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Abstract

We consider a game in which a continuum of heterogeneous individuals par-

tition themselves into communities. Communities can be of any size and

group externalities can display any type of economies of scale or congestion

e¤ects. When group externalities are anonymous, we show that free mobility

equilibria are socially optimal when group externalities increase or decrease

logarithmically with community size. When they increase less (resp. more)

than logarithmically, the equilibrium exhibits excessive agglomeration (resp.

excessive fragmentation). These results hold irrespective of the distribution

of preferences and the set of available communities. When group externali-

ties are not anonymous, the optimality of free mobility equilibria requires an

additional symmetry condition. We characterize conditions under which free

mobility equilibria are excessively or ine¢ ciently strati�ed. We apply these

results to local public goods economies and translate the logarithmic and the

symmetry conditions into conditions on the public good technology and the

income distribution under various tax schemes.

Keywords: Group Formation, Economies of Scale, Congestion, Strati�-

cation, Local Public Goods Economy.



1 Introduction

Numerous economic and social activities are conducted within organized

groups. The distinctive feature of these social communities is that the bene-

�ts they generate to their members depend both on the characteristics of the

community (their internal rules or the services they provides to their mem-

bers) and on their membership. Larger groups can exploit economies of scale,

indivisibilities, network e¤ects or risk sharing while smaller groups minimize

congestion e¤ects and can better match the preferences of their members. For

this reason, the size of these communities depends both on the distribution

of preferences and the group externalities they generate. National defense is

typically provided at the national level while garbage collection can be un-

dertaken at a smaller level. Technologies with little scope for customization

and strong network e¤ects have millions of users while some software are

used within a single �rm. Likewise, the size of religious communities varies

widely among faiths.

Ideally, a partition of society into communities should balance the cost

of heterogeneous groups with the bene�ts of larger groups. However, in

practice, group membership is determined by the decentralized decisions of

self-interested individuals. Freedom to migrate is constitutionally guaranteed

in many developed countries. The central question of this paper is whether

free mobility leads to a partition of society into communities of optimal size

and composition.

To answer this question, we analyze the Nash equilibria of a simple group

formation game with a continuum of players in which each player�s strategy is

the community she chooses to join. The set of members of a community with
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characteristics c is simply the set of individuals whose strategy is c. Individu-

als have idiosyncratic preferences over community characteristics. The latter

can be interpreted as the tax and spending scheme of a local jurisdiction, the

legal code of a state, the beliefs of a religious community or the properties of

a technology. The welfare of a member of a community depends also on the

set of individuals who choose the same community. In most of the paper, we

assume that these group externalities are anonymous but we do not make

any hypothesis about their shape. In particular, our results apply both to

the case of economies of scale and congestion externalities.

Our main contribution is to provide conditions on the shape of group

externalities under which Nash equilibria are socially optimal. We �rst show

that when group externalities increase (or decrease) logarithmically in group

size, a socially optimal Nash equilibrium exists. We then prove that the

logarithmic condition is essentially necessary and characterize the nature of

the ine¢ ciency when group externalities are non-logarithmic. If they vary

�more than logarithmically� in group size, free mobility leads to too much

fragmentation while if they vary �less than logarithmically�, it generates

excessive agglomeration. These results hold irrespective of the distribution of

preferences and the set of available communities. Hence, our model suggests

that it is the shape of economies of scale or congestion costs rather than the

distribution of preferences which determines the gap between free mobility

and social optimality. When applied to local public good economies, the

logarithmic condition can be readily translated into conditions on the public

good technology and the tax-spending scheme.

The intuition behind the main result is a simple Pigouvian argument.
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When an individual leaves a group to join another one, she imposes two kinds

of externality: an emigration externality on the members of the community

she leaves, and an immigration externality on the members of the community

she joins. When returns from group size are logarithmic, these two e¤ects

cancel out so that migration has no aggregate externality. When returns are

more than logarithmic, then the gap between the private cost and the social

cost of emigration is increasing in the size of the origin community. Hence,

free mobility will lead too much migration from large groups to small groups

and the equilibrium will be too fragmented.

We then consider non-anonymous group externalities and show that the

optimality of free mobility requires an additional symmetry condition: in

each community, the bene�t for the members of type a of an additional

member of type b must be equal to the bene�t for the members of type b

of an additional member of type a. Furthermore, we show that when group

externalities exhibit more (resp. less) than logarithmic homophyly, then the

Nash equilibria are insu¢ ciently (resp. excessively) segregated.

The paper is organized as follows. Section 2 discusses the related litera-

ture. Section 3 lays out the basic model. Section 5 derive the main results

and section 6 considers several extensions of the model. Section 7 concludes.

2 Related Literature

In his seminal paper, Tiebout (1956) argued that by voting with their feet,

citizens reveal truthfully their preferences for public goods and form groups

of optimal size. To show this insight formally, the literature on club theory
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and free mobility makes assumptions which basically remove the fundamental

trade-o¤ between the satisfaction of heterogeneous needs and exploitation of

economies of scale. It does so by assuming away any scarcity or mismatch

in the allocation of individuals across groups. Roughly speaking, if s is the

optimal size of a group that some individual i prefers, then s is �nite and

there is always s�1 unmatched individuals with identical preferences willing

form a group with i. (See e.g. Bewley 1981 and the references therein) Our

model departs from the club theory literature in that we do not assume that

group size is negligible or that there is as many clubs as types of individuals.

The way we model the group formation process is similar to Konishi,

Lebreton and Weber (1997a, 1997b, 1998) and Milchtaich (1996). These pa-

pers study the existence of Nash equilibria with a �nite population and either

economies of scale or congestion externalities. Our speci�cation encompasses

both economies of scale and congestion e¤ects and avoids the existence prob-

lem by assuming a continuum of individuals. We focus instead on the welfare

analysis.

The cooperative game theory literature (Greenberg and Weber 1986,

1993, Demange 1994, Haimanko, Lebreton and Weber 2004) has analyzed

the trade-o¤ between economies of scale and the cost of heterogeneity in

large groups. These papers identify restrictions on the distribution of idio-

syncratic preferences which guarantee that the group formation game has

a non-empty core (or some variant of it). Our model focuses on individual

mobility and shows that what matters for social welfare is the shape of group

externalities.

Finally, a few papers have analyzed the welfare consequences of various
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rules of secession, integration and immigration. It may be socially optimal

to restrict mobility by requiring the unanimous consent of the destination

jurisdiction (Jehiel and Scotchmer 2001). When secessions are decided by

majority rule, they can lead to ine¢ ciently small jurisdictions (Bolton and

Roland 1997, Alesina and Spolaore 1997) . The rationale is that the pivotal

voter of a seceding group does not internalize the diseconomies of scale she

imposes on the jurisdiction she is seceding from. Our results show that this

intuition can be misleading in the case of individual mobility because an in-

dividual migrating from a community c to a community c0 exerts both an

emigration externality on c and an immigration externality on c0. Contrary

to the aforementioned papers, we allow for various forms of group exter-

nalities and show that their shape determines the relative magnitude of the

immigration and emigration externalities.

3 The Model

3.1 Communities and Preferences

The set of individuals is indexed by I. Each community is identi�ed with a

set of characteristics indexed by c 2 C which are independent of its mem-

bership. The welfare of individual i 2 I depends on the characteristics c of

the community she chooses and the set of people J who choose the same

community c:

Ui (c; J) = Vi (c) +W (� (J)) ; (1)
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where � is a measure on I. In the sequel, we shall refer to � (J) as the size

or the mass of J . For all " > 0 and V 2 RC , we denote

B (V; ") = fi 2 I : 8c 2 C; jVi (c)� V (c)j < "g : (2)

To guarantee the existence of equilibria, we assume that � is �nite and atom-

less:

Assumption 1 � (I) < 1 and for all " > 0, V 2 RC, B (V; ") is �-

measurable and

for all u 2 R; c; c0 2 C; c 6= c0; � (fi 2 I : Vi (c)� Vi (c0) = ug) = 0,

for all u > 0; c 2 C, � (fi 2 I : supVi � Vi (c) = ug) = 0.

The function Vi embodies idiosyncratic preferences over community char-

acteristics. If communities are religious groups, then c can be thought of

as the belief of a community. If communities are networks of users of a

technology, c can be thought as the properties of the technology, e.g. the

functionalities of a software. In the case of political jurisdictions, c can be

the tax and spending scheme of a community, its zoning laws, legal code or

cultural policy.

The term W in (1) determines the group externalities. Our speci�ca-

tion implicitly assumes that they are anonymous and uniform across players.

This assumption is relaxed in subsection 6.2. The additive separability of

Vi and W in (1) means that individuals rank communities of a same size

m independently of m. Throughout, we will make the following technical

assumptions:
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Assumption 2 limm!0W (m) exists but can be �1, W is di¤erentiable on

]0; � (I)], and is di¤erentiable at 0 if limm!0W (m) is �nite.

Either limm!0W (m) is a lower bound of W on ]0; � (I)] or jCj <1.

For any individual i, C� (i) = argmaxc2C Vi (c) is non empty and Vi (c) is

bounded over I � C.

Our results apply indi¤erently to the case of economies of scale (i.e. W

increasing) or congestion externalities (i.e. W decreasing). In the latter case,

assumption 2 requires C to be �nite so that the congestion problem is non

trivial. Some of our results will require the following assumption:

De�nition 1 The distribution of preferences has a connected support if for

all " > 0, � (B (Vi; ")) > 0 and fVi : i 2 Ig is path connected for the topology

of the uniform convergence on RC.1

The following example describes a standard local public good economy

which satis�es the above requirement. Communities are local jurisdictions

which provide excludable services to their residents (e.g. pools, public parks,

schools or police protection) and �nance them via head taxes,2 for instance

because individual characteristics are unobservable or because of �scal com-
1The topology of uniform convergence is the topology generated by the sets B (V; ")

for all V 2 RC and " > 0. It coincides with the Euclidean topology when C is �nite.
2Equal share is a common assumption in the literature on group formation (Buchanan

1965, McGuire 1974, Greenberg and Weber 1986, Konishi 1996, Alesina and Spolaore 1997,

Konishi, Lebreton and Weber 1998, Jehiel and Scotchmer 2001). As has been argued in

the local pubic �nance literature, a head tax can be approximated by a property tax along

with zoning laws.
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petition.3 This example is analyzed in greater details in subsection 6.1, and

di¤erent tax schemes are considered in subsection 6.2.

