agent, K. Thus, for large values of δ, and K not too small, the difference in expected
utility due to all agents applying threshold strategies (rather than consistent strategies) will
be negligible. We therefore expect to find an ǫ-equilibrium of behavior in which all agents
apply threshold strategies, using the threshold from Proposition 6.

One final observation about the threshold strategy is that, heuristically speaking, we
cannot think of an agent as “setting out to exploit” relationships that are built up by virtue
of cooperative behavior. Indeed, once an agent has built up social captial in the form of
incoming links, he will strictly prefer to be cooperative in those relationships. However, if
an agent’s network becomes extremely poor due to the randomness inherent in the model,
then the penalty for defection becomes weak enough that he may as well defect and restart
the process of building capital in the subsequent round. In short, deviation from consistency
arises from a lack of social ties, rather than premeditated exploitation of cooperators.

6 Conclusion

We have developed a model of interactions in an anonymous community with changing sets
of partners. The class of simple strategies, which are unforgiving, trusting and consistent,
provides the foundation for the first part of our analysis. Under simple strategies, we fully
characterize stationary equilibria of the system. Full cooperation is sustainable for a non-
trivial range of parameters, but not always. For some parameter choices, the presence of
non-cooperative behavior in an anonymous system is unavoidable. We believe this captures
an important feature of a number of applications.

Full cooperation requires not only that players are sufficiently patient, but also that
the temptation payoff for defecting not be too large. When these conditions are not met,
there necessarily exists some level of defection in society. The presence of defectors causes
relationships among cooperators to be viewed as a scarce and valuable resource, which we
identify as a form of social capital. This key mechanism, as well as its implications, are in
sharp contrast to other models which focus on supporting only full cooperation, and have
no natural way of describing a distinction between cooperators and defectors.

As it turns out, the characterization of steady-states under simple behavior, simple sta-
tionary equilibria, says a lot about outcomes in a more general setting where behavior is

9We give only an informal response to this question in this preliminary working paper. A formal descrip-
tion and analysis will appear in a forthcoming version of this manuscript.
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not restricted to the class of simple strategies. This demonstrates that the simple behavior
we focus on can be self-enforcing, in that it constitutes equilibrium behvaior more generally.
In particular, under appropriate conditions, every simple stationary equilibrium has a cor-
responding equilibrium that supports simple behavior on the equilibrium pathand the same
steady-state level of cooperation. Moreover, if an equilibrium with consistent behavior has
a stationary level of cooperation, then that level of cooperation must be that of a simple
stationary equilibrium.

We identify aspects of best responses when parameters are such that the conclusions
regarding equilibrium fail. First, we demonstrate the optimality of a “rob the bank” strategy,
in which a player cooperates initially, only to defect under a particular circumstance, burning
their social capital. Notably, this behavior occurs reactively in response to a type of social
empoverishment, and a cooperator never expects to find it optimal to carry out such a
strategy ex ante. Finally, we are currently completing a result that exhibits an equilibrium
with “exclusivity”, i.e. where cooperators accept inlinks with some probability p.

7 Appendix A: formal development of the model

The model described in this paper is relatively complex, incorporating a changing set of
players, a very large state space that is almost entirely unobserved by each individual player,
and various sources of randomness. In the main text of this manuscript, we approached this
model by handling the notions of strategies, equilibria, and beliefs in an informal manner.
In this appendix we redescribe these concepts more formally, which will allow us to state the
results more precisely.

7.1 Histories and Actions

The strategy of an agent is a mapping from its (private) history to (a probability distribution
over) actions. The history encodes all the information the node has acquired during its life.
In particular, the history of an agent contains its observation of q at each point during its
life, all of its past actions, and the actions of each of its partners over time, together with
how and when those relationships were initiated and ended. The action space is a choice of
C or D, together with whether or not to sever any existing relationships and accept any new
proposed links. We now develop these elements more formally.

