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Abstract

We examine a �rm that can transfer its technological advantage to
a rival in exchange for receiving monetary transfers when its rivals are
heterogeneous. Even though a partial technology transfer can reduce
the joint pro�t and in a duopoly a complete transfer can reduce the
joint pro�t (Katz and Shapiro 1985), under weakly concave demand, a
complete transfer always increases joint pro�t if there are at least three
�rms. We observe that the joint-pro�t-maximizing licensee is neither
too e¢ cient nor too ine¢ cient. Though jointly pro�table transfers
between su¢ ciently ine¢ cient �rms reduce welfare, a transfer from the
most e¢ cient �rm always increases welfare. In the latter half of the
paper, we consider two license auction games by the most e¢ cient �rm
under complete information: a simple auction game in which potential
licensees simply bid for technology transfer, and a menu auction game
by Bernheim and Whinston (1986). With natural re�nements of Nash
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equilibria, we show that the resulting licensees are ordered by their
e¢ ciency: menu auction, simple auction, and joint-pro�t maximizing
licensees in (weakly) descending order.

JEL:D4, L24, L4
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1 Introduction

In this paper we consider the standard model of a �rm licensing its production
technology to its rivals in a product market, but relax the assumption that
the rivals are homogenous. Speci�cally, we examine �rms that compete in
Cournot competition and di¤er in their constant marginal cost of production.
A technology transfer then reduces a licensee�s marginal cost to the level of
the licensor. We assume as in, for example, Jehiel et al (1996) and Jehiel
and Moldovanu (2000) that the licensor licenses only one license and that
the production decisions of the �rms remain independent with any transfer
agreement. That is, we focus on the direct gains from the licensing and
so abstract from any possible bene�ts from collusion, as is standard in the
licensing literature. We will �rst analyze the gains (in joint pro�t) from
licensing for the licensor and a licensee, then social welfare gains. Then, we
consider two auction games to determine the licensee, and investigate how
e¢ cient the resulting licensee is.
We begin, following the seminal work by Katz and Shapiro (1985), by ana-

lyzing whether such a transfer is always jointly pro�table. Katz and Shapiro
(1985) have shown that licensing could reduce joint pro�t in a duopoly if
the licensor has a near-monopoly position because then the transfer would
reduce the licensor�s near monopoly pro�t and so joint pro�t. For a small
technology transfer this result can generalize to a non-duopoly market. De-
spite this we are able to show that a complete technology transfer (so that
the licensee has the same cost as the innovator) is always pro�table so long
as the demand curve is weakly concave and there are at least three �rms in
the market (Theorem 1). That is, as long as the transfer is complete (and
we have an interior condition), a transfer is always pro�table no matter its
absolute size. The licensor does not have to be the most e¢ cient �rm for
this result to hold.
We then focus on which partner would maximize joint pro�t. We �nd

that for weakly concave demand, it is neither a very ine¢ cient nor a very
e¢ cient rival that maximizes joint pro�t (Observation 1). Intuitively, with
a complete transfer the less e¢ cient the licensee, the greater is the transfer.
One might at �rst glance expect then that this implies that the least e¢ cient
rival must be the licensee that maximizes joint pro�t. This is not necessarily
true because with very ine¢ cient �rms the decrease in pro�t from being a
little less e¢ cient is small �pro�ts are convex in cost �so the marginal gain
from choosing a slightly less e¢ cient �rm is small. However, the marginal

3



cost to joint pro�ts from choosing a slightly less e¢ cient �rm �the reduction
in the market price as a result of the transfer, which harms both the licensor
and the licensee �is not. So, the licensor chooses a partner who is neither
too e¢ cient nor too ine¢ cient.
Turning to the welfare e¤ects of transfers, Theorem 1 has a corollary given

the known result that making an ine¢ cient �rmmore e¢ cient can reduce wel-
fare (Lahiri and Ono 1988): jointly pro�table transfers are welfare reducing
if both the licensor and licensee are su¢ ciently similar and ine¢ cient. This
is in contrast to Katz and Shapiro (1985) who found that pro�table transfers
are never welfare reducing in a duopoly, hence, the importance of considering
non-duopoly markets. This is also in contrast to Katz and Shapiro (1986)
and Sen and Tauman (2007) who �nd that with homogenous �rms, licensing
always raises welfare and so heterogeneity is also important in evaluating the
welfare implications of licensing. On the other hand, when the most e¢ cient
�rm makes a complete transfer, then social welfare always increases under
general demand (Theorem 2). We are also able to show that this licensor
would choose a more e¢ cient partner than the one that would maximize wel-
fare (Observation 3). The conclusion for a policy maker whose objective is
to maximize social welfare is that e¢ cient �rms should not be discouraged
from licensing their technology and the e¢ cient �rm should be encouraged
to pick less e¢ cient partners than it normally would.
One natural question is to ask which �rm would wins the right to use the

technology and how much would the licensor collected from licensing. We
consider the licensor uses �rst-price auction mechanisms to sell the right to
use technology. In the �rst auction method (a simple auction game), each
potential licensee submit a bid and the winner only pays for the bid. Since
there are many Nash equilibria and some of them are less plausible, we re-
�ne the set of Nash equilibrium by requesting that nonlicensees would not
be worse-o¤ if the licensor happens to choose it: truthful Nash equilibrium
(TNE in simple auction). In this re�ned set of Nash equilibrium, licensing fee
can be pinned down and the licensee would be partner that maximizing the
joint pro�t of licensee, licesnor and any other potential rival. Given complex
negative externalities in technology transfer among various potential licensee,
we also consider menu auction, proposed by Bernheim and Whinston (1986),
where each potential licensee submit a menu that states the contingent pay-
ments for all possible transfers by the licensor. While licensing must occur in
a Nash equilibrium in a simple auction game, it is not true in a menu auction
game. Similar to the simple auction, we re�ne the set of Nash equilibrium by
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truthful Nash equilibrium (TNE in menu auction).1 We show that a simple
auction licensee is at least as e¢ cient as the joint-pro�t-maximizing partner,
and a menu auction licensee is at least as e¢ cient as simple auction licensee
(Theorem 3). Furthermore, if only the menu auction licensee pays in a menu
auction game, then the same licensee also win the license in simple auction
(Proposition 6).
In the next section we introduce the basic modeling assumptions. Section

3 examines the e¤ect the amount of technology transferred has on pro�t while
section 4 examines the e¤ect of the type of partner. Section 5 identi�es which
�rm will get the right to use technology in license auction games. Section 6
contains the welfare analysis and section 7 concludes.

2 The Model

We consider the basic Cournot market structure. There is a commodity
besides a numeraire good, and its inverse demand is a continuously function
P (Q) in [0; �Q] that is twice continuously di¤erentiable with P 0(Q) < 0 for all
Q 2 (0; �Q) and P ( �Q) = 0. There areK �rms in the market with no �xed cost
of production. In the main analysis, we will consider the equilibria in which
all K �rms remain active, i.e., the licensing is not potentially drastic. Later,
we will allow that some existing �rms exit (with or without �xed costs).
Firms di¤er in their constant marginal cost ck, and �rms 1; 2; 3; : : : ; and

K are ordered in such a way that c1 � c2 � ::: � cK . That is, �rms are
indexed as k 2 f1; :::; Kg with k = 1 being the most e¢ cient �rm. With a
little abuse of notation let the set f1; 2; : : : ; Kg be denoted by K as well.
Each �rm k�s production level is denoted by qk. Firm i�s pro�t function

is written as
�i(qi; q�i) = (P (Q)� ci) qi;

where Q =
P

k2K qk. The �rst order condition for pro�t maximization (as-
suming interior solution) is

P 0(Q)qi + P (Q)� ci = 0:
1Truthful Nash equilibria in simple auction and in menu auction appear to be similar

in their de�nitions, but their implications are somewhat di¤erent. In simple auction, TNE
is a rather innocuous re�nement of Nash equilibrium, while in menu auction, TNE has an
implication for communication-based re�nement (Bernheim and Whinston 1986).
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This implies

qi =
(P (Q)� ci)
�P 0(Q) ;

and �rm i�s pro�t is written as

�i(qi; q�i) =
(P (Q)� ci)2

�P 0(Q) :

We assume the strategic substitutability condition throughout
the paper: for all i 2 K:

P 00(Q)qi + P
0(Q) � 0:

Note that the second order condition for pro�t maximization (P 00(Q)qi +
2P 0(Q) � 0) is guaranteed by the strategic substitutability. The strategic
substitutability is weaker than requiring that the inverse demand is weakly
concave P 00(Q) � 0.2 In proving some of our main results, we strengthen
the strategic substitutability by the weak concavity of inverse demand.
The strategic substitutability condition guarantees the uniqueness of equi-

librium of this game. Let C =
P

k2K ck denote the aggregate marginal cost.
With this we can establish a standard result, whose derivation will be useful
for later analysis.