Example 1 A jurisdiction is characterized by a level of public goods g 2 Rn+,

a location l 2 L and a tax t. The cost of providing g in a jurisdiction

of mass m is C(g;m); l can be interpreted as the geographical location of

a public facility or more generally as a characteristic with respect to which

individuals have heterogeneous preferences. The welfare of individual i with

type �i 2 Rm in a jurisdiction (l; g; t) of size m is:

Ui (l; g; t) = V (l; �i) +H (g)� t: (3)

The following three cases are examples of tax and spending schemes under

which (3) is a special case of (1):

(i) g is �xed and uniform across communities and the tax balances the bud-

get: t = C(g;m)
m

;

(ii) the tax t is �xed and uniform across communities and g maximizes com-

munity welfare under the budget constraint:

W (m) = sup
g22Rn+:C(g;m)�mt

(H (g)� t) ;

(iii) g and t are chosen in each jurisdiction so as to maximize the welfare of

its residents:

W (m) = sup
g22Rn+;t�0:C(g;m)�mt

(H (g)� t) :

3If jurisdictions can raise capital taxes and head taxes, capital is mobile and investment

decisions are made after tax are set, the standard �race to the bottom�argument states

that local jurisdictions will levy only head taxes.
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One can easily can check that ifH and C are smooth, C is strictly increas-

ing in g, V (l; �) � V (l0; �) is continuous and nowhere locally constant in �

for all l 6= l0, and if the distribution of types �� is absolutely continuous with

compact support, then assumptions 2 and 1 are satis�ed.4 If furthermore

�� has a density function with a connected support, then the distribution of

preferences has a connected support in the sense of de�nition 1.

3.2 Strategies

A strategy pro�le � is a pro�le of community choices: (�i)i2I 2 CI . It is

said to be measurable if Vi (�i) is measurable. Throughout the paper, we do

not distinguish between any two strategies which are equal �-almost every-

where.5 The distance between two strategy pro�les is given by d (�; �0) =

� (fi : �i = �0ig).

We use the following notations: M (c; �) = fi 2 I : �i = cg is the set

of members of the community c at the strategy pro�le � and m (c; �) =

� (M (c; �)) is its size. A community c 2 � is said to be active at � if

m (c; �) > 0. The set of active communities is denoted A (�). We shall refer

toM (c;; �) as the set of individuals in inactive communities and m (c;; �) =

� (M (c;; �)).

A Nash equilibrium is a measurable strategy pro�le � such that for al-

most all i 2 I and all c 2 C, Ui (�i;M (�i; �)) � Ui (c;M (c; �)).6 This

4A measure � on Rm is absolutely continuous if all sets of Lebesgue measure 0 are of

�-measure 0.
5With a slight abuse of notation, CI will denote the quotient space of the set of mea-

surable strategies with respect to the equivalence relation �equal �-almost everywhere�.
6An equivalent requirement is that for almost all i 2 I, there exists " > 0 such that it is
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notion of equilibrium implicitly assumes that individuals are free to migrate

to any community but the characteristics of each community are �xed be-

fore membership decisions are made. In other words, citizens vote only with

their feet. In section 6.5, we discuss the alternative equilibrium notion in

which individuals vote on their community characteristics after membership

decisions are taken.

3.3 Social Welfare

Strategy pro�les are ranked according to the utilitarian social welfare func-

tion:7

S (�) =

Z
i

Ui (�i;M (�i; �)) d� (i) : (4)

A measurable strategy pro�le � is socially optimal if for all measurable �0,

S (�) � S (�0). It is locally optimal if S (�) > �1 and if there exists � > 0

such that for all measurable �0 with d (�; �0) < �, S (�) � S (�0). For technical

reasons, we will occasionally use a weaker notion of optimality which allows

us to characterize the e¤ect of free mobility more accurately:

De�nition 2 For all " > 0, let �"i be the measure such that � (fig) = " and

for all �-measurable J � I, �"i (J r fig) = � (J). A strategy pro�le � is

"-optimal if for almost all i 2 I, there exists � > 0 such that for all c and all

" 2 ]0; �[, under the measure �"i , S (�) � S (c; ��i).

not possible to relocate all individuals in B (Vi; ") = fj 2 I : 8c 2 C; jVi (c)� Vj (c)j < "g

so as to make them all better-o¤.
7One can check that from assumptions 1 and 2, for all measurable strategy pro�le �,

Ui (�) is either integrable or (4) is �1.
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In words, "-optimality means that even if i had a small but positive mea-

sure, i could not increase social welfare on its own by migrating to a di¤erent

community. As we shall see, it is slightly weaker than local optimality.

4 Preliminary Lemmas

In this section, we introduce the notion of potential consistency and derive

important intermediate results. The proofs of the lemmas are relegated to

the appendix.

De�nition 3 A potential p is a map from C to R [ f�1g such that for all

but a countable number of communities, p (c) = p; for some p; 2 R[f�1g.

A strategy pro�le � is consistent with a potential p if for all c; c0 2 C, for

almost all i 2 I, �i 2 C (p; Vi), where

C (p; Vi) � argmax
c2C

(Vi (c) + p (c)) ; (5)

and for all c =2 A (�), p (c) = p; for some p; 2 R [ f�1g.

It follows readily from de�nition 3 that a strategy pro�le � is a Nash equi-

librium if and only if � is consistent with the potential pNE� (c) =W (m (c; �)).

The following two remarks show that a potential de�nes a unique strategy

pro�le and that, reciprocally, a strategy can be consistent with a unique

potential up to a constant:

Remark 1 If � is consistent with a potential p, then C (p; Vi) is single-valued

for almost all i, and thus � is the only strategy pro�le consistent with p.
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Remark 2 If the distribution of preferences has a connected support in the

sense of de�nition 1 and if � is consistent with two potentials p and p0, then

there exists � 2 R such that for all c; c0 2 A (�), p0 (c) = p (c) + �. Moreover,

if m (c;; �) > 0, p0; = p; + �.

Lemma 1 shows that any strategy which is consistent with a potential

achieves an optimal sorting of individuals between communities conditional

on a size constraints for each community.

Lemma 1 Let p be a potential and �p be a strategy pro�le consistent with p,

then �p is the unique solution of

max
�2CI :8c2C; m(c;�)=m(c;�p)

S (�) :

As argued earlier, a Nash equilibrium � is consistent with the potential

W (m (c; �)), so lemma 1 implies that free mobility automatically achieves

an optimal sorting of individuals conditional on the size of the groups that

� assigns to each community. Hence, Nash equilibria are suboptimal only

if communities have non optimal sizes. Contrary to the typical setup in

club theory, the latter kind of ine¢ ciency is a genuine concern even with

a continuum of individuals: because the optimal size of communities is not

necessarily negligible, membership is a scarce resource which has to be al-

located optimally. The next lemma shows that for a pro�le of community

choices � to generate communities of optimal size, it must be consistent with

the potential p�� de�ned as:

8c 2 A (�) ; p�� (c) =W (m (c; �)) +m (c; �)W 0 (m (c; �)) (6)

8c =2 A (�) ; p�� (c) = lim
m!0

W (m) :
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Lemma 2 A strategy pro�le � is "-optimal if and only if it is consistent with

the potential p�� de�ned in (6).

In other words, if individuals were choosing their community on the basis

of the following utility function:

Ui (�) = Vi (�i) +W (m (�i; �)) +m (�i; �)W
0 (m (�i; �)) ;

rather than Ui (�) = Vi (�i) + W (m (�i; �)) then free mobility would be

equivalent to "-optimality. By comparing pNE and p�, lemma 2 implies that

if a community-contingent tax scheme equal to m (c; �)W 0 (m (c; �)) was im-

posed on all individuals, privately and socially optimal community choices

would coincide. The intuition behind this result is a simple Pigouvian argu-

ment: as a small mass " of individuals leave a community c1 of mass m1 to

join another community c2 of massm2, they impose an emigration externality

on the members of community c1 which is given by

(m1 � ") (W (m1 � ")�W (m1)) = m1W
0 (m1) "+ o (") :

They impose an immigration externality on the members of community c2

which is given by

m2 (W (m2 + ")�W (m2)) = m2W
0 (m2) "+ o (") :

Hence, the marginal externality imposed by some migrant on the mem-

bers of some community c for joining c rather than another community is

m (c; �)W 0 (m (c; �)).

The next lemma shows that in general, "-optimality is weaker than local

optimality. It implies global optimality under some convexity condition and

it implies local optimality only in a ��rst order sense�.
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Lemma 3 If � is locally optimal, it is "-optimal. Reciprocally, if � is "-

optimal and mW (m) is concave, � is optimal. If � is "-optimal and @[mW (m)]
@m

is Lipschitz continuous, then for all �0, S (�0) � S (�) + O
�
(d (�0; �))2

�
as

d (�0; �) ! 0.8 If @2[mW (m)]
@m2 > 0 for some mo > 0, then there exists a

distribution of preferences fVi : i 2 Ig and a strategy pro�le � which is "-

optimal but not locally optimal.

5 Free Mobility and Social Welfare

5.1 Equilibria and Social Optima: Existence

We denote C� = fc 2 C : �(i 2 I : c 2 C� (i)) > 0g the set of communities

which are the most preferred community of a non-negligible set of individuals.

The proofs of the next two propositions can be found in the appendix.

