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In his seminal contribution, Tirole (1985) shows that an overlapping

generations economy may monotonically converge to a steady state with a

positive rational bubble, characterized by the dynamically efficient golden

rule. The issue we address is whether this monotonic convergence to an

efficient long-run equilibrium may fail, while the economy experiences per-

sistent endogenous fluctuations around the golden rule. Our explanation

leads on the features of the credit market. We consider a simple over-

lapping generations model with three assets: money, capital and an asset

paper, which behaves as a bubble. Collaterals matter because increasing

the amount of capital and asset paper in the portfolio, the household re-

duces the share of consumption paid in cash. From a positive point of

view, we show that the bubbly steady state can be locally indeterminate

under arbitrarily small credit market imperfections and, thereby, persis-

tent expectation-driven fluctuations of equilibria with (rational) bubbles

can arise. From a normative point of view, monetary policies that are

not too expansive are recommended in order to rule out the occurrence

of sunspot fluctuations and enhance the welfare evaluated at the steady
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1 Introduction

" [...] Clearly, sustained low inflation implies less uncertainty about the future,

and lower risk premiums imply higher prices of stocks and other earning assets.

We can see that in the inverse relationship exhibited by price/earnings ratios

and the rate of inflation in the past. But how do we know when irrational

exuberance has unduly escalated asset values, which then become subject to

unexpected and prolonged contractions as they have in Japan over the past

decade? [...] " A. Greenspan, 1996.

These controversial words by Alan Greenspan, namely "irrational exuber-

ance",1 convey the idea that fluctuations of a bubble come from an irrational

agents’ behavior. These words have driven us to deepen the meaning of exuber-

ance and focus on the existence and persistence of rational instead of irrational

exuberance. In the following, we tackle this issue in a precise sense, by charac-

terizing the existence of persistent expectation-driven fluctuations of a rational

bubble. On the one hand, rational refers to the existence of a bubble and fluc-

tuations under rational expectations; on the other hand, exuberance refers to

the fact that fluctuations come from the volatility of expectations.

Among others, the influential works by Shiller (1981, 1989, 2000), Le Roy and

Porter (1981), Poterba and Summers (1988) have pointed out that asset prices

tend to fluctuate more than their fundamental determinants. For instance, in

his seminal paper, Shiller (1981) shows that the volatility of stock prices is

five times as much as that of real dividends. These contributions provide an

empirical support to be interested in the existence of persistent fluctuations of

a bubble.

A bubble can be defined as the difference between the market price of an

asset and its fundamental value, which is equal to the discounted value of future

dividends. As Tirole (1985), we assume that there exists an asset (paper) with

no fundamental value. Therefore, the asset paper is a bubble as soon as it has

a strictly positive market value.2

Overlapping generations models provide an appropriate general equilibrium

framework to prove the existence of rational bubbles. As shown by Tirole (1982,

1985), bubbles arise because new agents are born at each period and the pop-

ulation size of all generations is infinite.3 In his seminal paper, Tirole (1985)

explains that the existence of a bubbly steady state requires the coexistence of

a dynamically inefficient bubbleless steady state. In addition, he proves that a

unique equilibrium path converges monotonically to the efficient bubbly steady

state.

Since rational exuberance can be interpreted as fluctuations of rational bub-

bles driven by the volatility of expectations, we are interested in showing that

rational bubbles can experience persistent expectation-driven fluctuations in a

1Greenspan was quoted by Robert Shiller, who titled his book, published in 2000, Irrational

Exuberance.
2Notice also that a bubble is not predetermined: its price is strictly positive if the asset

can be resold in the next period.
3 See also Tirole (1990) for an introductory survey.
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dynamic general equilibrium model. Moreover, we emphasize that the occur-

rence of such endogenous fluctuations rests on the features of credit market.

Our work extends the basic overlapping generations model proposed by Ti-

role (1985). Consumers can save not only through productive capital and a

bubble, represented by an asset paper with no fundamental value, but also

through money needed for transactions as a mean of exchange:4 a share of

second-period consumption in a two-period life is paid in cash;5 the rest is fi-

nanced on non-monetary savings or credit (capital and asset paper). We will see

that the portfolio arbitrage between money holding and non-monetary savings

is the main source of fluctuations in our context: this explains why such oscilla-

tions could not occur in the model investigated by Tirole (1985). Moreover, an

additional novel feature of the model is the assumption that the credit share of

consumption purchases grows with the amount of non-monetary savings. This

comes from a simple observation: because of public regulation or banking prac-

tices based on credit market imperfections such as asymmetric informations, a

consumer, who owns more collaterals (capital and asset paper), can increase

his credit opportunities and the corresponding share of consumption. Notice

also that this goes in opposite direction of market distortions: the larger the

collaterals, the lower the rationing degree on credit market.

After proving the existence of a steady state with a positive bubble, we study

the local dynamics. We show that, under a constant credit share, the bubbly

steady state is always determinate, but endogenous cycles of period two can

emerge. Conversely, when collaterals matter and the credit share increases with

non-monetary savings, endogenous cycles not only may arise, but the bubbly

steady state can also be indeterminate. In this case, persistent expectation-

driven fluctuations of the rational bubble occur, founding rational exuberance

on a theoretical ground. It is also worthwhile to notice that these fluctua-

tions appear for arbitrarily small distortions in the credit market.6 As already

suggested, the portfolio arbitrage between money holding and non-monetary

savings is the mechanism giving rise to fluctuations: higher non-monetary sav-

ings result in a higher consumption of old consumers which in turn needs a

larger amount of money balances under a binding cash-in-advance constraint

and a low elasticity of credit share. The increase of money balances will reduce

the share of labor income devoted to non-monetary savings in the next period,

which explains the existence of non-monotonic paths.

We end the analysis by highlighting some implications of monetary policy.

We show that, under a rate of money growth which is not too large, a less

4 In our model, in contrast to several contributions (among the others, Michel and Wigniolle

(2003, 2005) and Weil (1987)), the bubble does not take the form of real money balances. On

the one hand, real balances are valued because of their liquidity services and we focus on

equilibria where the cash-in-advance constraint is binding. On the other hand, the bubble is

a positive-priced asset paper without fundamental value.
5 See, in particular, Hahn and Solow (1995). The interested reader can refer to Crettez et

al. (1999) who present various cash-in-advance constraints in overlapping generations model

with capital accumulation à la Diamond.
6We mean a credit share close to one jointly with a small elasticity of the credit share with

respect to non-monetary savings.
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expansive monetary policy is welfare-enhancing at the steady state. Therefore,

a monetary policy which is not too expansive is highly recommended because it

improves welfare but also rules out indeterminacy.7

This issue of fluctuations of a rational bubble has been addressed in a few

previous works. Weil (1987) shows the existence of sunspot equilibria, where

the bubble can burst with positive probability. However, his analysis is based

on a Markovian transition matrix, where probabilities are exogenous, and is

inappropriate to explain persistent fluctuations of the bubble. In Azariadis and

Reichlin (1996), endogenous fluctuations of the bubble (a debt in their model)

may occur through a Hopf bifurcation. However, in contrast to our result,

their analysis requires sufficiently large increasing returns,8 i.e. strong market

imperfections. Finally, Michel and Wigniolle (2003, 2005) provide an alternative

history for bubbly fluctuations. Cycles between a bubbly regime (in terms of

real balances) and a regime where the cash-in-advance constraint is binding are

exhibited. Hence, fluctuations occur, but in contrast to our findings, the bubble

does not persist along the whole dynamic path.