Lemma 1. Under the strategic substitute condition, equilibrium is unique.
Moreover, assuming that all �rms are active (qk > 0), equilibrium total
output level Q is a decreasing function of aggregate marginal cost C.

Proof. Since equilibrium output of �rm k, qk, is expressed only by the
equilibrium total output level Q, if we can show that Q is unique, then we
are done. First, summing up the �rst order conditions for pro�t maximization
over all �rms, we obtain

P 0(Q)Q+KP (Q) = C:

That is, the aggregate equilibrium output is a solution of the above equation.
Di¤erentiating the LHS of the above equation, we obtain

d (LHS)

dQ
= P 00(Q)Q+ (K + 1)P 0(Q)

2That is, the weak concavity of inverse demand implies the second order condition for
pro�t maximization.
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Now, summing the strategic substitutability conditions up over all �rms, we
obtain

P 00(Q)Q+KP 0(Q) � 0:
This implies that the LHS of the aggregated �rst order condition is decreasing
in Q since P 0(Q) < 0. This implies that equilibrium aggregate output Q is
uniquely determined by aggregate marginal cost C, and is decreasing in Q.�

3 Production Technologies and Transfers

Each �rm k has its own technology of producing the commodity (the marginal
cost of production is ci), and it has the property right to its own technology
(e.g., it holds a patent). We focus on a �rm that has a single unit of tech-
nology to transfer and assume that the output decisions remain independent
after any transfer as the independence of production decisions is usually a
condition imposed by competition authorities as well as being the standard
assumption in the literature. Firm i can license its technology with an ex-
clusive usage agreement to another �rm through a licensing agreement. As
standard in the literature (Katz and Shapiro 1986, etc.), the other �rm by
obtaining this technology reduces its marginal cost to that of �rm i. That
is, if �rms i and j have technologies with marginal costs ci and cj, respec-
tively (assume ci < cj without loss of generality), then �rm j can reduce its
marginal cost of production to ci by adopting �rm i�s technology through
licensing or some agreement. Following Katz and Shapiro (1985), we focus
on how technology transfers a¤ect the joint pro�t of �rms i and j.
The �rst question is whether such a transfer is always jointly pro�table.

That is, could such a transfer reduce joint pro�ts? For example, if the licensee
is su¢ ciently ine¢ cient then it is well known (Lahiri and Ono 1988) that
small cost reductions reduce producer surplus (and welfare). Furthermore,
Katz and Shapiro (1985) show that for a duopoly such a transfer could reduce
joint pro�ts. Thus it is possible that joint pro�ts could be harmed by such a
transfer. To give this question context we begin our analysis, by extending
the analysis of Katz and Shapiro (1985) of partial transfers to non-duopoly
markets. Speci�cally assume that �rm i can license some fraction of the cost
di¤erence Tij. That is, �rm j can reduce its marginal cost of production by
Tij 2 (0; cj � ci] by adopting �rm i�s technology.

By the technology transfer �rm j�s marginal cost decreases. This
reduces C (aggregate marginal cost), and there will be negative externalities
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to other �rms through the lower price since K is �xed. The sum of pro�t for
�rms and is

�Jij(Tij) = �i + �j =
(P (Q)� ci)2

�P 0(Q) +
(P (Q)� ci)2

�P 0(Q) :

Recalling that ci < cj, and treating Tij as a continuous variable (the
amount of technology that is transferred from i to j), that is, the cost re-
duction for �rm j can be made continuously, it is easy to see from the proof
of Lemma 1 that the equilibrium aggregate output Q given a transfer Tij is
determined by

P 0(Q(Tij))Q(Tij) +KP
0(Q(Tij)) = C � (Tij):

Totally di¤erentiating this equation, we obtain

dQ

dTij
=

1

�P 00(Q)� (K + 1)P 0
> 0:

Thus, with a little algebra it can be shown that the change in joint pro�t
from a small technology transfer (i.e., evaluated at Tij = 0) is:

d�Jij
dTij

�����
Tij=0

=
1

�P 00(Q)� (K + 1)P 0
[2 f� (P � ci) +K (P � cj)g

+
�
(P � ci)2 + (P � cj)2 + 2 (P � cj) (P 0Q)

	 P 00

(�P 0)2
�
:

Since the sign of the coe¢ cient of the bracket is positive, if the sign of the
contents of the bracket are positive, then we can say that joint pro�t increases
as technology transfer Tij increases. We summarize this as a lemma.

Lemma 2. A small technology transfer from �rm i to �rm j improves their
joint pro�t if and only if the following condition holds:

2 f� (P � ci) +K (P � cj)g+
�
(P � ci)2 + (P � cj)2 + 2 (P � cj) (P 0Q)

	 P 00

(�P 0)2
> 0:

From the above formula, we see that the impact of a small technology
transfer on joint pro�t need not be positive. First, it is a¤ected by the shape
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of demand function, i.e., the sign of P 00. Further, the contents of the �rst and
second braces can also take either sign. Since the contents of the �rst brace
can take either sign, then even if demand is linear (P 00(Q) = 0) the above
condition can be violated: the marginal impact of the technology transfer on
joint pro�t can be negative.

3.1 Complete Technology Transfer and Joint Pro�t

We now return to the question of the pro�tability of a complete tech-
nology transfer. Somewhat surprisingly given that the marginal impact of a
technology transfer can be negative, we can show that under weakly concave
demand (which includes linear demand) a complete technology transfer is
always pro�table as long as there is a third �rm. Due to the fact that a
small transfer may reduce joint pro�t, we cannot simply rely on comparative
statics on technology transfers: we need to utilize an arti�cial economy to
prove the theorem. The proof is involved, and found in the appendix.

Theorem 1. Assume that all �rms produce positive outputs even after the
technology transfer. If demand is weakly concave and K � 3, then for any
two �rms i and j with ci < cj, a complete technology transfer from �rm i to
�rm j is joint pro�t improving.

This result is also surprising given that Katz and Shapiro (1985) obtain
conditions for a complete technology transfer to reduce joint pro�ts. How-
ever, they examine a duopoly while our condition requires that there be at
least three �rms in the market. The existence of at least a third �rm drives
the theorem as part of the gain to the licensee comes from lost pro�ts of
the non-licensor �rm(s). Thus, while the licensor�s pro�ts decrease from the
transfer, the licensee�s gain, which partly comes from the licensor�s and other
rivals� loss, is su¢ cient to o¤set the loss to the licensor. However, since a
partial technology transfer could reduce joint pro�ts, one may wonder how
it can be guaranteed that a complete transfer does not joint pro�ts. To in-
tuitively see the reason, consider what happens when a partial technology
transfer would reduce joint pro�ts if, instead, the licensor increased the li-
censee�s cost (thereby raising joint pro�ts) until the licensee is driven out of
the market. Joint pro�ts have now increased. At this point we note from the
divisionalization literature (Baye, et al 1996) that if the licensee could create
a second, identical division then its pro�ts increase.
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3.2 Goldilocks: the Joint-Pro�t-Maximizing Partner

While in the previous section we considered the e¤ect that the amount of
technology transferred has on joint pro�t given some partner, in this section
we consider which partner would maximize joint pro�t. That is, for �rm i,
which �rm j would create the greatest increase in joint pro�t from a tech-
nology transfer? Note that the licensee by choosing a less e¢ cient partner
leads to a larger technology transfer.
Recall that Q(Tij) denotes the equilibrium aggregate output when tech-

nology is transferred from �rm i to �rm j by Tij 2 [0; cj�ci]. Therefore, Q(0)
and Q(cj � ci) are the equilibrium aggregate outputs before and after �rm i
makes a complete transfer to �rm j. Assuming that i < j < k (ci < cj < ck),
and consider the choice between making a complete technology transfer to j
or k. The increases in the joint pro�ts of the technology giver and recipient
is respectively described by

�Jij(cj�ci)��Jij(0) =
2 (P (Q(cj � ci))� ci)2

�P 0(Q(cj � ci))
�(P (Q(0))� ci)

2

�P 0(Q(0)) �(P (Q(0))� cj)
2

�P 0(Q(0)) ;

and

�Jik(ck�ci)��Jik(0) =
2 (P (Q(ck � ci))� ci)2

�P 0(Q(ck � ci))
�(P (Q(0))� ci)

2

�P 0(Q(0)) �(P (Q(0))� ck)
2

�P 0(Q(0)) :

The increase in total joint pro�t from choosing k instead of j is�
�Jik(ck � ci)� �Jik(0)

�
� (�Jij(cj � ci)� �Jij(0))

=
2 (P (Q(ck � ci))� ci)2

�P 0(Q(ck � ci))
� (P (Q(0))� ck)

2

�P 0(Q(0)) � 2 (P (Q(cj � ci))� ci)
2

�P 0(Q(cj � ci))
+
(P (Q(0))� cj)2

�P 0(Q(0))

=
(2P (Q(0))� (ck + cj)) (ck � cj)

�P 0(Q(0)) + 2

"
(P (Q(ck � ci))� ci)2

�P 0(Q(ck � ci))
� 2 (P (Q(cj � ci))� ci)