Proposition 1 If C� is �nite or if limm!0W (m) = �1, a Nash equilibrium

exists.

It should be clear from the proof of proposition 1 that when limm!0W (m) =

�1, for any set D � S one can �nd a Nash equilibrium whose support is in

D. Hence, there will typically be many Nash equilibria.

Proposition 2 If C is �nite, a social optimum exists. If C is compact,

Vi (c) is continuous in c for all i, W 0 is bounded below on ]0; � (I)] and

limm!0W (m) = �1, a social optimum exists.

8A function f (x) is a O (x) as x ! 0 if there exists M and � > 0 such that for all

x 2 [0; �], jf (x)j < Mx.
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5.2 Logarithmic Externalities and Aggregate Exter-

nalities

The following de�nition will play a central role in our argument:

De�nition 4 Group externalities are logarithmic if for all m 2 [0; � (I)],

W (m) = � ln (m) for some � 2 R. They are more (resp. less) than logarith-

mic if for all m 2 [0; � (I)], mW 0 (m) is increasing (resp. decreasing).

Since d[mW (m)]
dm

= W (m) +mW 0 (m), group externalities are more (resp.

less) than logarithmic if the marginal aggregate group externality d[mW (m)]
dm

increases more (resp. less) rapidly than the per capita externality W (m).

Observe that when W is logarithmic, the potential p�� (c) as de�ned in

(6) is given by p�� (c) =W (m (c; �))+� for some � 2 R. From lemma 2, � is

"-optimal if and only if it consistent with the potential p�� (c), which means

that � is a Nash equilibrium. Hence, we immediately have the following:

Proposition 3 If W is logarithmic, then � is a Nash equilibrium if and only

if it is "-optimal.

The basic intuition is the following: as a small mass " of individuals

leave a community c1 of mass m1 to join another community c2 of mass

m2, the aggregate utilitarian externality on these two communities cancel

out: the emigration externality imposed on the members of community c1

is �m1
d[� ln(m)]

dm
(m1) " = ��" while the immigration externality imposed on

the members of community c2 is m2
d� ln(m)
dm

(m2) " = �". Hence, when group

externalities increase (or decrease) logarithmically, individual mobility has

no aggregate externality on the rest of society.
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Corollary 1 Suppose W is logarithmic. If W is increasing, C is compact

and Vi (c) is continuous in c for all i, there exists a socially optimal Nash

equilibrium. If W is weakly decreasing, the set of social optima and Nash

equilibria coincide and are non-empty.

Proof. Suppose W = � ln. The existence of a social optimum comes

from the second part of proposition 2 for � > 0 and from assumption 2

and the �rst part of proposition 2 for � < 0. The case � = 0 is obvious

from assumption 2. From lemma 3, optimality implies "-optimality and is

equivalent for � � 0 so proposition 3 completes the proof.

The next proposition shows that the logarithmic condition in proposition

3 is essentially necessary:

Proposition 4 Suppose the distribution of preferences has a connected sup-

port in the sense of de�nition 1. Ifm (c1; �)W 0 (m (c1; �)) 6= m (c2; �)W 0 (m (c2; �))

for some c1; c2 2 A (�) or if m (c;; �) > 0 and m (c; �)W 0 (m (c; �)) 6= 0 for

some c 2 A (�), then � is not locally optimal.

Proof. Since � is a Nash equilibrium, it is consistent with the potential

W (m (c; �)). IfW (m (c; �)) and p�� (c) =W (m (c; �))+m (c; �)W 0 (m (c; �))

are not equal up to a constant, remark 1 implies that � cannot be consistent

with the potential p�� (c). Therefore, from lemma 2, � is not "-optimal. From

lemma 3, it is not locally optimal.

As a direct corollary, if mW 0 (m) is one-to-one, then a Nash equilibrium

can be locally optimal only if all groups have the same size in equilibrium,

which can happen only in exceptional circumstances. This remark is rem-

iniscent of the stringent conditions made in �nite club economy models to
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guarantee the existence of an optimal equilibrium. In our model, they would

translate as follows: W is maximized at some �nite m�, there exists a �nite

number of types, a mass nm� of individuals of each type for some n 2 N (no

scarcity on the demand side), and for all i, jC� (i)j � n (no scarcity on the

supply side). In this case, the optimal partition is such that each individual i

is in a community in C� (i) of size m� and such a partition is trivially stable

under free mobility. Consistently with proposition 4, all clubs are such that

mW 0 (m) = 0.

5.3 Group Externalities and Community Size

A simple heuristic reasoning sheds some light on the nature of the ine¢ ciency

when W is more or less than logarithmic (see de�nition 4): if � is a Nash

equilibrium, c1 and c2 are two neighbors communities (in the sense that some

individual is indi¤erent between them) of size m1 and m2, then by moving

a mass " of people �close to the border� between c1 and c2, total welfare

changes by:

�m1W
0 (m1) "+m2W

0 (m2) ",

which is negative if W is more than logarithmic: joining a smaller group

imposes a negative aggregate externality on society. This suggests that when

group externalities increase more than logarithmically, too few individuals

will join large communities, too many will migrate to small communities

and the free mobility equilibrium will be excessively fragmented. By the

same token, if W is less than logarithmic, free mobility will lead to excessive

agglomeration. To make this statement precise, we need to de�ne formally

the notion of agglomeration and fragmentation:
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De�nition 5 Let (m�
n)n2N denote the mass of the active communities for

the strategy pro�le �, ranked in decreasing order, with the convention that

mn = 0 for n > jA (�)j. We say that � is more concentrated than �0 if

m (c;; �) � m (c;; �0) and for all p 2 N,X
n�p

m�
n �

X
n�p

m�0

n :
9

A strategy pro�le � exhibits excessive fragmentation (resp. agglomeration)

if there exists " > 0 such that for all �0, if d (�; �0) � " and � is more

concentrated than �0 (resp �0 is more concentrated than �), then S (�) �

S (�0).

In words, a partition of society is excessively fragmented if it is not pos-

sible to increase welfare by relocating a small mass of individuals from larger

to smaller communities. In particular, a local optimum is neither excessively

fragmented nor excessively agglomerated.

Proposition 5 If W is more (resp. less) than logarithmic, then all Nash

equilibria � such that A (�) is �nite exhibit excessive fragmentation (resp.

excessive agglomeration).

Proof. Let � be a Nash equilibrium such that A (�) is �nite and let �0

be such that d (�; �0) = ". If we denote J = fi 2 I : �i 6= �0ig, then

S (�0)� S (�) =

Z
i2J

(Vi (�
0
i) +W (m (�0i; �))� Vi (�i)�W (m (�i; �))) d� (i)

+
X
c2A(�)

m (c; �0) (W (m (c; �0))�W (m (c; �))) (7)
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Since � is a Nash equilibrium, the �rst term in the right hand-side of (7) is

negative. Since W is di¤erentiable and A (�) is �nite, (7) can be approxi-

mated by X
c2A(�)

m (c; �)W 0 (m (c; �)) (m (c; �0)�m (c; �)) + o (� (I)) (8)

=
X
c2A(�)

m (c; �)W 0 (m (c; �))

0@ m (c; �0)�m (c;; �0)

�m (c; �) +m (c;; �)

1A (9)

+(m (c;; �
0)�m (c;; �))

X
c2A(�)

m (c; �)W 0 (m (c; �)) + o (� (I))(10)

If W is more than logarithmic, then m (c; �)W 0 (m (c; �)) is increasing in

m (c; �). If �0 is more concentrated than �, then (m (c; �0)�m (c;; �0))c2A(�)
majorizes (m (c; �)�m (c;; �))c2A(�) (see e.g. Arnold 1987) so the �rst term

in the right hand-side of (8) is negative. Moreover, in absolute value it must

be greater than

min
c;c02A(�):

m(c;�)W 0(m(c;�)) 6=m(c0;�)W 0(m(c0;�))

� (J) jm (c; �)W 0 (m (c; �))�m (c0; �)W 0 (m (c0; �))j ;

so it dominates the term o (� (I)) in (8).

Finally, if W 0 � 0, the last term in the right hand-side of (8) since

m (c;; �
0) � m (c;; �), which proves that S (�0) � S (�). If W 0 (m) < 0 for

somem, then sincemW 0 (m) is increasing, this means that lim supm!0mW
0 (m)

is negative. This implies that limm!0W (m) is not a lower bound on W , so

from assumption 2, C must be �nite and with a slight abuse of notation, we

can take A (�) = C and m (c;; �) = 0 in the preceding reasoning. The case

W less than logarithmic can be treated similarly.

For instance, if group externalities are increasing and linear as in Konishi,

Lebreton and Weber 1997a, then mW 0 (m) = �m for some � > 0 so free
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mobility leads to too much fragmentation. If each community provides a

�xed, excludable public good (called a �government�in Alesina and Spolaore

1997 and Lebreton and Weber 2003) the cost of which is a¢ ne in community

size and shared equally then W (m) = � �
m
� � for some �; � > 0 and

mW 0 (m) = �
m
. From proposition 5, the free mobility equilibria will exhibit

excessive agglomeration.

Observe that the results in subsection 5.2 and 5.3 hold irrespective of the

distribution of preferences fVi : i 2 Ig and the set of available communities

C. Moreover, proposition 4 shows that the alternative exercise of character-

izing distributions of preferences for which free mobility is compatible with

social optimality for a given W would lead to very restrictive conditions

whenever W is not logarithmic. This suggests that in our setup, the wel-

fare consequences of free mobility depend more on the shape of economies of

scale/congestion externalities than on the distribution of preferences.

6 Applications and Extensions

6.1 Local Public Good Economies

In this section, we apply our results to the local public good economies de-

scribed in example 1.

