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1 Introduction

The study of the deadweight loss of taxation has a long tradition in economics going

back as far as Dupuit (1844). Modern type of empirical work on the deadweight loss of

taxation is heavily influenced by the important work of Harberger in the fifties and sixties

(see for example Harberger (1962, 1964)). A second generation of empirical work was

inspired by Feldstein (1995, 1999). Feldstein argued that previous studies had neglected

many important margins that are distorted by taxes. By estimating how total taxable

income reacts to changes in the marginal tax, one would be able to capture distortions

of all relevant margins. Feldstein’s own estimates indicated large welfare losses whereas

many later studies arrived at estimates of the welfare loss that were larger than those

obtained in pre-Feldstein studies, but considerably lower than the estimates obtained by

Feldstein. An important ingredient in modern studies of the deadweight loss of taxes is

the estimation of a (Hicksian) taxable income supply function (Gruber and Saez, 2002;

Kopczuk, 2005; Saez, 2010; Saez, Slemrod, and Giertz, 2009). These taxable income

functions show how taxable income varies as the slope of a linear budget constraint of

individuals is changed at the margin.

Almost all theoretical work on how to calculate the marginal deadweight loss has

been done for linear taxes and hence for variations in linear budget constraints. This

is quite surprising since most income tax systems are nonlinear, generating nonlinear

budget constraints. Instead of developing the proper procedure to calculate the marginal

deadweight loss for variations in nonlinear income taxes, one has linearized the nonlinear

budget constraint and applied the procedure that is correct for variations in a linear

income tax. As we will show, this leads to incorrect results. The main purpose of

our article is to show how to correctly calculate the marginal deadweight loss when

the income tax is nonlinear. A second purpose is to evaluate the bias in results that

obtains when the traditional linearization procedure is used. For tax systems where the

marginal income tax increases with the taxable income, this linearization procedure may

often lead to an overestimate of the marginal deadweight loss.

Actual tax systems are usually piecewise linear and, in the end, we describe how to

calculate the marginal deadweight loss for such tax systems. However, in order to get

simple and clean results, we start our analysis by considering smooth budget constraints.

We then describe how results are modified when the budget constraints are piecewise

linear. It should be noted that the average, or aggregate, behavior for a population does

not depend on whether the tax system and budget constraints are kinked or smooth.

It is the general shape of the tax system and budget constraints that determine the
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average behavior.1 To simplify the analysis, we consider tax systems that generate

convex budget sets.2 Historically, much focus has been on how the income tax distorts

labor supply. Since the more recent literature has the focus on taxable income, we state

our results in terms of this concept. Of course, it is easy to modify our results to some

other application.

The layout of the rest of this article is as follows. Section 2 sets up the framework.

Section 3 provides a simple example showing that linearizing a nonlinear budget con-

straint may lead to a significant mistake. Section 4 examines how serious it is to linearize

in the general case. It shows that what matters is the relative curvature of the budget

constraint in relation to the indifference curves and provides several ways of assessing

the linearization bias. Section 5 uses empirical data and real tax systems, and quantifies

the linearizatiom bias in France, the US and Germany. Section 6 concludes.

2 The Framework

We start by considering the case with a smooth budget constraint for two reasons. One

is simplicity. The basic idea comes through very clearly when the budget constraint is

smooth and the analysis is simple. Another reason is that there are good arguments

why we should analyze the budget constraint as if it were smooth, even if the statutory

tax rules seem to imply a kinked budget constraint. As pointed out by Saez (2010),

individuals cannot control their taxable income perfectly. Unforeseen bonus pay checks,

better health than expected or assigned overtime would be examples of positive shocks.

Unexpected sickness, a layoff, new extended vacation plans because of a new love would

be examples of negative shocks. The individual does not know what kind of shock

there will be, but he realizes that there is a random component in his taxable income.

Hence, it is rational for the individual to take this random element into account when

planning for his desired taxable income. Saez (2010) sets up a model for this. In this

model individuals maximize their expected utility. Saez shows how this problem can

be reformulated as a decision problem under certainty and a budget constraint that is

smooth. According to this model, individuals behave as if they faced a smooth budget

1This should be qualified. A smooth tax schedule is a good approximation of a piecewise linear tax
schedule provided the distribution of the kink points is regular enough.