The set of agents is the unit interval N = [0, 1]. Whenever an agent dies, it is replaced
by an agent who takes the same name. We focus on an arbitrary agent i. Denote the age of
i by s. In the period when i is born, s = 0; s increments by one in each subsequent round
in which i remains alive. At each point in time, i observes the value of q determined by the
choices at the previous round. Define qs to be the proportion of cooperators that i observes
in the round when i is age s. At each s, i chooses an αi ∈ {C, D}. For each partner j that
i has at age s, the vector βs

j = {αs
j , d

s
j, e

s
ji, e

s
ij} defines the action that j takes, and whether

and, if so, how the link was terminated in that round. The variable ds
j equals 1 if j dies (0
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otherwise), and the variables es
ji and es

ij record whether j or i respectively chooses to sever
the link (a value of 1 corresponds to severing, 0 to not severing).

The collection of i’s partners is recorded in two lists. The outlinks of agent i at age s
are stored in a vector Outs

i of length K. If i’s k’th outlink at age s is to agent j, then
the k’th element of this array is βs

j . Due to anonymity, though, i does not know the value
of j, but only the values of the elements in βs

j . The inlinks of agent i require a bit more
notation since there is not a fixed number of them. To account for this, we define a vector Ins

i

representing the state of all current and past inlinks of agent i at age s. The k’th component
of this list records information pertaining to the k’th inlink proposed to agent i over his life.
Initially, Ins

i is empty. When agent i at age s receives a proposal for an inlink from agent j,
it updates Ins

i as follows: if the link is accepted it appends βs
j to Ins

i ; if the proposed inlink
is rejected outright, then we append a special symbol REJECT to Ins

i . After actions are
realized, agent i updates each βs

j in Ins
i appropriately. We define the size of list Ins

i , denoted
by |Ins

i | to be the number of active links contained in the list, i.e., the number of components
of Ins

i for which ds
j = es

ji = es
ij = 0.10 Again, it is important that i not know the values of

j corresponding to the various inlinks in Ins
i . Finally, denote by Ls

i the number of inlinks
proposed to i in round s.

The information that i collects from the round in which he is age s is

hs
i = {qs, αs

i , L
s
i , Outs

i , In
s
i}.

The (private) history of i at age s is the vector Hs
i = {h0

i , . . . , h
s
i}. In a valid history it must

be the case that the length of the list Ins
i grows monotonically with s and that if the k’th

component of Ins
i is either REJECT or a βs

j indicating a link termination (i.e., either ds
j , es

ji,
or es

ij equals 1), then this component remains constant for the remainder of i’s lifetime (i.e.,
for all t > s, the k’th component of Int

i equals the k’th component of Ins
i ). Denote the space

of feasible age-s histories for i by Hs
i . The set of all histories for i is then Hi = ∪sHs

i .
At each round, i takes three separate actions: (i) the choice of αi, (ii) the acceptance or

rejection of proposed inlinks, and (iii) the severance or continuation of each active link. The
(history dependent) action set of i at age s is As

i (H
s
i ) = [0, 1] × [0, 1]L

s
i × [0, 1]K+|Ins

i
|, with

the interpretation that the first element specifies the probability that i chooses C at age s,
the second element specifies the probability of accepting each proposed inlink, and the final
element specifies the probability that i severs a link to each of his partners.

Let As
i = ∪Hs

i
∈Hs

i
As

i (H
s
i ) denote the set of all age-s action sets, and let Ai denote the

space of all action sets for i.
A strategy for i is a mapping φi : Hi → Ai, with the restriction that φi(H

s
i ) ∈ As

i (H
s
i ) for

all Hs
i ∈ Hi. When i makes the choice of αs

i , he has all the information in Hs−1
i as well as qs,

but he has not observed the remainder of hs
i . Similarly, when i makes his choice of accepting

inlinks, he observes hs−1
i and (qs, αs

i , L
s
i ), but nothing else from round s. Last, when i makes

the choice of severing active links, he has observed, additionally, the actions {αs
j} in round

10Note that one can analogously define the size of Outs
i
; however as agents always replace outlink partners

instantaneously, |Outs

i
| = K for all i and s.
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s of each of his active partners. We place the associated restrictions on strategies, so that
actions depend only on the information observed at each of these times within a round.