2

�P 0(Q(cj � ci))

#

where the �rst bracket represents di¤erence of the gains in the change in cost
of production (direct e¤ect) and second term representing the di¤erence of
losses in the price drop due to the industry as a whole become more e¢ cient
(indirect e¤ect). Keeping cj and ci constant, It is easy to observe that the
�rst term is increasing in ck but the second term is increasing in ck. To see it
clearly, let us for the moment restrict to linear demand case P (Q) = ���Q.
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We have �
�Jik(ck � ci)� �Jik(0)

�
� (�Jij(cj � ci)� �Jij(0))

=
(2 (�+ C)� (ck + cj)(1 +K)) (ck � cj)

� (1 +K)

+
2 [(2 (�+ C) + 2ci � ck � cj � 2ci(1 +K)) (cj � ck)]

� (1 +K)

=
ck � cj
� (1 +K)

[�2 (�+ C)� (ck + cj)(K � 1) + 4ciK)]

=
ck � cj
� (1 +K)

[�2 (�+ C�i;j;k)� (ck + cj)(K + 2) + (4K � 2) ci)]

which is quadratic function in ck where the leading coe¢ cient is negative.
Hence, this implies that if the gain is highest when ck cannot be too big or
too small.
This �goldilocks�condition is intuitive: you cannot make a rival who is

e¢ cient that much more e¢ cient. Thus, there is a bene�t from picking
less e¢ cient rivals as there is a greater increase in pro�t from the transfer.
However, you can pick too ine¢ cient of a rival. The reason is that as you pick
a more ine¢ cient rival the price falls more, harming you as well as the rival.
At the same time, when considering su¢ ciently ine¢ cient �rms, a slightly
more ine¢ cient �rm does not have that much less pro�t (since its output is
approaching zero, i.e., marginal cost is approaching the price) and the gain
from selecting a slightly more ine¢ cient rival approaches zero.

Observation 1. With a complete transfer, the joint-pro�t maximizing part-
ner for a �rm is neither too e¢ cient nor too ine¢ cient relative to the �rm
under weakly concave demand.

A simple example example illustrates this observation. Consider a market
with four �rms with costs c1 = 0, c2 = :1, c3 = :2 and c4 = :3. In this case
the most jointly pro�table partner for the most e¢ cient �rm is to select is
the intermediate cost rival (�rm 3) with marginal cost :2. Interestingly, even
though a small technology transfer to the least e¢ cient rival (�rm 4) would
reduce joint pro�t, a complete transfer increases joint pro�t more than a
transfer to the most e¢ cient �rm (�rm 2).
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4 Welfare E¤ects

We now investigate the e¤ect of technology transfers on social welfare, which
we de�ne as the sum of the �rms�pro�t and consumer surplus. Since tech-
nology transfers reduce production cost, social welfare tends to increase in
the amount of technology transferred. Indeed, Katz and Shapiro (1985) show
that with a duopoly, licensing that increases joint pro�t always increases wel-
fare (and welfare decreasing licensing always decreases joint pro�t). Likewise
Sen and Tauman (2007) �nd licensing to be welfare improving under general
licensing schemes. Here we extend the welfare analysis to when �rms are
heterogeneous.
Despite previous results, pro�table licensing could reduce welfare. This

possibility arises because if a very ine¢ cient �rm obtains a technology trans-
fer that reduces its cost only slightly, then social welfare is reduced because
its resulting increase in production will displace the production of more e¢ -
cient �rms. This result has already been observed by Lahiri and Ono (1988).
The question here is whether this implies that jointly pro�table licensing
can reduce welfare contrary to previous results. By the use of Theorem 1
combined with Lahiri and Ono�s result we are able to state that the previous
results do not generalize to when there are more than two �rms and �rms
are heterogeneous: pro�table licensing can be welfare reducing licensing.
Given this result one may wonder if there are conditions that guarantee

that a technology transfer raises welfare. We then show that if the most
e¢ cient �rm makes a complete technology transfer, then welfare increases.
The policy implications of these results appear straightforward: competition
authorities should be scrutinous of technology transfers (through licensing,
joint venture, or merger) between marginal �rms (in the technological e¢ -
ciency sense) in an industry, especially small transfers. On the other hand,
the most e¢ cient �rm within an industry should not be discouraged from
making a technology transfer to a rival.

4.1 Welfare-reducing pro�table licensing

We begin by presenting Lahiri and Ono�s condition for when an improvement
in the marginal cost of an ine¢ cient �rm reduces social welfare.

Observation 2. (Lahiri and Ono 1988): When �rm j�s marginal cost (cj)
decreases, social welfare decreases if cj is su¢ ciently high, though consumer
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welfare (surplus) increases.

From Lemma 6 there is an immediate corollary to Theorem 1 that
yields a result contrary to previous ones in the literature: there are pro�table
technology transfers that reduce total welfare though bene�ting consumers.

Corollary 1. Suppose that demand is weakly concave and that there are
more than two �rms. Then, if �rm j has su¢ ciently high marginal cost (cj)
and �rm i�s marginal cost is su¢ ciently close to �rm j�s, then welfare de-
creases though consumer welfare (surplus) increases by a pro�table licensing
between i and j.

The previous example (for Observation 1) can be used to illuminate when
this can happen. Recall that in that example there are four �rms with costs
c1 = 0, c2 = :1, c3 = :2 and c4 = :3. In this case, a complete technology
transfers between �rm 3 and 4 is jointly pro�table and welfare reducing. As a
second example consider a market with �ve �rms with costs c1 = 0, c2 = :075,
c3 = :15, c4 = :225 and c5 = :29. In this case, a complete technology transfer
from �rm 3 (or �rm 4) to the least e¢ cient �rm (�rm 5) is jointly pro�table
and welfare reducing.

Though this result is di¤erent to the licensing literature, there are
previous results in the literature that may at �rst glance appear to be sim-
ilar even though they are quite distinct. First, Katz and Shapiro (1985)
have shown that in a duopoly a technology transfer can reduce welfare, but
only when it reduces joint pro�t. Hence, such transfers would never actu-
ally occur. In contrast, here there can be technology transfers that reduce
welfare, but increase joint pro�t. Second, Faulí-Oller and Sandonís (2002)
have shown that in a duopoly that pro�table licensing can reduce welfare,
but this requires the use of a royalty (raising the recipient�s marginal cost)
and only occurs in price competition. As they note, �the royalty works as a
collusive device�and so reduces welfare. More generally, licensing contracts
can reduce welfare through their collusive e¤ects (Shapiro 1985 and others),
which do not exist here.

4.2 Welfare-improving pro�table licensing

Since technology transfers between ine¢ cient �rms can reduce welfare, the
next question is whether there are conditions for transfers to increase welfare.
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Indeed, we can show that if �rm i is the most e¢ cient �rm, then a complete
transfer is always welfare increasing. For this result, we need no condition
on demand function (see the appendix for the proof).

Theorem 2. Suppose that the most e¢ cient �rm (�rm 1) makes a complete
transfer to �rm j (c1 � c2 � ::: � cj � ::: � cK and c1 < cj). Then, the
social welfare improves.

Thus, a complete technology transfer by the most e¢ cient �rm always
raises welfare.
We next consider which partner for �rm 1 would maximize welfare. Recall

that when considering which partner would maximize the increase in joint
pro�t, the choice of the partner a¤ects the joint pro�t before the transfer (a
less e¢ cient partner chosen means smaller joint pro�t before the transfer).
However, when considering which partner would maximize the increase in
welfare, welfare before the transfer occurs is not a¤ected by the choice of
partner since welfare includes the sum of all �rms�operating cost. For this
reason, when considering welfare, the choice of a partner is equivalent to the
choice of amount of technology transferred. As we know (Lemma 6), if the
licensor is su¢ ciently ine¢ cient then derivative with respect to cj is initially
negative: welfare can decrease with a complete technology transfer when
both �rms are su¢ ciently ine¢ cient. However, from the proof to Theorem 2
in the appendix, it is clear that a complete technology transfer to the least
e¢ cient �rm from the most e¢ cient �rm achieves the highest social welfare
gain. However, when considering instead private incentives, we saw that
for joint pro�t maximization there was an interior solution (Observation 1):
the best partner was not too ine¢ cient. Thus, the most e¢ cient �rms may
choose an overly e¢ cient �rm as a partner.

Observation 3. The pro�t maximizing partner for the most e¢ cient �rm
to make a complete transfer to is more e¢ cient than the welfare maximizing
partner, since the latter is the least e¢ cient �rm.

We close this section by noting that a little bit more can be said about
partner selection if we restrict ourselves to linear demand. In particular,
it is straightforward to show that if �rm i is su¢ ciently e¢ cient, but not
necessarily the most e¢ cient �rm (ci � c1), then it is also welfare optimal
that this �rm i chooses the least e¢ cient �rm in contrast to the private
incentives (Proposition 1). The results in the section then suggest that policy
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makers may want to encourage the dominant �rm in an industry to license
its superiority and moreover to license it to a partner less e¢ cient than the
�rm would �nd most pro�table.