2This assumption is just for simplicity. The general insights of the article applies also to the case
with a concave budget set. If the curvature of the indifference curves is larger than the curvature of the
budget constraint so that an interior unique solution of the individual’s utility maximization problem
obtains, most of the formulas below apply. The analysis becomes more complex if the budget constraint
is concave and more curved than the indifference curves. One then has to take the possibility of multiple
solutions and/or corner solutions into account.
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constraint although it in fact is kinked. What governs individuals’ behavior is not the

exact locations of the kink points, but the overall shape of the budget constraint. Of

course, under this scenario the analysis with a smooth budget constraint is applicable.

2.1 The Tax System

A linear income tax can be varied in two ways. One can change the intercept, which leads

to a pure income effect, or change the proportional tax rate, which leads to a substitution

and an income effect. For a nonlinear income tax, there are many more possible ways to

vary the tax. Break points can be changed, the intercept can be changed and the slope

can also be changed. Moreover, the slope can be changed in different ways. We do not

cover all these different possibilities to vary a nonlinear tax. We focus on a particular

kind of change in the slope, namely a change in the slope such that the marginal tax

changes with the same number of percentage points at all income levels.

Therefore, we model the tax in the following way. Let A denote taxable income

and the tax on A be given by T (A). In the general case, the results below depend on

the curvature of the tax function ∂2T (A) /∂A2. For simplicity, we show details for a

specific formulation T (A) = g (A) + tA, with g′ (A) > 0, g′′ (A) > 0 and t ≧ 0. Note

that in this case ∂2T (A) /∂A2 reduces to g′′ (A). We can think of g (A) as a nonlinear

federal tax. There are several alternative interpretations of tA. It could be a payroll

tax, a value added tax or a proportional state income tax. Within the Scandinavian

framework, it could be interpreted as the local community tax. What we study is the

marginal deadweight loss of an increase in t. A change in t implies that the marginal

tax is increased by the same number of percentage points at all income levels.

There are two good reasons why we have chosen to parameterize the tax system in

the way described above. When we vary the slope of a linear budget constraint, the

intercept will not change. It is of value to have a parameterization of the nonlinear tax

that has a similar property. When we in the next section study the marginal deadweight

loss for a piecewise linear budget constraint, we will see that, for the parameterization

used, a change in t will not change the virtual incomes but only the slope, thereby giving

a clean experiment similar to a change in the slope of a linear budget constraint.3 A

second reason is, of course, that real tax systems are of a form as the one described by

g (A) + tA.

3This nice feature of the parameterization used was pointed out to us by H̊akan Selin.
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2.2 Definition of the Marginal Deadweight Loss

Consider the utility maximization problem:

max
A,C

U (C,A, v) s.t. C ≦ A− g (A)− tA+B, (P1)

where C is consumption, v an individual specific preference parameter and B lump-sum

income. We assume that the utility function U (C,A, v) has the usual properties. We

denote the solution to problem (P1) as A (t, B, v) , C (t, B, v). The form of these two func-

tions depends on the functional forms of U and g. Sticking A (t, B, v) , C (t, B, v) back

into the utility function, we obtain the indirect utility u (v) := U (C (t, B, v) , A (t, B, v) , v).

For each individual, the latter is the maximum utility level obtained under the given tax

system. Because individuals have different v’s, they chose different taxable incomes and

have different u (v). To simplify the notations, we henceforth suppress the v in u (v).

However, it should be kept in mind that the u given in expressions below vary between

individuals.

We now study the marginal deadweight loss of a small increase in t. We first derive

the correct expression and then – in the next subsection – describe how it usually is

calculated. For this purpose, we define the expenditure function as:

E (t, v, u) = min
A,C

{C −A+ g (A) + tA−B} s.t. U (C,A, v) ≧ u. (P2)

This problem also defines the compensated supply and demand functions, Ah (t, v, u) and

Ch (t, v, u) respectively, where the superscript h denotes that it is Hicksian functions. It

is important to note that these functions depend on the functional form of U (C,A, v)

and on the functional form of g (A). In almost all empirical and theoretical analyses,

we work with demand and supply functions generated by linear budget constraints. In

contrast, the functions defined by (P1) and (P2) are generated by a nonlinear budget

constraint.