Notice that, implicit in the construction of strategies is the Markovian property that,
while actions generally depend on the age of an agent, they cannot be conditioned explicitly
on time.

7.2 Equilibria

Recall that, in our definition of histories and actions, a single round involves a sequence of
action choices to be resolved by an agent, where incremental observations are made between
each choice. We then ensured that a strategy can use only the “currently available” informa-
tion from the latest round of a history when defining action choices. While consistent with
our informal game description, this point of view is notationally cumbersome. A change of
variables would allow us to consider each step of a round as a separate information set, in
which case a strategy is a mapping from histories to actions without restrictions. We will
proceed with our discussion under this change, with the understanding that our notion of a
history, strategy, etc. are fully equivalent to those developed in the previous section. Notice
that Hi = H∗ and Ai = A∗ for all i ∈ N .

A state of the world ω is a directed graph with (labeled) vertex set N = [0, 1], plus a
history for each vertex. A state represents the links between players in a given round, along
with each of their past observations. We write Ω for the set of all possible states of the
world. In general, given any set S, we will write ∆(S) for the set of probability distributions
over S.

A belief for agent i is a function βi : H∗ → ∆(Ω) that maps each observed history to
a distribution over possible world states. We interpret βi(Hi) as capturing agent i’s beliefs
about the state of the world given a sequence of observations.

We focus on strategy and belief profiles that are symmetric across agents, i.e., there is
some strategy φ and belief β such that φi = φ and βi = β for all i ∈ N .

Our goal is to define a notion of a symmetric equilibrium, which will be a pair (φ, β)
that satisfies certain properties. Informally, we wish for the following: at all valid histories φ
maximizes expected utility given β when other agents apply φ; β is consistent with an agent’s
observations and with the belief that all agents apply strategy φ; and, when faced with an
unexpected history, β maps to a limit point of beliefs under a vanishing error probability.
We now describe each of these desiderata in more detail.

We write ui(h̄i) for the expected continuation utility obtained by agent i, where h̄i denotes
a distribution over future histories that i will observe. Note that h̄i captures any dependency
on the strategy employed by agent i, as it is a distribution over future observations. Given
strategies φ, φ′

i and state ω, we write hφ
i (φ

′
i, ω) ∈ ∆(H∗) for the distribution over all future

histories that will be observed by agent i when agent i applies strategy φ′
i and all other

agents apply strategy φ, starting from state ω. We extend hφ
i to accept a distribution over

states in the natural way. We then say that φ is optimal under belief β if, for all Hi ∈ H∗,

φ ∈ arg max
φ′

i

{ui(h
φ
i (φ

′
i, β(Hi)))}.
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That is, for every history Hi, φ maximizes the expected utility of agent i given the distribution
β(Hi) over states, under the assumption that other agents apply strategy φ. We also say
that φ is δ-approximately optimal if for all Hi ∈ H∗, ui(h

φ
i (φ, β(Hi))) ≥ ui(h

φ
i (φ′

i, β(Hi)))−δ
for all alternative strategies φ′

i.
Given φ, we now define the progression function P φ : ∆(Ω) → ∆(Ω). Given σ ∈ ∆(Ω),

P φ(σ) is the distribution over states that results when all agents apply strategy φ for one
round, starting from a state drawn from σ. Note that the resulting distribution is taken
over randomness in strategy φ and the randomness inherent in the model, i.e. the death and
matching processes. We next add the effects of an agent’s observations to this distribution:
given a distribution σ ∈ ∆(Ω) over states, an agent i, and an observation hi from a single
round, we define P φ(σ, hi) to be the distribution over states that results after resolving a
single round of play under φ, starting at a state drawn from σ, given that agent i observes hi

in that round. Note that this distribution is well-defined: one can consider the probability
of observing hi given each possible state and apply Bayes’ rule.