6.1.1 Fixed Public Good

Let us �rst assume that the public good bundle is �xed and uniform across

jurisdictions and �nanced by head taxes (i.e. case (i)). In this case, we can

omit the reference to g and W (m) = H � c(m) where H 2 R and c(m) is
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the per capita cost of providing g to a jurisdiction of mass m. Ideally, the

size of each jurisdiction should trade-o¤ the cost of preferences heterogeneity

and the gains from economies of scale. From proposition 3, free mobility

achieves such a trade-o¤ if c(m) is logarithmic in m, that is if the total cost

of providing g in a community of size m is C (m) = m (� ln (m) + �) for

some �; � 2 R. More generally, since dC
dm

= c + m dc
dm
, W is more (resp.

less) than logarithmic in m if and only if the marginal cost dC
dm
increases less

(resp. more) rapidly than the per capita cost c. So proposition 5 implies the

following:

Corollary 2 If the marginal cost of providing the local public good increases

more (resp. less) rapidly with the jurisdiction size than the per capita cost,

Nash equilibria will be excessively agglomerated (resp. excessive fragmented).

It should be noticed that in this setup, the case in which dC
dm
increases

more rapidly than c is probably the more realistic scenario. Indeed, if

C (m) = F + �m� for some F; �; � 2 R+, then dC
dm
� c = � (�� 1)m��1 � F

m

which is increasing in m. So in this case, independently of the economies of

scale � and the �xed costs F , free mobility will lead to excessive agglomera-

tion. This result provides an interesting counterpart to Alesina and Spolaore

1997, Bolton and Roland 1997 or Lebreton and Weber 2003 who argue that

the possibility of secession can lead to ine¢ ciently fragmented partitions of

society.

6.1.2 Endogenous Provision of Public Goods

Let us now consider the case in which each jurisdiction chooses g and t so as

to maximize the welfare of its residents (i.e. case (iii)). If g� (m) denotes the
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maximizer of H (g) � c(g;m), free mobility leads to an optimal partition of

society if H (g� (m))+c(g� (m) ;m) increases logarithmically in m. Using the

envelope theorem, this condition is satis�ed if and only if m @c
@m
(g� (m) ;m) is

constant in m.

To illustrate the applicability of our results, let us consider the case in

which the cost of provision is multiplicative in g and m, i.e. C (g;m) =

s (m) c (g), and g is expressed in money metric utils:

Ui (g; l) = V (l; �i) + g �
s (m)

m
c (g) :

The welfare of individual i in a community located at l of size m is:

U�i (l;m) = V (l; �i)+
s (m)

m
max
g�0

�
mg

s (m)
� c (g)

�
= V (l; �i)+

s (m)

m
c�
�

m

s (m)

�
;

where c� is the convex conjugate of c (see e.g. Rockafellar 1970). One can

easily check that if c (x) = exp (�x), then c� (y) = y
�
ln
�
y
�

�
� y

�
, so in the

parametric case C (g;m) = �m� exp (�x),

U�i (l) = V (l; �i) + �m
��1
�

1

��m��1 ln

�
1

��m��1

�
� 1

��m��1

�
= V (l; �i) +

1� �
�

ln (m)� 1

�
� ln (��)

�
;

which shows that group externalities are logarithmic. Hence, proposition 3

implies:

Corollary 3 If C (g;m) = �m�c (g) exp (�g) for some �; �; � 2 R, where g

is measured in utils, and each local jurisdiction chooses g so as to maximize

the welfare of its constituents, then independently of the economies of scale

�, there exists a socially optimal Nash equilibrium.

22



6.2 Heterogeneous Group Externalities

In this subsection, we allow preferences to exhibit not only idiosyncratic het-

erogeneity (i.e. heterogeneity in preferences on group characteristics through

the Vi term) but also relational heterogeneity (i.e. heterogeneity in pref-

erences over community membership through the W term). This type of

heterogeneity arises for instance if group externalities are not anonymous,

that is if they depend not only on the number of members but also on their

characteristics (social manners, religious beliefs, wealth...). In the local pub-

lic good economies described in example 1, this is the case if public goods

are �nanced by income taxes and there is income inequalities. Relational

heterogeneity can arise also with anonymous group externalities if individu-

als have di¤erent preferences over community size. In example 1, this is the

case if head taxes are �xed, the level of public good varies with the jurisdic-

tion size (case (ii)) and the willingness to pay for the public goods (i.e. H)

is heterogeneous. Di¤erent individuals would then trade o¤ di¤erently the

satisfaction of their idiosyncratic preferences Vi with the size of the tax base.

For simplicity, we assume that society is composed of a set Ia of individ-

uals of type a and a set Ib of individuals of type b. The welfare of each type

of individual in a community c with a set Ja of individuals of type a and a

set J b of individuals of type b is given by:

Uai = Vi (c) +W
a
�
�a (Ja) ; �b

�
J b
��
;

U bi = Vi (c) +W
a
�
�a (Ja) ; �b

�
J b
��
:

Throughout this subsection, we omit the type superscript for vector nota-

tions. On top of assumption 1 and 2, we assume thatW is twice di¤erentiable
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on ]0; �a (Ia)]�
�
0; �b

�
Ib
��
and limm!(ma;mb)W (m) exists but can be in�nite

when ma = 0 or mb = 0. The set of members of type t 2 fa; bg in community

c is denoted M t (c; �) and its mass mt (c; �) = �t (M t (c; �)). A community

c is inactive if m (c; �) = (0; 0).

6.2.1 Community Size and Composition

De�nition 3 becomes:

De�nition 6 A potential p is a pair of maps from C to R [ f�1g such

that for all but a countable number of communities, p (c) =
�
pa;; p

b
;
�
for some

pa;; p
b
; 2 R [ f�1g.

A strategy pro�le � is consistent with a potential p if for all t 2 fa; bg, for

all c; c0 2 C, for almost all i 2 I t, �i 2 argmaxVi (c) + pt (c) and for all

c =2 A (�), pt (c) = pt; for some pt; 2 R [ f�1g.

One can easily adapt the proof of proposition 1 to show the existence

of a Nash equilibrium. As in the case of anonymous group externalities, a

strategy pro�le � is a Nash equilibrium if and only if � is consistent with the

potential pNE� (c) = W (m (c; �)). By analogy with lemma 2, the potential

that characterizes "-optimality is determined by the migration externalities:

by joining a community c of mass
�
ma;mb

�
, a small mass " of individuals of

type a imposes an externality on the residents of c of type a and b which is

given by:

ma
�
W a

�
ma + ";mb

�
�W a

�
ma;mb

��
' ma@W

a

@ma
";

mb
�
W b
�
ma + ";mb

�
�W b

�
ma;mb

��
' mb@W

b

@ma
";
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Hence, one can easily adapt the proof of lemma 2 to show that � is "-optimal

if and only if � os consistent with the potential

p�� = W (m (c; �)) +

�
ma@W

a

@ma
+mb@W

b

@ma
;ma@W

a

@mb
+mb@W

b

@mb

�
: (11)

The same argument as in proposition 3 and 4 implies the following:

Lemma 4 If the migration externalities
�
Ea; Eb

�
de�ned as:

Ea (m) = ma@W
a

@ma
+mb@W

b

@ma
, Eb (m) = mb@W

b

@mb
+ma@W

a

@mb
,

are constant in m, then for all distribution of preferences, � is a Nash equi-

librium if and only if it is "-optimal.

Reciprocally, if fVi : i 2 Iag and fVi : i 2 Ibg are connected in the sense of de-

�nition 1, and if � is a Nash equilibrium such that Ea (m (c; �)) or Eb (m (c; �))

is not the same for all active communities, then � is not locally optimal.

The condition that Ea and Eb are constant in
�
ma;mb

�
is more restrictive

than the logarithmic condition in the anonymous externality case. The reason

is that when group externalities are not anonymous, social optimality requires

communities to be not only of optimal size but also of optimal composition.

For instance, if each type of individual cares about the mass and the ratio of

members of the same type in the community:

W (m) =

�
fa (m

a) + ga

�
ma

ma +mb

�
; fb
�
mb
�
+ gb

�
mb

ma +mb

��
;
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then

Ea (m) = maf 0a (m
a) + (12)

mb

ma +mb

�
ma

ma +mb
g0a

�
ma

ma +mb

�
� mb

ma +mb
g0b

�
mb

ma +mb

��
;

Eb (m) = mbf 0b
�
mb
�
+

ma

ma +mb

�
� ma

ma +mb
g0a

�
ma

ma +mb

�
+

mb

ma +mb
g0b

�
mb

ma +mb

��
:

Since E (m) must be constant in , (17) implies that fa and fb must be

logarithmic. Since Ea � Eb is constant, we get from (17) that ga and gb

are logarithmic and ga = gb: individuals of each type must have symmetric

preferences for group composition. The following proposition generalizes this

example:

Proposition 6 The migration externalities
�
Ea; Eb

�
de�ned in lemma 4 are

constant in m if and only if there exists �; � 2 R such that for all m 2 R2+
and all r > 0,

W (rm) = (�; �) ln (r) +W (m) ; (13)
@W a

@mb
=

@W b

@ma
: (14)

Proof. Suppose E (m) � (�; �) for some �; � 2 R. Subtracting @Ea

@mb = 0

to @Eb

@ma = 0 we get (14). Substituting in
�
Ea; Eb

�
, we get

E (m) = ma @W

@ma
(m) +mb @W

@mb
(m) . (15)

So for all  > 0,

W (m)


= ma @W

@ma
(m) +mb @W

@mb
(m) =

@W (m)

@
=
(�; �)


:
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Integrating the last equation above with respect to , we get that for all

 > 0,

W (m) = (�; �) ln () +
�
fa (m) ; f b (m)

�
:

Substituting  = 1, we get (13).

Reciprocally, if W satis�es (13), then the right hand-side of (15) is con-

stant. If it satis�es (14) as well, then equality (15) holds and E is constant.

Condition (13) generalizes the logarithmic condition of proposition 3.