Let us define the compensated revenue function as:

R
(
Ah (t, v, u)

)
= g

(
Ah (t, v, u)

)
+ tAh (t, v, u) (1)
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and the marginal deadweight loss as:

DW :=
dE (t, v, u)

dt
−

dR
(
Ah (t, v, u)

)

dt

= Ah − g′
(
Ah

) dAh

dt
−Ah − t

dAh

dt
= −

(
g′
(
Ah

)
+ t

) dAh

dt
, (2)

where we used the envelope theorem to obtain dE (t, v, u) /dt = Ah. Expression (2) is

the correct expression for the marginal deadweight loss.

2.3 A Commonly Used Linearization Procedure

We next describe a commonly used procedure that, in general, overestimates the marginal

deadweight loss. Let us consider particular values v∗, t∗ and B∗ and the solution to (P1),

A∗ = A (t∗, v∗, B∗) , C∗ = C (t∗, v∗, B∗). We can linearize the budget constraint around

this point with local prices defined by pc = 1 and pA = g′ (A∗) + t∗ to obtain the linear

budget constraint C = A − pAA + M , where M is defined as M = C∗ − A∗ + pAA
∗.

Consider the problem:

max
A,C

U (C,A, v∗) s.t. C ≦ A− pAA+M. (P3)

We call AL (pA, v
∗,M) , CL (pA, v

∗,M) the solution to this problem. Here, we use the

subscript L to show that these are functions generated by a linear budget constraint.

We define the expenditure function corresponding to this linear budget constraint as

EL (t, v, u) = min
A,C

{C −A+ pAA−M} s.t. U (C,A, v) ≧ u (P4)

and denote its solution by Ah
L (t, v, u) , Ch

L (t, v, u), where the subscript L indicates that

it is the solution to a problem where the objective function is linear and the superscript

h that this is Hicksian demand-supply functions. Let us define the compensated revenue

function as: R
(
Ah

L (t, v, u)
)
= g

(
Ah

L (t, v, u)
)
+ tAh

L (t, v, u). We define the marginal

deadweight loss as:

DWL :=
dEL (t, v, u)

dt
−

dRL

(
Ah

L (t, v, u)
)

dt

= Ah
L − g′

(
Ah

L

) dAh
L

dt
−Ah

L − t
dAh

L

dt
= −

(
g′
(
Ah

L

)
+ t

) dAh
L

dt
. (3)

Figure 1 illustrates the links between the four problems that we have studied. The
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Figure 1: Nonlinear and Linearized Programmes

optimization problem (P1) maximizes utility given the curved budget constraint C =

A− g (A)− tA+B in the figure. Let us consider particular values for the proportional

tax and lump-sum income: t∗ and B∗. Suppressing the dependence on v, we denote

the solution by A∗ = A (t∗, B∗) , C∗ = C (t∗, B∗). This defines the utility level u∗ =

U (C∗, A∗) . Optimization problem (P2) minimizes expenditures to reach the utility level

u∗ for the given nonlinear tax system. By construction, the solution to this problem is

also A∗, C∗. Linearizing around (A∗, C∗) , so that the linear budget constraint is tangent

to the indifference curve at (A∗, C∗) , we have two other optimization problems. Problem

(P3) maximizes utility subject to the linear budget constraint going through (A∗, C∗)

and having the same slope as the indifference curve through (A∗, C∗) . Problem (P4) is

to minimize expenditures given the utility level u∗ and the general shape of the budget

constraint given by the linear budget constraint. By construction, the four optimization

problems have the same solution. For any t and B, we thus have the identities

A (t, B) ≡ Ah (U (C (t, B) , A (t, B)))

≡ AL (pA (C (t, B) , A (t, B)) ,M (C (t, B) , A (t, B))) ≡ Ah
L (U (C (t, B) , A (t, B))) . (4)

Expressions (2) and (3) look quite similar. By construction, it is true that Ah
L = Ah,

implying that g′
(
Ah

L

)
+ t = g′

(
Ah

)
+ t. However, dAh/dt and dAh

L/dt differ, implying
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a bias when the linearization procedure is used. To show this, we start with a simple

example, which we then generalize.