5 Choosing a Licensee Through Auctions

In the previous section, we investigated which partner makes the joint pro�t
between the licensor and the licensee. In this section, we will try to identify
which �rm wins the right to use the technology for how much. The method
of selling the right to use technology is by an auction. We consider two types
of auction methods: The �rst way is that all potential licensees bid for the
right to use the technology and the winner only pays the license fee according
to its bid (simple auction). The second way is that each potential licensee
o¤er a menu that describe how much it is willing to pay for each of potential
licensees gets the technology, and the licensor �rm takes the sum of the bids
among all potential licensees according to their bids (menu auction). These
two license auctions have advantages and disadvantages. A simple auction
can be considered as a natural auction, since thw winner of the license auction
only pays for the license. However, there are externalities among potential
licensees. If an undesirable for a �rm gets the license, the �rm may su¤er a
lot and it may prefer a more desirable rival to get the license: it might as well
support a more desirable �rm to get a license. Given this, a menu auction
also makes sense in a licensing market, although it is less natural at the �rst
glance.
We will assume that the licensor is the most e¢ cient �rm, �rm 1, in the

rest of the paper. This is a natural setup for the licensing problem, and as
Theorem 2 assures, such licensing will certainly improve the welfare.

5.1 Simple Auction

Firm 1 is the licensor, which has a superior technology than others: c1 <
c2 � c3 � ::: � cK . For k; j = 1; ::; K, let �k(j) be �rm k�s equilibrium pro�t
when �rm j gets the technology of �rm 1 (the licensor). When j = 1, �rm
1�s technology is not transferred to any other �rm. We consider the following
game. A simple auction is a game played by �rms 2; 3; :::; K, in which each
�rm k 2 f2; ::; Kg simultaneously o¤ers Tk � 0 to be the unique licensee to
the licensor who chooses a �rm (say, �rm j) as a licensee that maximizes the
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sum of �rm 1�s pro�t and Tj: i.e., j 2M(T ) � argmaxk2f1;:::;Kg (�1(k) + Tk),
where T = (T1; T2; :::; TK). Knowing this, each �rm in f2; :::; Kg chooses its
bid Tk. In a simple auction, an outcome (j�; T �) is a Nash equilibrium
if j� 2 M (T �) and there is no k 2 f2; :::; Kg such that Tk � 0 such that
k 2 M

�
Tk; T

�
�k
�
and Uk (k; T ) > Uk (j�; T ), where Uk(j; T ) = �k(k) � Tk if

j = k. We �rst characterize the set of Nash equilibria and then prove the
existence of a Nash equilibrium. The proof is relegated to the appendix.
Although �rm 1 is not a bidder, we let T1 � 0 for notational convenience.

Lemma 3. In a simple auction, an outcome (j�; T �) is a Nash equilibrium
in a simple auction if and only if
(a) �1 (j�) + T �j� � �1 (j) + T �j for all j.
(b) If j� > 1, then �1 (j�) + �j (j�) + T �j� � �1 (j) + �j (j) for all j 6= j�.
(c) If j� > 1 and T �j� > 0, then �1 (j

�)+T �j� = �1 (j)+T
�
j for some j 6= j�

and �1 (j�) + T �j� = �1
�
~j
�
+ T �~j implies �j� (j

�)� T �j� � �j�
�
~j
�
.

Moreover, there exists a Nash equilibrium for every simple auction game.

The following Lemma shows that no licensing is a Nash equilibrium out-
come if and only if no licensing leads to better joint pro�t with any potential
partner.

Lemma 4. If an outcome (1; T �) is a Nash equilibrium, then �1 (j)+�j (1) �
�1 (j) + �j (j) for all j 6= 1. Conversely, if �1 (j) + �j (1) � �1 (j) + �j (j)
for all j 6= 1, there there exists an outcome (1; T �) is a Nash equilibrium for
some T �.

Proof. Suppose (1; T �) is a Nash equilibrium but �1 (1) + �j (1) < �1 (j) +
�j (j) for some j. Then j can deviate to ~Tj = �j (j) � �j (1) � " for some
" > 0 so that Uj(j; ~Tj; T ��j) � Uj (1; T

�) and U1(j; ~Tj; T ��j) � U1(k; ~Tj; T
�
�j)

for all k. Now suppose �1 (j) + �j (1) � �1 (j) + �j (j) for all j 6= 1. Let
T �j = �j (j)��j (1) for all j 6= 1, then �1 (1) � �1 (j)+T �j for all j 6= 1 which
is su¢ cient condition for (1; T �) to be a Nash equilibrium.�

Under weakly concave demand, as Theorem 1 shows that transfer is al-
ways joint-pro�t improving, licensing must occur in a Nash equilibrium.
Then, which �rm could be the licensee and how much should the licensee
pay? As Lemma 3 suggested, usually more than one �rm can be a licensee in
the set of Nash equilibria because the willingness to pay for a licensee is not
only the value of the licensee but also to prevent negative externalities from

16



other �rm becoming a licensee: there may be a less e¢ cient �rm claiming
to match the payment but such claim need not be credible. Even if there is
unique licensee in the set of Nash equilibrium, the license fee is still indeter-
minate, since any rival can o¤er a big fee knowing that it would not win the
technology. As long as the licensee is willing to match the o¤er, it can be a
Nash equilibrium. Thus, other �rms can control the licensee�s payment with-
out being a¤ected. In the light of this, we consider a reasonable re�nement
of Nash equilibrium is a version of truthful equilibrium. The idea is vaguely
related to trembling-hand argument for the licensor. The licensor may make
a slight mistake in choosing a potential licensee. Hence, each �rms would
make a weakly dominant o¤er relative to the equilibrium outcome. For �rm
j 2 Knf1g, a strategy Tj is said to be truthful relative to j� if and only
if either (i) Uj (j; T ) = Uj (j�; T ) or (ii) Uj (j; T ) < Uj (j�; T ) and Tj (j) = 0.
A truthful Nash equilibrium (TNE) is a Nash equilibrium (j�; T �) such
that each �rm chooses a truthful strategy relative to j�. With this re�nement,
we can pin down the equilibrium license fee and characterize the equilibrium.

Proposition 1. No licensing is a TNE if and only if �1(1) + �j(1) �
�1(j) + �j(j). If an outcome (j�; T �) is a TNE with licensing (j� > 1), then
T �j� = maxj2Knf1gf�1 (j)� �1 (j�) + �j (j)� �j (j�)g and �1 (j�) + �j� (j�) +
�j (j

�) � �1 (j) + �j� (j) + �j (j) for all j 6= 1. Conversely, if �1 (j�) +
�j� (j

�) + �j (j
�) � �1 (j) + �j� (j) + �j (j) for all j 6= 1, then there exists a

TNE outcome (j�; T �).

Proof. First suppose that no licensing is a TNE. Then, �1(j) + T �j � �1(1)
and �j(j) = �j(1)+T �j holds for all j 6= 1. Thus, �1(1)+�j(1) � �1(j)+�j(j)
holds. Conversely, if �1(1) + �j(1) � �1(j) + �j(j) holds for all j 6= 1, then
�1(j) + T

�
j � �1(1) and �j(j) = �j(1) + T �j holds.

Second, we consider the case with licensing. Let (j�; T �) be a TNE. In a
TNE, we have T �j = �j (j) � �j (j�) for all j 6= j�. From condition (a) of a
Nash equilibrium, we have �1 (j�) + T �j� � �1 (j) + T

�
j for all j 6= 1 so that

T �j� = maxj2Knf1;j�gf�1 (j) + �j (j) � �j (j�) � �1 (j�)g. By condition (c) of
a Nash equilibrium, we have ~j 6= j� such that �1 (j�) + T �j = �1

�
~j
�
+ T �~j

and �j� (j�) � T �j� � �j�
�
~j
�
. Hence, we have �1 (j�) + �j� (j�) � �j�

�
~j
�
�

�1
�
~j
�
+�~j

�
~j
�
��~j (j�). Since �1

�
~j
�
+�~j

�
~j
�
��~j (j�) � �1 (j)+�j (j)��j (j�)

for all j 6= j�, we have �1 (j�) + �j� (j�) + �j (j�) � �1 (j) + �j� (j) + �j (j)
for all j 6= 1.
Consider �1 (j�)+�j� (j�)+�j (j�) � �1 (j)+�j� (j)+�j (j) for all j 6= 1.
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De�ne T �j = �j (j) � �j (j�) for all j 6= j� and T �j� = maxj2Knf1gf�1 (j) +
�j (j) � �j (j�)g � �1 (j�). It is easy to check all conditions in a Nash equi-
librium are satis�ed.�

As a corollary of the �rst part of Proposition 1 and Theorem 1, we can
state the following.

Corollary 2. Under weakly concave demand, no-licensing is not a TNE of
simple auction game.