Roughly speaking, this condition corresponds to the requirement that groups

are of optimal size. Condition (14) imposes some form of symmetry: in each

community, the bene�t for the members of type a of an additional member of

type b must be equal to the bene�t for the members of type b of an additional

member of type a. Intuitively, this condition corresponds to the additional

requirement that the composition of each group is optimal.

To illustrate what the conditions in proposition 6 mean in terms of group

externalities, consider the following subclass of heterogeneous group exter-

nality:

De�nition 7 A pro�le of group externalities W is additively separable in

group size and composition if there exists functions fa; f b; ga and gb such

that:

W (m) =
�
fa (m

s) + ga (r
a) ; fb (m

s) + gb
�
rb
��
; (16)

where ms = ma +mb, ra = ma

ma+mb and rb = mb

ma+mb
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If W is additively separable, simple calculus yields:

Ea (m) = ms
�
raf 0a (m

s) + rbf 0b (m
s)
�
+ rarbg0a (r

a)�
�
rb
�2
g0b
�
rb
�
; (17)

Eb (m) = ms
�
raf 0a (m

s) + rbf 0b (m
s)
�
+ rarbg0b

�
rb
�
� (ra)2 g0a (ra) :

Since E (m) must be constant in , (17) implies that fa and fb must be

logarithmic. Substituting in (17), this implies in turn that for all r, rg0a (r) =

(1� r) g0b (1� r). This condition is satis�ed for instance if the homophyly

terms are logarithmic and symmetric, i.e. g (r) =
�
� ln (ra) ; � ln

�
rb
��
and

� = �.

6.3 Homophyly and Segregation

In line with proposition 5, one can derive conditions on the migration ex-

ternality functions under which Nash equilibria will be too strati�ed or on

contrary excessively mixed. To do so, we focus on the case in which group

externalities group externalities are additively separable in group size and

composition (see. de�nition 7).

De�nition 8 Under the notations of de�nition 7, group externalities are

more (resp. less) than logarithmically homophilic if rg0a (r) and rg
0
b (r) are

increasing (resp. decreasing) in r.

A simple heuristic reasoning sheds some light on the nature of the ine¢ -

ciency when group externalities are not logarithmically homophylic: if � is a

Nash equilibrium, c1 and c2 are two neighbors communities (in the sense that

some individual of both types are indi¤erent between them) of composition

m1 and m2 such that ra1 > ra2 , then by moving a mass " of individual of
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type a �close to the border� from c1 to c2 and by moving the same mass "

of individual of type b �close to the border�from c2 to c1, using (17), total

welfare changes by:

"
�
�Ea (m1) + E

b (m1)
�
+ "

�
Ea (m2)� Eb (m2)

�
= "

h
�
�
(ra1)

2 g0a (r
a
1)� ra1rb1g0b

�
rb1
��
+
�
rb1
�2
g0b
�
rb1
�
� ra1rb1g0a (ra1)

i
�"
h
�
�
(ra2)

2 g0a (r
a
2)� ra2rb2g0b

�
rb2
��
+
�
rb2
�2
g0b
�
rb2
�
� ra2rb2g0a (ra2)

i
= "

�
�g0a (ra1) ra1 + rb1g0b

�
rb1
��
� "

�
�ra2g0a (ra2) + rb2g0b

�
rb2
��

= " [�g0a (ra1) ra1 + ra2g0a (ra2)]� "
�
�rb1g0b

�
rb1
�
+ rb2g

0
b

�
rb2
��

The expression above is negative whenever rg0a (r) and rg
0
b (r) are increasing:

migrating to a community with a smaller proportion of individual of one�s

type generates a negative aggregate externality on society. This suggests that

when homophyly is more than logarithmic, too many individuals of type a

will join communities with a minority of type b and vice versa so the free

mobility equilibrium will be insu¢ ciently segregated. By the same token,

when homophyly is less than logarithmic, free mobility will lead to excessive

segregation. To make this statement precise, we need to de�ne formally the

notion of segregation

De�nition 9 Let � and �0 be two strategies such that for all c 2 C,�
ma +mb

�
(c; �) =

�
ma +mb

�
(c; �0) :

We say that �0 is more segregated than � if �0 can be obtained from � by a

sequence of migrations in which individuals of type a migrate to communities

with a greater share of type a while individuals of type b migrate to commu-

nities with a greater share of type b.
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A strategy pro�le � exhibits excessive (resp. insu¢ cient) segregation if there

exists " > 0 such that for all �0, if d (�; �0) � " and � is more (resp. less)

segregated than �0, then S (�) � S (�0).

In words, a partition of society is excessively segregated if it is not possible

to increase welfare by relocating individuals so as to form more segregated

groups. Observe that the notion of excessive segregation, as the notion of

excessive fragmentation, is a local one. In particular, a local optimum is

neither excessively nor insu¢ ciently strati�ed.

Proposition 7 If group externalities are more (resp. less) than logarith-

mically homophilic, then all Nash equilibria � such that A (�) is �nite are

insu¢ ciently (resp. excessively) segregated.

6.4 Applications

6.4.1 Preferences Heterogeneity for Local Public Goods

To illustrate the implications of condition (14), consider the local public good

economy of example 1 in which members pay type-dependent community fees�
�a; � b

�
and communities use their revenue from membership fees to provide

community services (i.e. case (ii)). If the local public goods are non rival,

group externalities are then given by

W (m) =
�
�a; �b

�
H
�
�ama + � bmb

�
�
�
�a; � b

�
; (18)

for some function H. The type � parametrizes the willingness to pay for the

community goods. In this setup, the symmetry condition (14) boils down

to �a=�a = �b=� b, i.e. that each individual is taxed in proportion to her
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willingness to pay for local public goods. This condition is reminiscent of the

Lindhal condition for the revelation of preferences and the provision of public

good absent any mobility issue. Hence, although the optimal allocation of

individuals between jurisdictions and the optimal provision of public goods

within a given jurisdiction are two independent economic problems, it is

interesting to notice that they lead to similar conclusions.

6.4.2 Mobility and redistribution

The literature on federalism has long argued that free mobility imposes a

constraint on local redistribution (see e.g. Brown and Oates 1987, Wildasin

1991, Epple and Romer 1991 or Konishi, Lebreton and Weber 1998). In

this subsection, we explore this issue and consider the case in which di¤erent

types have di¤erent incomes and are taxed for public good �nancing and re-

distribution purposes. The examples we derive below are admittedly stylized

and are meant to illustrate the applicability of our results.

Consider again the last example in which group preferences are given by

(18). The preceding reasoning shows that unless income is perfectly and

positively correlated with the willingness to pay for the local public good,

redistribution will lead to ine¢ cient location decisions. To qualify the distor-

tion in community choices, consider for simplicity the scenario in which rich

and poor have the same willingness to pay for the public good �a = �b = 1,

and H = ln, so that community size is not an issue. Then it is straightfor-

ward to see that proposition 3 holds in this case if we change the utilitarian

social welfare function S by weighting each individual by its tax contribution:

S� (�) = �
a

Z
i2Ia
Uai (�i;M (�i; �)) d� (i) + �

b

Z
i2Ib
U bi (�i;M (�i; �)) d� (i) :

31



Hence, free mobility equilibria will be the "-optima of a regressive social wel-

fare ordering in which richer individuals are assigned a greater social weight.

Individuals will tend to agglomerate in the communities with richer mem-

bers while the poor communities will attract fewer members and enjoy less

economies of scale. Moreover, the more redistributive the tax scheme, i.e.

the greater �a=� b and the more regressive S� , and the more �regressive�will

be the allocations of individuals into communities.

Suppose now that the tax progressivity � = �a=� b is �xed and the tax

rate t is endogenized in each community. For simplicity, suppose that t is

chosen so as to maximize the utilitarian welfare in each community:

t (m) = argmax

24 ma
�
ln
�
�tma + tmb

�
� �t

�
+mb

�
ln
�
�tma + tmb

�
� t
�
35 = ma +mb

�ma +mb
:

The e¤ect of mobility can be seen by looking at the migration externalities

as de�ned in proposition 4. Simple calculus gives:

�
Ea; Eb

�
(m) = (1; 1) + (� � 1)

 
�

1 + �m
a

mb

;� 1

1 + �m
b

ma

!
; (19)

The migration externalities E depends only on the ratio of rich and poor

ma=mb in a given community. In particular, migration externalities are in-

dependent of community size so there will not be any distortion between

communities with similar ratio of poor and rich. However, E is constant at

some equilibrium only if ma=mb is constant across communities. One can see

from (19) that whenever � > 1, Ea and Eb are both increasing in ma=mb:

when the tax rate is progressive, joining poorer communities generates posi-

tive externalities and is thus under-provided in equilibrium. From (19), the
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distortion will be greater the greater the progressivity � of the tax and the

more variations there are in ma=mb across communities.

6.5 Endogenous Policy Making

As argued in section 3, the Nash equilibrium requirement implicitly assumes

that the characteristics c of each community are �xed while membership is

endogenously determined in equilibrium. For instance, in the case of ex-

ample 1, we assumed that the location l of each community was exogenous.

Alternatively, we could assume that both jurisdiction location/characteristics

and membership are jointly determined in equilibrium. In other words, in-

dividuals vote with their feet and their ballot (see e.g. Konishi 1996). In

this subsection, we will refer to the characteristic subject to a vote as the

location.

In this scenario, the population is partitioned into (measurable) groups

(Jp)p2P and each group Jp chooses the location l of its jurisdiction according

to an exogenously speci�ed location function � : 2I ! L (e.g. Condorcet win-

ner or social optimum). We can de�ne a partition equilibrium as a partition

(Jp)p2P such that for all p 2 P , all individuals in Jp are members of a commu-

nity located at l = � (Jp) and no individual wants to join a di¤erent group. In

our atomistic setup, it is reasonable to assume that no single individual has

an e¤ect on the location function � (J) if � (J) > 0. If we assume furthermore

that � respects unanimity, i.e. � (J) 2 \j2JC� (j) whenever \j2JC� (j) 6= ;,

then one can easily see that for all partition equilibrium (Jp)p2P , one can

construct a strategy pro�le � as follows: i 2 Jp =) �i = � (Jp), and this

strategy pro�le is a Nash equilibrium. More precisely, partition equilibria are
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Nash equilibria which are consistent with the location function �.