3 A Simple Example

To simplify notation, we in this example suppress the preference parameter v. Assume

the utility function takes the quasilinear form U = C −αA−βA2. This implies that the

income effect for the supply of A is zero, so that the Marshallian and Hicksian supply

functions are the same. We assume that the tax is given by T (A) = tA+pA+πA2, where

we can interpret tA as a state tax and pAA+πA2 as the federal tax. This yields a budget

constraint C = A− (p+ t)A−πA2+B, where B is lump-sum income. Substituting the

budget constraint into the utility function, we obtain U = A − (p+ t)A − πA2 + B −

αA−βA2. Maximizing with respect to A, we get dU/dA = 1− (p+ t)−2πA−α−2βA.

We see that a necessary condition for a non-negative A is 1− (p+ t)− α ≧ 0. We find

that d2U/dA2 = −2 (π + β) < 0 for π+β > 0. Setting dU/dA = 0 and solving for A, we

obtain

A =
1− (p+ t)− α

2 (π + β)
. (5)

Since we have the quasi-linear form, this is also the Hicksian supply. We immediately

have
dAh

dt
= −

1

2 (π + β)
. (6)

From (6), we see that the size of the substitution effect depends on the curvatures of the

indifference curve and the budget constraint. We note that it is immaterial whether the

curvature emanates from the indifference curve or from the budget constraint. What

matters is the curvature of the indifference curve in relation to the budget constraint.

The larger the total curvature, given by 2 (π + β) in our example, the smaller is the

deadweight loss.

Suppose that we have particular values for the parameters of the problem and

denote the solution {C∗, A∗}. We can linearize the budget constraint around this

point and get the budget constraint C = A − [(p+ t) + 2πA∗]A + M , where M =

C∗ − [1− (p+ t)− 2πA∗]A∗.

Consider the problem:

max
C,A

{
C − αA− βA2

}
s.t. C ≦ A− [(p+ t) + 2πA∗]A+M. (7)

Substituting the binding budget constraint into the utility function, we want to maximise
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Figure 2: Deadweight loss when the budget constraint is nonlinear (left panel) and
linearized (right panel)

A − [(p+ t) + 2πA∗]A + M − αA − βA2. Denoting this expression by Ũ , we obtain

dŨ/dA = 1 − (p+ t) − 2πA∗ − α − 2βA and d2Ũ/dA2 = −2β. The second-order

condition is satisfied for β > 0. Setting dŨ/dA = 0 and solving for A, we get Ah
L =

(1− (p+ t)− 2πA∗ − α) / (2β) and

dAh
L

dt
= −

1

2β
. (8)

Suppose π = β = 0.1. We then have that dAh/dt = −2.5 while using the supply function

generated by the linearized budget constraint gives dAh
L/dt = −5. This means that the

linearization procedure overestimates the deadweight loss with a factor 2.

In Figure 2, we illustrate the deadweight loss of a discrete change in t, from t = 0

to t = 0.3, for parameter values of α = β = 0.1, p = 0.2, π = 0.05 and B = 1. In the

left panel, we show the correct calculation of the deadweight loss using a variation in

the nonlinear budget constraint. The bundle chosen prior to the tax change is A, at

the tangency point between the budget constraint and the highest feasible indifference
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curve. The increase in t shifts the nonlinear budget constraint in such a way that A′

is now chosen instead of A. The deadweight loss corresponds to the difference between

the equivalent variation and the variation in tax revenue. It is thus shown by the thick

vertical line below A′. In the right panel, we show the standard procedure which employs

a variation in the linearized budget constraint. The nonlinear budget constraint through

A is linearized around this point. The increase in t induces a rotation of the linearized

budget constraint around the intercept. The bundle AL is now chosen instead of A. We

see that the deadweight loss, shown by the thick vertical line below AL, is much larger

than when the correct procedure is used.

4 How Serious is it to Linearize?

We want to know how serious it is to linearize to compute the marginal deadweight loss.

To this aim, we can easily generalize the example above.