We call the licensee in a truthful Nash equilibrium outcome as a simple
auction licensee. Without negative externality, the joint-pro�t-maximizing
partner would be the simple auction licensee. Hence, it should not be to
surprising that a �rm is simple auction licensee if and only if such a transfer
maximizes the joint pro�ts of the licensor, the licensee and any one �rm.3

Then it is natural to compare a simple auction licensee and the joint-pro�t-
maximizing partner. It turns out that the simple auction licensee, if exists,
is at least as e¢ cient as the joint-pro�t-maximizing partner.

Proposition 2. Under weakly concave demand, the simple auction licensee
(if exist) is at least as e¢ cient as the joint-pro�t-maximizing partner.

Proof. Let j� 2 argmaxj2K [�1 (j) + �j (j)] � [�1 (1) + �j (1)] be the joint-
pro�t-maximizing partner. Suppose there exists k > j� such that �1 (k) +
�k (k)+�j� (k) > �1 (j

�)+�k (j
�)+�j� (j

�). Since we have �1 (j�)+�j� (j�)�
�j� (1) > �1 (k)+�k (k)��k (1), it is easy to see �j� (k)��k (j�) > �j� (1)�
�k (1). However, we have

�j� (k)� �k (j�) =
(P (Qk)� cj�)2

�P 0 (Qk)
� (P (Qj

�)� ck)2

�P 0 (Qj�)

<
(P (Qk)� cj�)2

�P 0 (Qj�)
� (P (Qj

�)� ck)2

�P 0 (Qj�)
3It is interesting that it is somewhat related to the potential function in a potential

game.
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since �P 0 (Qj�) < �P 0 (Qk). Then we have

(P (Qk)� cj�)2

�P 0 (Qj�)
� (P (Qj

�)� ck)2

�P 0 (Qj�)

=
(P (Qk) + P (Qj�)� cj� � ck) (P (Qk)� P (Qj�) + ck � cj�)

�P 0 (Qj�)

<
(2P (Q1)� cj� � ck) (ck � cj�)

�P 0 (Q1)
= �j� (1)� �k (1)

since 2P (Q1) � P (Qk) + P (Qj�), �P 0 (Q1) < �P 0 (Qj�) and from equi-
librium conditions we have ck � cj� = [�P 0 (Qk)]Qk � [�P 0 (Qj�)]Qj� +
K [P (Qj�)� P (Qk)] so that 0 � P (Qk) � P (Qj�) + ck � cj� � ck � cj�.
Hence, we have �j� (k)��k (j�) < �j� (1)��k (1), which is a contradiction.�

As is seen from the characterization of TNE (Proposition 1), it is easy to
see that a Nash equilibrium in pure strategy must satisfy many inequalities.
Although we are not able to show the existence of a simple auction licensee
under weakly concave demand but we can show it always exists under linear
demand assumption.

Proposition 3. Under linear demand, there exists a TNE in a simple auction
game.

5.2 Menu Auction

We consider the �rm 1 (the most e¢ cient �rm) is making decision to li-
cense technology to some �rms (licensees) L � N = Knf1g = f2; : : : ; Kg.
Since there is negative externality in technology transfer,4 other �rms with-
out transfer (non-lincesees NnL) would like to in�uence the licensing decision
and may be willing to o¤er �rm 0 not to license to those licensees L. We
try to capture such strategic interaction using the menu auction framework
proposed by Bernheim and Whinston (1986).
A menu auction game � is described by (N + 2) tuples:

� �
�
A; (Vk)k2N[f1g

	
;

where A is the set of actions, Vk : A! R is k�s (quasi-linear) payo¤ function,
0 denotes the agent, and N is the set of principals. In the extensive form

4Note that the transfer need not be complete but partial.
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of the game the principals simultaneously o¤er contingent payments to the
agent who subsequently chooses an action that maximizes her total payo¤.
A strategy for each principal k 2 N is a function Tk : A ! [bk;1), which
is a monetary reward (or punishment) of Tk(a) to the agent for selecting a,
where bk is the lower bound for payment from principal k. For each action
a, principal k receives a net payo¤:

Uk(a; T ) = Vk(a)� Tk(a);

where T = (Tk0)k02N is a strategy pro�le. The agent chooses an action that
maximizes her total payo¤: the agent selects an action in the setM (T ) with:

M (T ) � argmax
a2A

"
V0(a) +

X
k2N

Tk (a)

#
:

The menu auction game is merely a game among principals, although,
strictly speaking, a tie-breaking rule among M(T ) needs to be speci�ed for
the agent.
An outcome of a menu auction game � is (T; a). An outcome (a�; T �) is

a Nash equilibrium if a� 2 M (T �) and there is no k 2 N such that Tk :
A ! R+ and a 2 M

�
Tk; T

�
�k
�
such that Uk (a; T ) > Uk (a

�; T ). Bernheim
and Whinston (1986) characterize the su¢ cient and necessary condition for
Nash equilibrium:

Theorem (Bernheim and Whinston, 1986). An outcome (a�; T ) is a
Nash equilibrium if and only if

1. Ti(a) � 0 for all a 2 A and all i 2 N .

2. a� 2 argmaxa2A [
Pn

i=1 Ti (a) + V0 (a)] �M (T ).

3. [Vi (a�)� Vi (a)]+ [V0 (a�)� V0 (a)] �
�P

�i Ti (a)�
P

�i Ti (a
�)
�
for all

i 2 N and a 2 A:

4. For all i 2 N , there exists ai 2M (T ) such that Ti (ai) = 0.

As the above theorem suggests, there are usually numerous of Nash equi-
libria in a menu auction game. It is not too surprising that no licensing can be
a Nash equilibrium, di¤erent from simple auction games. For example, con-
sider a market with three �rms where c1 = 0, c2 = 0:1 and c3 = 0:3. It easy
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to see that when T2 (1) = 0:02625, T2 (2) = T2 (3) = 0 and T3 (1) = T3 (2) = 0
and T3 (3) = 0:073125, then (1; T ) is a Nash equilibrium in menu auction.
To get reasonable suggestion, Bernheim and Whinston (1986) consider

a reasonable re�nement on the set of Nash equilibria and they argue that
�truthful strategies�are quite crucial in menu auction. A strategy Tk is said
to be truthful relative to �a if and only if for all a 2 A either (i) Uk (a; T ) =
Uk (�a; T ) or (ii) Uk (a; T ) < Uk (�a; T ) and Tk (a) = bk. An outcome (a�; T �) is
a truthful Nash equilibrium (TNE) if and only if it is a Nash equilibrium,
and T �k is truthful relative to a

� for all k 2 N . They show that in menu
auction games, the set of truthful Nash equilibria (TNE) and the set of
coalition-proof Nash equilibria (CPNE) are equivalent in utility space, and
CPNE and TNE are only di¤erent with respect to o¤-equilibrium strategies.
Bernheim and Whinston (1986) show that e¢ cient action is chosen by the
agent in every TNE outcome in a menu auction: if (a�; T �) is a TNE, then
we have a� 2 argmaxa2A[

P
i2N Vi (a)+V0 (a)]. We call the licensee in a TNE

of menu auction as a menu auction licensee.

Even though no licensing can be a Nash equilibrium, licensing must occur
in a TNE under linear demand. The proof is relegated to appendix.

Proposition 4. If demand is linear and K � 3, then licensing must occur
in a truthful Nash equilibrium in menu auction.

The following example illustrates that joint-pro�t-maximizing partner,
simple auction licensee and menu auction licensee are in general di¤erent.
Under linear demand with �ve �rms with c1 = 0, c2 = 0:05, c3 = 0:1,
c4 = 0:14, and c5 = 0:2, it is easy to see that �rm 3 is the menu auction
licensee, �rm 4 is the simple auction licensee, and �rm 5 is the joint-pro�t-
maximizing partner. In this example, the menu auction licensee is at least
as e¢ cient as the simple auction licensee. The following proposition shows
that it holds in general.

Proposition 5. A menu auction licensee is at least as e¢ cient as a simple
auction licensee.

Proof. Denote jS and jM simple auction licensee and menu auction li-
censee. By property of a TNE in menu auction, we have

P
h2K �h

�
jM
�
�P

h2K �h
�
jS
�
. By Proposition 1, we have �1

�
jS
�
+ �jM

�
jS
�
+ �jS

�
jS
�
�
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�1
�
jM
�
+ �jS

�
jM
�
+ �jM

�
jM
�
. Hence, we have

P
h2Knf1;jS ;jMg �h

�
jM
�
�P

h2Knf1;jS ;jMg �h
�
jS
�
.This implies that jM � jS .�

The underlying intuition of this proposition is that as menu auction li-
censee is a industry-pro�t-maximizing partner and simple auction licensee
is a three-�rm-pro�t-maximizing �rm, the negative externality of the tech-
nology transfer would make the pro�t-maximizing �rm more e¢ cient, which
counteract the e¤ect of negative externality. Propositions 2 and 5 can be sum-
marized as the licensing partners�e¢ ciency ranking among di¤erent regimes
in the following Theorem.