However, our welfare analysis cannot be simply transposed to this equi-

librium concept because the notion of local optimality has to be rede�ned

to integrate the location function �. Adapting the welfare analysis would

warrant a paper in itself. Nevertheless, we mention one important case in

which our analysis can be easily transposed: suppose that � (J) is the so-

cially optimal location for every J � I. Then an optimal strategy pro�le in

the previous sense is consistent with � by construction, and as such, it is

an optimal partition. If furthermore W is logarithmic, then there exists a

socially optimal Nash equilibrium, and since it is consistent with �, it is a

partition equilibrium:

Proposition 8 If the location function � selects a socially optimal location

and if W is logarithmic, under the condition of corollary 1, there exists a

socially optimal partition equilibrium. Conversely, if the distribution of pref-

erences is connected in the sense of de�nition 1, and if (Jp)p2P is a partition

equilibrium such that � (Jp)W 0 (� (Jp)) is not constant across groups, then

(Jp)p2P is not socially optimal.

Proof. If (Jp)p2P is a partition equilibrium, then as argued above, it

is equivalent to a Nash equilibrium �. If � (Jp)W 0 (� (Jp)) is not constant

across groups, then m (c; �)W 0 (m (c; �)) is not constant across communities

and from proposition 4, it is not socially optimal.

Notice that the case of a socially optimal location functions encompass

the voting model in which C = [0; 1], � selects the condorcet winner of the

group, the population is uniformly distributed on [0; 1] and Vi (l) = V (jl � ij)
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for some concave function V with a peak at 0 (Alesina and Spolaore 1997,

Jehiel and Schotchmer 2001).

7 Concluding Remarks

This paper builds a model of group formation in which individuals trade

o¤ joining a community which corresponds to their idiosyncratic preferences

with the bene�ts from being in a community of the right size. We show

that if group externalities are anonymous and if individual vote with their

feet but take the characteristics of the community they join as given, then

the social optimality of the equilibria depends on the shape of group ex-

ternalities. Whether the latter increase faster or slower than logarithmically

determines whether free mobility leads to excessive fragmentation or agglom-

eration. These results hold for any distribution of preferences and any set of

available communities. Our results can be explained by a simple Pigouvian

argument which compares the emigration and the immigration externalities

an individual imposes on society.

The migration externality on which our analysis is based is essentially an

individual concept which has no equivalent for group behavior. An interesting

direction for further research would be to analyze how the shape of economies

of scale a¤ect the set of cooperative equilibria in group formation games since

the existing game theoretic literature has explored a somewhat orthogonal

direction by focusing on the set of available communities and the distribution

of preferences.10

10An intermediate preferences condition on Vi in Greenberg and Weber 1986 and De-
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As shown in section 6.5, our welfare analysis cannot be readily trans-

posed to the case in which citizens vote on the characteristics/location of

their community once membership is determined. Indeed, the nature of mi-

gration externalities is radically di¤erent in this case: by moving to a di¤erent

community, an individual a¤ects not only the size of the community but also

their characteristics/location, which has an impact on all other members.

The latter e¤ect is likely to depend both on the location function � and on

the distribution of preferences within the community.

8 Appendix

We �rst prove remark 1 and 2. From de�nition 3, if there exists c 2 C (p; Vi)

such that c =2 A (�) for a positive mass of individuals, then p; > �1. From

assumption 2, for all such individuals, c 2 C� (i). Hence, if C (p; Vi) is not

single-valued, at least one of the following two equalities must hold:

Vi (c1) + p (c1) = Vi (c2) + p (c2) ;

Vi (c1) + p (c1) = maxVi + p;;

for some c1; c2 2 A (�) with c1 6= c2. From assumption 1, for a given c1

and c2, the set of individuals for which either of the two equalities above is

satis�ed is of measure 0. Since A (�) is countable, C (p; Vi) is single valued

for almost all i, which proves remark 1.

To prove remark 2, suppose � is consistent with p and p0. For all V 2

RC ; � 2 R and " > 0, we denoteE (V; �; ") = fi 2 B (V; ") : p0 (�i)� p (�i) = �g.

mange 1994 and the unidimensionality of C in Greenberg and Weber 1993 and Haimanko,

Lebreton and Weber 2004.
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From de�nition 3, p can take only a countable number of values, so for

almost all i 2 B (V; "), there exists � 2 R such that i 2 E (V; �; ") and

� (E (V; �; ")) > 0. Let V 2 fVi : i 2 Ig. Since � (B (V; ")) > 0 for all

" > 0, from what precedes, for all " > 0 there exists �"; �
0
" such that

� (E (V; �"; ")) > 0 and � (E (V; �0"; ")) > 0 so for almost all i 2 E (V; �"; ")

and almost all j 2 E (V; �0"; ") ;

Vj (�i) + p (�i) + " � Vi (�i) + p (�i) � Vi (�j) + p (�j) � Vj (�j) + p (�j)� ";

Vj (�j) + p
0 (�j) � Vj (�i) + p

0 (�i) ;

which implies

p (�i)� p0 (�i) � p (�j)� p0 (�j)� 2":

A symmetric argument gives

p (�i)� p0 (�i) � p (�j)� p0 (�j) + 2";

which shows that lim"!0 j�" � �0"j = 0. Moreover, since Vi is bounded over

I � C and � is consistent with p and p0, �" is bounded as " ! 0 so there

exists a sequence "n ! 0 such that �"n converges.

Let � : RC � R be de�ned as � 2 � (V ) if there exists a sequence "n ! 0

and �n ! � such that � (E (V; �n; "n)) > 0. From what precedes, for all

V 2 fVi : i 2 Ig, � (V ) is single-valued. By construction, it is continuous

for the topology of uniform convergence on fVi : i 2 Ig. To conclude the

proof, let � : [0; 1] ! fVi : i 2 Ig be a continuous path. Then � � � de�nes

a continuous function. Since � (V ) can take at most a countable number of

values, � � � must be constant.
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8.1 Proof of lemma 1

Since � (I) is �nite, A (�) is countable so A (�) = fcn : 1 � n < Ng for some

N 2 N[f+1g. For all i, we can assimilate Vi to a vector
�
Vi (c;) ; (Vi (cn))1�n<N

�
with the convention that the �rst coordinate is �1 if �i 2 A (�) and Vi (�i)

otherwise. Let �(fc;g [ A (�)) be the set of probabilities over fc;g [A (�).

Likewise, each strategy �i can be assimilated as a degenerate element of

�(fc;g [ A (�)) with the convention that the probability of c;, denoted

�i (c;), is 1 if �i 2 C� (i) n A (�) and the probability of cn, denoted �i (cn),

is 1 if �i = cn. If we allow each �i to be any element of �(fc;g [ A (�))

(i.e. possibly non degenerate) instead, the relaxed maximization program

becomes

max
�2(�(fc;g[A(�)))I :

8n:1�n<N;
R
i2I �i(cn)d�(i)=m(cn;�

p)

Z
i2I

0@ X
c2fc;g[A(�)

�i (c)Vi (c)

1A d� (i) +(20)
X

1�n<N
m (cn; �

p)W (m (cn; �
p)) +

"
� (I)�

X
1�n<N

m (cn; �
p)

#
lim
m!0

W;(21)

which is a a standard linear program since the term in (21) is constant.

By linearity, the solution set of the relaxed program is a convex subset of

(� (fc;g [ A (�)))I whose extreme points (see Rockafellar 1970) � are such

that for almost all i, �i is a degenerate probability. These points are solutions

to the original problem. If limm!0W (m) is a lower bound of W , then under

our notation, �i = c; implies �i 2 C� (i). In this case, if the solution is

not unique, it must be that for a positive mass of individuals and for some

n;m, Vi (cn) � Vi (cm) or Vi (c;) � Vi (cn) is the same, which is impossible

by assumption 1. If limm!0W (m) is not a lower bound of W , then from

assumption 2, jCj is �nite and the preceding argument hold since c; can
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represent only a �nite number of communities.

Let � be a strategy consistent with a potential p. The scalar p (cn) is

the multiplier of the linear constraint
R
i2I (en:�i) d� (i) = m (cn; �

p) and p;

is the multiplier for the linear constraint
R
i2I (e;:�i) d� (i) = m

�
c; ; �

p
�
. The

complementary slackness are satis�ed by construction, and since � is con-

sistent with p, each �i maximizes the Lagrangian within �(fc;g [ A (�)).

Since the problem is convex, a solution of the Kuhn and Tucker conditions

is a maximum (see e.g. theorem 1 in chapter 8 of Luenberger 1969).

8.2 Proof of lemma 2

Let i 2 I and suppose that �i violates the de�nition of "-optimality at �.

We want to show that for almost all such i, �i =2 C (p��; Vi). From remark 1,

we can assume that C (p��; Vi) is single-valued. Then there exists "n ! 0 and

c 2 C such that S (c; ��i) > S (�) under �
"n
i . Suppose �rst that c 2 A (�)

and �i 2 A (�), then implies

"nVi (c) + (m (c; �) + "n)W (m (c; �) + "n) +m (�i; �)W (m (�i; �))

> "nVi (�i) +m (c; �)W (m (c; �)) + (m (�i; �) + "n)W (m (�i; �) + "n) :

which can be rewritten as

Vi (c) +m (c; �)
W (m (c; �) + "n)�W (m (c; �))

"n
+W (m (c; �) + "n) >(22)

Vi (�i) +m (�i; �)
W (m (�i; �) + "n)�W (m (�i; �))

"n
+W (m (�i; �) + "n) :

Taking the limit, by de�nition of p�� we get

Vi (c) + p
�
� (c) � Vi (�i) + p�� (�i) : (23)
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From (22), c 6= �i, and since C (p��; Vi) is single-valued, (23) implies that

�i =2 C (p��; Vi).