4.1 The Answer Depends on the Relative Curvature of the Indifference

Curve and the Budget Constraint

Let us consider the general utility function U (C,A, v). The Hicksian supply function

for taxable income is defined by problem (P2). We will reformulate this problem. The

constraint U (C,A, v) ≧ u is binding at the optimum and can thus be rewritten as

C = f (A, v, u), where the function f is defined by U (f (A, v, u) , A, v) = u. Substituting

the constraint C = f (A, v, u) into the objective function, we obtain the minimization

problem minA f (A, v, u)−A+ tA+ g (A)−B. Let us for convenience use the notation

f ′ () to denote ∂f/∂A. The first order condition f ′ (A, v, u)− 1 + t+ g′ (A) = 0 defines

the Hicksian supply function Ah (t, v, u). Differentiating it implicitly yields:

dAh

dt
= −

1

g′′ + f ′′
. (9)

In the analysis above, f ′ (A, v, u) is the slope of the indifference curve. Hence, f ′′ (A, v, u)

shows how the slope of the indifference curve changes as A is increased along the indiffer-

ence curve and, thus, gives the curvature of the indifference curve. For the special case

of a quasilinear utility function, with zero income effects for the taxable income function,

u would not be an argument in the f () function. From (9), we see that the curvature of

the budget constraint is as important for the size of the marginal deadweight loss as is

the curvature of the indifference curve. What matters is the curvature of the indifference
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curve in relation to the budget constraint. When the budget constraint is linear and

g′′ = 0, dAh/dt reduces to dAh/dt = −1/f ′′. Hence, if we linearized,we would obtain:

dAh
L

dt
= −

1

f ′′
, (10)

which confirms that the linearization procedure leads to an overestimation of the true

marginal deadweight loss.

In empirical studies of the taxable income function, it is the taxable income function

Ah
L (t, v, u) , valid for a linear budget constraint, that is estimated and reported. However,

if we know dAh
L/dt as well as the tax function T (A) = g (A) + tA, it is easy to calculate

the comparative statics for the taxable income function Ah (t, v, u). This is because the

comparative statics for the two functions are related according to the formula:

dAh

dt
=

dAh
L/dt

1− g′′ (A)
(
dAh

L/dt
) . (11)

From a welfare point of view, there is no obvious way how one should aggregate

the marginal deadweight loss for different individuals. However, it is fairly common to

calculate the average or total marginal deadweight loss. Whatever the weights that are

used, it is clear that the aggregate marginal deadweight loss calculated with the function

Ah
L gives a higher value than if calculated using Ah.

4.2 Linearization Bias

The relative error in using the linearized budget constraint is given by the ratio of

expressions (3) to (2), i.e. by:

dAh
L/dt

dAh/dt
=

g′′ + f ′′

f ′′
= 1 +

g′′

f ′′
= 1 + a. (12)

We see that the relative error in using the linearized budget constraint depends on the

relative sizes of g′′ and f ′′. For simplicity, we call a the ratio g′′/f ′′. Then, a is a measure

of the relative curvature of the budget constraint and the indifference curve. It is also

a measure of the relative bias in the welfare measure if we incorrectly linearize. For

example, if a = 1 and hence g′′ = f ′′, the linearization procedure overstates the true

effect by a factor 2. This holds true irrespective of the absolute size of g′′ and f ′′.

A high value of ηL, the elasticity with respect to a variation in the net tax rate,

implying a low value of f ′′ and shallow indifference curves, gives a large bias even if
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the curvature in the budget constraint is not very large. A low value of ηL (implying

quite curved indifference curves) does not give a large bias unless the budget constraint

also is heavily curved. An implication of the above is that for a given budget constraint

the bias increases in ηL. So, the bias might be negligible for an elasticity around 0.2,

which has been found in some studies (Blomquist and Selin, 2010) whereas it is large

for an elasticity of 2, which is values that Prescott argues are correct. People looking at

macro data find elasticities in the range of 2.25-3.0 (Rogerson and Wallenius, 2009). If

we believe that the bias is getting serious if the bias is 20% or larger, this implies that

if a ≥ 0.2 the bias is serious.

How do we get from ηL to f ′′? Let θ = 1 − g′ − t, implying that dθ/dt = −1. The

taxable income elasticity is defined as

ηL :=
dAh

L

dθ

θ

A
= −

dAh
L

dt

θ

A
=

1

f ′′

θ

A
. (13)

We can rewrite this to get f ′′ = 1

ηL

θ
A
.

