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aspect of pension emphasized in the literature would suggest the former, which
justifies various tax privileges, contribution matching and withdrawal penalty.
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tivity shocks and consumption are private information. The optimal allocation
can be decentralized, with help of a linear saving tax and a lump-sum tax, with
zero ex ante taxation. We find pension contribution should be taxed, and with-
drawal subsidized. Nevertheless the level of pension accumulated is higher under
the optimal mechanism than laissez faire. Agents enjoy higher consumption,
contribute less, but on average take less time to quit. If there is wealth effect
on consumption, agents who are old or about-to-retire (young or about-to-quit)
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1 Introduction

Retirement program in the U.S. has witnessed a drastic change in nature since 1980s.

Traditional defined benefit programs, either funded or unfunded by assets, are criticized

for the lack of sustainability. For example, unfunded defined benefit programs, such as

Social Security which is financed by payroll tax, a lion’s share (about 40 percents) of

tax revenue, are inevitably challenged by the decline of fertility after baby boom and

fiscal deficit of the government. Even for the funded defined benefit program, such as

traditional private employer pension plan, are doubted on financially ground. Sponsors’

solvency of these plans turns out to be a substantial risk to the participants. For

example, $3,100 was received as pension after the Enron bankruptcy1. Also, the slower

growth in productivity since 1975, from 2 percents to around 1 percent, looms over

returns of fund. All these received worries of defined benefit program urge the adoption

of defined contribution programs, such as 401(k) and IRA. The financial soundness of

defined contribution program comes from the feature that it is the contribution plan

during one’s working life, rather than benefit, that is specified and the retirement

benefit is based on the accumulation contribution.

Under this social context, the contribution2 of this paper is to provide a novel

theoretical framework to design a dynamic pension contribution mechanism. We em-

phasize on the effect of uninsurable risks on income during one’s working life, like job

loss, promotion competition, obsolete of skill, location change and physical injury. Due

to information asymmetry, the insurances of these shocks are mostly partial or even

missing in the market, so any benevolent social planner cannot simply ignore or treat-

ing them independently. As a result of these shocks, a pension contribution mechanism

1Another notable example, despite of its bankruptcy, General Motors is still running the largest
pension fund in the country. In its issue of April 2010, Time published an article titled "GM’s
Pension: A Ticking Time Bomb for Taxpayers?"

2One maybe surprise, despite its importantce, little has be done on the normative theory of pension
contribution mechanism. For example, Diamond (2009) states,

"In particular, I think we have done too little study of the issues around tax-favored
retirement savings accounts, studies that need to recognize uncertainty in future earn-
ings, uncertainty in future spending needs, diversity in savings behavior and earnings
opportunities, and uncertainty about future tax rates."
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has to maintain a careful balance between smoothing contributor’s consumption and

pension accumulation. However, the social planner, like the market, only observes pen-

sion contribution but not one’s income nor consumption, which poses a moral hazard

problem to any contribution mechanism. In particular, an agent may find profitable

to game the mechanism by mimicing one with very adverse income shock. So the de-

sign of an optimal pension contribution mechanism should concern agent’s incentive

as well. For this purpose, we formulate a dynamic optimization problem under private

information of income shocks and consumption, where agents are free to contribute,

consume, retire and quit the mechanism.

To see the contribution of this paper, it is helpful to appreciate the diffi culty in

solving the dynamic moral hazard problem. A pension contribution mechanism is a

function mapping from a path of pension contribution to the level of pension avail-

able when the agent retires. The design of optimal mechanism involves two levels of

optimization problem. First, agents take an arbitrary mechanism as given and solve

for the path of consumption, contribution, and stopping time to retire and to quit

the mechanism. These constitute the set of incentive compatible allocations, which

is challenging to characterize. Second, the social planner chooses paths of incentive

compatible consumption, saving, stopping time to retire and to quit the mechanism in

order to solve the optimal mechanism.

The roadmap to optimal pension contribution mechanism is as follows. The defini-

tions of concepts used can be found in the corresponding sections. First, we formulate

the equivalent agent’s problem in a "risk-neutral world", where the social planner al-

ways observes contribution following a Brownian motion. Second, apply stochastic

Pontryagin principle (Lemma 1), the set of incentive compatible recommendations can

be characterized under the risk-neutral world, then recovered under the original space

(Proposition 3). Forth, we index jointly the set of incentive compatible recommenda-

tions and pension contribution mechanism by the volatility of promised continuation

utility and the recommended stopping time to retire (Corollary 1). Fifth, we set up the

HJB equation to solve the optimal mechanism (Proposition 4) under dynamic incentive

constraints, and discuss some of it properties and implementation. Sixth, we provide a

simple decentralization of the optimal mechanism through a lump tax sum and a linear
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saving tax (Proposition 5). The properties of the optimal taxation are also discussed.

Seventh, we compare the optimal mechanism with laissez faire (Proposition 6). We

discuss the source of effi ciency gain, which is the role of insuring pension accumulation

against labor productivity shocks during one working life.

We find pension contribution should be taxed, rather than subsidized, in return

for insuring pension accumulation against productivity shocks. This normative result

contrasts with current practices on 401(k), IRA or others similar, where pension con-

tribution is not taxed or subsidized by contribution match. We also find, maybe

counterintuitively, the level of pension is higher under the optimal mechanism than

laissez faire. To see the reason, we decompose pension accumulation along intensive

margin, which is the level saving at each time, and extensive margin, which is the

length of participating the mechanism. Because contribution is taxed, the intensive

margin deceases as agents save less under the optimal mechanism. But the extensive

margin increases as the insurance aspect of the optimal mechanism induces agents to

stay longer in the mechanism and postpone their retirement. It turns out that the ex-

tensive margin dominates the intensive margin, thus agents retire with higher pension

under the optimal mechanism.

Our key observation is that any incentive compatible contribution mechanism can

be summarized by a profile of volatilities of continuation utility promised by the mecha-

nism. The optimal allocation can be decentralized, with help of a linear saving tax and

a lump-sum tax, with zero ex ante taxation. If there is wealth effect on consumption,

agents who are old or about-to-retire (young or about-to-quit) should be lump-sum

subsidized (taxed) and enjoy lower (higher) saving tax rate. In particular, under the

decentralization of the optimal mechanism, both the lump-sum tax (or negative trans-

fer) and saving tax rate are decreasing in level of saving. Under laissez faire agents do

not consume that much at the optimal level, because they prefer to save more than the

optimal level for precautionary motive. In this case, a lump sum subsidy is needed to

compensate such precautionary saving. Such compensation cannot be achieved through

lower saving tax rate, since the effect of labor productivity shock on saving would be

exaggerated due to the substitution effect. So the social planner needs these two tax

vehicles altogether to decentralize the optimal allocation. This characterizes the dy-
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namic incentives of optimal taxation to decentralize optimal mechanism. As saving is

accumulated toward retirement, agent’s saving are more lump-sum subsidized but less

insured.

1.1 Literature Review

Our framework follows the continuous-time model of variable retirement model in Dia-

mond and Mirrlees (1978,1982). The continuous-time model is realistic since the timing

of retirement is chosen form the continuum of time rather than in discrete manner. Also

they focus on unobservable retirement shock, while here we focus on unobservable labor

productivity shocks. For our propose to study contribution mechanism, incorporating

unobservable, dynamic labor productivity shock is important, as it implies various

pension contributions over time amongst the continuum of agents, and, more impor-

tantly, the risk of future income. This allows us to derive a normative theory to say

how should the level of pension depend on the various contribution history under the

shadow of uncertain future. Also, modeling unobservable labor productivity allows us

to study how and how much risk-sharing can be achieved under incentive compatibility

constraints, through a pension contribution mechanism.

The dynamic optimal taxation literature3 which emphasizes the importance of un-

observable income shocks is also related to this paper. The literature has focused,

almost exclusively, on fixed horizon of agent, finite or infinite, rather than allowing

endogenous retirement. To see the difference, we compare the decentralization of

optimal mechanism in this paper with two seminal works of Cole and Kocherlakota

(2001) and Golosov and Tsyvinski (2007). The former studies an environment with

hidden income, hidden consumption and hidden saving, and finds the optimal taxation

is laissez faire. This is a useful reference model, since it tells us the boundary of infor-

mation structure within which social planner intervention can improve effi ciency. Our

paper studies a less strict information structure: hidden income and consumption but

observable saving. Here the observation on saving allows an additional tax vehicle on

3See Hopenhayn and Nicolini (1997), Werning (2002), Albanesi and Sleet (2006), Golosov and
Tsyvinski (2006), Kocherlakota (2005), and Mitchell and Zhang (2010). On the other hand, Atke-
son and Lucas (1992) and Golosov, Kocherlakota and Tsyvinski (2003) study effi cient allocations in
dynamic, private information economies.
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saving to lump-sum tax, and the optimal mechanism can improve welfare over laissez

faire.

The optimal mechanism can be decentralized by a simple linear saving tax and a

lump-sum tax (transfer if negative) in our continuous-time environment. In Golosov

and Tsyvinski (2007), which also studies hidden consumption but in discrete-time

environment, the optimal allocation can be decentralized by a linear saving tax as

well. The insight for this simplicity is that, there are firms that takes care of all the

complicate dynamic contract with agents, and the role of the government is only to

correct the "externality" associated with the price-taking behavior of firms. Here the

decentralization of the optimal mechanism works through agent’s saving only. The

reason to introduce taxes is also different. The role of saving tax is to mitigate the

effect of shock and reduce precautionary saving motive. Insurance is provided by the

subsidized withdrawal, as the linear saving tax applies to negative saving as well. The

role of lump-sum tax is to provide incentive to affect agent retirement decision.

Our problem can be thought of a principal-agent problem, where continuous-time

versions4 are also studied in Sannikov (2008) and Williams (2010). The elegant ap-

plications of stochastic control theories in Sannikov (2008) and Williams (2010) are

important technical references for our paper. However, because of our purpose to

study pension contribution mechanism, our model is different from theirs, in term of

preference, information structure and choice of agents. We also focus on the imple-

mentation and decentralization of mechanism, welfare implication and the comparison

with laissez faire, which are beyond the concern of standard principal-agent problem.

Williams (2010) studies a general environment which allows persistent shocks and hid-

den actions in general. A useful tool suggested is stochastic Pontryagin principle, which

characterizes the necessary condition of a stochastic control problem. There are wide

potential applications of this technique, including ours, but with some modifications

of the technique in order to apply in our problem. Here we solve the optimal in-

direct mechanism, so we are able to study how the pension contribution mechanism

determines the level of pension according to the history of contribution.

4See also DeMarzo and Sannikov (2006), Piskorski (2010), Holmstrom and Milgrom (1987) and
Zhang (2009).
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Sannikov (2008) studies a simple environment in continuous-time model but gen-

erates a rich array of results which are helpful to explain various feature of dynamic

contract. The fruitful modeling strategy of Sannikov (2008) motivates us to study the

pension contribution mechanism in continuous-time model. In Sannikov (2008), the

principal designs a contract which recommends efforts and specifies wages according

to observable output. Agents cannot save, so consumptions are simply wages and thus

observable to principal. There is no direct motive of retirement and pension benefit,

but there nevertheless is the event of retirement when the principal finds too costly to

motivating agent to provide hidden effort. In particular, the circumstance that agents

are paid for zero recommended effort is interpreted as retirement, which is the choice

of principal. The benefit scheme of pension is determined by principal to fulfill his

promise on agent’s continuation utility. Here to capture the event of retirement and

accumulation of pension as agent’s choice, we explicitly model the utility of retirement

is the function of pension available. The accumulation of pension is through individual

saving, or through the pension contribution mechanism provided by the social planner.

Agent’s consumption is hidden and the social planner only observed the path of pen-

sion contribution into the mechanism. In this environment, agents choose to retire once

their pension is suffi ciently high. To abstract from the benefit scheme of pension, the

utility of pension is exogenous given. The implication of hidden consumption implies

the social planner has to provide extra incentive to agents.

2 Benchmark Model: Laissez Faire

It would be simpler to introduce the environment where there is no pension contribution

mechanism. Also it provides a benchmark to compare to effects of optimal pension

contribution mechanism where we will derive in the latter section.

Time is continuous over the infinite horizon. The economy is populated by a

continuum of agents over unit interval, who work, consume and save over the horizon

and retire to enjoy the utility of pension. Consumption and labor productivity are

private information, but saving is observable (bank account can be easily checked and

verified), so a third party cannot distinguish whether an observed higher level saving
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is due to higher labor productivity realized or just lower consumption.

2.1 Technology

The labor productivity is given by

dθt = θdt+ σdBt, (1)

where θ > 0 and labor productivity is continually hit by an idiosyncratic shock σdBt,

where σ > 0 and Bt is a standard Brownian motion. Since dθt is private information,

there is no insurance market to cover the risk of labor productivity shock if no other

relevant information available, since agents can always report dθt = −∞. An event in
the event space C[0,∞) is a continuous path B ≡ {Bt, 0 ≤ t < ∞}, which generates
a filtration {FBt }∞t=0 with Wiener measure P. We denote the probability space as a

triple
(
C[0,∞), {FBt }∞t=0,PY

)
. All functions here and later are assumed bounded and

Lipschitz continuous.