The rest of the paper is organized as follows. In Section 2, we present the

model, while, in Section 3, we define the intertemporal equilibrium and study the

steady state with a positive bubble. In Section 4, we show the indeterminacy of

the bubbly steady state. Section 5 is devoted to the analysis of monetary policy.

Section 6 concludes the paper, while many technical details are gathered in the

Appendix.

2 The model

We consider an overlapping generations model with two-period lived households

in discrete time ( = 0 1 +∞) and five goods: labor, capital, a final good,
money and an asset paper.

2.1 Households

At period ,  individuals are born. Every one consumes an amount 1 of final

good and supplies inelastically one unit of labor when young, and consumes 2+1
when old. Population growth is constant,  ≡ +1  0.

In order to ensure the consumption during the retirement age, people save

through a diversified portfolio of nominal balances+1, asset paper +1 (with

nominal interest factor +1) and productive capital +1 (with rental factor

+1).
9 Money demand is rationalized by a cash-in-advance constraint in the

second period of life.

7 Such a policy recommendation is in contrast to Michel and Wigniolle (2005) where a

sufficiently expansive monetary creation avoids fluctuations between a regime with a bubble

and a regime with a binding cash-in-advance constraint.
8 Indeed, the real interest rate has to be increasing in capital.
9We assume a full capital depreciation within a period.
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Preferences are summarized by a Cobb-Douglas utility function in consump-

tion of both periods:

 (1 2+1) ≡ 1
1−2+1 (1)

with  ∈ (0 1).
The representative household of a generation born at time  derives con-

sumption and assets demands (money, asset paper and capital), by maximizing

the utility function (1) under the first and second-period budget constraints:

+1



+
+1



+
+1



+ 1 ≤   +  (2)

2+1 ≤ +1

+1

+ +1
+1

+1

+ +1
+1



(3)

where  denote the price of consumption good,  the real wage and   the

monetary transfers distributed to each young households by the monetary au-

thority.10 In addition, at the second period of life, each consumer faces a cash-

in-advance constraint:

[1−  ()] +12+1 ≤ +1



(4)

where  represents the non-monetary savings:

 ≡ +1



+
+1



When the cash-in-advance constraint is binding, a share 1−  () ∈ (0 1) of
consumption purchases has to be paid cash.11 The remaining part  () can be

paid at the end of the period and denotes the credit share, that is the fraction

of consumption good bought on credit.

In this respect, +1 and +1 can be also viewed as illiquid assets in the

short run. So, holding them, the household can borrow an amount equal to

+1+1 (+1) + +1+1, that he will reimburse at the end of the

period, to finance a share of consumption when old. Even if it is not explicitly

formalized, these assets represent an (in)formal guarantee for lenders against the

risk of borrowers’ default. Moreover, individual non-monetary savings  works

as collateral in order to reduce the need of cash, i.e. the larger the collaterals,

the easier the purchasing on credit.12

10Assuming that monetary transfers are distributed in the first period of life and not in the

second period, we closely follow Michel and Wigniolle (2005). This assumption seems to be

more appropriate to study the role of savings and portfolio choice on dynamics: monetary

transfers in the second period of life negatively affect the amount of individual savings.
11We take in account a criticism addressed to the cash-in-advance literature: money velocity

1 [1−  ()] is endogenous and no longer constant.
12 In fact, we extend the cash-in-advance constraint proposed by Hahn and Solow (1995) to

the case where the share of consumption when old paid by cash depends on non-monetary

savings.
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It is also worth to notice that even if this is not explicitly introduced, the

existence of a cash-in-advance constraint precisely means that, for some levels

of non-monetary savings, consumption by credit has a positive cost. Assume

for simplicity that the budget constraint (3) is binding. Using (4), we get

+1+1 (+1) + +1+1 ≤  () 2+1.

Consider first that the credit share  is constant. The level of credit can

be increased at zero cost as long as the cash-in-advance constraint is not bind-

ing. On the contrary, when this constraint is binding, increasing the share

of consumption by credit is no more possible, i.e. credit has an infinite mar-

ginal cost. When collateral matters (variable  ()), the same happens when

the cash-in-advance constraint is not binding. In contrast, when the cash-in-

advance constraint is binding, holding more non-monetary assets (capital and

asset paper), the household is able to raise (but not indefinitely) the share of

consumption financed by credit. This means that the marginal cost of credit is

no more infinite, but just positive.

The shape of credit share  can be viewed as a restriction due to lenders’ or

sellers’ prudential attitude towards borrowers in presence of asymmetric infor-

mations, but also as a credit market regulation policy, that is a legal constraint

to credit grants in order to ensure borrowers’ solvability.

Assumption 1  () ∈ (0 1) is a continuous function defined on [0+∞), 2
on (0+∞) and increasing (0 () ≥ 0). In addition, we define:

1 () ≡
0 () 
 ()

 2 () ≡
00 () 
0 ()

(5)

 () ≡
01 () 
1 ()

= 1− 1 () + 2 () (6)

We note that when 1 () = 0 and  tends to 1, money is no longer needed

and the credit market distortion disappears. Our framework collapses in the

seminal model by Tirole (1985).

Defining the inflation factor as +1 ≡ +1, we get a no-arbitrage condi-

tion as portfolio choice:

+1 = +1+1 (7)

Introducing the real variables per young agent  ≡  (),  ≡
 () and  ≡ , constraints (2)-(4) write:

+1+1 +  + 1 ≤   +  (8)

2+1 ≤ +1 + +1 (9)

[1−  ()] 2+1 ≤ +1 (10)

where now

 =  (+1 + +1+1) (11)
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Each household maximizes (1) under the budget and cash-in-advance con-

straints (8)-(10), determines an optimal portfolio (+1 ) and an optimal

consumption plan (1 2+1).
13

Let +1 ≡  ( + +1+1) be the ratio of non-monetary saving over

total saving.

Assumption 2 For all  ≥ 0, we assume   1 and

1 () 
1−  ()

 ()

+1

1− +1
(12)

In contrast to Michel and Wigniolle (2003, 2005), we consider only a binding

cash-in-advance constraint.

Lemma 1 Under Assumption 2, constraints (8)-(10) are binding.

Proof. See the Appendix.

In order to ensure the different constraints to be binding, we assume that

money is a dominated asset, that is +1  1+1 or, equivalently, +1  1.