Theorem 3. Suppose that �rm 1 is licensing technology to another �rm.
Under weakly concave demand, the licensing partner that maximizes the
gains in their joint pro�t is weakly less e¢ cient than the partner determined
in a simple auction, and the latter is weakly less e¢ cient than the partner
determined by a menu auction: i.e.,

menu auction licensee � simple auction licensee � joint-pro�t-maximizing partner,

where �rms are ordered by its e¢ ciency in a descending manner.

Finally, we provide a su¢ cient condition for the licensees in simple and
menu auctions to coincide. In a menu auction, non-licensing �rms may be
paying for licensee to prevent a more ine¢ cient �rm obtain the license. It
is natural to conjecture that when the licensee be the only paying �rm, the
licensee is also a simple auction licensee. The proof is in appendix.

Proposition 6. If �rm j� is a menu auction licensee and only j� is paying
for the license, then j� is a simple auction licensee.

6 Conclusion

We explore technology transfers (through licensing or joint venture agree-
ments) in a market with �rms heterogeneous in cost. We �nd that under
weakly concave demand, any complete technology transfer between �rms in-
creases joint pro�t so long as there is at least one other �rm in the market.
We then consider which partner a �rm would choose to license its technology.
It turns out that the optimal partner is neither too close to the �rm in terms
of e¢ ciency nor too ine¢ cient.
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In a companion paper (Creane and Konishi 2009), we analyze the e¤ects
of partial technology transfers using the same model. The licensor can choose
how much technology as well as who to transfer. We show that if there is a
joint-pro�t-improving technology transfer, then the joint-pro�t maximizing
technology transfer is a complete technology transfer under some condition on
demand function (including linear demand). This result justi�es our analysis
on complete technology transfers.

Appendix

Theorem 1. Assume that interior solutions (no �rm chooses zero produc-
tion before and after a technology transfer). If demand is weakly concave
(P 00(Q) � 0) and K � 3, then for any two �rms i and j with ci < cj, a
complete technology transfer from �rm i to �rm j is joint pro�t improving.

Proof. The proof utilizes an arti�cial market. This device is useful by ob-
serving the fact that transferring technology partially can reduce the joint
pro�t. Instead, we replace �rm j with an arti�cial (public: not pro�t-
maximizing) �rm i0 with marginal cost ci, but we control its output level
so that the joint pro�t between �rms i and i0 increases monotonically. After
that, we go back to the original economy. This is the strategy to prove the
theorem.
Consider an arti�cial market parametrized by � 2 [0; 1], in which �rm

j (ci < cj) is replaced by an arti�cial �rm i0 that satis�es (i) ci0 = ci, (ii)
qi0(�) = �qi(�), and (iii) for all k 6= i0, qk(�) =

P (Q(�))�ck
�P 0(Q(�)) holds where

Q(�) =
P

k 6=i0 qk(�) + �qi(�). That is, although the output decision by �rm
i0 is linked with that of �rm i, �rms k 6= i0 do not use this information by
choosing the best response to Q�k(�) =

P
` 6=k q`(�) (the standard Cournot

behavior: not the Stackelberg one).
When � = 1, we have

P 0(Q(1))Q(1) +KP (Q(1))� (C�i0 + ci) = 0;

which describes the aggregate Cournot equilibrium output Q(1) after the
complete technology transfer from �rm i to �rm j, since the best response
by �rm i0 is identical to the one by �rm i when � = 1.
We �rst show that in this arti�cial market, the joint pro�t of �rms i and

i0, �J(�) = (1 + �)�i(�) =
(1+�)(P (Q(�))�ci)2

�P 0(Q(�)) , increases monotonically as �

23



goes up. The best response by �rm k 6= i0 is described by

P 0(Q(�))qk(�) + P (Q(�))� ck = 0:

Speci�cally, we have

P 0(Q(�))qi(�) + P (Q(�))� ci = 0;

thus we can write

P 0(Q(�))qi0(�) + � (P (Q(�))� ci) = 0:

Summing up these equations, we have

P 0(Q(�))Q(�) + (K � 1 + �)P (Q(�))� (C�i + �ci) = 0:

Totally di¤erentiating the above, we have

(P 00Q+ P 0 + (K � 1 + �)P 0) dQ+ (P � ci)d� = 0

dQ

d�
=

P (Q(�))� ci
�P 00(Q(�))Q(�)� (K + �)P 0(Q(�))

:

Now, we show �J(�) = (1+�)(P (Q(�))�ci)2
�P 0(Q(�)) changes as � increases.

d�J

d�
=

(P � ci)2

�P 0 + (1 + �)� 2(P � ci)P
0(�P 0) + P 00 (P � ci)2

(�P 0)2 � P � ci
�P 00Q� (K + �)P 0

= A�
h
(�P 0)(�P 00Q� (K + �)P 0) + (1 + �)

n
�2 (�P 0)2 + P 00 (P � ci)

oi
= A�

h
(�P 0)(�P 00Q� (K + �)P 0) + (1 + �)

n
�2 (�P 0)2 + P 00 (P � ci)

oi
= A�

�
f(K + �)� 2(1 + �)g (�P 0)2 + (�P 00) f�P 0Q� (1 + �) (P � ci)g

�
= A�

�
(K � 2� �) (�P 0)2 + (�P 00) f(�P 0) (Q� (1 + �)qi)� (1 + �) (P 0qi + P � ci)g

�
where A = (P�ci)2

(�P 0)2(�P 00Q�(K+�)P 0) > 0. We can determine the sign of
d�J

d�
. Note

that P 0 < 0 and P 00 � 0. Since K � 3, K � 2� � � 0 must follows, and the
�rst term in the bracket of the last line is nonnegative for all � 2 [0; 1]. Since
K � 3 with interior solution, we have Q > (1 + �)qi, and P 0qi + P � ci = 0
holds by �rm i�s �rst order condition. This implies that the second term is
positive. Thus, we can conclude that d�

J

d�
> 0 holds for all � 2 [0; 1].
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Now, we show that the equilibrium allocation with �rm j is mimicked by
an equilibrium allocation in our arti�cial market at a certain �̂ 2 (0; 1). Let
(P̂ ; (q̂k)

K
k=1) be the Cournot equilibrium allocation before �rm j received a

complete technology transfer. Let �̂ = q̂j
q̂i
. Since cj > ci and we assume an

interior solution, we have q̂i > q̂j > 0 and 0 < �̂ < 1. Thus, (P̂ ; (q̂k)Kk=1) =
(P (�̂); (qk(�̂))

K
k=1) holds, and the initial equilibrium allocation is mimicked by

the equilibrium in an arti�cial market with � = �̂. Since q̂j = �̂q̂i = �̂qi(�̂),
we have

�̂i + �̂j =
�
P̂ � ci

�
q̂i +

�
P̂ � cj

�
q̂j

= (P (�̂)� ci) qi(�̂) + (P (�̂)� cj) �̂qi(�̂)
< (P (�̂)� ci) qi(�̂) + (P (�̂)� ci) �̂qi(�̂)
= �J(�̂):

Since �J(�) is monotonically increasing in �, we have �J(�̂) < �J(1). Since
�J(1) is the same as the joint pro�t by �rms i and j after the complete
technology transfer from �rm i to �rm j, we can conclude that the joint pro�t
by �rms i and j must increase after the complete technology transfer.�

Theorem 2. Suppose that the most e¢ cient �rm (�rm 1) makes a complete
transfer to �rm j (c1 � c2 � ::: � cj � ::: � cK and c1 < cj). Then, the
social welfare improves.

Proof. By Lemma 1, we know that if the aggregate marginal cost C de-
creases, the equilibrium total output Q increases. Now, consider �rm k. If
C decreases keeping ck constant, Q increases while qk shrinks. We can write
the relationship between Q and qk (through changes in C behind) as follows:

qk(Q) =
P (Q)� ck
�P 0(Q) :

Let us denote the original (before transfer) equilibrium by "hat," and the
new equilibrium by "tilde." Since �rm j�s marginal cost cj only goes down
from ĉj = cj to ~cj = ci keeping all other marginal costs constant, we have
Q̂ < ~Q and q̂k > ~qk for all k 6= j. Then, we necessarily have q̂j < ~qj and
~qj � q̂j > ~Q� Q̂.
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The social welfare is written as

SW = (total bene�t)� (total cost)

=

Z Q

0

P (Q0)dQ0 �
KX
k=1

ckqk:

Therefore, we have

gSW =

Z ~Q

0

P (Q0)dQ0 �
KX
k=1

ck~qk

=

Z Q̂

0

P (Q0)dQ0 +

Z ~Q

Q̂

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1~qj

=

Z Q̂

0

P (Q0)dQ0 +

Z ~Q

Q̂

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1( ~Q� Q̂)� c1
�
~qj � ( ~Q� Q̂)

�
=

Z Q̂

0

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
+

Z ~Q

Q̂

P (Q0)dQ0 � c1( ~Q� Q̂):
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The last two terms are obviously positive since P ( ~Q) > c1. Thus, we have

gSW �dSW >

Z Q̂

0

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
�dSW

=

Z Q̂

0

P (Q0)dQ0 �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
�
Z Q̂

0

P (Q0)dQ0 +
KX
k=1

ckq̂k

=

KX
k=1

ckq̂k �
X
k 6=j

ck~qk � c1
�
~qj � ( ~Q� Q̂)

�
=

X
k 6=j

ck (q̂k � ~qk) + cj q̂j � c1

 
~qj �

KX
k=1

(~qk � q̂k)
!