There is a saving technology with rate r. The flow of saving dat is given by:

dat = (rat − ct) dt+ ltdθt, given a0 > 0 and θ0, (2)

where lt is FB-measurable and adapted which denotes agent decision to work (lt = 1)

or to retire (lt = 0) given the information Ft at time t. Retirement is an irreversible
decision, so the work history l ≡ {lt,Ft, 0 ≤ t <∞} is a right-continuous jump process
with at most one jump from one to zero. The timing to retire is a stopping time5,

which is denoted as TR (B) : C[0,∞) → R+, that is lt = 0 iff t ≥ TR (ω). At time t,

agents decide to work (lt = 1) or retire (lt = 0) after learning the idiosyncratic shock

σdBt. So it is lt rather than lt− appearing in (2).

Agents always have an outside option to quit the saving market, which is a ir-

reversible decision and leads to continuation value Vmin. Thus Vmin is always a lower

bound for agent continuation value Vt which constitutes a participation constraint. For

5T is a stopping time of filtration {Ft}∞t=0 if it is an F-measurable random variable on [0,∞], such
that {T ≤ t} ∈ Ft for every t. Since lt is measurable on Ft, T is F-measurable. Note under usual
conditions, we only need to show {T < t} ∈ Ft for all t to establish T is a stopping time (Proposition
1.2.3, KS). Rewrite the event {T < t} = ∪∞n=1{lt−1/n = 0}, since lt−1/n mapping from Ft−1/n to
{0, 1}, the event {lt−1/n = 0} ∈ Ft−1/n ⊆ Ft for all n ≥ 1.
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technical convenience, we also impose a lower bound on the level of saving, otherwise

agents can maintain huge consumption over time by rolling negative saving and never

retire. We assume agents are not allowed to have net debt, thus at ≥ 0. Once the level

of saving hits zero, we assume the agent is liquidated and forced to quit saving market

forever. This also leads to continuation value Vmin. So if Vmin is suffi ciently negative,

then agents never quit the saving market. We do not model what happens after the

liquidation or leaving the saving market, which may depend on explicit institution and

environment outside this model, so Vmin is exogenous given. Let TL (B) : C[0,∞)→ R+

denote the stopping time to quit. For agents remained in saving market, it is necessary

that their saving level is strictly positive, at > 0 and satisfies participation constraint

Vt > Vmin.

2.2 Preferences and Value Function

Agents choose consumption, labor and effort, as well as stopping times to retirement

and liquidation in order to maximize preferences:

V0 = max
c,a,TR,TL

E


r

∫ TR(B)∧TL(B)

0

e−rtu (ct) dt

+e−rTR(ω)1TR(B)≤TL(B)U
(
aTR(B)

)
+e−rTL(ω)1TR(B)>TL(B)Vmin

∣∣∣∣∣∣∣∣F
B
0

 , given a0 (3)

subject to the accumulation of saving

dat = (rat + θ − ct) dt+ σdBt (4)

where u : R+ → R+ is the flow of utility, which is C3, Lipschitz continuous6, increasing

and strictly concave in consumption, which is a F-measurable and adapted process
denoted as c ≡ {ct,FBt , 0 ≤ t < ∞}. Pension aTR(B) is the level of saving at the

stopping time of retirement TR (B).

In this model, agents retire because they can enjoy the value of pension and not

working. Once the agent retires, his continuation value is explicitly specified by the

utility of pension U : R → R which is twice differentiable, increasing and strictly

concave in the level of pension aTR . The utility of pension U may depend on pension

6u is Lipschitz continuous if there exists M such that |u (c′)− u (c)| ≤ M |c′ − c|, for all c′ and c.
Lipschitz continuity implies bounded first derivative.
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benefit arrangement and institution, which are again beyond our model and thus are

summarized by an exogenous function of pension. A technical convenience is that we

deport the stochastic transversality condition of at to U , so we do not need to worry

about the possibility of ponzi game. Define the continuation value Vt as

Vt = max
c,a,TR,TL

E


r

∫ TR(B)∧TL(B)

t

e−r(s−t)u (cs) ds

+e−r(TR(B)−t)1TR(B)≤TL(B)U
(
aTR(B)

)
+e−r(TL(B)−t)1TR(B)>TL(B)Vmin

∣∣∣∣∣∣∣∣F
B
t

 given at and (4). (5)

Continuation value Vt is agent’s value from time t given the information FBt . At time
t, the expected remaining times to retire SRt and to quit the saving market S

L
t are

SRt ≡ E{TR (B)− t|FBt }, SLt ≡ E{TL (B)− t|FBt }. (6)

We maintain an assumption on U , which is the proof of Proposition 1 to establish

finite aT and retirement in finite time almost surely:

Vmin + βa ≥ U (a) , (7)

where β ∈ (0,∞) solves rVmin = βθ+ maxc≥0{ru (c, 1)− βc}. Note the above assump-
tion implies Vmin ≥ U (0), so there is a threshold of saving such that agents prefer quit

than retirement iff the level of saving is less than such threshold. In order words, both

quit and retirement are not strictly dominated and can be triggered.

The saving problem is not standard precautionary saving problem as agents can

retire and quit the saving market. We first summarize some properties of continuation

value Vt and the choice of consumption, retirement and quit under laissez faire:

Proposition 1 Given maintained assumptions and the level of saving at,

(a) The continuation value given by (5) is a continuously differentiable function of

saving Vt = V (at) , where V : [0, aret]→ R and aret solves

rV (a) = Va (a) (ra+ θ) +
σ2

2
Vaa (a) + max

c≥0
{ru (c)− Va (a) c}, ∀a ∈ [0, aret ] , (8)

s.t. V (aret) = U (aret) , Va (aret) = Ua (aret) , V (0) = Vmin. (9)

(b) The solution V (a) and such aret exist and the continuation value Vt is the

solution V (at) with greatest Va (0). V (a) is increasing over a ∈ [0, aret] and strictly

concave.
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(c) The stopping times to retire and to quit the saving market are:

TR = inf {t : at = aret} , TL = inf {t : at = 0} . (10)

(d) Consumption is given by a strictly increasing C (at) ≡ u−1
c (Va (at) /r) if well

defined, and C (at) = 0 otherwise.

(e) Va (at) ∈
(
0, β
)
is a bounded martingale. The drifts of saving at and continuation

value Vt point in the direction in which Vaa (at) is increasing. The drift of consumption

C (at) point in the direction in which ucc (C (at)) is increasing .

(f) The expected remaining time to retire SR (a) and to quit SL (a) given promised

continuation utility at = a solves

−1 = rSRa (a) (ra− C (a)) +
σ2

2
SRaa (a) , SR (0) =∞,SR (aret) = 0, (11)

−1 = rSLa (a) (ra− C (a)) +
σ2

2
SLaa (a) , SL (0) = 0, SL (aret) =∞. (12)

Proof. See Appendix.

The constraint Va (aret) = Ua (aret) on the HJB is also called smooth-pasting con-

dition. We proof the necessity of smooth-pasting condition for optimality in the Ap-

pendix.

Verbally, Va is the shadow price of saving, which equals to marginal utility of

consumption, as saving and consumption are free to transform into each other. The

price of saving is strictly increasing in consumption, because of the strictly concavity

of u. Note that there is always wealth effect on consumption, captured by the fact

that C (at) is strictly increasing in at. However, because of the presence of shock, it

is possible to have positively drift of saving at but negative drift of consumption Ct,

if uccc (Ct) and Vaaa (at) are in opposite sign. This is a result of Ito Lemma, since

there is an additional drift in consumption driven by shock, associated with the second

derivative of C (a). Agents choose to retire once at hit the pension target aret, and quit

the saving market once at hits zero.

To see the effect of uncovered labor productivity shocks, we compare with the first

best where labor productivity shocks can be completely insured, that is σ = 0. Then
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we have a closed-form solution to (8). Assume agents retire in finite time definitely7.

Then we can verify that the continuation value V with at ∈
[
a0, a

FB
ret

]
units of saving

is linear in at:

V FB (at) = U
(
aFBret

)
+
(
at − aFBret

)
Ua
(
aFBret

)
, (13)

where the first-best level of pension aFBret and consumption
8 are given by

U
(
aFBret

)
− u

(
cFB
)

=

(
aFBret +

θ − cFB
r

)
Ua
(
aFBret

)
, cFB = u−1

c

(
U ′
(
aFBret

)
r

)

The (deterministic) remaining time to retire and to quit with at units of saving are

SR (at) =
1

r
ln

(
raret + θ − cFB
rat + θ − cFB

)
, SL (at) =∞.

Essentially, under the first best, agents consume constant cFB over time and save the

rest for pension. Agents retire once their saving reaches aFBret . Continuation value is

linearly increasing in at since higher at does not increase consumption but implies less

remaining time to retire, in a linear fashion. Also agents never quit the saving market,

as the continuation value is increasing over time and never falls below Vmin.

We can draw some comparisons. Under the benchmark economy, there is strictly

positive probability that agents will quit the saving market in finite time. Since agents

dissave when they are hit by negative labor productivity shocks. If negative shocks

happens so frequent or severe that their saving becomes suffi ciently low, then quit-

ting the saving market becomes a preferred outside option. The following proposition

compares first-best consumption and pension with those in benchmark economy:

Proposition 2 Given σ > 0. First-best consumption cFB is always higher than the

consumption C (at) in the benchmark economy for any at ∈ (0, aret). First-best pension

aFBret is higher than pension aret in the benchmark economy.

Proof. See Appendix
7This is the case when

U
(
aFBret

)
+
(
a0 − aFBret

)
U ′
(
aFBret

)
> u (ra0 + θ) .

If this is violated, then agents will consume ra0 + θ and never retire.
8We assume a0 is high enough such that ra0 + θ > c, so c is always feasible.
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One might expect we can conclude that agents have shorter expected remaining

time to retire in the benchmark, since in the first best, saving for pension have higher

target, aFBret > aret, but agents save less, cFB > C (at). This is not true in general,

because in the benchmark there is strictly positive probability that agents will quit in

finite time, which implies SR =∞.
Consumption and remaining time to retire become stochastic when labor produc-

tivity shock cannot be insured. Agents retire when there is suffi cient saving for pension.

When labor productivity shock cannot be insured, retirement time and pension can

be fluctuated as well, so agents have to strike the balance between smoothing con-

sumption and smoothing the accumulation of saving for pension. It turns out both

consumption and pension are lower. The former is because agents save more for pre-

cautionary motive, and the latter is because, the continuation value of not retiring is

lower under the benchmark, so agents prefer to retire even with lower level of pension.

All these represent effi ciency loss as agents can be better-off if both consumption and

pension can be covered. With presence of asymmetric information the first best is no

longer available. It calls for the second best allocation where incentive compatibility is

concerned, which is studied in the next section.

3 Pension Contribution Mechanism

Suppose instead of doing nothing, the social planner collects contribution during the

working life and offers pension when agents retire. The main issue of this paper is to

characterize an optimal pension contribution mechanism in which agents are free to

contribute, save, consume, retire with pension and quit the mechanism under private

information of labor productivity shocks and consumption. The information asymme-

try is our starting point as it implies incomplete market in the first place, which calls for

a pension contribution mechanism. In our model, a pension contribution mechanism

is the function A (Y, T ) : C[0,∞) × [0,∞) → R+ which describes the level of pension

under contribution Y when the agent retires at time T .

Let dYt denote the flow of pension contribution, which is normalized to volatility
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of labor productivity σ and given by

σdYt = −ctdt+ ltdθt, Y0 = 0, given θ0. (14)

Agents stop contributing after retirement or quit, so Yt = 0 for t ≥ min (TR, TL). The

social planner only observes history of pension contribution Y ≡ {Yt, 0 ≤ t <∞}, but
not its decomposition which involves agent consumption c and labor productivity θ. If

c is observed and thus θ, then the first best can be achieved as the social planner can

force agents to contribute according to θ. So we assume hidden consumption in our

model.

We first focus on the mechanism where agents do not save individually and thus

pension contribution mechanism is the only source of pension. A standard argument

in the literature of optimal taxation is that, under observable saving, for any incentive

compatible allocation under a mechanism there is another mechanism such that the

incentive compatible allocation is the same except that agents do not save. To save

space we do not show the construction, but a standard procedure can be found in Cole

and Kocherlakota (2001). Intuitively, the social planner can always save for agents, so

agents are indifferent between saving individually or by the mechanism. This is shown

in the later section of decentralization. On the other hand, if individual saving is hidden

instead, then we can show the only incentive compatible mechanism is laissez-faire, as

in Cole and Kocherlakota (2001). What the social planner can observe is crucial. We

provide further analysis on the information structure in the later section.