The opportunity cost of holding money, that is the nominal interest rate +1−1,
is supposed to be strictly positive (this is the usual zero lower-bound restriction

of monetary models).

Moreover, inequality (12) puts an upper bound to the credit-share elasticity

1 (). In fact, if collaterals matter too much, people no longer hold money and

the cash-in-advance constraint fails to be binding. Inequality (12) is specific to

our model because of the role of collaterals. Since the right-hand side is strictly

positive, condition (12) is satisfied when the credit share  is constant and the

first-order elasticity 1 is zero. More generally, condition (12) is fulfilled by flex-

ible cash-in-advance, provided that the sensitivity of credit share to collaterals

does not exceed a threshold. In particular, when 1 () is sufficiently close to

zero, a relevant configuration in the dynamic analysis (see below), inequality

(12) is verified at the steady state and in its neighborhood.

Let 
+1 ≡ +1 − 0 () 2+1 and 

+1 ≡ 1+1 − 0 () 2+1. Under
Assumption 2, solving the optimal households’ behavior, we get:

1 (1 2+1)

2 (1 2+1)
=

1

+1


+1

 ()

+1 + [1−  ()]


+1


1

+1
(13)

where the last inequality holds because money is a dominated asset (
+1 


+1).

14 We further note that under a constant credit share ( () = ), equa-

tion (13) rewrites:

1 (1 2+1)

2 (1 2+1)
=

+1

1 + (1− ) (+1 − 1)
13We observe that households are aware of the credit share function and consider its argu-

ment  as a choice variable.
14 Second order conditions are derived in the Appendix. We show that they are satisfied for

2() ≤ 2(1()− 1) or 1() sufficiently low.

7



While the left-hand side is a marginal rate of intertemporal substitution, the

right-hand side would reduce to +1 when  tends to 1, as in the non-monetary

model by Diamond (1965). In the limit case, there is no market distortion.

When   1, money demand entails an opportunity cost which lowers the real

return on portfolio. More precisely, the household has to pay cash 1 −  to

consume an extra-unit when old. The interest rate +1 − 1 on the cash hold-
ing entails an opportunity cost (1− ) (+1 − 1) which reduces the purchasing
power of non-monetary saving. Further, when the credit share depends on col-

laterals, the marginal impact of savings on the credit share (0 ()  0) becomes
an additional distortion.

2.2 Monetary rule

A simple monetary policy is considered: money grows at a constant rate,

+1 =   0. Focusing on real variables per young consumer, we can

decompose the money growth in the product of demographic growth, inflation

and economic growth:

 = +1+1 (14)

According to the Friedman’s metaphor, money is helicoptered to young con-

sumers by the monetary authority through lump-sum transfers   = (+1 −)

 () or, in real terms:

  = +1+1 − (15)

2.3 Asset paper

Following Tirole (1985), we assume that there is an asset paper, without fun-

damental value. Its supply is constant, normalized to one.  ≥ 0 denotes its
monetary price and follows +1 = . The asset paper has a strictly positive

price (  0) if it can be resold at a strictly positive price (+1  0) in the

next period. In such a case, since it has no fundamental value, the asset paper

corresponds to a bubble and  is a non-predetermined variable. This makes

a strong difference with models where  represents the government debt. In-

deed, the debt is predetermined by its initial level 0, while the initial value of

a bubble 0 is determined by the future price of the asset.
15

Using real variables per young consumer, the equation +1 =  can be

rewritten:

 = +1+1 (16)

Since  ≡ (), the real value per young consumer of the asset paper

is also non-predetermined.

15See De La Croix and Michel (2002, pp. 211-213) for more details.
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2.4 Firms

A competitive representative firm produces the final good using the constant

returns to scale technology  () , where the intensive production function

 () satisfies:

Assumption 3  () is a continuous function defined on [0+∞) and 2 on

(0+∞), strictly increasing ( 0 ()  0) and strictly concave ( 00 ()  0). We

further assume lim→0+  0 ()    lim→+∞  0 ().

As usual, the competitive firm takes the prices as given and maximizes the

profit  () −  − :

 =  0 () ≡  () (17)

 =  ()− 
0 () ≡  ()

For further reference,  () ≡  0 ()  () ∈ (0 1) will denote the capital
share in total income and  () ≡ [ 0 ()  ()− 1]  0 ()  [ 00 ()]  0 the

elasticity of capital-labor substitution. The interest rate and wage elasticities

depend on  () and  ():

 () ≡ 0 () 
()

= −1−  ()

 ()
(18)

 () ≡ 0 () 
()

=
 ()

 ()

3 Equilibrium

We start by defining the intertemporal equilibrium. Then, we focus on sta-

tionary solutions. We show in particular the existence of a steady state with a

positive bubble.

3.1 Intertemporal equilibrium

Substituting (15) in the first-period budget constraint (8), we find:

 +  + 1 =  () (19)

where  represents the individual demand for real balances.
16 Using (9) and

(10), we obtain:

+1 = 
 (+1)



1−  ()

 ()
(20)

2+1 =  (+1)


 ()
(21)

16Note that aggregating (9) and (19), and substituting (11) and (16), we recover the equi-

librium in the goods market:

1 + 2+ +1 =  ()  + () =  ()

9



Replacing (20) into (14), we deduce the inflation factor:

+1 =




 ()

 (−1)
1−  (−1)
1−  ()

 () −1
 (+1) 

(22)

>From these expressions, we derive two equations that determine the dy-

namics of the economy. On the one side, from (13), (21) and (22), the consumers’

intertemporal trade-off writes:

+1 =
1− 



[1− 1 ()]  (+1)

 ()  +  [1−  ()− 1 ()] −1
()



()

1−()
1−(−1)
(−1)

(23)

where

+1 ≡ 2+1

1
=

 (+1)  ()

 ()−  − −1
()



1−(−1)
(−1)

(24)

is obtained from (19), (20) and (21).17 On the other side, combining (7), (11)

and (16) gives:

 () (−1 − ) =  ( − +1) (25)

Markets clear over time when these equations hold. More precisely:

Definition 1 An intertemporal equilibrium with perfect foresight is a sequence

(−1 ) ∈ R2++,  = 0 1 +∞, such that (23)-(25) are satisfied, given 0 =

00  0.

Equations (23)-(25) constitute a two-dimensional dynamic system which de-

termines from the initial condition the equilibrium path (−1 )≥0, where
 is the only one predetermined variable. Indeed, since −1 = −1 +
(−1−1), non-monetary savings are not predetermined as soon as   0,

because as discussed above the monetary price of the asset paper is determined

by its future value.

Let us notice that, using the definition of +1 and substituting (20) into

(12), we get 1 ()  1+1. Hence, at equilibrium, Assumption 2 implies:

1  +1  11 () (26)

for  = 0 1 +∞.