We now examine how to get an idea about the size of g′′. We take the income interval

[D1, D9] ranging from the first to the ninth decile and consider the budget constraint

for this range of income. We make the assumption that the second derivative of the tax

function is constant over the interval. In other words, we approximate the nonlinear

income tax by a quadratic function g(A). We call tD1 and tD9 the marginal tax rates at

the beginning and the end of the income interval, i.e., tD1 ≡ g′(D1) and tD9 ≡ g′(D9).

Then, the function g(A) can be written as

g(A) = α+ pA+ g′′ A2/2 with g′′ =
tD9 − tD1

D9−D1
, (14)

implying θ = 1−(p+ t)−Ag′′. This provides us with a very easy way to approximate the

curvature of the tax function. Using this simple procedure, the bias at taxable income

A amounts to

a :=
g′′

f ′′
= g′′ ×

ηLA

1− (p+ t)−Ag′′
. (15)

4.3 How Large is the Linearization Bias? Two Illustrations

We can illustrate the above for the French tax system. We have chosen an income

interval ranging from the first to the ninth decile (for men in the private and semi-public

sectors) and computed the income tax using the Ministry of Finance’s Website. In 2007,

we have D1 = 13.528 Ke, D9 = 41.413 Ke, tD1 = 19.14% and tD9 = 37.38%. We obtain
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Figure 3: Bias a (single men, France, t = 0.2, 2007)

p = 0.102911 and g′′ = 0.0065412. We assume that t = 0.2. Figure 3 shows the bias as a

function of income for several elasticity values (0.2 to 1.0). D1, D2, . . . , and D9 stand

for the different deciles. We have checked that the bias is not very sensitive to the value

of t. If we consider a 10%-mistake as significant, we see that the linearization procedure

should be rejected for elasticities above 0.2–0.3.

We can also compute the average bias. If φ(A) is the proportion of individuals with

taxable income A, the average mistake can be computed as:

ηL g′′
D9∑

A=D1

A

1− (p+ t)−Ag′′
φ(A). (16)

We provide computations for the US. We take into account the federal income tax, the

state income tax, and the social security payroll tax. We use the Californian tax schedule

to compute the state income taxe. California is the state with the largest population

and many other states have similar income tax schedules. The social security payroll

tax is the linear component of the tax system we consider. We therefore investigate the

deadweight loss induced by a marginal change in the social security tax. The distribution

of taxable income is obtained from the CPS labor extracts, restricted to single men with

no child, and the tax rates from TAXSIM. The different parameters are shown in Table

1. The marginal tax rates are shown as the sum of the federal (Fed.) and state (St.)

income tax respectively.
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D1 (in $) D9 (in $) tD1 (Fed. + St.) tD9 (Fed. + St.) SS Tax g′′

1979 2,444 18,148 0%+0% 30%+11.1% 12.26% 0.0262

1993 4,940 33,020 0%+0% 28%+8% 15.3% 0.0128

2000 8,996 52,000 22.65%+0% 28%+9.3% 15.3% 0.0034

2007 10,400 62,400 17.65%+0% 25%+9.3% 15.3% 0.0032

Table 1: Descriptive Data for the US

We see that the overall curvature of the tax system – summarized by g′′ – has

dramatically changed over the last three decades. It was much larger in 1979 and 1993

than in the 2000s. Given g′′, we compute the bias a for each individual in our sample

and obtain the average shown in Table 2. The reduction in the concavity of the federal

and state income tax implies a reduction of the bias, from 14% in 1979 to 6% in 2007 for

a low elasticity of 0.4 and from 35% to 16% for a larger elasticity of 1.0, that Feldstein

argues as reasonable.

Year \ηL 0.2 0.4 0.6 0.8 1.0 2.0

1979 0.07 0.14 0.21 0.28 0.35 0.71

1993 0.06 0.12 0.18 0.24 0.31 0.61

2000 0.03 0.06 0.09 0.12 0.16 0.31

2007 0.03 0.06 0.09 0.12 0.16 0.32

Table 2: Average Bias in the US

4.4 Marginal DWL per Marginal Tax Dollar

Sometimes one is interested in the marginal deadweight loss per marginal tax dollar.