Given a pension contribution mechanism A (Y, T ), agent’s continuation value vt in

the mechanism given history of contribution FYt is:

vt = max
c≥0,Y,TR,TL

E


r

∫ TR∧TL

t

e−r(s−t)u (cs) ds

+e−r(TR−t)1TR≤TLU (A (Y, TR))
+e−r(TL−t)1TR>TLVmin

∣∣∣∣∣∣∣∣F
Y
t

 , s.t. (14). (15)

Agent’s continuation value vt is greater than Vmin or U (A (Y t, t)), otherwise, he would

quit the mechanism if vt ≤ Vmin or would retire immediately if vt ≤ U (A (Y t, t)).

We denote the set of maximizers D as a function of pension contribution mechanism
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A (Y, T ):

D (A) ≡ {(c, Y, TR, TL) : c, Y, TR, TL solves (15) at t = 0 given A (Y, TR)} and a0 > 0.

(16)

We say recommended consumption c (Y ) ≡ {ct, {FYt }∞t=0, 0 ≤ t < ∞} and rec-
ommended stopping times to retire TR (Y ) and to quit TL (Y ) incentive compati-

ble under pension contribution mechanism A (Y, T ) if there is process Y such that

(c (Y ) , Y, TR (Y ) , TL (Y )) ∈ D (A). The social planner recommends c (Y ), TR (Y ) and

TL (Y ) according to the history of pension contribution Y , the only thing observed by

the social planner in this economy.

By duality argument and assuming the law of the large number applies, which we

will provide more detail in later section, the objective of a social planner can be stated

in two levels. First, given a initial promised lifetime utility V0, the social planner solves

A (Y, T ) that maximizes the net revenue G such that c (Y ), TR (Y ) and TL (Y ) are

incentive compatible:

G (V0) ≡ max
c,Y,TR,TL

E


∫ TR(Y )∧TL(Y )

0

e−rtdYt

−e−rTR(Y )1TR(Y )≤TL(Y )A (Y, TR (Y ))

∣∣∣∣∣∣FY0
 (17)

s.t. (c (Y ) , Y, TR (Y ) , TL (Y )) ∈ D (A) ,

V0 = v0.

The net revenue function G (V0) represents the most effi cient pension contribution

mechanism to deliver lifetime utility V0. Second, the social planner maximizes V0

subject to a0 ≥ −G (V0), that is the optimal-incentive pension contribution mechanism

which is feasible.

To see the contribution of this paper, it is helpful to appreciate the diffi culty in the

first step. There are two level of maximization in the design of optimal mechanism. The

social planner choose some functions in a constrained set to maximize agent’s lifetime

value. Characterizing the set of incentive compatible c (Y ), TR (Y ) and TL (Y ) is also

challenging, since D is a mapping from a function A (Y, T ) to a quadruple functions

(c (Y ) , Y, TR (Y ) , TL (Y )) which involves another maximization problem (15). Without

pension contribution mechanism, Proposition 1 has shown agents’continuation value

14



can be simply summarized by HJB equation with a as state variable, so agent’s decision

at time t depends on at only. Under pension contribution mechanism, such HJB

equation no longer applies. As the whole path of pension contribution Y affects the

pension level through a explicit mechanism A (Y, T ), agent’s decision at time t is path-

dependent as well. We will characterize agent’s decision by stochastic Pontryagin

principle instead.

With the presence of pension contribution mechanism, we change the probability

space to
(
C[0,∞), {FYt }∞t=0,P

)
, where FYt is the augmented filtration generated by Y 9.

Labor productivity dθt is continuously hit by idiosyncratic shock dBt as represented

in (1), but right now B is a standard Brownian motion on
(
C[0,∞), {FYt }∞t=0,P

)
10.

The reason for new filtration {FYt }∞t=0 is that Y and t are the only common knowledge

between the social planner and agents, so the social planner determines recommended

actions and pension contribution mechanism with respect to Y .

3.1 Risk-Neutral Measure

In the indirect mechanism described here, the recommended consumption c (Y ), rec-

ommended stopping time to retire TR (Y ) and to quit TL (Y ) as well as pension contri-

bution mechanism A (Y, T ) depend on the contribution Y , so it is convenient to avoid

Y endogenously determined. This can be done by applying Girsanov theorem.

Consider the point of view of the social planner in a "risk-neutral world", where Y

is a standard Brownian motion on some probability space
(
C[0,∞), {FYt }∞t=0,PY

)
. The

social planner can always recommends agents consumption c (Y ) such that c is progres-

sive measurable11. A process B0 can be constructed from an arbitrary recommendation

9The augmented filtration FYt generated by Y is the product σ-field of the filtration generated by
Y t and P-null sets. The reason to consider augmented filtration generated by Y rather than filtration
generated by Y is that the latter is not right-continuous, hence usual conditions fail to be held. Usual
conditions are needed for Martingale Representation Theorem, the existence RCLL modification and
the existence of the weak solution to backward sotchastic differential equation, which are applied in
this paper.
10Note B is still Brownian motion under the augmented filtraion {FYt } (Theorem 2.7.9 KS). In

general B is may no longer be Brownian motion under a "larger" filtration, see Example B.5 of
Medvegyev (2007).
11Such progressive measurable c always exists. Since c is FY -measuarble and adapted, c has a

progressive measurable modification (Proposition 1.1.12 KS). Y is a modification of X if for every
t ≥ 0 we have Pr [Xt = Yt] = 1. X is progressive measuraeble (with respect to th filtration {FYt }) if
for every t ≥ 0 and Borel set A ∈ B (R), the set {(s, ω) ; 0 ≤ s ≤ t, ω ∈ Ω, Xs (ω) ∈ A} belongs to the
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c (Y ), not necessarily incentive compatible, as

B0
t = Yt −

∫ t

0

θ − cs
σ

ds.

By Girsanov theorem, we can construct a probability measure P0 such that B0 is a

standard Brownian motion on
(
C[0,∞), {FYt }∞t=0,P0

)
, which can be done as follows.

First, define a continuous local martingale on
(
C[0,∞), {FYt }∞t=0,PY

)
:

Γt(c) ≡ exp

(∫ t

0

θ − cs
σ

dYs −
1

2

∫ t

0

(
θ − cs
σ

)2

ds

)
, (18)

with Γ0 = 1. Indeed Γt(c) is martingale if c satisfies Novikov condition (Corollary

3.5.13 KS):

EY
{

exp

(
1

2

∫ t

0

(cs)
2 ds

)}
<∞, (19)

for all t. The expectation EY is taken with respect to probability measure PY . A
suffi cient condition is that c is finite a.s. We assume recommended consumption c

is constructed such as to satisfy Novikov condition throughout this paper. So given

Novikov condition, by Girsanov theorem (Theorem 3.5.1 KS), there is a unique prob-

ability measure P0 such that the probability of path B0t ∈ FYt , where 0 ≤ t < ∞,
is

P0

(
B0t
)

= EY [1B0tΓt(c)] , (20)

and B0 becomes a standard Brownian motion on
(
Ω, {FYt }∞t=0,P0

)
. In particular,

the Radon-Nikodym derivative connects the constructed measure P0 with risk neutral

measure PY under
(
Ω, {FYt }∞t=0,PY

)
:

dP0 = Γt (c) dPY .

Agent’s problem (15) under
(
C[0,∞), {FYt }∞t=0,P0

)
is equivalent to the following prob-

lem under risk-neutral space
(
C[0,∞), {FYt }∞t=0,PY

)
:

vt = max
c≥0,TR,TL

EY


r

∫ TR(Y )∧TL(Y )

t

e−r(s−t)Γs (cs)u (cs) ds

+e−r(TR(Y )−t)1TR(Y )≤TL(Y )ΓTR(Y )

(
cTR(Y )

)
U (A (Y, TR (Y )))

+e−r(TL(Y )−t)1TR(Y )>TL(Y )ΓTL(Y )

(
cTL(Y )

)
Vmin

∣∣∣∣∣∣∣∣F
Y
t

 ,

(21)

product σ-field B (R)⊗FYt .
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s.t. the density Γt (c) evolves according to

dΓt =
Γt
σ

(θ − ct) dYt. (Γ)

We want to stress the expectation EY is taken with respect to risk-neutral measure PY
instead, and more importantly, Y is a Brownian motion under PY . The objective of
agent problem under risk-neutral space

(
C[0,∞), {FYt }∞t=0,PY

)
is adjusted by Γt such

that agents’behaviors look the same by a third party from either the constructed world

P0 or the risk-neutral world PY .
If recommended consumption c (Y ) solves (21) and thus incentive compatible, then

we have B0 = B and P0 = P12. The problem stated in (21) becomes (15) when P0 = P.
So the maximizer (c, TR, TL) to (21) with respect to Y constitutes the set of incentive

compatible action D (A), which is derived in the next section.

3.2 Stochastic Pontryagin Principle and Incentive Compati-
bility

As in any Ramsey problem, we want to obtain the first order conditions of agent

problem, which will constitute the set of incentive compatible recommendation D (A)

for the social planner problem. Applying stochastic Pontryagin principle detailed in

Yong and Zhou (1999), we can define a system of co-state equations to support the

maximum. With slight abuse of notations, we denote v′ ≡ {v′t, {FYt }∞t=0, 0 ≤ t < ∞}
and rσq, where q ≡ {qt, {FYt }∞t=0, 0 ≤ t < ∞}, as the co-states of drift and volatility
to Γt in the agent’s problem (21) under risk-neutral space

(
C[0,∞), {FYt }∞t=0,PY

)
. We

verify the optimality of stochastic Pontryagin principle in the proof of the following

lemma, so one can take the following as guess and verify. We will show v′ = v,

at least in the sense of modification, so the co-state of drift to Γt turns out to be

agent’s continuation value under the original space. Co-states can be interpreted as

the supporting prices for agent’s optimal choices. The current value Hamiltonian is

H (Γt, qt) ≡ max
ct
{rΓtu (ct) + rqtΓt (θ − ct)} . (22)

12One can also interpret B0 as the report of labor productivity shocks and construct a direct
mechanism from B0, which is essentially the same. In this case, the social planner’s allocation is
incentive compatible if B0 = B.
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The co-state of drift v′t is the solution to the following BSDE under PY{
dv′t =

(
rv′t − ∂Ht

∂Γt

)
dt+ rσqtdYt,

v′TR = U (A (Y, TR)) , v′TL = Vmin.
(23)

Yong and Zhou (1999) show that the weak solution v′ (Y ) to the above BSDE exists

and is unique under
(
FY ,PY

)
. Given v′ (Y ), the stopping time to retire and to quit

can be determined by v′:

TR (v′) = inf {t : v′t (Y ) = U (A (Y, t))} , TL (v′) = inf {t : v′t (Y ) = Vmin} . (24)

The first order conditions for ct is

uc (ct) = qt. (25)

Given qt, we can express consumption in (25) and utility as C (qt) and U (qt) ≡ u (C (qt))

respectively.

Verbally, stochastic Pontryagin principle essentially states if (c (Y ) , Y, TR (Y ) , TL (Y )) ∈
D (A) under risk-neutral space

(
C[0,∞), {FYt }∞t=0,PY

)
, then it is necessary in general,

and suffi cient in particular our model, that there exists a unique supporting prices v′

and q on drift and volatility respectively to support (c (Y ) , Y, TR (Y ) , TL (Y )) to be

optimal to the Hamiltonian (22). Furthermore, the evolution of v′ can be determined

by (23). In sum, given a pension contribution mechanism A (Y, T ), we can character-

ize the set of incentive compatible recommendation D (A) with the help of q under

risk-neutral space
(
C[0,∞), {FYt }∞t=0,PY

)
.

We simply refer promised continuation utility as the continuation utility v described

in (15) when agents follow social planner’s recommendations (c (Y ) , Y, TR (Y ) , TL (Y ))

under a pension contribution mechanism A (Y, T ). The following proposition is a help-

ful technical result, which constructs the set of incentive compatibility under original

space
(
C[0,∞), {FYt }∞t=0,P

)
and provides an economic interpretation of co-states v′ and

rσqt, which are the promised continuation utility and its volatility if social planner’s

recommendations are incentive compatible:
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Proposition 3 (a) Given pension contribution mechanism A (Y, T ). There exists a

bounded process q which is positive and progressively measurable, such that (C (q) , TR (v′) , TL (v′))

is incentive compatible with respect to A (Y, T ) under
(
C[0,∞), {FYt }∞t=0,P

)
, where rec-

ommended stopping times TR (v′) and TL (v′) are given by (24), and v′ is given by{
dv′t = r [v′t − U (qt)] dt+ rσqtdB

0
t ,

v′TR = U (A (Y, TR)) , v′TL = Vmin
(26)

(b) Given promised lifetime utility v0 = v′0 > Vmin, then v′ given by (26) is the

promised continuation utility v. The volatility of promised continuation utility vt is

rσqt

Proof. See Appendix.