We say that β is consistent with strategy φ if, for all i, s, Hs−1
i and hs

i ,

β(Hs
i ) = P φ(β(Hs−1

i ), hs
i ).

Observe that the requirement that β be consistent with strategy φ does not impose any
restrictions on beliefs upon observation of a history that is inconsistent with φ. Thus, if this
condition is taken to be sufficient for characterizing permissible equilibrium of beliefs, we have
the undesirable feature that beliefs and, hence, behavior, is not appropriately restricted off
the equilibrium path. This motivates us to require a form of perfection. Given an unexpected
history Hi that has zero probability under φ, we would like (informally speaking) for agents
to place belief in a minimal number of deviations from φ that yield a state consistent with
Hi. To achieve this property formally, we will require not only that β be consistent with the
application of strategy φ by all agents, but also that it maps to a limit point of beliefs under
a vanishing trembling probability on actions.

We now formalize the intuition described above. Given any strategy φ and any ǫ ≥ 0,
the ǫ-perturbation of φ is the strategy φǫ that, independently for each action, follows φ with
probability 1−ǫ, and with the remaining probability chooses an action uniformly at random.
We say that β is robustly consistent with φ if

• β is consistent with φ,

• for all ǫ > 0, there exists belief βǫ such that βǫ is consistent with φǫ, and

• limǫ→0 ||βǫ − β||TV = 0 where || · ||TV denotes total variation distance.

Note that if φ is optimal given β, and β is robustly consistent with φ, then (taking βǫ as
in the definition of robust consistency) φǫ must be δ-approximately optimal for βǫ, where
δ → 0 as ǫ → 0.

We are now ready to define our equilibrium concept. We say that (φ, β) is an equilibrium
if φ is optimal given β, and β is robustly consistent with φ. Note that such an equilibrium
always exists. For example, the φ that maps every history to “always defect” (formally, using
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the notation from the previous section, for all Hs
i ∈ Hs

i , φ(Hs
i ) = 0 × [1]L

s
i × [1]K+|Ins

i
|), is a

trivial equilibrium.
Theorem 1 demonstrates that there exists an equilibrium in which agents apply strategies

of a particular form, as described informally in Section 3. We can now formally define this
class of strategies.

• An agent is unforgiving if for every feasible history, φi sets es
ij = 1 whenever βs

j ∈
Outs

i ∪ Ins
i , αs

j = D.

• An agent is trusting if for every feasible history φi sets es
ij = 0 whenever βs

j ∈ Outs
i ∪Ins

i ,
αs

j = C, and all proposed inlinks are accepted (i.e., REJECT 6∈ Ins
i ).

• An agent is consistent if for every feasible history φi sets αs
i = αs−1

i for all s > 0.

We can now discuss the equilibrium from Theorem 1 in more detail. This equilibrium
(φ, β) has the following properties:

• The support of β(∅) (that is, an agent’s beliefs before any observations are made) is
contained in Lq, the subset of states consistent with agents applying strategy φ for an
arbitrarily long sequence of rounds.

• For any history H in which the observed fraction of cooperation is q on every round,
the support of β(H) is contained in Lq (by consistency).

• For any history H in which the observed fraction of cooperation is not q on some
round, belief β(H) will be consistent with the appropriate fraction of the population
erroneously changing their action from cooperation to defection on that round (by
robust consistency).

Suppose that, in this equilibrium (φ, β), agent i observes a fraction of cooperation other than
q on some round, say age s. Then, according to β, i believes that any other agents who were
playing on round s also observed the change in q. Then, under strategy φ, all of these agents
will defect on every subsequent round, leading to a state in which every agent defects every
round (since the total fraction of cooperation must fall below q, which will be observed by
all new agents). This rationalizes the decision for agent i to defect on every round after s.
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