Because the compensated revenue function is R
(
Ah

)
= g

(
Ah

)
+ tAh, the marginal tax

revenue – whilst keeping utility constant – can be written as:

dR
(
Ah

)

dt
= Ah + (g′(Ah) + t)

dAh

dt
= A−

g′ + t

g′′ + f ′′
. (17)

If a linearized budget constraint is used, the marginal compensated tax revenue will

incorrectly be calculated as:

dR
(
Ah

L

)

dt
= Ah

L + (g′(Ah
L) + t)

dAh
L

dt
= A−

g′ + t

f ′′
. (18)
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That is, the marginal tax revenue will be underestimated. Hence, the linearization pro-

cedure does not only lead to an incorrect deadweight loss, it also computes a wrong

change in tax revenue.

Let ρ denote the marginal deadweight loss per marginal tax dollar, i.e.,

ρ :=
marginal deadweight loss

marginal tax revenue
= −

(g′ (A) + t) dAh/dt

dR (Ah) /dt
=

g′ + t

g′′ + f ′′

A−
(g′ + t)

g′′ + f ′′

. (19)

If we instead linearize, we would calculate:

ρL =

g′ + t

f ′′

A−
(g′ + t)

f ′′

. (20)

We find that ρL/ρ = 1 + aρ with

aρ :=
Ag′′

Af ′′ − (g′ + t)
, (21)

which corresponds to the relative bias induced by the linearization procedure.

It is of interest to compare this bias with a. By definition, these biases are linked by

the following relationship:

1 + aρ =
DWL

DW
×

dR
(
Ah

)
/dt

dR
(
Ah

L

)
/dt

= (1 + a)×
dR

(
Ah

)
/dt

dR
(
Ah

L

)
/dt

, (22)

that can also be rewritten as:

1 + aρ
1 + a

=
dR

(
Ah

)
/dt

dR
(
Ah

L

)
/dt

. (23)

We have already noted that dR
(
Ah

L

)
/dt is larger than dR

(
Ah

)
/dt, i.e., dR

(
Ah

L

)
/dt <

dR
(
Ah

)
/dt.When the marginal changes in tax revenue have the same sign (both positive

or both negative), we get aρ > a. However, dR
(
Ah

L

)
/dt and dR

(
Ah

)
/dt can be of

different signs. In that case, aρ < a.

Typically, dR
(
Ah

L

)
/dt and dR

(
Ah

)
/dt are both positive up to some income thresh-

old. Then, for larger A, dR
(
Ah

L

)
/dt becomes negative whilst dR

(
Ah

)
/dt remains posi-

tive. The switching point corresponds to a vertical asymptote of aρ, as shown in Figure

15



4: the bias explodes for incomes close to it, in the range of positive numbers to the

left and of negative numbers to the right. This is due to the fact that the linearization

procedure can suggest that tax revenue is decreasing (with respect to t) even though it

is not yet. In other words, computations ignoring the curvature of the budget constraint

can show that we are on the left side of the Laffer curve even though we are not.

Figure 4 is obtained for ηL = 1. For smaller elasticity values, the asymptot is more

to the right, but the overall pattern is the same. Showing the graph of the bias for

several elasticity values on the same figure would be quite messy because of the different

asymptots. This is why, in Figure 5, we have chosen to focus on the positive part of the

plane.

Year \ηL 0.2 0.4 0.6 0.8 1.0 2.0

1979 0.08 0.18 0.34 0.66 0.43 1.71

1993 0.07 0.16 0.18 0.52 2.42 1.47

2000 0.04 0.10 0.20 0.44 1.87 −0.55

2007 0.04 0.09 0.17 0.33 1.01 −1.89

Table 3: Average Bias aρ in the US

5 Conclusion

Actual tax systems are usually such that the marginal tax changes with the income

level, implying that the budget constraints that individuals face are nonlinear. It is

of interest to calculate the marginal deadweight loss of changes in a nonlinear income

tax. A nonlinear income tax can be varied in many different ways. Break points can

be changed, the intercept can be changed and the slope can be changed. Moreover, the

slope can be changed in different ways. We do not cover all these different possibilities

to vary a nonlinear tax. We focus on a particular kind of change in the slope, namely

a change in the slope such that the marginal tax changes with the same number of

percentage points at all income levels. Such a change can represent, for example, a

change in the pay roll tax, the value added tax or a proportional state income tax. A

common procedure to calculate the marginal deadweight loss of a change as described

above has been to linearize the budget constraint at some point and then calculate the

marginal deadweight loss for a variation in the linearized budget constraint. As shown in

the article, such a procedure does not give the correct value of the marginal deadweight

loss.