We denote B0 implied Brownian motion here since under incentive compatible

recommendation, the social planner can recover the unobservable labor productivity

shock B from observed contribution Y , by setting B = B0 and P = P0.

The co-state v′t = vt is the promised continuation utility with volatility rσqt. Higher

qt always implies lower ct. The above lemma concludes that the supporting price along

time dimension turns out to be the continuation utility promised by a public pension

mechanism. It confirms a celebrated result of Abreu, Pearce and Stacchetti (1990)

that agents’ promised continuation utility are suffi cient to summarize the solution

agent’s optimization problem. At time 0, the mechanism promises a lifetime utility

v0. If there were none of any flow of utility from consumption, the drift of promised

continuation utility has to be rvt in order to keep the level of promised lifetime utility

at vt. So the drift of promised continuation utility has to be reduced by rU (qt) if the

mechanism induces agent to choose of consumption at C (qt). That is why the drift of

promised continuation utility is r [vt − U (qt)]. On the other hand, co-state rσqt can

be interpreted as the volatility of promised continuation utility with respect to implied

shock dB0
t . A higher rσqt implies the promised continuation utility would be more

sensitive to income shock. An economy with perfect insurance on continuation utility

implies rσqt = 0. So qt can also be interpreted as the degree of risk exposure allowed

by a pension contribution mechanism. We would elaborate the insurance function of a

mechanism in next section.
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3.3 Volatility Implied by Pension Contribution Mechanism

The above section shows that, given any pension contribution mechanism A (Y, T ),

there exists a unique process q that characterizes the set of incentive compatible actions.

However, the explicit formulation of q in the stochastic Pontryagin principle is far from

known. So instead of finding q given a pension contribution mechanism A (Y, T ), we

construct A (Y, T ) from any arbitrary process q which is adapted and FY -measurable.
In other words, we want to represent a pension contribution mechanism by q rather

than A (Y, T ). The following corollary summarizes this idea:

Corollary 1 Given v0 > Vmin, for any bounded process q and any recommended stop-

ping time to retire TR, which are positive, adapted and FY -measurable, there exists a
pension contribution mechanism A (Y, T ) and recommended stopping time to quit TL

such that (C (q) , TR (Y ) , TL (Y )) is incentive compatible under
(
C[0,∞), {FYt }∞t=0,P

)
.

The evolution of continuation value v under such incentive compatible recommendations

is

dvt = r (−θ + vt − U (qt) + C (qt)) dt+ rσqtdYt, given v0 > Vmin. (27)

In particular, recommended stopping time to quit TL (Y ) is:

TL (Y ) = inf {t : vt (Y ) = Vmin} . (28)

The supporting A (Y, T ) is:

A (Y, T ) =

{
U−1 (vT (Y )) if T = TR (Y ) ,
0 otherwise.

(29)

Proof. See Appendix

The above corollary allows us to represent a pension contribution mechanism as a

triple:

M≡{q (Y ) , TR (Y ) , v0} . (30)

GivenM, a recommended consumption c (Y ) satisfied (25) is incentive compatible, and

the above corollary constructs an incentive compatible recommended stopping time to

quit as the stopping time when vt hits Vmin. Essentially, by representing a pension

contribution mechanism as (30), we can characterize the set of incentive compatible
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recommendation as the social planner’s choice of q and stopping time TR with given

v0. It allows us to use standard HJB approach to solve the social planner problem (17)

with vt as state variable.

Remark. In the original mechanism A (Y, T ), the promised continuation utility vt

is the solution to BSDE (26) under some process q. The solution of BSDE (26) solves

for an initial condition v0. Changing to a recursive mechanism implies vt becomes

a solution to forward stochastic differential equation, FSDE, (27) with a given initial

condition v0. Having state variable to be FSDE, rather than BSDE, we can apply

the standard HJB approach to solve for the optimal mechanism. Also we no longer

need to find such q appeared in the original mechanism, which is mentioned in the

beginning of this section. It is a technical convenience, since a great deal of additional

assumptions are needed to guarantee a well-behaved stochastic control problem for a

couple FSDE-BSDE system. See Ma and Yong (2007) for further discussion on this

issue.

3.4 Optimal Mechanism

This section outlines the design of pension contribution mechanism. Recall that

the evolution of continuation values under incentive compatible recommendations and

mechanism M is given by (27). They become constraints to mechanism design of a

dual problem, which solves for incentive compatible recommendations to maximize the

continuation revenue of pension contribution mechanism subject to a level of promised

lifetime utility v0. Under
(
C[0,∞), {FYt }∞t=0,P

)
, the social planner problem (17) can

be rewritten under representationM:

G (v0) ≡ max
q,TR,TL

E
{∫ TR∧TL

0

e−rt [θ − C (qt)] dt− e−rTR1TR≤TLU
−1 (vTR)

∣∣∣∣FY0 } , (31)

subject to13

dvt = r (vt − U (qt)) dt+ rσqtdBt, given v0 > Vmin, vTL = Vmin. (32)

Note G satisfies boundary conditions:

G (Vmin) = 0, G (vTR) = −U−1 (vTR) (33)
13Note Γ is not needed as state variable as it does not show up in any agent’s first order conditions,

promised continuation utility, continuation revenue, nor boundary conditions.
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as agents quit immediately if the social planner delivers value Vmin. The continuation

revenue of the mechanism after the agent walks away becomes zero.

Since the set of incentive compatible recommendation can be completely charac-

terized by the evolution of promised continuation utility, the revenue of the optimal

public pension mechanism G solves the following HJB with v as state variable:

rG (v) = max
q

{
θ − C (q) + rGv (v) [v − U (q)] +

(rσq)2

2
Gvv (v)

}
. (34)

Let V ∗ret denote the level of promised continuation value when the social planner recom-

mends agents to retire, and a∗ret denote level of pension released. The revenue function

G (v) satisfies the smooth-pasting condition if:

Gv (V ∗ret) =
−1

Ua (a∗ret)
. (35)

Then the optimal feasible mechanism promises to deliver maximal v0 such that G (v0)+

a0 ≤ 0.

Having introduced all the relevant conditions, we are ready to solve for the optimal

(indirect) pension contribution mechanism, which is stated in the following proposition:

Proposition 4 (a) There are unique continuous differentiable solution G, unique V ∗ret
and a∗ret that solve the second-order ODE (34) such that (33) and (35) are satis-

fied. Under the optimal pension contribution mechanism, the continuation revenue

(17) promising continuation utility v is Gt = G (v), which is decreasing and strictly

concave in v.

(b) Lifetime utility under optimal mechanism is v0 = G−1 (−a0). Given contribu-

tion Y , the evolution of continuation utility promised by the optimal mechanism, v∗t , is

given by

dv∗t = [−θ + C∗t + r (v∗t − U∗t )] dt+ rσq∗t dYt, given v
∗
0 = v0 (36)

where U∗t = U (q∗t ), C∗t = C (q∗t ) is the optimal incentive compatible recommended

consumption, and q∗t = q∗ (v∗t ) solves

q∗t = C∗q (q∗t )
rGv (v∗t ) q

∗
t + 1

(rσ)2Gvv (v∗t )
= uc (C∗t ) > 0. (37)
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(c) The optimal incentive compatible recommended stopping time to retire T ∗R and

to quit T ∗L are:

T ∗R (Y ) = inf{t : v∗t (Y ) = V ∗ret}, T ∗L (Y ) = inf{t : v∗t (Y ) = Vmin}. (38)

(d) The drift of v∗t points in the direction in which Gvv (v∗t ) is increasing.

(e) Given the optimal mechanism to promise continuation utility v∗t . The pension

gradient is −rq∗tGv (v∗t ) ∈ (0, 1), so pension is always insured rather than subsidized.

(f) If Gv (Vmin) ≤ −1, then rq∗ (v∗t ) < 1 for all v∗t .

(g) If Gvvv (v∗t ) is suffi ciently high, then volatility q
∗ (v∗t ) is strictly decreasing in

promise continuation utility v∗t .

(h) The expected remaining time to retire SR∗ (v∗t ) and to quit S
L∗ (v∗t ) given vt = v∗t

solve

SR∗vv (v∗t )

2
= −rS

R∗
v (v∗t ) (v∗t − U∗t ) + 1

(rσq∗t )
2 , SR∗ (Vmin) =∞, SR∗ (V ∗ret) = 0, (39)

SL∗vv (v∗t )

2
= −rS

L∗
v (v∗t ) (v∗t − U∗t ) + 1

(rσq∗t )
2 , SL∗ (Vmin) = 0, SL∗ (V ∗ret) =∞. (40)

Proof. See Appendix.

We are interested in the insurance of pension provided by a public pension mech-

anism. Interpret −Gt = −G (v∗t ) as the balance in the "pension account", which we

will provide further discussion in the section of implementation. The corresponding

counterpart in laissez faire is saving at, where both are the accumulation for pension.

By Ito lemma, the evolution of the balance is

d (−Gt) = [−rGt + (1 + rq∗tGv (v∗t )) (θ − C∗t )] dt− rq∗tGv (v∗t )σdYt.

Given a pension contribution Y , let’s call d (−Gt) /d (σYt) the pension gradient, where

there is pension subsidy when pension gradient is greater than unity. Under perfect

insurance in the first best, then the pension gradient is zero. Since agents are subject to

income shock, so do their pension contributions, a perfect insurance implies the contin-

uation revenue is completely insensitive to agent’s current contribution. Under laissez

faire, the pension gradient is unity. Under the optimal mechanism, by Proposition

4(e), the pension gradient is strictly less than one, so it is optimal to insure pension

rather than to subsidize so.
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Why not agents withdraw arbitrarily high from the optimal mechanism? It is

because the mechanism is history-dependent. The social planner keeps track of the

promised continuation utility, if agents withdraw arbitrarily high from optimal mecha-

nism, then there will be a arbitrarily large drop in the continuation utility promised by

the mechanism, which is not optimal to agent. In particular, from (36), the volatility

of promised continuation utility q∗t poses a trade-off between the amount withdrawn

and the level of promised continuation utility. From (34), the optimal q∗t is the level

that balances amongst three factors: the benefit of increment in pension accumulation

θ−C (q∗t ), the benefit of postponing consumption and effort vt−U (q∗t ), and the benefit

of increment in volatility of promised continuation utility, rσq∗t . The shadow prices

for the second and the third are Gv and Gvv respectively.

It is optimal to recommend agents to retire when promised continuation value v∗t is

suffi ciently high to hits V ∗ret. Due to income effect, maintaining promised continuation

value higher than V ∗ret is too costly to the social planner. Given v
∗
t is promised, the

marginal revenue of promised continuation utility is Gv (v∗t ). If the agent retires, the

social planner has to provide U−1 (v∗t ) units of pension in order to keep the promise.

So the marginal cost of retiring at v∗t is −1/Ua (U−1 (v∗t )). At the optimal stopping

time to retire, the marginal revenue equal to the marginal cost, which is given by the

smooth-pasting condition (35). It is never optimal to retire if smooth-pasting condition

never satisfied.

Why it is optimal to recommend agents to quit the mechanism? The expected

remaining time to quit is given by SL∗ (v∗t ) in Proposition 4(g). Under the optimal

mechanism, agents quit when promised continuation value v∗t hits Vmin. This happens

when there is a series of withdrawal (dYt < 0) which are frequent or high enough such

that v∗t becomes suffi ciently low. The series of withdrawal is allowed because this is

to to protect agent’s consumption to series of negative labor productivity shocks. But

this must be done as the cost of redistributing resource from other agents. So there

is a level that further insurance is not optimal to be provided when the withdrawal

accumulated is suffi cient large. In this case the social planner recommend the agent to

quit the mechanism rather than draining resource from other agents.
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3.5 Implementation of Optimal Mechanism

How does the optimal mechanism work? Imagine there is a public pension account

−Gt maintained by the social planner. At time 0, the balance in the account is a0.

Agents can contribute some of their income into the account. Agents can withdraw

all the balance as pension when they retire. In particular, the evolution of pension

account balance under the optimal pension contribution mechanism is:

d (−Gt) = [−rGt + (1 + rq∗tGv (v∗t )) (θ − C∗t )] dt− rq∗tGv (v∗t )σdYt. (41)

The first term on the right hand side represents the autonomous drift of the balance

even without any contribution, which consists of the accumulation through the saving

technology with rate r, and social planner’s contribution. Since θ−C∗t is the expected
contribution and −rq∗tGv (v∗t ) ∈ (0, 1) by proposition 1(e), the social planner is con-

tributing into the pension account if agent’s expected contribution is positive. The

second term is agent’s actual contribution. Note agent’s contribution does not lead

to a change in balance quid pro quo, essentially, contributing (withdrawing) one dollar

will add (subtract) less than one dollar to the balance, where the ratio is measured by

pension gradient, which is−rq∗tGv (v∗t ) ∈ (0, 1), and can be completely kept track by v∗t ,

whose evolution (36) depends of pension contribution Y . Since the pension gradient

is less than unity, agent can insure against negative income shock by withdrawing from

the pension mechanism. It is the representation of pension account by contribution.