3.2 Steady state analysis

A steady state is a solution ( ) ∈ R2++ that satisfies:

 =
1− 



(1− 1 ())  ()

 () +  (1−  ()− 1 ())  () 
(27)

17The positivity of the right-hand side of (23) is ensured by (12) (see the proof of Lemma

1). Hence, +1, solution of (23), will be also positive at equilibrium.
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with

 =
 ()

 () [()− 1]− [1−  ()]  () 

and18

 () (− ) =  (− ) (28)

By direct inspection of equation (28), we deduce that two steady states may

coexist, the one without bubble (bubbleless steady state), where  = , and

the one with a bubble (bubbly steady state), where   .

For the sake of brevity, we will omit the characterization of the former. In-

deed, the novelty of the paper mainly rests on the role of monetary policy and

credit market19 on the occurrence of persistent fluctuations of the bubble. No-

tice also that the coexistence of two steady states suggests the possibility of

global indeterminacy in our model. This result is not new and has been empha-

sized by Tirole (1985) and Weil (1987). As it is well-known, both these steady

states exist if the bubbleless one is dynamically inefficient, i.e. characterized by

overaccumulation of capital. In our framework, one can get the same result if 

is constant. By continuity, this conclusion still hold when 1 () is not too large.

Using (27) and (28), a steady state with    is a solution ( ) ∈ R2++
satisfying:

 () =  (29)



1− 

 ()

 ()−  ()
=

 [1− 1 ()]

 () +  [1−  ()− 1 ()]
(30)

Equation (29) determines the capital intensity of golden rule, which, in turn,

determines the wage bill  (). Replacing  () in (30) gives the non-monetary

savings  as a function of the efficient capital intensity.

At the steady state, equation (14) writes  =  and gives, together with

equation (16), the Fischer equation of a bubbly regime:  = . Therefore,

according to equation (26), Assumption 2 holds if and only if:

1    11 () (31)

The money growth rate  − 1 needs to be strictly positive. Moreover, as
explained after Assumption 2, the non-monetary savings elasticity of credit share

is bounded by above. It is important to notice that, evaluated at the existing

steady state, 1 () becomes a parameter, considered as small or close to zero

in the dynamic analysis. In this last case, inequality (31) is not too restrictive.

The following assumption is sufficient to ensure the existence of a steady

state with a positive bubble:

18Equation (28) is equivalent to  ()  = .
19Recall that the credit share () summarizes either lenders’ habits based on the existence

of asymmetric information about borrowers, or institutional and legal constraints to loans.
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Assumption 4

(i)   12 and  (1− )  
¡
 0−1 ()

¢
(ii)



 ( 0−1 ()) (1− )− 


(1− )
£
1− 1

¡
 0−1 ()

¢¤
 [1− 1 (

0−1 ())]− (− 1)  ( 0−1 ())

where  ≡ 
¡
 0−1 ()

¢
is the capital share in total income at the golden rule.

It is useful to notice that when  is constant (1() = 0), under the assump-

tion  (1− )  , the last inequality is equivalent to   , where

 ≡ 1 +  (− 1)
(1− ) 1−


+  (− 1) (32)

is strictly smaller than 1 if   (1− 2)  (1− ), but strictly greater than

 (1− ) for   12. This also implies that if 1 is arbitrarily close to 0

and  arbitrarily close to 1, Assumption 4 () is satisfied by continuity when

  (1− 2)  (1− ).

The next proposition proves the existence of a stationary state with a bubble

and provides also a result on uniqueness.

Proposition 1 Let  ≡  0−1 () and  be defined by  ≡ 
¡
 0−1 ()

¢
=

 (). Under Assumptions 1-4, there exists a steady state characterized by the

golden rule,  () = , and a positive bubble,  ∈ ( ). Moreover, under a
constant credit share , the uniqueness of this steady state is ensured.

Proof. See the Appendix.

By continuity, uniqueness of the steady state with bubble is still satisfied

when the credit share  () is no longer constant but the elasticity of credit

share 1 () remains sufficiently weak for every  ∈ ( ).

4 Sunspot bubbles

Let us show the existence of sunspot bubbles, that is, multiple equilibria that

converge to a steady state with a positive rational bubble. In order to ad-

dress the issue, we will show that the steady state with a positive bubble can be

locally indeterminate and, therefore, there is room for expectation-driven fluctu-

ations of the bubble, without any shock on the fundamentals. Collaterals visibly

matter. Indeed, when the credit share is constant, the steady state is always

determinate, while, when it depends on non-monetary savings, indeterminacy

can arise under arbitrarily weak market distortions.

12



We start by linearizing the dynamic system (23)-(25) around the steady state

with a positive bubble20 and we obtain a preliminary lemma.

Lemma 2 Let

1 ≡ (1−  − 1)

∙
1− 


+ 

1−  − 1
(1− ) (1− 1)

¸
(33)

2 ≡ 

∙
− 1
1− 1

µ
1 + 1 +

1
1− 1

2

¶
− 

1−  − 21
(1− ) (1− 1)

− 1− 



¸
(34)

3 ≡ 1− 



µ
1 + 1

1− 



¶
+ 

1− 1 − 

1− 1

µ
1 +

1
1− 

1− 



¶
(35)

where the capital share in total non-monetary saving  ≡  ( + ) =  ∈
(0 1] and the credit market features  ≡  (), 1 ≡ 1 () and 2 ≡ 2 (), are

all evaluated at the steady state.

Under Assumptions 1-4, the characteristic polynomial, evaluated at a steady

state with a positive bubble ( () = ,  ∈ (0 1)), writes  () ≡ 2 −  +

 = 0, where:

 =
1

2
− 1− 



3

2
≡  () (36)

 = 1 + ()− 1− 



1− 



µ
1

2
− 1
¶
≡  () (37)

Proof. See the Appendix.

Following Grandmont et al. (1998), we characterize the (local) stability

properties of the steady state in the ()-plane (see Figures 1 and 2). More

explicitly, we evaluate the polynomial  () ≡ 2 −  + = 0 at −1, 0 and
1. Along the line (), one eigenvalue is equal to 1, i.e.  (1) = 1− + = 0.

Along the line (), one eigenvalue is equal to −1, i.e.  (−1) = 1+ + = 0.

On the segment [], the two eigenvalues are complex and conjugate with unit

modulus, i.e.  = 1 and | |  2. Therefore, inside the triangle , the

steady state is a sink, i.e. locally indeterminate (  1 and | |  1 +). It is

a saddle point if () lies on the right or left sides of both the lines () and

() (|1 +|  | |). It is a source otherwise. Moreover, continuously changing
a parameter of interest, we can follow how () moves in the ()-plane. A

(local) bifurcation arises when at least one eigenvalue crosses the unit circle, that

is, when the pair () crosses one of the loci (), () or []. According

to the changes of the bifurcation parameter, a pitchfork bifurcation (generically)

occurs when () goes through (),21 a flip bifurcation (generically) arises

when () crosses (), whereas a Hopf bifurcation (generically) emerges

when () goes through the segment [].