=
X
k 6=j

ck (q̂k � ~qk) + cj q̂j � c1

 
q̂j �

X
k 6=j

(~qk � q̂k)
!

=
X
k 6=j

(ck � c1) (q̂k � ~qk) + (cj � c1) q̂j > 0:

Hence, we conclude gSW > dSW .�
Lemma 3. In a simple auction, an outcome (j�; T �) is a Nash equilibrium
in a simple auction if and only if
(a) �1 (j�) + T �j� � �1 (j) + T �j for all j.
(b) If j� > 1, then �1 (j�) + �j (j�) + T �j� � �1 (j) + �j (j) for all j 6= j�.
(c) If j� > 1 and T �j� > 0, then �1 (j

�)+T �j� = �1 (j)+T
�
j for some j 6= j�

and �1 (j�) + T �j� = �1
�
~j
�
+ T �~j implies �j� (j

�)� T �j� � �j�
�
~j
�
.

Moreover, there exists a Nash equilibrium for every simple auction game.

Proof. We �rst characterize the set of Nash equilibria and then we show the
existence.
Consider (j�; T �) is a Nash equilibrium outcome. Condition (a) is obvi-

ous from the structure of the game. For (b), suppose we have some j 6= j�
such that �j (j�) < �j (j) �

��
�1 (j

�) + T �j�
�
� �1 (j)

�
, then �rm j can o¤er

~Tj = �1 (j
�) + T �j� � �1 (j) + "j for some "j > 0 so that Uj

�
j; ~Tj; T

�
�j

�
�

Uj (j
�; T �) and U1

�
j; ~Tj; T

�
�j

�
� U1

�
k; ~Tj; T

�
�j

�
for all k. What remains is

condition (c). If there is no j such that �1 (j�) + T �j� = �1 (j) + T
�
j , then
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from condition (a), we have �1 (j�) + T �j� > �1 (j) + T
�
j for all j. Then �rm

j� can o¤er ~Tj� = T �j� � "j� for some "j� > 0 so that Uj�
�
j�; ~Tj� ; T

�
�j�
�
�

Uj (j
�; T �) and U1

�
j�; ~Tj� ; T

�
�j�
�
� U1

�
k; ~Tj� ; T

�
�j�
�
for all k. If there is

some ~j with �1 (j�) + T �j� = �1
�
~j
�
+ T �~j such that �j� (j

�) � T �j� < �j�
�
~j
�
,

then �rm j� can deviate to ~Tj� = 0 so that Uj�
�
~j; ~Tj� ; T

�
�j�
�
� Uj (j

�; T �)

and U1
�
~j; ~Tj� ; T

�
�j�
�
� U1

�
k; ~Tj� ; T

�
�j�
�
for all k. Therefore, any Nash equi-

librium satis�es all three conditions.
Suppose tothe contrary that an outcome satis�es the three conditions but

(j�; T �) is not a Nash equilibrium. Condition (a) implies that �rm 1 selects
�rm j�. First, consider the case that j� has incentive to deviate from T �j� to
~Tj�. It is clear that ~Tj� < T �j� because ~Tj� � T �j� would still make �rm j�

be the licensee with no less payment. However, condition (c) implies that
when j� reduces payment, there exists ~j 6= j�, �1

�
~j
�
+ T �~j = �1 (j

�) + T �j�

with �j� (j�)� Tj� (j�) � �j�
�
~j
�
to be chosen as the licensee, which violates

the condition that j� will deviate. Now consider j 6= j� deviates from T �j to
~Tj. Then we have ~Tj � 0 such that �1 (j) + ~Tj � �1 (k) + T

�
k for all k 6= j

and �j (j) � ~Tj > �j (j
�). From condition (b), we have �1 (j�) + ��j� (j

�) +

T �j� � �1 (j) + �j (j
�). Hence, we have �1 (j�) + T �j� � ~Tj > �1 (j). From

condition (c), we have for some ~j 6= j�, �1 (j�) + T �j� = �1
�
~j
�
+ T �~j , so that

�1
�
~j
�
+ T �~j � ~Tj > �1 (j) which contradicts the conditions that j deviates.

No we are ready to show the existence of a Nash equilibrium. If �1 (1) �
�1 (j) + �j (j) � �j (1) for all j, then (1; T ) where Tj = 0 for all j is clearly
a NE. For all S � Nn f1g with jSj = 2, de�ne v (S) = maxh2Sf�1 (h) +P

k2S �k (h)g and s� (S) 2 argmaxh2Sf�1 (h) +
P

k2S �k (h)g. Let S� 2
argmaxS�Nnf1g;jSj=2 v (S), j

� = s� (S�) and ~j 2 argmaxh2Knf1;j�gf�1 (h) +
�h (h) � �h (j�)g. De�ne T �j� = �1

�
~j
�
+ �~j

�
~j
�
� �~j (j�) � �1 (j�), T �~j =

�~j
�
~j
�
� �~j (j�) and T �j = 0 for all j 6= j�. It is easy to check (j�; T �) is

indeed a Nash equilibrium outcome. Since we have �1 (j�) + T �j� = �1
�
~j
�
+

�~j
�
~j
�
� �~j (j�) � �1 (j) + T

�
j for all j, condition (a) is true. Now consider

condition (c). For all j 6= j�, �1 (j�) + �j (j�) + T �j� = �1 (j
�) + �j (j

�) +
�1 (j) + �j (j) � �j (j�) � �1 (j�) � �1 (j) + �j (j). Condition (d) is ob-
vious because �1 (j�) + T �j� = �1

�
~j
�
+ �~j

�
~j
�
� �~j (j�) = �1

�
~j
�
+ T �~j and

�j� (j
�)� T �j� = �j� (j�)� �1

�
~j
�
+ T �~j � �1 (j

�) = �j�
�
~j
�
� �j�

�
~j
�
.�
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Lemma 5. For any distinct i, j and k, de�ne �(i; j; k) = [�i (j)� �k (j)]�
[�j (i)� �k (i)]� [�i (k)� �j (k)]. Under linear demand, we have �(i; j; k) =
0 for i < j < k.

Proof. De�ne Qk be the industry equilibrium output if the licensee is �rm
k. First, we have

�(i; j; k) =

"
(P (Qj)� ci)2

�P 0 (Qj)
� (P (Qj)� ck)

2

�P 0 (Qj)

#
�
"
(P (Qi)� cj)2

�P 0 (Qi)
� (P (Qi)� ck)

2

�P 0 (Qi)

#

�
"
(P (Qk)� ci)2

�P 0 (Qk)
� (P (Qk)� cj)

2

�P 0 (Qk)

#

=
(2P (Qj)� ck � ci) (ck � ci)

�P 0 (Qj)
� (2P (Qi)� ck � cj) (ck � cj)�P 0 (Qi)

�(2P (Qk)� ci � cj) (cj � ci)�P 0 (Qk)

Let the inverse demand function be P (Q) = � � �Q where �; � >
0. Thus, we have �P 0 (Qh) = �P 0 (Qj) = �P 0 (Qk) = � and P (Qh) =
(�� C � c1 + ch) = (1 +K) for all h 6= 1. Hence, we have

�(i; j; k) =

�
2
�� C � c1 + cj

1 +K
� ck � ci

�
ck � ci
�

�
�
2
�� C � c1 + ci

1 +K
� ck � cj

�
ck � cj
�

�
�
2
�� C � c1 + ck

1 +K
� cj � ci

�
cj � ci
�

=
2

� (1 +K)
[�cj (ck � ci) + ci (ck � cj) + ck (cj � ci)] = 0:�

Proposition 3. Under linear demand, there exists a TNE in a simple auc-
tion.