Another representation is by promised continuation utility vt: the balance in pension

account is simply −G (v∗t ).

To see the welfare effect of optimal public pension mechanism, expanding promised

continuation utility v∗t as a stochastic integral, we have

v∗t = ertG−1 (0)− r
∫ t

0

er(t−s) [U∗s − q∗s (θ − C∗s )] ds+ rσ

∫ t

0

er(t−s)q∗sdYs. (42)

Since the volatility of promised continuation utility q∗t is positive, so higher pension

contribution dYt increases promised continuation utility vt, hence sooner to hit V ∗ret
and retire. The pension is fixed as a∗ret = −G (V ∗ret). So from the social point of view,

retired agents are different in their retirement age only. It is never optimal to provide

perfect insurance through public pension mechanism, as the volatility of promised
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continuation utility q∗t is never zero. It is because of the dynamic moral hazard

problem: agents would keep drawing dYt = −∞ from the public pension mechanism

and never retire if q∗t = 0.

Note that the above suggest Gt to be interpreted as the continuation revenue from

pension contribution from an agent promised continuation utility v∗t . Assume the law

of the large number applies, then total revenue of the optimal public public pension

mechanism at t is the sum of the continuation revenue from all agents

E


∫ t

0

ersdYs + erta0 + 1t<min(TR,TL)G (v∗t )

−er(t−TR)1TR≤min(t,TL)a
∗
ret

∣∣∣∣∣∣FY0
 = a0 +G (v∗0) =0,

where the first equality follows from the fact that the expectation is a martingale. So

total revenue of the optimal pension contribution mechanism is always zero, thus the

mechanism is always feasible.

3.6 Decentralization

Implementation of optimal pension contribution mechanism is not unique, as the al-

location without individual saving is just one of them. In fact there is a continuum

of optimal mechanism that leads to the same allocation but with different path of in-

dividual saving. So optimal mechanisms are different in the mixing level of pension

supported by the mechanism and individual saving. In this section we are interested in

other extreme: how the optimal mechanism can be decentralized by individual saving

only. This can be done with help of a linear saving tax and a lump-sum tax. The

former taxes any flow of new saving deposited into individual saving account. Let

τ t and τ sav,t denote the lump-sum tax and linear saving tax rate respectively, so the

accumulation of individual saving is

dat = (rat − τ t) dt+ (1− τ sav,t)σdYt. (43)

The following proposition describes how to decentralize the allocation of optimal mech-

anism through individual saving:

Proposition 5 Given individual saving at. Optimal lump-sum tax τ t and linear saving

tax rate τ sav,t are given by:

τ t = (1− τ sav,t) (θ − C∗t ) , τ sav,t = 1 + rq∗tGv,t, (44)

26



where Gv,t ≡ Gv (G−1 (−at)). Furthermore,
(a) Agents’continuation value with saving at attains Vt = G−1 (−at) = v∗t , with the

evolution following (36). Consumption is ct = C∗t . Agents retire when at = a∗ret; quit

when at = 0.

(b) Saving tax rate is always strictly positive, τ sav,t > 0.

(c) The ex ante taxation is zero under optimal ct = C∗t . The ex ante accumulation
of individual saving is

Etdat = (rat + θ − C∗t ) dt.

(d) Assume C∗t is increasing in at. Then the volatility of continuation utility rσq∗t
is decreasing in saving at. Also, there is lump-sum subsidy, τ t < 0, iff saving at is

suffi ciently high. Both τ t and τ sav,t are decreasing in at.

Proof. See Appendix.

The proof of proposition involves matching components of (41) with τ t and τ sav,t

in (43). Let σdYt denote the flow of new saving, and the evolution of private saving

becomes

dat = [rat + θ − τ sav,tC∗t − (1− τ sav,t) ct] dt+ (1− τ sav,t)σdBt. (45)

The optimal saving tax is linear because the saving tax rate τ sav,t does not depend on

the flow of new saving σdYt.

The optimal saving tax rate is always strictly positive. The social planner taxes

saving and subsidizes withdrawal linearly in order to provide insurance on pension

accumulation. This contrasts with current practices on 401(k), IRA or others simi-

lar, where pension contribution is not taxed or subsidized by contribution match and

withdrawal is subject to penalty. Note that complete insurance implies rq∗tGv,t = 0

and hence τ sav,t = 1, which is complete confiscation of net saving. As discussed above,

complete insurance through saving tax is not feasible, sine if saving tax rate τ sav,t = 1

then all agents will always dissave infinite amount until quit the saving market.

On the other hand, the lump-sum tax τ t can be positive or negative. By Propo-

sition 5, the social planner subsidizes agents in lump sum if when the optimal level

of consumption is higher than the average labor productivity, C∗t > θ. This is the
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case it is optimal to induce the agent to consume higher than θ. Under laissez faire

he may not consume that much at the optimal level, because he prefers to save more

than the optimal level for precautionary motive. In this case, a lump sum subsidy

τ t < 0 is needed to compensate such precautionary saving. Such compensation cannot

be achieved through lower saving tax rate τ sav,t, since the effect of labor productivity

shock dBt on saving dat would be exaggerated on the contrary. So the social planner

needs these two tax vehicles to decentralize the optimal allocation.

If there is wealth effect on consumption, that is C∗t is increasing in at, then by

Proposition 5(d) the social planner should subsidize pension in lump sum when at is

suffi ciently high, which more likely to be agents who are old or about to retire, and

vice versa. This implies on average, the social planner should lump-sum subsidize the

old or about-to-retire agents and should lump-sum young or about-to-quit agents. On

the other hand, by Proposition 5(d) the saving tax rate is decreasing in at, which,

from (45), implies pension insurance is also decreasing in at, as dat is more sensitive

to dBt. This characterizes the dynamic incentives of optimal taxation to decentralize

optimal mechanism. As saving is accumulated toward retirement, agent’s saving are

more lump-sum subsidized but less insured.

The ex ante taxation is zero under optimal allocation may echo the celebrated result

of Kocherlakota (2005). The reason in our model is that, any ex ante distortion with

the presence of saving market will distort the level of pension as accumulated saving

available when agents retire. This violates the optimality that agents should retire

with the same level of pension. At the time of retirement, previous history should not

matter. Rather, the decision to retire is based on purely the comparison between the

continuation value and utility of pension. Under decentralization, such comparison is

always the same as long as agents have the same level of saving. So it is always optimal

for agents to retire at the same level of pension. So ex ante distortion of saving is not

optimal.

Under decentralization it is helpful to see why under hidden saving the only optimal

mechanism is laissez faire. If net saving dYt in (43) are hidden, then the saving tax

rate must be zero since the social planner cannot tax on hidden saving. So the only

available tax vehicle is lump-sum tax. But as argued before, it is never optimal to
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distort ex ante saving, so lump-sum tax is not optimal as well. Hence laissez faire is

the only optimal mechanism. This result is in the spirit of Cole and Kocherlakota

(2001), though our model features retirement and quit.

3.7 Comparison between Optimal Mechanism and Laissez Faire

To see the role of pension contribution mechanism, it would be helpful to compare the

allocation under optimal pension contribution mechanism with laissez faire. This is

essentially the comparison of two solutions V (a) and G (v). The following proposition

characterizes main difference:

Proposition 6 Under optimal pension contribution mechanism,

(a) Pension is higher (lower) than the one under laissez faire (the first best), aret <

a∗ret < aFBret .

(b) Comparing balance in pension account −G (vt) with balance of saving at under

laissez faire. Given the level of promised continuation utility vt, the balance is less

(more) than the one under laissez faire (the first best),
(
V FB

)−1
(vt) < −G (vt) <

V −1 (vt). The lifetime utility is higher (lower) than laissez faire (the first best),

V (a0) < G−1 (−a0) < V FB (a0).

(c) Given the level of promised continuation utility vt, optimal mechanism provides

strictly more insurance on pension than laissez faire, as its volatility is −rσq∗tGv (vt) <

σ, but lower drift, −rG (vt)+θ−C (q∗ (vt)) < rV −1 (vt)+θ−C (−G (vt)). Agents enjoy

more (less) consumption then laissez faire (the first best), but less than , C (−G (vt)) <

C (q∗ (vt)) < CFB (−G (vt)) .

(d) Given the level of promised continuation utility vt, the expected remaining time

to quit is less than the one under laissez faire, SL∗ (vt) > SL (−G (vt)) .

(e) Marginal utility of consumption uc (Ct) is a martingale under laissez faire; un-

der optimal mechanism, marginal utility of consumption is the volatility of promised

continuation utility, uc (C∗t ) = q∗t , and instead Gv (vt) is a martingale.

Proof. See Appendix.

Proposition 6 is self-explanatory. Proposition 6(b) is intuitive, as a pension contri-

bution mechanism can always replicate the allocation of laissez faire by doing nothing.
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Proposition 6(a) means it is never optimal to retire with less pension than the one

under laissez faire. Suppose not and agents retire with less pension under the optimal

mechanism. At that level of pension, an agent under laissez faire can always choose

to retire, but he does not. That implies agents finds it is better to keep working

and accumulate more saving for pension under laissez faire. But by Proposition 6(b),

under a optimal mechanism, the continuation value of working is higher than the one

under laissez faire, so it contradicts with the premise that agents prefer to retire with

less pension.

We also find, maybe counterintuitively, the level of pension is higher under the

optimal mechanism than laissez faire. To see the reason, we decompose pension accu-

mulation along intensive margin, which is the level saving at each time, and extensive

margin, which is the length of participating the mechanism. Because contribution is

taxed, the intensive margin deceases as agents save less under the optimal mechanism.

But the extensive margin increases as the insurance aspect of the optimal mechanism

induces agents to stay longer in the mechanism and postpone their retirement. It turns

out that the extensive margin dominates the intensive margin, thus agents retire with

higher pension under the optimal mechanism.

The source of effi ciency gain comes from insuring pension accumulation, which

reflects by Proposition 6(c). In particular, recall in (41) that there is less volatility

of pension under optimal mechanism. So there is less motivation to save for self-

insurance, so consumption increases. A trade-off of providing insurance of pension

is that it results in lower drift of pension balance than the one under laissez faire.

Given the same balance, on average pension is accumulate slower under the optimal

mechanism. It is because of the higher consumption thus less saving under the optimal

mechanism. In sum, pension under optimal mechanism features lower drift and lower

volatility.

One may note that, under the optimal pension contribution mechanism, there could

be higher volatility in promised continuation utility than laissez faire. Recall under the

optimal mechanism, the evolution of promised continuation utility is given by

dv∗t = r (v∗t − U∗ (C (q∗ (v∗t )))) dt+ rσq∗t dBt.

dvt = r (vt − u (C (at))) dt+ σdBt.
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For comparison, consider the decentralization of optimal mechanism. Suppose there is

wealth effect on consumption. Then by Proposition 5(d), we have rσq∗t decreasing in

at. So if rσq∗ (G−1 (−a∗ret)) < σ < rσq∗ (G−1 (0)), then rσq∗t will single cross σ from

above when at is increasing. So for suffi ciently high balance at, the optimal mechanism

leads to less volatility in promised continuation utility than laissez faire, and vice versa.

Then the optimal mechanism on average insures the continuation value of agents who

are old or about to retire, but results in volatile continuation value of agents who are

young or about to quit the mechanism, since the former is more likely to be with high

balance at, and vice versa.

On average, agents take less time to quit under the optimal mechanism. It is because

agents save less under the optimal mechanism, and volatility of pension accumulation

is lower. On the other hand, one might expect we can establish that, on average agents

take more time to retire under the optimal mechanism. This is not necessary. Though

agents save less and also have higher level of pension target to hit under the optimal

mechanism, which implies longer time to retire on average, there is an opposite force

that volatility of pension accumulation is lower, which implies less time.

Proposition 6(e) states that "inverse-Euler equation" in Rogerson (1985) and San-

nikov (2008) does not satisfy under optimal pension contribution mechanism. This

is because of hidden consumption. Inverse- Euler equation states −1/ (ruc,t) is a mar-

tingale. In general, inverse-Euler equation does not necessarily hold, as in Williams

(2010). Here under the optimal mechanism, from the first order condition of q, we have

Gv,t =
−1

ruc,t
+
rσ2Gvv,t

Cq (q∗t )
.

Compared to Sannikov (2008), there is an extra term (rσ)2Gvv,t/Cq (q∗t ), which captures

the cost of hidden consumption. Without this term, −1/ (ruc,t) is equal Gv,t, which

is a martingale. The left hand side is the marginal revenue of promised continuation

utility Gv,t, and the right hand side is its decomposition. The first term is the marginal

consumption needed to fulfill an additional utility at time t. The second term is the

marginal cost of inducing higher hidden consumption. The incentive compatibility of

recommended consumption implies that the social planner has to reduce volatility of

promised continuation utility q∗t in order to increase hidden consumption. The marginal
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revenue of q∗t is captured by the second term.