In this article, we first derive the correct way to calculate the marginal deadweight
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Figure 4: Relative Bias aρ for ηL = 1 (single men, France, t = 0.2, 2007)
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Figure 5: Relative Bias aρ in the Positive Plane (France, 2007, with t = 0.2)
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loss when the budget constraint is smooth and convex. It is well known that the size of

the deadweight loss depends on the curvature of the indifference curves, with more curved

indifference curves yielding smaller substitution effects and lower marginal deadweight

losses. We show that the curvature of the budget constraint is equally important for

the size of the marginal deadweight loss. In fact, the curvature of the budget constraint

enters the expression for the marginal deadweight loss in exactly the same way as the

curvature of the indifference curve.

We next show how to calculate the marginal deadweight loss when the tax system

generates a piecewise linear budget constraint. It is equally true in this case as for the

case with a smooth budget constraint that the curvature of the budget constraint is of

the same importance for the marginal deadweight loss as the curvature of the indifference

curve. However, the impact of the curvature of the budget constraint to diminish the

deadweight loss is now concentrated to the kink points. For individuals located at a kink

point, there is no marginal deadweight loss, for them the increase in the marginal tax is

just like a lump-sum tax.

We also perform numerical calculations where we calculate the true marginal dead-

weight loss and compare this with computations obtained by linearizing the budget con-

straint and performing the marginal deadweight calculations on the linearized budget

constraint. The bias introduced by the linearization is often quite large, for reasonable

parameter values.

It is very simple to use the correct procedure to compute the marginal deadweight

loss. Therefore, there is no need to rely on a linearization procedure which leads to an

incorrect measure.

6 Appendix

Desired, or planned, taxable income is determined as outlined above. However, for

various reasons desired taxable income cannot be realized. To take this fact into account,

? introduces a random shock δ, corresponding to an increase or decrease in labour

earnings. Wage bonus is an example of positive shock. We can think of other reasons.

The individual might plan for a given taxable income and choose his effort/labour supply

accordingly. However, because of unexpected sickness, layoff, new vacation plans because

of a new love, etc., actual taxable income might be lower than the planned one. Taxable

income might be higher than the income planned for because of vacation plans that are

changed, better health than expected, assigned overtime, etc. We call ε this kind of

shocks. We assume that ε and δ are independent, with supports [ε, ε] and
[
δ, δ

]
and pdf

18



E and D respectively. They both have means equal to zero.

Assuming that there is no income effect on taxable income, the utility is given by:

U = A+ ε+ δ − T (A+ ε+ δ)− v

(
A+ ε

w

)
(24)

where v is disutility of effort/labour. The expected utility is:

EU =

∫ ε

ε

∫ δ

δ

[
A+ ε+ δ − T (A+ ε+ δ)− v

(
A+ ε

w

)]
E (ε)D (δ) dεdδ

= A−

∫ ε

ε

∫ δ

δ

T (A+ ε+ δ)E (ε)D (δ) dεdδ −

∫ ε

ε

v

(
A+ ε

w

)
E (ε) dε. (25)

We call T̂ (A) =
∫ ε

ε

∫ δ

δ
T (A + ε + δ) × E (ε)D (δ) dεdδ the expected tax and T̂ ′(A) =

dT̂ (A)/dA the expected marginal tax rate. The first-order condition of the utility max-

imisation programme yields:

∫ ε

ε

v′
(
A+ ε

w

)
× E (ε) dε = w

[
1− T̂ ′(A)

]
. (26)

We see that the optimum A depends on the distributions and supports of ε and δ as

well as on the expected net-of-tax wage rate. In order to make their choice, individuals

do not consider the actual tax schedule, but the expected smooth one.
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