Proof. Let j1 = argmaxj2K [�1 (j) + �j (j)] � [�1 (1) + �j (1)] be the joint-
pro�t-maximizing partner. If j1 < K, then Proposition 2 has already shown
that �1 (j1) + �k (j1) + �j1 (j1) > �1 (k) + �k (k) + �j1 (k) for all j1 < k. If
we have �1 (j1) + �k (j1) + �j1 (j1) > �1 (k) + �k (k) + �j1 (k) for all k <
j1, then we are done. Suppose not. De�ne j2 = maxfj < j2 : �1 (j) +
�j (j) + �j2 (j) > �1 (j1) + �j (j1) + �j2 (j2)g. We are going to show we have

29



�1 (j2) + �k (j2) + �j2 (j2) > �1 (k) + �k (k) + �j2 (k) for all k > j2: First, we
will show �1 (j2) + �k (j2) + �j2 (j2) > �1 (k) + �k (k) + �j2 (k) for all k > j1.
It is trivial if j1 = K. Consider j1 < K. We have

�1 (j2) + �j2 (j2) + �k (j2)

= �1 (j2) + �j2 (j2) + �k (j2)� �(j2; j1; k)
= �1 (j2) + �j2 (j2) + �k (j2)� [�j2 (j1)� �k (j1)� �j1 (j2) + �k (j2)� �i (k) + �j2 (k)]
= �1 (j2) + �j2 (j2) + �j1 (j2)� �j2 (j1) + �k (j1) + �j2 (k)� �j1 (k)
> �1 (j1) + �j2 (j1) + �j1 (j1)� �j2 (j1) + �k (j1) + �j2 (k)� �j1 (k)
= �1 (j1) + �j1 (j1) + �k (j1) + �j2 (k)� �j1 (k)
� �1 (k) + �j1 (k) + �k (k) + �j2 (k)� �j1 (k)
= �1 (k) + �j2 (k) + �k (k)

What remains is to show we have �1 (j2)+�h (j2)+�j2 (j2) > �1 (h)+�h (h)+
�j2 (h) for all h such that j2 < h < j1. (This step is trivial if j2 = j1� 1.) By
construction, we have �1 (j1) + �j1 (j1) + �h (j1) � �1 (h) + �j1 (h) + �h (h).
Hence, we have

�1 (j2) + �h (j2) + �j2 (j2)

= �1 (j2) + �h (j2) + �j2 (j2) + � (j2; h; j1)

= �1 (j2) + �h (j2) + �j2 (j2) + [�j2 (h)� �j1 (h)� �h (j2) + �j1 (j2)� �j2 (j1) + �h (j1)]
= �1 (j2) + �j1 (j2) + �j2 (j2) + �j2 (h)� �j1 (h)� �j2 (j1) + �h (j1)
� �1 (j1) + �j1 (j1) + �j2 (j1) + �j2 (h)� �j1 (h)� �j2 (j1) + �h (j1)
= �1 (j1) + �j1 (j1) + �j1 (j1) + �j2 (h)� �j1 (h)
� �1 (h) + �h (h) + �j1 (h) + �j2 (h)� �j1 (h)
= �1 (h) + �h (h) + �j2 (h)

Therefore, we have �1 (j2) + �k (j2) + �j2 (j2) > �1 (k) + �k (k) + �j2 (k) for
all k > j2. If we have �1 (j2) + �k (j2) + �j2 (j2) > �1 (k) + �k (k) + �j2 (k)
for all k < j2, then we are done. Otherwise, we can inductively de�ne
jn+1 = max fj < jn : �1 (j) + �j (j) + �jn (j) > �1 (j1) + �j (jn) + �jn (jn)g
and repeat the argument to show �1 (jn+1)+�k (jn+1)+�jn+1 (jn+1) > �1 (k)+
�k (k) + �jn+1 (k) for all k > jn+1. Since jn is strictly decreasing and jn � 2,
the process must end in �nite steps. Then, there exists some �rm j� with
2 � j� � j1 such that �1 (j�) + �j� (j�) + �j� (k) > �1 (k) + �j� (k) + �k (k)
for all k 6= j�.�
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Proposition 4. If demand is linear and K � 3, then licensing must occur
in a truthful Nash equilibrium in menu auction.

Proof. Since a TNE in menu auction always achieves the most e¢ cient
action, it su¢ ces to show that transfer to �rm 2 always leads to higher total
industry pro�t.
We are going to show the linear case �rst. Let the inverse demand function

be P (Q) = �� �Q. The industry total pro�t would be

� =
X
i2K

1

�

�
�+

P
j2K cj

(1 +K)
� ci

�2
So that if transfer from �rm 1 to �rm 2, then the industry total pro�t is

�̂ =
X

i2Knf2g

1

�

�
�+

P
j2K cj + c1 � c2
(1 +K)

� ci
�2
+
1

�

�
�+

P
j2K cj + c1 � c2
(1 +K)

� c1
�2
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the change in pro�t would then be

�̂� �

=
1

�

X
i2Knf2g

"�
�+

P
j2K cj + c1 � c2
1 +K

� ci
�2
�
�
�+

P
j2K cj

1 +K
� ci

�2#

+
1

�

"�
�+

P
j2K cj + c1 � c2
(1 +K)

� c1
�2
�
�
�+

P
j2K cj

(1 +K)
� c2

�2#

=
1

�

X
i2Knf2g

�
2�+ 2

P
j2K cj + c1 � c2
1 +K

� 2ci
��

c1 � c2
1 +K

�

+
1

�

�
2�+ 2

P
j2K cj + c1 � c2
1 +K

� c1 � c2
��

c1 � c2
1 +K

� c1 + c2
�

=
1

�

c1 � c2
1 +K

0@(K � 1)
2�+ 2

P
j2K cj + c1 � c2
1 +K

� 2
X

i2Knf2g

ci

1A
+
K

�

c2 � c1
1 +K

�
2�+ 2

P
j2K cj + c1 � c2
1 +K

� c1 � c2
�

=
1

�

c2 � c1
1 +K

0@2�+ 2Pj2K cj + c1 � c2
1 +K

+ 2
X

i2Knf2g

ci �Kc1 �Kc2

1A
=

1

�

c2 � c1
(1 +K)2

0@2�+ 2X
j2K

cj + c1 � c2 + 2 (1 +K)
X

i2Knf2g

ci �K (1 +K) c1 �K (1 +K) c2

1A
=

1

�

c2 � c1
(1 +K)2

 
2�+ 2 (2 +K)

X
j2K

cj �
�
K2 +K � 1

�
c1 �

�
K2 + 3K + 3

�
c2

!

Since each �rm is having positive output after transfer, price must be
higher than cK . Hence, we have 1

1+K

�
1 +

P
j2K cj � c2

�
� c3 > 0 which
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implies �+
P

j2K cj > (K + 2) c2 if K � 3. Then, we have

�̂� �

>
1

�

c2 � c1
(1 +K)2

 
2 (K + 2) c2 + 2 (K + 1)

X
j2K

cj �
�
K2 +K � 1

�
c1 �

�
K2 + 3K + 3

�
c2

!

=
1

�

c2 � c1
(1 +K)2

 
2 (K + 1)

X
j2K

cj �
�
K2 +K � 1

�
(c1 + c2)

!

=
1

�

c2 � c1
(1 +K)2

 
2 (K + 1)

X
i>2

ci �
�
K2 �K � 3

�
(c1 + c2)

!

� 1

�

c2 � c1
(1 +K)2

�
2 (K + 1) (K � 2) c2 �

�
K2 �K � 3

�
(c1 + c2)

�
� 0

Hence, transfer to �rm 2 always generate strictly higher industry total
pro�t than no licensing and as TNE in menu auction always achieves the
most e¢ cient action, no licensing cannot be a TNE outcome of menu auction
game.�

Proposition 6. If �rm j� is a menu auction licensee and only j� is paying
for the license, then j� is a simple auction licensee.

Proof. Clearly j� = 1, then �1 (1) � �j (j) +
P

h2K Th (j) for all j 2 K. By
truthful strategies, we have Tj (j) � �j (j)� �h (1) for all j 2 K. Therefore,
we have, �1 (1) + �j (1) � �1 (j) + �j (j) +

P
h2K Th (j) � �1 (j) + �j (j) for

all j 6= 1. Hence, by Lemma 5, it is a TNE in simple auction.
Consider j� > 1. De�ne Th =

P
k2K T

�
h (k). It is easy to check that (j

�; T )
is a NE. What remains is to show that (j�; T ) is a TNE. Since (j�; T �) is a
TNE in menu auction, we have �1 (j�)+T �j� (j

�) � �1 (k)+
P

h2K T
�
h (k) for all

k. Bernheim andWhinston (1986) shows that there exists a TNE (j�; ~T ) such
that �j (j�)� ~Tj (j�) = �j (j)� ~Tj (j) if �j� (j�)� ~Tj� (j�) � �j (j) and ~Tj (j) =
0 if �j� (j�)� ~Tj� (j

�) < �j (j). Hence, �1 (j�) + �j� (j�)� �j� (j) � �1 (j) +P
h2P [�h (j)� �h (j�)] for all j where P = fj 2 Kn fj�g : �j (j�) � �j (j)g.

By rearranging, we have �1 (j�)+�j� (j�)+
P

h2P �h (j
�) � �1 (j)+�j� (j)+P

h2P �h (j). For all h 2 P , we have �h (h) � �h (j�), which implies �1 (j�)+
�j� (j

�) + �k (j
�) � �1 (k) + �j� (k) + �k (k). By Proposition 3, we know

(j�; T ) is a TNE in simple auction.�
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