If c =2 A (�) or �i =2 A (�) and limm!0W (m) is �nite, one can easily

check that the reasoning above holds unchanged. If limm!0W (m) = �1

and c =2 A (�), then �i =2 A (�). If �i =2 A (�), then p�� (�i) = �1 so

�i =2 C (p��; Vi). Finally, if limm!0W (m) = +1, then for all c0 =2 A (�),

p�� (c
0) = +1. So from assumption 2, for � to be consistent with p��, it must

be that A (�) = C.

Reciprocally, let i 2 I be such that there exists � > 0 such that for all

c 2 C and all " 2 ]0; �[, under the measure �"i , S (�) � S (c; ��i). We want

to show that for all c 2 C,

Vi (�i) + p
�
� (�i) � Vi (c) + p�� (c) : (24)

If c 2 A (�) and �i 2 A (�), then by assumption, for all " 2 ]0; �[:

"Vi (c) + (m (c; �) + ")W (m (c; �) + ") +m (�i; �)W (m (�i; �)) �

"Vi (�i) +m (c; �)W (m (c; �)) + (m (�i; �) + ")W (m (�i; �) + ") ;

which can be rewritten as

Vi (c) +m (c; �)
W (m (c; �) + ")�W (m (c; �))

"
+W (m (c; �) + ") �(25)

Vi (�i) +m (�i; �)
W (m (�i; �) + ")�W (m (�i; �))

"
+W (m (�i; �) + ") :

By letting "! 0, we get (24).

If c =2 A (�) or �i =2 A (�) and limm!0W (m) is �nite, one can easily

check that the reasoning above holds unchanged. If limm!0W (m) = �1

and �i =2 A (�), the left hand-side of (25) goes to �1 as " ! 0 so (25) is
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violated as "! 0 for any c 2 A (�). Therefore, �i 2 A (�) and (24) trivially

holds for all c =2 A (�). Finally if limm!0W (m) = +1, then "-optimality

together with assumption 2 implies that A (�) = C.

8.3 Proof of lemma 3

Let � be a local optimum. If � is not an "-optimum, there must be a set

J � I such that � (J) > 0 and for all i 2 J , �i violates "-optimality at �.

From lemma 2, this means that for all i 2 J; there exists ci 2 C such that

Vi (ci) + p
�
� (ci) > Vi (�i) + p

�
� (�i) : (26)

Necessarily, there exists Jo � J such that � (Jo) > 0 and

(i) either 8i 2 Jo; �i 2 A (�) or 8i 2 Jo; �i =2 A (�) ,

(ii) either 8i 2 Jo; ci 2 A (�) or 8i 2 Jo; ci =2 A (�) .

Moreover, since A (�) is countable, we can assume that if �i 2 A (�) (resp.

ci 2 A (�)), for all i 2 Jo, �i = �o (resp. ci = co) for some �xed �o 2 A (�)

(resp. co 2 A (�)).

Suppose �rst that for all i 2 Jo, �i = �o and ci = co for some �o; co 2

A (�). Let J" � Jo be such that � (J") = ". Since � is a local optimum, if all

individuals in J" migrate from �o to co, social welfare must weakly decrease,

i.e. Z
i2J"

Vi (co) d� (i) + (m (co; �) + ")W (m (co; �) + ")

+ (m (�o; �)� ")W (m (�o; �)� ")

�
Z
i2J"

Vi (�o) d� (i) +m (co; �)W (m (co; �)) +m (�o; �)W (m (�o; �)) ;
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which can be rewritten asZ
i2J"

0@ Vi (co) +W (m (co; �) + ")

+m (co; �)
h
W (m(co;�)+")�W (m(co;�))

"

i
1A d� (i)

�
Z
i2J"

0@ Vi (�o) +W (m (�o; �)� ")

+m (�o; �)
h
W (m(�o;�))�W (m(�o;�)�")

"

i
1A d� (i) ;

and �nallyZ
i2J"

[Vi (�o) + p
�
� (�o)� Vi (co)� p�� (co)] d� (i) � f (") ; (27)

where

f (") = [W (m (co; �) + ")�W (m (co; �))� "W 0 (m (co; �))]

� [W (m (�o; �) + ")�W (m (�o; �))� "W 0 (m (�o; �))] ;

and since W is di¤erentiable, f (") = o (").11 Observe that the set Js of

individuals in Jo such that (26) is satis�ed with some slack s is of positive

measure for some s > 0. Hence, for " small enough one can choose J" � Js,

so the integrand in (27) is bounded above by �s for all i 2 J". From what

precedes, (27) is violated as "! 0, a contradiction.12

Suppose now that for all i 2 Jo, �i =2 A (�). Necessarily, jCj is not �nite

so from assumption 2, limm!0W (m) < +1. Local optimality implies that

limm!0W (m) > �1 (otherwise S (�) = �1) and for almost all i 2 I such

that �i is inactive, �i 2 C� (i). Observe then that there is no ci =2 A (�)
11The notation f (") = o (") means that f(")" ! 0 as "! 0.
12This comes from the fact that the set Js of individuals in Jo such that (26) is satis�ed

with some slack s is of positive measure for some s > 0. For " > 0, one can choose J" as

a subset of Js.
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which satis�es (26). Thus for all i 2 Jo, ci = co for some co 2 A (�). Let

J" � Jo be such that � (J") = ". Since � is a local optimum, if all individuals

i in J" migrate from their respective community �i to co, total welfare must

decrease, i.e. Z
i2J"

Vi (co) d� (i) + (m (co; �) + ")W (m (co; �) + ")

�
Z
i2J"

Vi (�i) d� (i) + "W (0) +m (co; �)W (m (co; �)) ;

which can be rewritten asZ
i2J"

0@ Vi (co) +W (m (co; �) + ")

+m (co; �)
W (m(co;�)+")�W (m(co;�))

"

1A d� (i)
�

Z
i2J"

(Vi (�i) +W (0)) d� (i) ;

and �nallyZ
i2J"

(Vi (�i) +W (0)� Vi (co)� p�� (co)) d� (i) � f (") ; (28)

where as explained earlier, since W is di¤erentiable, f (") = o ("). For the

same reason as in the �rst case, for " small enough one can choose J" such

that the integrand in (28) is bounded above by some negative constant for

all i 2 J", a contradiction.

Finally, if for all i 2 Jo, ci =2 A (�) and �i = �o for some �o 2 A (�), (26)

implies that limm!0W (m) > �1. If limm!0W (m) = +1, local optimality

and assumption 2 implies that A (�) = C, a contradiction. If limm!0W (m)

is �nite, the same reasoning as before shows that local optimality impliesZ
i2J"

(Vi (�o) + p
�
� (�o)� Vi (ci)�W (0)) d� (i) � f (") ; (29)
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for some f (") = o (") and for some J" such that � (J") = " and for all

i 2 J", the integrand of (29) is bounded above by some negative constant, a

contradiction.

Reciprocally, let � be "-optimal and let �0 2 A (�)I . For all c; c0 2 A (�)[

A (�0), if we denote J (c; c0) the set of individuals i such that �i = c and

�0i = c
0, J (c; c;) the set of individuals such that �i = c and �0i =2 A (�)[A (�0),

J (c;; c) the set of individuals such that �i =2 A (�) [ A (�0) and �0i = c, we

have13

m (c; �0)�m (c; �) = � (J (c;; c))� � (J (c; c;)) (30)

+
X

c02A(�0);c0 6=c

(� (J (c0; c))� � (J (c; c0))) ;

m (c; �0) = � (J (c; c)) + � (J (c;; c)) +
X

c02A(�0);c0 6=c

� (J (c0; c)) :(31)

In what follows, we use the notational convention mW (m) = 0 if m = 0

13Notice that we can ignore the individuals who are in active communities both under �

and under �0 because "-optimality implies that �i 2 C� (i) and since we want to majorate

S (�0)� S (�), we can assume w.l.o.g. that �0i 2 C� (i).
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even if limm!0W (m) = �1.14 We have

S (�0)� S (�) (32)

=
X

c;c02A(�)[A(�0)

Z
i2J(c;c0)

[Vi (c
0) +W (m (c0; �0))� Vi (c)�W (m (c; �))] d� (i)

+
X

c2A(�)[A(�0)

Z
i2J(c;c;)

h
Vi (�

0
i) + lim

m!0
W (m)� Vi (c)�W (m (c; �))

i
d� (i)

+
X

c02A(�)[A(�0)

Z
i2J(c;;c0)

h
Vi (c

0) +W (m (c0; �0))� Vi (�i)� lim
m!0

W (m)
i
d� (i)

For all c0 2 A (�)[A (�0), the summand of the last term of the right hand-side

of (32) can be rewritten ass:Z
i2J(c;;c0)

h
Vi (c

0) +W (m (c0; �0))� Vi (�i)� lim
m!0

W (m)
i
d� (i) (33)

=

Z
i2J(c;;c0)

h
Vi (c

0) +W (m (c0; �))� Vi (�i)� lim
m!0

W (m)
i
d� (i)

+� (J (c;; c
0)) [W (m (c0; �0))�W (m (c0; �))]

Using (30), the summand in (32) for c = c0 can be rewritten as:Z
i2J(c;c)

[W (m (c; �0))�W (m (c; �))] d� (i) (34)

= � (J (c; c)) [W (m (c; �0))�W (m (c; �))]

m (c; �)

0@ � (J (c;; c))� � (J (c; c;))+P
c02A(�0);c0 6=c � (J (c

0; c))� � (J (c; c0))

1AW 0 (m (c; �))

�m (c; �) [m (c; �0)�m (c; �)]W 0 (m (c; �)) :

14Notice that if limm!0W (m) = �1, "-optimality (together with assumption 2 in the

+1 case) implies that all individuals are in active communities. Since we want to majorate

S (�0)�S (�), we can ignore deviations to empty groups so in what follows, limm!0W (m)

is �nite.