20The novelty of the paper concerns dynamics around the bubbly steady state. Thus, for

the sake of conciseness, we omit the analysis of local dynamics in the neighborhood of the

bubbleless steady state.
21 Indeed, we have shown that there exists at least one steady state and the number of

stationary solutions is generically odd (see Proposition 1).
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Figure 1: Local dynamics when  is constant

A convenient parameter to discuss the stability of the steady state and the

occurrence of bifurcations in the ()-plane is the elasticity of capital-labor

substitution  ∈ R++. When this bifurcation parameter varies, the locus Σ ≡
{( ()  ()) :   0} describes a half-line with a slope given by:

 =
0 ()
 0 ()

=
3

3 + (1 − 2) (1− ) 
(38)

We notice also that the endpoint ( (+∞)  (+∞)) of the half-line Σ is
located on the line () and given by:

 (+∞) = 12 and  (+∞) = 1 + (+∞)

while, the starting point ( (0+)  (0+)) is such that  (0+) = ±∞ and (0+) =

±∞, depending on the slope .
In order to understand the role played by collaterals, we start by considering

the case of a constant credit share: 1 = 2 = 0. Using equations (33)-(35), we
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Figure 2: Indeterminate bubble

get:

1

2
=−1− 


(+ 1− )  0 and

3

2
= −1− 



µ
+

1− 

1− 

¶
 0

Hence, the slope  belongs to (0 1) and  () is decreasing. This also means

that  (0+) = +∞ and  (0+) = +∞. Moreover, since  (+∞) = 12  0,

( (+∞)  (+∞)) is on the line () below the horizontal axis. Let:

̃ ≡ 1 +  (− 1)
2 +  (− 1) ∈

µ
1

2
 1

¶
(39)

Notice that ̃ satisfies Assumption 4 if ̃  , which requires   (1− 3) 
(1− ) and   13. Otherwise the interval

¡
 ̃

¢
is empty.

We easily deduce that for  ∈ (̃ 1),  (+∞)  −1, whereas for  ∈ ¡ ̃¢,
 (+∞)  −1. Therefore, for  ∈ (̃ 1), the half-line Σ is below () and

above (). For  ∈ ¡ ̃¢, Σ is still below () but crosses () at  = 

15



with:22

 ≡ (1− )

∙
 (1− ) + 1− 

(+ 1− ) (1− )− 
+
1

2

1− 



(+ 1− ) (1− ) + 

(+ 1− ) (1− )− 

¸
(40)

Using these geometrical results, we deduce the following proposition:

Proposition 2 Let  be defined by (32), ̃ by (39),  by (40),  be constant

and 1 = 2 = 0. Under Assumptions 1-4, the following generically holds.

(i) When  ∈ (̃ 1), the bubbly steady state is a saddle for all   0.

(ii) When  ∈ ( ̃), the bubbly steady state is a saddle for 0     ,

undergoes a flip bifurcation at  =  and becomes a source for    .

On the one side, when the credit share  is constant, there is no room for

local indeterminacy and expectation-driven fluctuations are ruled out. When

 is sufficiently large, the bubbly steady state is a saddle for all degrees of

capital-labor substitution. This result is similar to Tirole (1985), we recover by

taking the limit case as  tends to 1. In contrast, when  is weaker and the

capital-labor substitution becomes large enough, the bubbly steady state looses

the saddle-path stability through the occurrence of cycles of period two.23

On the other side, assuming a credit share sensitive to collaterals (1 6= 0,

2 6= 0) can entail serious effects on the stability properties. More precisely,

not only we will show that the steady state may be locally indeterminate and

expectation-driven fluctuations of the (rational) bubble may occur, but also that

such fluctuations appear under arbitrarily weak market distortions, that is, 1
close to zero and  close to one.

In order to get local indeterminacy, we require the half-line Σ to enter the

triangle  (see Figure 2). More explicitly,  ()   () − 1 is a necessary
condition to be inside . Using (36) and (37), this inequality is equivalent

to 12  1, but this implies that ( (+∞)  (+∞)) lies on the line ()
above the point . Hence, Σ goes through  and local indeterminacy arises

if the following two conditions are met:

(i) () is increasing;

(ii)     1, where  ≡ (1 − 2)  (1 + 32) ∈ (0 1) is the value of
the slope  such that the half-line Σ goes through the point .

Notice that 0 ()  0 is equivalent to 32  0, which, together with

12  1, ensures that 0    1. In addition, 32  0 and 12  1

imply  (0+) = −∞ and  (0+) = −∞.
All these geometrical results are summarized in the following proposition:

22The critical value  solves  ( ) = − ( )− 1.
23Conversely, in a cash-in-advance Ramsey model where 1 −  denotes the consumption

share holding real balances, dynamics are three-dimensional and indeterminacy arises for

sufficiently large  (close to one) whatever the elasticity of intertemporal substitution, while

one-dimensional saddle-path stability prevails for smaller credit shares (see Bosi and Magris

(2003) for details). As we shall see, we obtain closely related results in our overlapping

generations model when the credit share is no more constant.

16



Proposition 3 Let

 ≡ (1− )
23 + (1 − 2)

1−


2 (1 + 2)

 ≡ (1− )
3

1 − 2

be the critical values of the capital-labor substitution such that  ( ) = − ( )−
1 and () = 1, respectively.

Under Assumptions 1-4, the steady state with a positive bubble is locally

indeterminate if the conditions (i) 12  1, (ii) 32  0 and (iii)  

(1 − 2)  (1 + 32) are satisfied, where 1, 2, 3 are given by (33)-(35),

and  by (38).

In this case, local indeterminacy occurs for  ∈ (  ). Generically, the
steady state undergoes a flip bifurcation at  =  and a Hopf bifurcation at

 =  .

We remark that, since 0      +∞, there is no room for a locally in-
determinate bubble when the production factors are either too weak substitutes

( sufficiently close to zero) or too large substitutes ( high enough).

In order to make Proposition 3 more explicit, we need to write conditions

(i)-(iii) in terms of those structural parameters that capture the peculiarities of

the model. Since we are interested in the effects of monetary policy and the

credit market distortions, it is appropriate to focus on the money growth rate

 and the credit market features ( 1 2).

Let us introduce the following critical values:

 ≡ 1− 

1

1 + 1 + (1− 1)
1−


1 + 1 − 

 ≡ 1 +

∙


µ


1− 1

1 + 1
1− 1

− 1
¶¸−1

1 ≡ −1− 21
1

"
1− 1− 1

1 + 1

Ã
1 +

1

+

1
1−1

1−−1
1−

− 1

!#

2 ≡ −1− 21
1

"
1− 1− 1

1 + 1

Ã
1 +

1

− 

1−1
− 1

!
1− 1


#

where

 ≡ 23 

1− 

Ãs
1 +

1

3

1− 


− 1
!

(41)

and put additional restrictions to find suitable conditions for local indetermi-

nacy.

Assumption 5   1− 1 and     .
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In order to show that there is a nonempty subset 0 of the parameter

space, satisfying Assumption 5, we observe that, when  lies in a left neigh-

borhood of 1 − 1, we have 0    . Indeed, lim→1−1
¡
− 

¢
= 0 and


¡
− 

¢


¯̄
=1−1

= − (1− )  (21)  0 imply that the interval
¡
 

¢
becomes nonempty as soon as  decreases from 1− 1.