3.8 Duality Between Optimal Mechanism and Principal-Agent
Problem

A benevolent social planner might step back and ask whether the dual really optimizes

agent’s value. In the primal problem, the social planner maximizes agent’s value, given

incentive compatibility and feasibility constraints. In dual problem, the social planner

maximizes revenue of pension contribution mechanism, given a level of promised life-

time utility. Usually problem is formulated in dual in principal-agent problem, as well

as our context; in primal in optimal taxation problem. Though the design of optimal

pension contribution mechanism is in the spirit of optimal taxation problem, we want

to formulate in dual such as avoid the situation where promised continuation utility

is both the objective and constraint. The following lemma provides the condition to

establish duality.

Proposition 7 Given assumptions, the dual maximizes agents’continuation value if

and only if Gv (v∗t ) < 0.

Proof. See Appendix.

An example with Gv (v∗t ) > 0 can be found in Sannikov (2008). There is no

problem of Gv (v∗t ) > 0 in principal-agent problem, as principal only cares its own

revenue maximization. There is problem of Gv (v∗t ) > 0 for a benevolent social planner.

In the case Gv (v∗t ) > 0, the corresponding optimal public pension mechanism is not

represented by a solution G to (34). In our model, Gv (v∗t ) < 0 is always satisfied.

4 Extended Pension Provision: Accidental Retire-
ment

To be completed. Consider there is probability that an agent is hit by a unobservable

retirement shock as in Diamond and Mirrlees (1978,1982). We call it accidental retire-

ment, which captures the event that the agent is no longer able to work. In particular,

let π denote the Poisson rate of accidental retirement. Under laissez faire, the value
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function of an agent given saving at is

rV (at) = max
ct

{
ru (ct) + Va (at) (rat + θ − ct) +

σ2

2
Vaa (at) + π (V (at)− U (at))

}
.

(46)

The boundary conditions and smooth-pasting are

V (aret) = U (aret) , V (0) = Vmin, Va (aret) = Ua (aret) . (47)

Under pension contribution mechanism, the evolution of promised continuation

utility under incentive compatible recommendations becomes

dvt =
[
r (vt − U (qt)) + π

(
V A
t − vt

)]
dt+ rσqtdBt, given v0 > Vmin, vTL = Vmin. (48)

The continuation revenue given promised continuation utility v is the solution solving:

G (v) = max
q,V A≤v

{
θ − C (q) +Gv (v)

[
r (v − U (q)) + π

(
V A − v

)]
+ (rσq)2

2
Gvv (v) + π

(
G (v) + U−1

(
V A
)) }

, (49)

where the value-matching conditions and smooth-pasting condition are:

G (V ∗ret) = −U−1 (V ∗ret) , (50)

G (Vmin) = 0. (51)

Gv (V ∗ret) =
−1

U ′ ◦ U−1 (V ∗ret)
. (52)

So all the previous results are maintained.

5 Conclusion

To be completed.
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6 Appendix

6.1 Proof of Proposition 1(a) to 1(d):

We now guess and verify agent continuation value Vt given by (5) would be a function

of saving. Consider a solution V (a) : [amin, aret ]→ R satisfying a HJB equation stated
in the proposition 1:

rV = max
c≥0
{ru (c, 1) + Va (ra+ θ − c) +

σ2

2
Vaa}, ∀a ∈ [0, aret ] , (53)
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where V ≡ V (a) and, Va and Vaa denote respectively the first and second derivative of

V with respect to a. The smooth-matching conditions determines aret as

V (aret) = U (aret) , V
′ (aret) = U ′ (aret) . (54)

Another boundary condition, the value matching condition, is given by

V (0) = Vmin. (55)

A solution V to HJB (53) must be twice-differentiable, as (53) implies Vaa exists. The

first order condition of c is:

uc (ct) = Va (at) , (56)

and zero if no such ct exists. Consider stopping times to retire and to quit:

TR = inf{t : at = aret}. (57)

TL = inf{t : at = 0}. (58)

The sketch of the proof is as follows. First, in Lemma 1, given β ≥ 0, we show

the solution V (a) to the second order ODE (53) satisfying (55) and Va (0) = β exists

and unique. Second, a crucial step in our proof, Lemma 2 shows the set of solutions

V , which are different in β only, satisfies single-cross property, that is two solutions to

(53) cross at most once. An implication of Lemma 3 is that, the solution to (53) with

(55) and higher β always has higher value than the one with lower β, so we can rank

the set of solutions by β. Third, Lemma 3 shows any solution V (a) to (53) with (55)

and Va (0) = β is concave. This also proves the second part of (b). Forth, use this

implication to show there is β such that the solution is tangential to U . Such β is the

greatest out of all solutions satisfying smooth-pasting condition (54). We also show

such β is strictly positive, and Va is strictly bounded above by zero, so the solution

V (a) to the second order ODE (53) satisfying (54) and (55) is strictly increasing.

The proof of proposition 1(a) - 1(c) verifies the solution V (a0) is a continuation value

following consumption plan according to (56) and stopping time (57), and the solution

V (a0) attains the highest value.

Lemma 1 Given β ≥ 0, the solution V (a) to the second order ODE (53) satisfying

(55) and Va (0) = β exists and unique.
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Proof. The proof of existence and uniqueness is to apply Picard-Lindelof theorem,

which states that, if fi (x, y1...yn) for i ∈ {1, ..., n} are continuous in x and Lipschitz
continuous in y1, ...yn, then the system of ordinary differential equation defined as

dyi
dx

= f1 (x, y1...yn) ,

with the initial condition yi (x0) = yi0 for i ∈ {1, ..., n} has a unique solution yi (x) for

i ∈ {1, ..., n}.
To apply, first we set

dy1

da
= y2,

dy2

da
= f (a, y1, y2) ≡ 2

σ2

{
ry1 −max

c≥0
{ru (c, 1) + y2 (ra+ θ − c)}

}
.

So f is Lipschitz continuous if y2 ≥ 0. Then the solution y1 (a) = V (a) and y2 (a) =

Va (a) exist given V (0) = Vmin and Va (0) ≥ 0.

Lemma 2 Given β1 > β2 ≥ 0, the solution V i (a), i ∈ {1, 2}, to the second order
ODE (53) satisfying V i (0) = Vmin. and V i

a (0) = βi only intersect each other once at

a = 0.

Proof. Consider V 1 and V 2 such that V 1 (0) = V 2 (0) = Vmin but V 1
a (0) = β1 > β2 =

V 2
a (0) ≥ 0. By continuity of V 1 and V 2, there is ε such that V 1 (a) > V 2 (a) for all

a ∈ (0, ε). Suppose V 1 crosses V 2 other than a = 0, then we must have V 1
a ≤ V 2

a

at the point of intersection, and by intermediate value theorem there is a′ such that

V 1
a (a′) = V 2

a (a′), and V 1 (a) > V 2 (a) and V 1
a (a) > V 2

a (a) for all a ∈ (0, a′). Then we

have

σ2

2
V 1
aa (a′) = rV 1 (a′)− V 1

a (a′) (ra′ + θ)−max
c≥0
{ru (c, 1)− V 1

a (a′) c},

> rV 2 (a′)− V 2
a (a′) (ra′ + θ)−max

c≥0
{ru (c, 1)− V 2

a (a′) c},

=
σ2

2
V 2
aa (a′) .

So by continuity of V 1
a and V

2
a , there is ε > 0 such that V 1

a (a′ − ε) < V 2
a (a′ − ε), which

is contradiction. Thus V 1 and V 2 have no intersection other than a = 0.
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Lemma 3 Given β ≥ 0, the solution V (a) to the second order ODE (53) satisfying

(55) and Va (0) = β is either linear, strictly concave or strictly convex.

Proof. Applying envelope theorem on (53) implies

0 = Vaa (a) [ra+ θ − c] +
σ2

2
Vaaa (a) , (59)

so Vaa = 0 implies Vaaa = 0. Repeating envelope theorems implies any derivative with

order higher than the two is zero once Vaa = 0. Suppose there exists a′ such that

Vaa (a′) = 0. Then applying Taylor expansion around a′ leads to

V (a) = V (a′) + Va (a′) (a− a′) ,

so if such a′ exists then V is linear. So V is one of the following cases: V is linear, or

Vaa > 0 for all a, or Vaa < 0 for all a. In other words, V can only be linear, strictly

concave or strictly convex.

Proof. Proposition 1(a) to 1(d). Consider V ′ (a) = Vmin + βa/r, where β solves

rVmin = βθ+maxc≥0{ru (c)−βc}, is a solution to (53) given initial conditions V ′ (0) =

Vmin and V ′a (0) = β. According to assumption 1, if there is aret such that β = Ua (aret)

then a = aret must be the unique tangential point, so (54) and (55) satisfy and we

establish V ′ as the unique solution to HJB (53) given (54) and (55). We are done with

this case.

On the other hand, suppose V ′ (a) > U (a) for all a. By Lemma 2 and Lemma 3,

we known that for any solution V to (53) given initial conditions V (0) = Vmin and

Va (0) > β, V is strictly convex. Similarly, for any solution V to (53) given initial

conditions V (0) = Vmin and Va (0) < β, V is strictly concave. For those convex V ,

we know V ≥ V ′ > U for all a > 0, so there is no aret satisfies (54), thus V cannot

be convex and hence must be concave. Also, suppose V is the solution to (53) given

initial conditions V (0) = Vmin and Va (0) = 0 < β, then by strict concavity, V must is

decreasing, thus V must cross U . Since the proof of Picard-Lindelof theorem implies

the set of solution V is continuous in the initial values (omit to proof here), then by

continuity and we decrease Va (0) from β to zero, here must be a value of β′ such

that the corresponding solution V to (53) given initial conditions V (0) = Vmin and
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Va (0) = β′ satisfies (54) and (55). Then β′ is the maximal Va (0) over the set of

solution V to (53) given initial conditions V (0) = Vmin that satisfies (54) and (55).

Finally, to verify solution V given initial conditions V (0) = Vmin with largest Va (0)

that satisfies (54) and (55) attains the highest value, consider a derivation c′ = {c′t, 0 ≤
t <∞} not satisfying (56) until t such that the value becomes

Wt ≡ r
∫ t∧TR∧TL

0
e−rs (u (c′s)− a) ds+ e−rt1t<min(TR,TL)V (at)

+e−rTR1TR≤min(t,TL)U (aTR) + e−rTL1TL<min(t,TR)Vmin
,

where the stopping time TR and TL are defined in (57) and (58). By Ito’s lemma, the

drift of Wt is

re−rt
[
u (c′t)− a− V (at) + Va (at) [rat + θ − c′t] +

σ2

2
Vaa (at)

]
, if t < min (TR, TL) ,

and zero otherwise. In both cases, the drift term is non-positive, since the former is:

u (c′t)− a− V (at) + Va (at) [rat + θ − c′t] +
σ2

2
Vaa (at) ,

≤ −V (at) + max
c≥0

{
u (c′t)− a+ Va (at) [rat + θ − c′t] +

σ2

2
Vaa (at)

}
,

= 0.

Thus Wt is a bounded supermartingale. Then we have

EWt ≤ W0 = V (at) .

Therefore V (at) is the maximal continuation value. To verify the stopping time TR

defined in (57) is optimal, suppose not, then there is t where it is optimal the agent

retires when at < aret, or the agent does not retire when at = aret. The second case

can be ruled out, since V (at) is the maximal continuation value, then if the agent

retire at at = aret, he at most gets continuation value V (at) = V (aret) = U (aret), so

retire at t is not dominated. On the other hand, if the agent retires when at < aret,

then he would get continuation value U (at), which is strictly less than the maximal

value V (at), as from above we know aret is the tangential point so V (at) > U (at) for

all at ∈ [0, aret). So the agent retires when at < aret is not optimal as well. Similar

argument to establish TL defined in (58) is optimal.
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6.2 Proof of Proposition 1(e)

Proof. Proposition 1(e). Applying Ito lemma on Va (a), then the drift of Va (at) is

Vaa (at) [rat + θ − C (at)] + σ2

2
Vaaa (at), which is zero by applying envelope theorem on

(53). So Va is a martingale. Since at is always bounded between zero and aret, then

Va (at) is also bounded from Va (0) > 0 and Va (aret) < β. Arranging (59), the drift of

saving is

rat + θ − C (at) =
rσ2Vaaa (at)

−2Vaa (at)
,

where the sign follows Vaaa (at) as Vaa (at) < 0 by proposition 1(b). By Ito lemma, the

drift of V (at) is

Va (at) [rat + θ − C (at)] ,

since we have Va (at) > 0 from proposition 1(b), the sign also follows Vaaa (at). From

the first order condition of consumption (56), the drift of consumption is

Vaa (at)

ucc (C (at))
[rat + θ − C (at)] +

σ2

2

(
−uccc (C (at))V

2
aa (at)

u3
cc (C (at))

+
Vaaa (at)

ucc (C (at))

)
= −σ

2

2

V 2
aa (at)

u3
cc (C (at))

uccc (C (at)) ,

since u is strictly concave, the sign of consumption drift follows the sign of uccc.