45



For c 6= c0, the summand in (32) can be rewritten as follows,Z
i2J(c;c0)

[Vi (c
0) +W (m (c0; �0))� Vi (c)�W (m (c; �))] d� (i) (35)

=

Z
i2J(c;c0)

[Vi (c
0) +W (m (c0; �))� Vi (c)�W (m (c; �))] d� (i)

+� (J (c; c0)) [W (m (c0; �0))�W (m (c0; �))] :

Substituting (33), (34) and (35) in (32), and regrouping the terms in J (c; c;),

J (c;; c
0) and J (c; c0), S (�0)� S (�) can be rewritten as

X
c2A(�)[A(�0)

Z
i2J(c;c;)

24 Vi (�
0
i) + limm!0W (m)� Vi (c)

�W (m (c; �))�m (c; �)W 0 (m (c; �))

35 d� (i) (36)

+
X

c02A(�)[A(�0)

Z
i2J(c;;c0)

24 Vi (c0) +W (m (c0; �)) +m (c; �)W 0 (m (c; �))

�Vi (�i)� limm!0W (m)

35 d� (i)
+

X
c;c02A(�)[A(�0)

c0 6=c

Z
i2 J(c;c0)

24 Vi (c0) +W (m (c0; �)) +m (c0; �)W 0 (m (c0; �))

�Vi (c)�W (m (c; �))�m (c; �)W 0 (m (c; �))

35 d� (i)
+

X
c02A(�)[A(�0)

� (J (c;; c
0)) [W (m (c0; �0))�W (m (c0; �))]

X
c;c02A(�)[A(�0);c0 6=c

� (J (c; c0)) (W (m (c0; �0))�W (m (c0; �)))

+
X

c2A(�)[A(�0)

� (J (c; c)) [W (m (c; �0))�W (m (c; �))]

�
X

c2A(�)[A(�0)

[m (c; �0)�m (c; �)]m (c; �)W 0 (m (c; �)) :

The integrands in the �rst three sums above is equal to Vi (�i) + p�� (�i) �

Vi (�
0
i)� p�� (�0i), which is non positive by "-optimality. Using (31), the other
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four terms simplify as follows:

X
c2A(�)[A(�0)

0@ � (J (c;; c)) + � (J (c; c))

+
P

c02A(�);c0 6=c � (J (c
0; c))

1A (W (m (c; �0))�W (m (c; �)))

�
X

c2A(�)[A(�0)

[m (c; �0)�m (c; �)]m (c; �)W 0 (m (c; �))

=
X

c2A(�)[A(�0)

0@ m (c; �0) (W (m (c; �0))�W (m (c; �)))

� (m (c; �0)�m (c; �))m (c; �)W 0 (m (c; �))

1A
=

X
c2A(�)[A(�0)

� (m (c; �) ;m (c; �0)) ;

where � (m1;m2) = m2 (W (m2)�W (m1))�m1 (m2 �m1)W
0 (m1). Simple

calculus yields that

@�

@m2

= W (m2) +m2W
0 (m2)�W (m1)�m1W

0 (m1) :

Since � (m;m) = 0, this shows that � is non negative for all m1;m2 > 0

when W (m)+mW 0 (m) is weakly decreasing, i.e. when mW (m) is concave.

In this case, from what precedes, S (�) � S (�0).

If W (x) + xW 0 (x) is K-Lipschitz continuous for some K > 0, then

j� (x; y)j � K
2
jy � xj2 so������

X
c2A(�)

� (m (c; �0) ;m (c; �))

������ � K

2

X
c2A(�)

jm (c; �0)�m (c; �)j2 � K

2
(d (�0; �))

2
:

The following example shows that the concavity of mW (m) is necessary for

"-optimality to imply locally optimality.

Example 2 Suppose C = [�1; 1], preferences are given by

Ui (c; J) = � jc� �ij �W (� (J)) ;
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and individual types �i are distributed uniformly on [0; 1] with density �.

Then consider the strategy pro�le �n such that A (�) = fcnk : k = 1; ::; ng

where cnk =
k�1=2
n

and M (cnk ; �
n) = fi 2 I : �i 2 [(k � 1) =n; k=n[g. One

can easily check for all n, �n is "-optimal.15 By moving the individuals in

[1=n� "; 1=n] from community c1k to c
2
k, total welfare changes by

��"
2

2
+

24 �
�
n
+�"

�
W
�
�
n
+�"

�
+�

�
n
��"

�
W
�
�
n
��"

�
� 2�

n
W
�
�
n

�
35

= ��"
2

2
+ (�")2

@2 [mW (m)]

@m2

�
m =

�

n

�
+ o

�
"2
�

Hence, if @
2[mW (m)]
@m2 > 0 for some mo, by letting n ! 1 and � = nmo, the

above quantity will be positive for " su¢ ciently small.

8.4 Proof of Proposition 1

Suppose �rst that limm!0W (m) is �nite and is a lower bound of W . We

denote c�1; ::; c
�
n the elements of C

�. Let c1; ::; cl 2 CnC�. Consider a partition

of society in which for k = 1::l, community ck has a mass mk of members, for

p = 1::n, community c�p has a massm
�
p of members and all other communities

are not active. Facing such a partition, let Ik be the set of individuals i who

weakly prefer community ck to all other communities described above and

to any c 2 C� (i) n A (�). Let I�p be the set of individuals i who weakly
15Consider an individual in a community c whose type is closer to c than to a neighoring

community c0 by a factor d. If this individual, carrying a social weight ", moves to the

neighboring community c0, he will exert an immigration externality on the members of c0

which exactly o¤set the emigration externality he exerts on the members of c. Moreover,

he will not bene�t from this migration whenever " is su¢ ciently small compared to d.

Hence, total welfare will decrease.
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prefer community c�p to all other communities described above and to any

c 2 C� (i) n A (�). Finally, let I� the set of individuals i who weakly prefer

some c 2 C� (i) n A (�) to all others communities described above. Since

limm!0W (m) is a lower bound of W ,

I� [
�
[lk=1Ik

�
[
�
[np=1I�p

�
= I.

From assumption 1, A (�) is countable. Together with assumption 2, this

implies that the set of individuals who belong to more than one of the sets

I�, I1,..,Il,I�1 ,..,I
�
n is of measure 0.

Consider the mapM : [0; � (I)]l� [0; � (I)]n ! [0; � (I)]l� [0; � (I)]n such

that for k = 1; ::; l and p = 1; ::; n,

Ml (m1; ::;mn;m
�
1; ::;m

�
n) = � (Ik) ;

Mp (m1; ::;mn;m
�
1; ::;m

�
n) = �

�
I�p
�
;

where Ik and I�p are de�ned above. From what precedes, M is well de�ned

and a �xed point of M is a Nash equilibrium. From assumption 2 and 1, M

is continuous. Brower�s �xed point theorem concludes the proof.

If limm!0W (m) = �1, then I� is empty and the preceding argument

holds unchanged. If limm!0W (m) is not a lower bound of W , then from

assumption 2, C is �nite and one can prove existence by applying Brower�s

�xed point theorem to the function M from [0; � (I)]jCj to itself as de�ned in

the �rst case.

8.5 Proof of proposition 3

Suppose �rst that C is �nite. From lemma 1, we can restrict attention to

strategies which are consistent with a potential. Let � (p) be consistent with
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a potential p. Let v = supi2I;c2C jVi (c)j, q = minfp (c) : c 2 A (�)g and

r = maxfp (c) : c 2 A (�)g. From assumption 2, v < 1. By de�nition

of q and r, necessarily 0 � r � q � 2v, and one can easily check that

� (p) is consistent with the potential p0 de�ned as follows: if c 2 A (�) ;

p0 (c) = p (c) � q and if c =2 A (�) ; p0 (c) = �2v. Hence, one can restrict

attention to potentials in [�2v; 2v]C . From remark 1, a potential p de�nes a

unique strategy. Moreover, from assumption 1, the size of each community

is a continuous function of the potential, so S (� (p)) is continuous in p. The

extreme value theorem completes the proof.

Let us now assume that C is compact and Vi is continuous in c for all i.

From what precedes, S (c1; ::; cn) = max�2fc1;::;cngI S (�) has a solution. For

any measurable partition P = (P1; ::; Pn) of I, let �P (c1; ::; cn) be the strategy

such that i 2 Pk ) �i = ci. Since Vi (:) is continuous in c and bounded over

I � C, the dominated convergence theorem implies that S
�
�P (c1; ::; cn)

�
is

continuous in (c1; ::; cn). Therefore, S (c1; ::; cn) is upper semi-continuous.

Since C is compact, Sn = maxc1;::;cn2C S (c1; ::; cn) exists. To complete the

proof, it su¢ ces to show that Sn is constant after some threshold.

If it is not the case, then there exists a sequence of strategies (�n)n such

that for all n, �n is optimal among strategies such that jA (�n)j � n, and

the size mn of the smallest community cn under �n goes to 0 as n ! 1.

Since S (�n) is bounded below and limx!0W (x) = �1, the size mn of

the largest community cn under �n is bounded away form 0, say by b > 0.

Since W is continuous on [b; � (I)], it is bounded on [b; � (I)] and since W 0

is bounded below, @[mW (m)]
@m

is bounded below on [b; � (I)] by some K 2 R.

Let v = supi2I;c2B jVi (c)j. If all individuals in cn migrate to cn, the e¤ect of
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social welfare is

�S = (mn +mn)W (mn +mn)�mnW (mn)

�mnW (mn)�
Z
i2M(cn;�)

Vi (c)� Vi (c)

� mn (K �W (mn)� 2v) ;

which shows that �S > 0 for n su¢ ciently large, which is impossible by

construction of �n.
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