To prove that a nonempty subset 1 ⊆ 0 meets also Assumption 2, we

require inequalities (31) to hold when  ∈ ¡ ¢. This happens for 1 suf-
ficiently close to zero because 1  , and   11. Finally, there exists a

nonempty subset 2 ⊆ 1 where the second-order conditions for utility max-

imization are verified: consider, for instance, arbitrarily weak credit market

imperfections, that is, a sufficiently low elasticity 1 and  close to one. In

this last case, as discussed before Proposition 1, Assumption 4 is satisfied for

  (1− 2)  (1− ) and   12.24

Proposition 3 can be now revisited regarding the credit market features:

Proposition 4 Under Assumption 5, the conditions (i)-(iii) of Proposition 3

are satisfied if

max {1 2}  2 (42)

Proof. See the Appendix.

The proof of Proposition 4 shows also that max {1 2} is negative and, so,
the admissible interval for the second-order elasticity of credit share 2 admits

negative values, provided that    is sufficiently close to .

This proposition shows that, when collaterals matter (1 6= 0), endogenous
cycles can occur not only through a flip bifurcation (cycle of period two) but

also through a Hopf bifurcation, which promotes the emergence of an invariant

closed curve around the steady state.

Moreover, the steady state can be locally indeterminate: expectation-driven

fluctuations of the bubble can arise around the (bubbly) steady state. Following

Greenspan’s words, agents’ rational exuberance is interpreted as a volatility of

rational expectations which drives persistent fluctuations of a rational bubble.

To the best of our knowledge, this result is new and rests on the existence

of arbitrarily small market distortions, i.e. a sufficiently low elasticity of credit

share (1 close to zero) together with large credit opportunities ( close to one).

Furthermore, local indeterminacy requires intermediate values of the elastic-

ity of capital-labor substitution, neither too low nor too high (see Proposition

3). So, usual specifications of technology becomes compatible with the exis-

tence of multiple equilibria. Namely, a Cobb-Douglas technology is represented

by a unit elasticity and local indeterminacy requires   1   , which is

equivalent to:

1 − 2

1− 
 3 

1 + 2

1− 
− 1
2

1− 


(1 − 2) (43)

24Note that these last restrictions are precisely those required to get a bubbly steady state

in the Tirole (1985) model ( = 1, 1 = 0).
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The right-hand (left-hand) inequality in (43) corresponds to   1 (1 

). The right-hand inequality is satisfied for an appropriate choice of 2, while

the left-hand inequality is satisfied for 1 sufficiently close to 1− .

Finally, we notice that Proposition 4 has also some implications for the

monetary policy. Indeed, indeterminacy requires      (Assumption 5).

Therefore, choosing a money growth factor  higher than  or lower than 

rules out expectation-driven fluctuations. This issue will be deepened in the

last section on monetary policy.

4.1 Economic intuition

First, we will give a story for bubbly cycles of period two based on the emer-

gence of non-monotonic trajectories (Proposition 2). Then, we will provide an

economic interpretation for the occurrence of local indeterminacy, that is the

existence of sunspot bubbles or rational exuberance (Propositions 3-4).

We start with the case where the credit share  is constant (1 = 0), but

strictly smaller than one. Assuming a decrease of the capital stock  from its

steady state value, the real wage  becomes smaller and the real interest rate

 higher. When the elasticity of capital-labor substitution is not too weak, this

induces a lower level of −1. Since, using equation (20), we have:

 = −1
1



1− 


(44)

real money balances decreases. As a direct implication, we also get a decrease

of +1+1 (see equation (14)).

Using now (23) and (24) with  constant and 1 = 0, we obtain:

 = (1− ) − (+ 1− ) −1
1



1− 


(45)

Since both  and −1 decrease, two opposite effects affect savings . In
particular, we note that the second effect comes from the decrease of money

holding and, obviously, disappears in the limit case where the credit share 

tends to one.

Assuming that the second effect dominates, savings  increases. Using (22),

we deduce that +1 = +1+1 decreases, meaning that the opportunity cost

of holding money is reduced. Therefore, money balances +1 increases, which

implies a decrease of inflation +1 because, as seen above, +1+1 reduces.

From equation (44), this increase of the real money stock implies a raise of

+1. When capital and labor are not too weak substitutes, capital +1
becomes higher. Since the bubble +1+1 has the same return, it increases

as well.

This explains that, following a decrease of capital from the steady state,

future capital goes in the opposite direction, explaining oscillations. When  is

constant and not too close to one, we have seen that instability emerges (see

Proposition 2). We argue that this comes from two main effects: the strong
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impact of −1 on  (see (45)) and the proportional relationship between

−1 and  (see (44)).

Conversely, local indeterminacy requires a variable  closer to one (see

Proposition 4). If, on the one hand the effect of −1 on  is lower (see

(45)), on the other hand the relationship between  and −1 is no longer
proportional and becomes nonlinear:

 =
1



1−  (−1)
 (−1)

−1 (46)

Note that the elasticity of [1−  ()]  () with respect to  is equal to

−1 (1− ), which belongs to (−1 0) and is quite small in absolute value under
Assumption 5. Therefore, when −1 decreases, and −1 as well, the effect
on  is dampened. In other words, two crucial channels for the occurrence of

non-monotonic dynamics are weaker when 1  0, which provides the intuition

for local stability or indeterminacy of the bubbly steady state when collateral

matters. Finally, we notice that equation (25) rewrites:

 = +1+1 (47)

The oscillations just described above can be sustained by optimistic expecta-

tions on the future value of the bubble +1+1, meaning that consumers born

in  − 1 will (slightly) increase their share of savings through the bubble ,
which implies an effective increase of the bubble in the next period +1+1,

since  also raises.

5 Monetary policy

In this section, we study some implications of the monetary policy. We start

by focusing on the role of monetary policy on consumers’ welfare at the steady

state.

In the bubbly regime, the capital intensity  of golden rule no longer depends

on the monetary policy, whereas non-monetary savings  and, therefore, con-

sumptions (when young and old) are affected by the choice of . More explicitly,

1 and 2 write:

1 =  ()−  − 

 ()
(48)

2 = 


 ()
(49)

At the steady state, the individual welfare level is given by  =  (1 2).

Let:

1 ≡ 

1 − (1− )

2 ≡ 1 +
1− 1

1− 1 + 

(1− 1)
2

1

1− 






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where  is given by (6) (notice that when 1 becomes close to zero, 2 becomes

arbitrarily large). After some computations, we obtain:25

 = 2




1− 1
1

1− 1
1− 1 + 

− 1
− 1

1−  − 1
− 2

(50)

To characterize the welfare adjustment to the monetary policy, we further

assume:26

Assumption 6   1 − 1.