6.3 Proof of Proposition 1(f)

Proof. Proposition 1(f). Given the stopping time TR by (57), the expected remain-

ing time to retire with saving at is

SR (at) ≡ E
{∫ TR

t

1ds

∣∣∣∣FBt } .
Since agents retire once at hits aret, and agents never retire if at hits zero, the boundary

conditions are

SR (aret) = 0, SR (0) =∞.

The associated HJB with a as state variable is

0 = 1 + SRa (a) [ra+ θ − C (a)] +
σ2

2
SRaa (a) .
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Similarly, the expected remaining time to quit with saving at, and boundary conditions

are

SL (at) ≡ E
{∫ TL

t

1ds

∣∣∣∣FBt } , SL (aret) =∞, SL (0) = 0.

The associated HJB with a as state variable is the same as

0 = 1 + SLa (a) [ra+ θ − C (a)] +
σ2

2
SLaa (a) .

6.4 Necessity of Smooth-Pasting Condition

Note that we always have Va (aret) ≤ Ua (aret), otherwise suppose Va (aret) > Ua (aret),

by continuity of Va there is ε > 0 such that Va (a) > Ua (a) for any a within the ε-

open ball centered at aret. So for any a ∈ (aret − ε, aret), we have V (a) = V (aret) −∫ aret
a

Va (a) da < U (aret) −
∫ aret
a

Ua (a) da = U (a), which contradicts the fact that aret

reflects the optimal stopping time. By similar argument we have Va (aret) ≥ Ua (aret),

combining both cases we establish the continuously differentiable pasting condition.

6.5 Proof of Proposition 2

Proof. Proposition 2. Note we have V FB (a0) ≥ V (a0). Suppose aFBret < aret,

so agents do not retire when at = aFBret under the benchmark economy, that implies

V
(
aFBret

)
> U

(
aFBret

)
. Since V FB (a) is tangential to U (a), we have V FB (a) > U (a)

for all a > aFBret , thus V (aret) = U (aret) < V FB (aret). So there must be a′ ∈
(
aFBret , aret

)
such that V (a′) = V FB (a′). Note both V (a) and V FB (a) satisfy (53), then by Lemma

2 there is at most one intersection, which is a = a′. But since V FB (a0) ≥ V (a0), then

there must be another a′′ ∈ [a0, a
FB
ret ) such that V (a′′) = V FB (a′′), which leads to

contradiction. So we always have aFBret ≥ aret.

Note consumptions are given by

cFB = u−1
c

(
U ′
(
aFBret

)
r

)
≥ u−1

c

(
U ′ (aret)

r

)
≥ u−1

c

(
U ′ (at)

r

)
= C (at) .

So consumption is always higher under first best.
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6.6 Proof of Proposition 3(a)

Proof. Proposition 3(a). To recoverD (A) under original space
(
C[0,∞), {FYt }∞t=0,P

)
,

we can apply Girsanov theorem once more on
(
C[0,∞), {FYt }∞t=0,PY

)
. Given (C (q) , Y, TR (Y ) , TL (Y )) ∈

D (A) under risk-neutral space
(
C[0,∞), {FYt }∞t=0,PY

)
with Brownian motion Y , con-

struct the implied Brownian motion B0 on
(
C[0,∞), {FYt }∞t=0,P0

)
such that

dB0
t = dYt −

(
θ − C (qt)

σ

)
dt. (60)

Note the effect of Y on TR and TL can be summarized by v′. After making substitu-

tions, we can rewrite (23) under measure P0 as{
dv′t = r [v′t − U (qt)] dt+ rσqtdB

0
t (Y ) ,

v′TR = U (A (Y, TR)) , v′TL = Vmin
(61)

Then we have (C (q) , Y, TR (Y ) , TL (Y )) ∈ D (A) under the space
(
C[0,∞), {FYt }∞t=0,P0

)
,

where Y is given by (60), TR (v′) by (24) and TL (v′) by (??). Since (C (q) , Y, TR (Y ) , TL (Y )) ∈
D (A), we have B0 = B and P0 = P, so (C (q) , Y, TR (Y ) , TL (Y )) ∈ D (A) under the

original space
(
C[0,∞), {FYt }∞t=0,P

)
as well. Hence (C (q)TR (v′) , TL (v′)) is incentive

compatible with respect to A (Y, T ) under
(
C[0,∞), {FYt }∞t=0,P

)
.

6.7 Proof of Proposition 3(b)

One can follow the elegant trick in Sannikov (2008), which uses Martingale Representa-

tion Theorem to represent continuation utility v as a solution to a stochastic differential

equation, and the verify v′ = v. As he aptly points out, generally Martingale Represen-

tation Theorem (Theorem 3.4.15 KS) may fail as it requires the filtration is big enough

to includes the Brownian motion and the solution v to the stochastic differential equa-

tion. So v may not exists. Such problem does not happen here as all the results are

found on augmented filtration {FYt }∞t=0. Since we only need to verify v
′ = v, where v is

given by (15) rather than a solution to stochastic differential equation, we can provide

a shorter proof instead.

Proof. Proposition 3(b). For any bounded qt, all the relevant functions in (26)

are Lipschitz continuous and satisfy linear growth condition, so the strong solution v′t
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exists. Note that (26) implies

e−rtdv′t − re−rtv′tdt = −re−rtU (qt) dt+ rσe−rtqtdB
0
t ,

⇒
∫ T

t

de−rsv′s = −r
∫ T

t

e−rsU (qs) ds+ rσ

∫ T

t

e−rsqsdB
0
s , for any T.

⇒ E
{
−e−rtvt + e−rTR1TR≤TLv

′
TR

+e−rTL1TR>TLv
′
TL

∣∣∣∣Ft} = −E
{
r

∫ TR∧TL

t

e−rsU (qs) ds|Ft
}
,

⇔ v′t = E

 r

∫ TR∧TL

t

eU (qs) ds+ e−r(TR−t)1TR≤TLU (aTR)

+e−r(TL−t)1TR>TLVmin

∣∣∣∣∣∣FYt
 = vt.

After the showing v′t is the promised continuation utility under original space(
C[0,∞), {FYt }∞t=0,P

)
. We can also verify that v′0 attains the maximum, although

stochastic Pontryagin principle has guaranteed so. Suppose there is an action profile

(c′′, Y ′′, T ′′R, T
′′
L) 6= (C (q) , Y, TR (Y ) , TL (Y )) which implies continuation value v

′′
0 and

attains maximal instead. So we have v′′0 > v′0. As in Sannikov (2008), by Martingale

representation theorem, there is process q′′ such that

dv′′t = (rv′′t − ru (c′′t )) dt+ rσq′′t dBt,

= r (v′′t − u (c′′t )− q′′t (θ − c′′t )) dt+ rσq′′t dY
′′
t .

Suppose the agent follows the recommendations, then given such q′′, the evolution of

promised continuation utility is

dv′t = r [v′t − U (q′′t )− q′′t (θ − C (q′′t ))] dt+ rσq′′t dY
′′
t ,

= min
c′′t

r [v′t − u (c′′t )− q′′t (θ − c′′t )] dt+ rσq′′t dY
′′
t ,

≤ r (v′t − u (c′′t )− q′′t (θ − c′′t )) dt+ rσq′′t dY
′′
t .

So the difference of v′t and v
′′
t is given by

d (v′t − v′′t ) = r

([
(v′t − v′′t ) + u (c′′t )− q′′t (θ − c′′t )−max

c′′t
[u (c′′t )− q′′t (θ − c′′t )]

])
dt,

de−rt (v′t − v′′t ) = re−rt
[
u (c′′t )− q′′t (θ − c′′t )−max

c′′t
[u (c′′t )− q′′t (θ − c′′t )]

]
dt ≤ 0.

So e−rt (v′t − v′′t ) is a supermartingale. Since the promised contiuation utility is bounded,

then we have (v′0 − v′′0) ≥ 0, which is contradiction.
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6.8 Proof of Corollary 1

Proof. Corollary 1. Note U (0) < Vmin, so vt must pass through Vmin first then U (0).

But by above the social planner recommends the agent to quit when vt hits Vmin, so the

above implies the social planner never recommends agent to retire with zero pension.

Thus the social planner always release U−1 (vT (Y )) unit of pension when the agent

follow recommended stopping time to retire at TR (Y ). Then it is straightforward to

verify that the social planner recommendation described above, (C (q) , TR (Y ) , TL (Y )),

satisfies (23) to (25), thus (C (q (Y )) , TR (Y ) , TL (Y )) is incentive compatible.

6.9 Proof of Proposition 4

We sketch how to modify the proof of Proposition 1(a) to 1(d) to prove Proposition

4(a) to 4(c).

Lemma 4 Given β ≤ 0, the solution G (v) to the second order ODE (34) satisfying

Gv (Vmin) = 0 and Gv (Vmin) = β exists and unique.

Proof. Note the solution to the following second-order ODE also solves HJB equation

(34):

Gvv (v) = min
q

{
rG (v)− θ + C (q)− rGv (v) [v − U (q)]

(rσq)2 /2

}
. (62)

To see, let q∗ denote the minimizer

⇔ Gvv (v) ≥ θ − C (q) + rGv (v) [v − U (q)] +
(rσq)2

2
Gvv (v) ,∀q 6= q∗.

where the eqaulity holds when q = q∗, which coincides with the HJB (34). Then use

(62) and proof and Lemma 1 we can show the existence and uniques of solution to (62)

given G (Vmin) = 0 and Gv (Vmin) = β.

Lemma 5 Given β1 < β2 ≤ 0, the solution Gi (v), i ∈ {1, 2}, to the second order
ODE (62) satisfying Gi (Vmin) = 0. and Gi

v (Vmin) = βi only intersect each other once

at v = Vmin.

Proof. Suppose not. Consider G1 and G2 such that G1 (Vmin) = G2 (Vmin) = 0

but G1
v (Vmin) = β1 < β2 = G2

v (Vmin) ≤ 0. Then there is v′ > Vmin such that
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G1
v (v′) = G2

v (v′), and G1 (v) < G2 (v) and G1
v (v) < G2

v (v) for all v ∈ (Vmin, v
′). Then

we have

G1
vv (v′) = min

q

{
rG1 (v′)− θ + C (q)− rG1

v (v′) [v′ − U (q)]

(rσq)2 /2

}
,

< min
q

{
rG2 (v′)− θ + C (q)− rG1

v (v′) [v′ − U (q)]

(rσq)2 /2

}
,

= min
q

{
rG2 (v′)− θ + C (q)− rG2

v (v′) [v′ − U (q)]

(rσq)2 /2

}
,

=
σ2

2
G2
vv (v′) .

So by continuity of G1
v and G

2
v, there is ε > 0 such that G1

v (v′ − ε) > G2
v (v′ − ε), which

is contradiction.

Lemma 6 Given β ≤ 0, the solution G (v) to the second order ODE (62) satisfying

Gv (Vmin) = 0 and Gv (Vmin) = β is either linear, strictly concave or strictly convex.

Proof. Applying envelope theorem on (62), then if Gvv (v′) = 0 for some v′ implies

G (v) is linear. So G (v) is either linear, strictly concave or strictly convex.

Proof. Proposition 4. To show 4(a), consider G′ (v) ≡ − (v − Vmin) /β, whereβ

solves Vmin = βθ + maxc≥0{ru (c, 1)− βc}. Then we can verify that G′ (v) solves (62)

with G′ (Vmin) = 0. By the assumption Vmin + βa ≥ U (a), we have

Vmin − βG′ (v) ≥ U (−G′ (v))⇒ G′ (v) ≥ −U−1 (G′ (v)) ,

Suppose G′ (v) ≥ −U−1 (G′ (v)) for all v. Then we decrease Ga (Vmin) from −1/β to

negative infinite, here must be a value of β′ such that the corresponding solution G

to (62) given initial conditions G (Vmin) = 0 and Gv (Vmin) = β′ satisfies (33) and

(35). Then β′ is the maximal Gv (Vmin) over the set of solutions G to (62) given

initial conditions G (Vmin) = 0 that satisfies (33) and (35). So we have Gv (Vmin) ∈(
−∞,−1/β

)
and G (v) is strictly concave and decreasing. We can verify G (v) is

maximal as in the proof of Proposition 1(a) to 1(d).

To show 4(b) and 4(c), note the first order condition of q is

q∗t = C∗q (q∗t )
rGv (v∗t ) q

∗
t + 1

(rσ)2Gvv (v∗t )
= uc (C∗t ) , (63)
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where the last equality comes from (25). By Proposition 3 we know v is promised

continuation utility, where the stopping times are given by (24).