In the next proposition, we highlight the welfare consequences of money

growth (  1) depending on the credit market features.

Proposition 5 Let Assumptions 1-4 and 6 be satisfied.

(i) When 1  1 − , the welfare  is decreasing for 1    2 and

increasing for   2;

(ii) When 1  1− , the welfare  is decreasing for 1    min {1 2},
increasing for min {1 2}    max {1 2}, and decreasing again for
  max {1 2}.

In the limit case where  = 1, the welfare  attains a local maximum.

Proof. See the Appendix.

As it is shown in the Appendix, when  is not too large (  2), a variation

of  induces a decrease or an increase of non-monetary savings  depending on

the magnitude of 1 relatively to 1−. Moreover, by direct inspection of (48) and
(49), we see that consumption demands 1 and 2 are, respectively, decreasing

and increasing in . Hence, when 1  1 −  and  is not too large (  2),

a higher rate of money growth, lowering non-monetary savings, results in a

negative effect on welfare through the dominant contraction of second-period

consumption. On the contrary, when 1  1−  and  is not too large, welfare

decreases with the money growth rate, because the rise of non-monetary savings

comes from a lower first-period consumption with a dominant impact on welfare.

In any case, it is important to notice that, starting with a money growth

rate which is not too large, decreasing  is welfare improving.

Eventually, we observe that, in the limit case where  tends to 1, credit

market distortions no longer affect the consumer’s choice. We recover on the one

hand the Friedman rule ( =  = 1) and, on the other hand, the intertemporal

trade-off of a Diamond (1965) model without cash-in-advance corresponding to

the golden rule, i.e. 1 (1 2) 2 (1 2) =  =  (see equation (27)).

As seen after Proposition 4, indeterminacy is ruled out for 1     or

  . From a political point of view, we argue that choosing  smaller than

25The welfare elasticity (50) is derived in the Appendix.
26The isoelastic case ( = 0) satisfies Assumption 6.
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 and sufficiently close to 1 is suitable.27 Indeed, in such a case, the monetary

authority not only stabilizes expectation-driven fluctuations, but also improves

consumers’ welfare at the steady state (see Proposition 5 ()). This result is in

contrast to Michel and Wigniolle (2005) where a sufficiently expansive monetary

creation is recommended to avoid fluctuations of the economy switching between

a regime with a bubble and a regime with a binding cash-in-advance constraint.

Coming back to Greenspan, we think that our model sheds a light on one of

the possible mechanisms at work behind the occurrence of bubbles and financial

volatility, but we cannot conclude peremptorily that the American monetary

policy under the Greenspan’s rule were too expansive. A complex reality needs

a more complex representation and, surely, more sophisticated policy rules than

a simple constant money growth. We have rather provided two theoretical argu-

ments as support for a prudential monetary policy: the one based on dynamic

analysis, the other on welfare analysis. Eventually, it is worthy to notice that,

together with monetary policy, we explain the crucial role played by collaterals

and credit market regulation on the existence of bubble fluctuations.

6 Conclusion

Could market volatility, what Greenspan calls exuberance, be compatible with

agents’ rationality? In order to give a positive answer, we extend the Tirole

(1985) model with rational bubbles, to account for credit market imperfections.

We consider an overlapping generations model, where a share of the second-

period consumption is paid in cash, while savings are also used to buy productive

capital and an asset paper. Collateral matters because a higher level of non-

monetary savings reduces this share of consumption financed by money balances.

In this framework, we show that the bubbly steady state can be locally in-

determinate because of the role of collateral and, therefore, there is room for

expectation-driven fluctuations of the bubble. The existence of such fluctua-

tions requires arbitrarily small market distortions. We finally recommend the

monetary policy to be not too expansive in order to achieve a twofold objec-

tive, that is, to immunize the economy against endogenous fluctuations and to

improve the welfare level (evaluated at the steady state).

All these results concern equilibria where money is a dominated asset and

the cash-in-advance constraint is always binding. In a simpler model where

collaterals play no role, Michel and Wigniolle (2003, 2005) are able to prove that

the economy can experience cycles by switching between two regimes where,

respectively, the liquidity constraint is binding or fails to hold with equality.

Analyzing such dynamics in our model is left for future research.

27We know that 2 becomes arbitrarily large when 1 is close to 0, that is the case we are

interested in, in our dynamic analysis (see Proposition 4).
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7 Appendix

Proof of Lemma 1

We maximize the Lagrangian function:

 (1 2+1)

+1 (  +  − +1+1 −  − 1)

+2+1 (+1 + +1 − 2+1)

++1 (+1 − [1−  ()] 2+1) (51)

with respect to (+1  1 2+1 1 2+1 +1). Since 1 = 1 (1 2+1) 

0, then (8) becomes binding. Because

2+1 = 1
1− +1

0 () 2+1
+1 − 0 () 2+1

+1 = 1

µ
+1 − 1− +1

0 () 2+1
+1 − 0 () 2+1

¶
strict positivity of 2+1 and +1 requires

+1 
1− +1

0 () 2+1
+1 − 0 () 2+1

 0

or, equivalently,

+1 
+1 − +1

0 () 2+1
+1 − 0 () 2+1

 0 (52)

Inequality +1− +10 () 2+1  0 is equivalent to (12). Moreover, +1 
1 implies +1 − 0 () 2+1  +1 − +1

0 () 2+1  0, which ensures that

both inequalities in (52) hold.

Sufficient conditions for utility maximization

We compute the Hessian matrix of the Lagrangian function (51) with respect

to (1 2+1 +1 1 2+1 +1):
28

 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 −1 −
0 0 0 0 −1  

0 0 0 0  − 1 2
0 

−1 0 0 11 12 0 0

0 −1  − 1 12 22 0 0

−1  2
0 0 0 2

00 0

−   0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
In order to get a regular (i.e. strict) local maximum, we need to check the

negative definition of  over the set of points satisfying the constraints. Let

28For simplicity, the arguments of the functions and the time subscripts are omitted.
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 and  denote the numbers of constraints and variables, respectively. If the

determinant of  has sign (−1) and the last − diagonal principal minors

have alternating signs, then the optimum is a regular local maximum. In our

case  = 4 and  = 3. Therefore, we simply require det  0, that is,

det = −2
h
( −  [2

0 −  (1− )])
2
11

+2 (2
0 − ) ( −  [2

0 −  (1− )])12

+(2
0 − )

2
22

−  [20 (20 − )− 2
00]]  0 (53)

Using (9) and (10), we find 2+1+1 =  (). Substituting in (53) in

order to satisfy (locally) the second order conditions, we require:

det = − ()2
h
0 + 2111 + 21 (1 − 1)12 + (1 − 1)2 22

i
= − ()2

∙
0 +

£
1 1 − 1

¤∙ 11 12
12 22

¸ ∙
1

1 − 1
¸¸

 0(54)

where

0 = 0 ≡ 1 [2 + 2 (1− 1)]








1 = 1 ≡  (1−  − 1) +




Condition (54) ensures the concavity in the utility maximization program

under three constraints. We observe that the negative definiteness of  entails

£
1 1 − 1

¤ ∙ 11 12
12 22

¸ ∙
1

1 − 1
¸
 0 (55)

A sufficient condition, jointly with (55), is 0  0 or, equivalently, 2 ≤
2 (1 − 1), that is a sufficient degree of concavity of the credit share.29 It is also
useful to notice that the second order condition is satisfied under a sufficiently

small elasticity of credit share 1, which implies 0 close to zero.