To show 4(d), apply envelope theorem on (34):

v∗t − U (q∗t ) = −r (σq∗t )
2

2

Gvvv (v∗t )

Gvv (v∗t )
,

so the drift of v∗t points in the direction in which Gvv (v∗t ) is increasing.

To show 4(e), note from (63), since q∗t = uc (C∗t ) > 0, then we have rGv (v∗t ) q
∗
t +1 > 0

as C∗q (q∗t ) < 0.

To show 4(f), since Gv (v) is strictly decreasing in v, so if Gv (Vmin) ≤ −1, then

−Gv (v∗t ) ≥ 1 for all v∗t and hence from 4(e) we have rq∗ (v∗t ) < 1 for all v∗t .

To show 4(g), total differentiating both side of (63):

dq∗ (v∗t )

dv∗t
=

rq∗t [Cq,tGvv,t − rσ2Gvvv,t]

−Cqq,t (1 + rGv,tuc,t)− C2
q,trGv,tucc,t + (rσ)2Gvv,t

,

where the denominator is negative by the second order condition. Since Gvv and Cq,t
are negative, the numerator is positive if and only if Gvvv is suffi ciently positive.

It is straight forward to write HJB equation for the expected remaining time to

retire and to quit, which is similar to Proposition 1(f). That establishes 4(h).

6.10 Proof of Proposition 5

Proof. Proposition 5. Apply Ito Lemma on at = −G (vt):

dat =

[
−rGv,t (vt − Ut)−

(rσqt)
2

2
Gvv,t

]
dt− rσqtGv,tdBt.

=

[
−rGv,t (vt − Ut)−

(rσqt)
2

2
Gvv,t

]
dt− rqtGv,t [σdYt − (θ − Ct) dt] .

Matching with the decentralization taxation:

dat = r (1− τ int,t) atdt+ (1− τ sav,t)σdYt.

Then we show 5(b)

τ sav,t = 1 + rqtGv,t > 0.
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ra− τ t = −rGv,t (vt − Ut + qt (θ − Ct))−
(rσqt)

2

2
Gvv,t

= −rGv,tqt (θ − Ct)− rGt + θ − Ct

⇔ τ t = (1− τ sav,t) (θ − Ct) .

Substituting τ t, the evolution of saving can be reduced to

dat = (rat + θ − τ sav,tCt − (1− τ sav,t) ct) dt+ (1− τ sav,t)σdBt.

The ex ante saving is

Edat =

[
−rGv,t (vt − Ut)−

(rσqt)
2

2
Gvv,t

]
dt = [rat + θ − Ct] dt,

which proves 5(c)

To show 5(a) and verify V (at) = G−1 (−at) under the saving tax τ sav,t and lump-
sum tax τ int,t, consider the HJB of continuation value:

rV (a) = max
c

{
ru (c) + Va (a) [rat + θ − (1− τ sav,t) c− τ sav,tCt] +

(1− τ sav,t)2 σ2

2
Vaa (a)

}
,

= Va (a) [rat + θ + (rqtGv,t − 1) Ct] (64)

+
(rqtGv,tσ)2

2
Vaa (a) + rmax

c
{u (c)− qtVa (a)Gv,tc} .

Substitute

Va =
−1

Gv

, Vaa =
Gvv

(Gv)
3 , a = −G

then the right hand side of (64) becomes

−1

Gv,t

[
−rGt + θ + (rqtGv,t − 1) Ct +

(rqtσ)2

2
Gvv,t + rGv,t max

c
{u (c) + qtc}

]
.

Since we have qt = uc (Ct), so we have

ct = Ct.

Hence the above can be further reduced to

−1

Gv,t

[
−rGt + θ − Ct −

(rqtσ)2

2
Gvv,t + rGv,tu (Ct)

]
= rv,
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where the equality follows the definition of HJB (34). So the right hand side (64)

matches the left hand side under V (at) = G−1 (−at), thus the saving tax τ sav,t and
interest tax τ int,t decentralize the allocation of the optimal mechanism.

To show 5(d), since C (G−1 (−at)) is increasing in at, then there exists a′ such

that for all at > a′ we have C (G−1 (−at)) > θ and vice versa. This implies τ t =

(1− τ sav,t) (θ − C (G−1 (−at))) < 0 if at > a′ and vice versa. On the other hand,

C (G−1 (−at)) is increasing in at implies q∗ (G−1 (−at)) is deceasing in at, by (25), so
we have

dτ sav,t
dat

= −r
[
q∗
(
G−1 (−at)

) Gvv (G−1 (−at))
Gv (G−1 (−at))

+Gv

(
G−1 (−at)

) dq∗ (G−1 (−at))
dat

]
< 0.

6.11 Proof of Proposition 6:

Proposition 6 is the various implications of the following Lemma, which allows us to

compare G (v) and −V −1 (v). This is straight forward to verify so we just state without

showing the steps

Lemma 7 G′ (v) ≡ −V −1 (v) solves

rG′ (v) = θ − C (q) + rG′v (v) [v − U (q)] +
(rσq)2

2
G′vv (v) , (65)

for q = Va (a) /r and given −V −1 (Vmin) = 0.

Proof. Denote v = V (−G′ (v)), and a = G′ (v), then the left hand side of (65) is −ra,
and the right hand side is

1

Va (a)

[
Va (a) [θ − C (q)]− r [v − U (q)] +

Vaa (a)

2

(
rσq

Va (a)

)2
]
,

= −ra+
1

Va (a)

 −rv + maxc

{
ru (c) + Va (a) [ra+ θ − c] + σ2

2
Vaa (a)

}
−σ2

2
Vaa (a) + Vaa(a)

2

(
rσq
Va(a)

)2

 ,
= −ra+

σ2

2
Vaa (a)

[(
rq

Va (a)

)2

− 1

]
,

= −ra.
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Consider the formulation (62) of (34). The following lemma establishes the single-

crossing of G (v) and −V −1 (v) .

Lemma 8 G (v) ≥ G′ (v) ≡ −V −1 (v) and only intersect each other once at v = Vmin.

Proof. Suppose not, and Gv (Vmin) ≤ G′v (Vmin). Then there is v′ > Vmin such that

there exists ε > 0 where G (v′) = G′ (v′), G (v) < G′ (v) and Gv (v) > G′v (v) for all

v ∈ (v′ − ε, v′). Then we have

Gvv (v′) = min
q

{
rG (v′)− θ + C (q)− rGv (v′) [v′ − U (q)]

(rσq)2 /2

}
,

<
rG′v (v′)− θ + C (Va (G′ (v′)) /r)− rG′v (v′) [v′ − U (Va (G′ (v′)) /r)]

(σVa (G′ (v′)))2 /2
,

= G′vv (v′) .

So by continuity of Gv and G′v, there is ε
′ > 0 such that Gv (v′ − ε′) > G′v (v′ − ε′),

which is contradiction. So either we have Gv (Vmin) > G′v (Vmin), or Gv (Vmin) ≤
G′v (Vmin) and there is no intersection other than v = Vmin.

Then we want to show the case Gv (Vmin) ≤ G′v (Vmin) is impossible. Suppose that,

since there is no intersection between G (v) and G′ (v), so we have G (v0) < G′ (v0),

where v0 is given by Proposition 4(b). But that implies G is not optimal as it is

dominated by G′. So we must have Gv (Vmin) > G′v (Vmin).

Finally, we want to show there is no intersection given Gv (Vmin) > G′v (Vmin). Sup-

pose not, then there is v′ > Vmin such that G (v′) = G′ (v′), and Gv (v′) < G′v (v′), as

the order of slopes must be alternating for each intersection. By repeating the above

proof but substitue Vmin by v′, then we show such v′ does not exist. So there must be

no intersection.

The above lemma implies Proposition 6(b). To show 6(a), note that at vt = Vret,

agents retire under laissez faire, we have −U−1 (Vret) = −aret = −V −1 (Vret). Since by

the above lemma, we have −V −1 (Vret) < G (Vret), so agents under optimal mechanism

do not retire at vt = Vret, hence V ∗ret > Vret and −U−1 (V ∗ret) < −U−1 (Vret), so a∗ret >

aret.

To show 6(c), we compare agent’s first order conditions under laissez faire and

optimal mechanism respectively. Under laissez faire, the first order condition is
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uc (Ct) = Va (−G (vt)) = −1/rGv (vt); under optimal mechanism, the first order condi-

tion is uc (C (vt)) = q∗t . Since from Proposition 4(e) we know q∗t < −1/rGv (vt), so by

the concavity of u we establish consumption is higher under optimal mechanism.

To show 6(d), note that the expected remaining time to quit under laissez faire

SL (v) = SL (−G (v)), with −G (v) = a , solves the following HJB:

−1 = SLv (v)

[
Va (a) [θ − C (a)] +

σ2

2
Vaa (a)

]
+

(σVa (a))2

2
SLvv (v)

= rSLv (v) (v − u (C (a))) +
(σVa (a))2

2
SLvv (v) ,

where the boundary conditions are SL (0) = 0,SL (Vret) = ∞. Rearrange the above
and substituting −G (v) = a and Va (−G (v)) = −1/rGv (v), we have

SRvv (v)

2
= (Gv (v))2 rS

R
v (v) (u (C (−G (v)))− v) + 1

σ2
.

Recall the expected remaining time to quit under the optimal mechanism is

SL∗vv (v)

2
= (Gv (v))2 rS

L∗
v (v) (U (q∗ (v))− v) + 1

(σrq∗ (v)Gv (v))2 .

We want to show a stronger result. Consider 0 < SL∗v (v) < SL∗v (v) for all v ∈
[Vmin, Vret]. Both SL∗v (v) and SL∗v (v) are positive as it takes more time to quit if

v is closer to V ∗ret, which is the maxmimal promised continuation utility as long as

agents remain in the mechansim or the saving market. Suppose not, and consider

SL∗v (Vmin) < SLv (Vmin). By continuity of SL∗v (v) and SLv (v) imply there is v′ such that

SL∗v (v′) = SLv (v′) and SL∗v (v) > SLv (v) for all v ∈ (Vmin, v
′]. So we have

SL∗vv (v′)

2
= (Gv (v))2 rS

L∗
v (v′) (U (q∗ (v))− v) + 1

(σrq∗ (v)Gv (v))2 ,

> (Gv (v))2 rS
L
v (v′) (u (C (−G (v)))− v) + 1

σ2
,

=
SLvv (v)

2
.

since from Proposition 4(e) we have rq∗ (v)Gv (v) < 1, and from Proposition 6(c)

we have U (q∗ (v)) > u (C (−G (v))). So by continuity of SL∗v (v) and SLv (v), there is

ε′ > 0 such that SL∗v (v′ − ε′) < SLv (v′ − ε′), which is contradiction. So if SL∗v (Vmin) <

SLv (Vmin), then we have SL∗v (v) < SLv (v) for all v ∈ [Vmin, Vret].
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Suppose SL∗v (Vmin) ≥ SLv (Vmin). Since SLv (Vret) = ∞ > SL∗v (Vret), there is a v′

such that SL∗v (v) < SLv (v) for all v ∈ (v′, Vret] and SL∗v (v′) = SLv (v′). We want to show

there is no intersection of SL∗v (v) and SLv (v) other than v = v′. Suppose not, then

there is v′′ < v′ such that SL∗v (v) > SLv (v) for all v ∈ (v′′, v′] and SL∗v (v′′) = SLv (v′′).

Repeating the above proof we can show such v′′ leads to contradiction, thus does not

exist. Then we must have v′ = Vmin, hence 0 < SL∗v (v) < SLv (v) for all v ∈ [Vmin, Vret] .

Therefor we have SL∗ (v) < SL (v) for all v ∈ [Vmin, Vret].

The comparison between optimal mechanism and the first best follows similar proof,

so we omit here.

6.12 Proof of Proposition 7:

Proof. With abuse of notation, let denote the promised continuation utility supported

by a level of revenue, ie V (at) ≡ G−1 (−at). Suppose Gv (V (at)) < 0 for some at.

Note dividing both side of (34) by −Gv (V (at)) implies:

− G (V (at))

Gv (V (at))
= max

q

{
− θ − C (q)

Gv (V (at))
− V (at) + U (q)− rσ2

2

Gvv (V (at))

Gv (V (at))
q2

}
,

⇔ V (at) = max
q

{
U (q) +

−G (V (at)) + θ − C (q)

−Gv (V (at))
− rσ2

2

Gvv (V (at))

(Gv (V (at)))
3 (−Gv (V (at)) q)

2

}
,

⇔ V (at) = max
q

{
U (q) + Va (at) [−G (V (at)) + θ − C (q)] +

rσ2

2
Vaa (at) (−Gv (V (at)) q)

2

}
,

This is a value maximization problem of (64) given a0 = −Gt. Note the direction from

value maximization problem to revenue maximization problem is always established as

Va > 0.
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