In the Cobb-Douglas case, 0 + 2111 + 21 (1 − 1)12 + (1 − 1)2 22  0
becomes:

1 (2 + 2 (1− 1))







  (1− ) 1

1−2

∙
 +  (1−  − 1)

1
+
1− 1
2

¸2
(56)

29 In the isoelastic case, the concavity of credit share is weak: 2 = 1 − 1, and 0  0.

In order to meet the second-order conditions for local maximization, we need a sufficiently

concave utility function.
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Proof of Proposition 1

The capital-labor ratio  is determined by the golden rule  () =  (see

(29)). Using Assumption 3, there exists a unique solution to this equation,

 =  0−1 (). This also determines the real wage  () = 
¡
 0−1 ()

¢
= .

Then,  is a solution of  () =  (), with:

 () ≡ 

1− 
 ()  where  () ≡  ()

 −  ()
(57)

 () ≡  [1− 1 ()]

 () +  [1−  ()− 1 ()]
(58)

Since the steady state is characterized by a positive bubble (  0), we have

  . Moreover, because 1 ()  1,  () is increasing in , which implies

that  ()  0 requires   . We notice that ( ) is nonempty. Indeed,

Assumption 4, point (i), ensures that    (). Since  () is increasing

in  and  =  (), we have   . Therefore, all the stationary solutions 

belong to ( ).

To prove the existence of a stationary solution , we use the continuity of

 () and  (), which is ensured by  ∈ 2 (see Assumption 1). Using (57) and

(58), we determine the boundary values of  () and  ():

lim→  () =

1−

2
()−  0 lim→̄  () = +∞

lim→  () =
[1−1()]

()+[1−()−1()]  0 lim→  () =
[1−1()]

()+[1−()−1()]

where  =  0−1 ().
Assumption 4 ensures that lim→  ()  lim→  (), while we have lim→̄

 ()  lim→̄  (). Therefore, there exists at least one value 
∗ ∈ ( ) such

that  (∗) =  (∗).
To address the uniqueness versus the multiplicity of stationary solutions ,

we compute the following elasticities:

 () ≡ 0 () 
 ()

=
 [1− 1 ()]

 −  ()
 0

 () ≡ 0 () 
 ()

=
1 ()

£
 () + 1− 1 ()

¤
1− 1 ()

(− 1)  ()
 () +  [1−  ()− 1 ()]

A sufficient condition for uniqueness is  ()   () for all  ∈ ( ). We
deduce that when  () is constant (1 () = 0), uniqueness is ensured because

 () = 0   ().

Proof of Lemma 2

We linearize the system (23)-(25) around a steady state (with or without bubble)

with respect to ( −1 +1 ). We obtain:

2



= 

µ

1− 


+

1− 

1−  − 1
1

¶



+ 1

−1


(59)






+1


− 






= [ − (1− ) ]




− −1


(60)
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where

1 ≡ (1−  − 1)

∙
1− 


+ 

1−  − 1
(1− ) (1− 1)

¸
2 ≡

µ
− 



1− 



¶µ
1 +

1

1− 1

¶
− 

1−  − 21
(1− ) (1− 1)

− 




1− 



and ,  and  the stationary values of  (),  () and  (), respectively.

The characteristic polynomial is given by  () ≡ 2 −  +  = 0,

where  and  represent the trace and the determinant of the Jacobian matrix,

respectively. After some computations, we get:

 =
1

2





µ
1

∙
1 + 

 (1− ) + (1− ) 1
 (1−  − 1)

¸
+ 

1− 



¶
(61)

 =



+




 + 

1− 



µ
1

2
− 



¶
(62)

The expressions given in the lemma are obtained when   1, setting  = 

and using

 =
1− 



 (1− 1)

 +  (1−  − 1)

Proof of Proposition 4

We prove that, under Assumption 5, condition (42) is sufficient for local inde-

terminacy, implying conditions (i)-(iii) of Proposition 3.

Assuming 2  0,
30 conditions (i)-(iii) for local indeterminacy in Proposition

3 are equivalent to 1  2, 3  0 and

22 − 2
µ
1 + 23



1− 

¶
2 + 21  0 (63)

that is, to 3  0 and 0  1 − 2   , where  is given by (41).

The inequality 1  2 is equivalent to 2  0, while the assumption  

1− 1 implies 3  0. Since   1, we have   1, that is,

(1− 1)
1− 1
1 + 1

  (64)

According to 1     and (64),    implies 0  1 −2, while 2  2
is equivalent to 1 − 2   . Moreover, we notice that    is equivalent to

1  0 and

  (− )
1 + 1
1− 1

∙
 − (1− 1)

1− 1
1 + 1

¸
(65)

which is satisfied for  sufficiently close to , entails 2  0.

30Conditions (i)-(iii) of Proposition 3 are no longer met when 2  0.
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Derivation of equation (50)

Consider the welfare function =  (1 2) and define the following elasticities:

( 2  2) ≡
µ










2

2



2





2

¶
We immediately get:

 = 22

µ
1 + 



1− 

1

2

¶
(66)

Differentiating now (48) and (49), we obtain:

1


= − (1− 1)

1






(67)

2


=  (1− 1)

1






(68)

Substituting (67) and (68) in (66) and noticing that 2 = (1− 1) , we

get:

 = 2 (1− 1)

µ
1− 

1− 





¶
(69)

Equations (30) implicitly defines  as function of . Applying the Implicit

Function Theorem, we find the following elasticity:

 =




1−  − 1

1 (− 1) 1−1+1−1 − (1− 1)
2 

1−


(70)

Substituting (70) in (69), we have:

 = 2




µ
1− 





1− 

¶
1−  − 1

(− 1) 1
1−1

1−1+
1−1 − (1− 1)



1−


Using the critical values 1 and 2, we deduce equation (50).

Proof of Proposition 5

Under Assumption 6, equation (50) implies that  has the same sign of:

− 1
− 1

1−  − 1
− 2

(71)

We note first that under Assumption 6, we have 2  1. By direct inspection

of (71), we deduce that:

(i) When 1  1 − , we have 1  0 and 1  2. Then,   0 for

0    1;   0 for 1    2;   0 for   2.
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(ii) When 1 −   1, we have 1  1 and 1  2. Then,   0 for

0    1;   0 for 1    min {1 2};   0 for min {1 2} 
  max {1 2}:   0 for   max {1 2}.

Therefore,  = 1 corresponds to a local maximum ( = 0). We deduce

the proposition taking in account that   1.
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