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1 Introduction.

In the simplest case of fisheries inhabited by a single species, many instruments
have been proposed to eliminate the "tragedy of the commons" problem. These
include entry limitation, licensing, taxes on catches or individual transferable
quotas. All are capable of implementing an optimal consumption path of the
fish population (Clark, 1990).
The use of these instruments to regulate fisheries inhabited by several inter-

acting species is less clear. On the one hand, the determination of the optimal
policy itself is complicated by the biological interdependences within the ecosys-
tem and the fishers’ limited ability to alter the species composition of their
catch (Squires et al., 1998). On the other hand, the data needed to determine
and enforce the optimal policy, that is, statistics on fishing efforts, fish catches
and/or stocks (depending on which instrument is used), renders the regulation
impractible in most cases (Arnason, 1990).
Arnasson (1990) expounds one way out of this problem. He argues that all

information required to determine the optimal policy is already available within
the fishing industry. The fishing firms have knowledge about their own cost and
harvesting function. Moreover, the competition within the industry stimulates
an effi cient use of the available biological data. All this suggests that fisheries
management should largely rely on the fishers themselves.
This paper follows this line of reasoning. Assuming nonselective harvesting,

we propose an economic mechanism capable of implementing an optimal policy
in a multispecies fishery. Under this mechanism, each participant decides both
his own fishing effort and that of the other participants. Individualized prices

∗GREThA, University of Bordeaux 4. Research support from the FRB BIOMER project.
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are set by the participants themselves. In equilibrium, the prevailing price
system reflects the participants’expected future rents, at each point of time.
Moreover, each participant pays his effort at a price equal to the sum of the
others’individualized prices. Thus, in equilibrium, the participants internalize
the external opportunity cost of their fishing effort. Finally, to ensure that the
mechanism is balanced, each participant is paid his individualized price, on each
unit of fishing effort by the others.
This paper contributes to the literature in three directions. First, as an

illustration of our general model, we develop a variant of Clemhout and Wan
(1985), by introducing harvest costs and nonselective harvesting technologies.
This specification can be explicitly solved and, thus, serves as a benchmark ex-
ample within the paper. Second, the paper shows that the economic mechanism
constructed by Rouillon (2011), primarily designed to manage one species fish-
eries, also works for multispecies fisheries with nonselective harvesting. Third,
and less importantly, this paper transcribes in continuous time the analysis in
Rouillon (2011).
The rest of the paper is organized as follows. Section 2 sets the general

biologic and economic model. Section 3 states the benchmark specification and
caculates the open access and cooperative solutions. In section 4, we construct
our economic mechanism to regulate the fishery and derive some of its properties.
In section 5, we study the set of Nash equilibria of the associated difference game
and show our implementation result.

2 The model.

Consider a I-fishers and J-species model of a common property fishery. There
are I fishers i = 1, 2, ..., I. At each instant of time t, each fisher i chooses his
catch effort rate ei (t) ∈ R+. There are J species j = 1, 2, ..., J . The resource
state at time t is described with a vector x (t) = (xj (t))

J
j=1 ∈ RJ+. The initial

state is a fixed constant x0 = (x0j)
J
j=1 ∈ RJ+. At each instant t, the resource

state evolves according to the ordinary differential equation

ẋ (t) = f (e (t) ,x (t)) , x (0) = x0, (1)

where the function f = (fj)
J
j=1 is defined on R

I
+ × RJ+ and has values in RJ .

Each fisher i’s objective is to maximize∫ ∞
0

ui (e (t) ,x (t)) e
−δitdt, (2)

where ui is an instant utility function, defined on RI+ × RJ+ and having values
in R, and δi is a rate of time preference.

Let S be the set of all functions defined on RJ+ and having values in R+.
A stationary Makovian strategy for fisher i is a function si ∈ S. A vector
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s = (si)
I
i=1 ∈ SI is called a strategic profile or a policy.

Remark 1. A strategic profile (policy) s ∈ SI is said to be feasible if there
exists a unique state trajectory x (t) satisfying (1), with e (t) = s (x (t)), for all
t, and if the corresponding fishers’objectives (2), for all i, are well defined. In
the rest of the paper, only feasible strategic profiles (policies) are considered.

For all feasible strategic profile s = (si)
I
i=1 and initial state x0, letW

i (s;x0)
be defined by

W i (s;x0) =
∫∞
0
ui (e (t) ,x (t)) e

−δitdt,
where:
ẋ (t) = f (e (t) ,x (t)) , x (0) = x0,
e (t) = s (x (t)) .

(3)

Definition 1. A stationary Markovian Nash equilibrium is a vector s∗ = (s∗i )
I
i=1 ∈

SI such that, for all i, si and x0,W i (s;x0) ≥W i ((s∗/si) ;x0), where (s∗/si) =(
s∗1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
I

)
.

For all feasible policy s = (si)
I
i=1 and initial state x0, let

W (s;x0) =
∑I
i=1W

i (s;x0) . (4)

Definition 2. An optimal policy is a vector s0 =
(
s0i
)I
i=1
∈ SI such that, for all

s and x0, W
(
s0;x0

)
≥W (s;x0).

3 A benchmark specification.

In this section, as an illustration of the general model, we propose a tractable
specification of our biologic and economic model. This framework allows us to
explicitly characterize a stationary Markovian Nash equilibrium and the optimal
policy, in Propositions 1 and 2 respectively.

We use a variant of Clemhout and Wan (1985), with two differences. First,
we abandon their implicit assumption of a perfectly selective harvesting, and
replace it by that of a nonselective harvesting technology. This assumption is
more realistic in many fisheries (Squires and al., 1998). Second, we general-
ize the model by introducing a harvest cost, which was set equal to zero in
Clemhout and Wan (1985).

Remark 2. Many models of multispecies fisheries in the literature, including
the seminal contributions of Clemhout and Wan (1985) and Fischer and Mir-
man (1996), rely on the assumption of perfectly selective harvesting and zero
harvesting costs. Models of multispecies fishery with nonselective harvesting
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and positive harvesting costs are Mesterton-Gibbons (1996) and Durohit and
Chaudhuri (2004). However, none can be explicitly solved.

For simplicity, we assume identical fishers in terms of technologies (cost of
effort and production function) and preferences (instant utility function and
rate of time preference) and consider symmetric stationary Markovian Nash
equilibria.

At each instant of time t, each fisher i’s bears a cost c per unit of effort
ei (t), with c ≥ 0, harvests each specie j in quantity hij (t) = qjei (t)xj (t), with
qj ≥ 0, and derives a utility aj ln (hij (t)) from its consumption, with aj ≥ 0.
Thus, for all i, the instant utility function is specified as

ui (e (t) ,x (t)) =
∑J
j=1 aj ln (hij (t))− cei (t) . (5)

The common rate of time preference is δi = δ, for all i.

For all j, the dynamics of the resource is represented by

ẋj (t) = xj (t)
(
αj −

∑J
k=1 βjk ln (xk (t))

)
−
∑I
i=1 hij (t) (6)

where, for all j, αj ∈ R, βjj > 0 and βjk ∈ R, for all k.

Remark 3. To analyse the resource dynamics, it is convenient to define
y = (yj)

J
j=1 = (ln (xj))

J
j=1. Then, an equilibrium is a state y∗ such that∑J

k=1 βjky
∗
k = αj , fo all j. It is globally stable if, and only if, the eigenval-

ues of the matrix β =
(
βjk
)J
j,k=1

have negative real parts.

Proposition 1 below characterizes a stationary Markovian Nash equilibrium
of the differential game.

Proposition 1. Assume that there exists A∗ =
(
A∗j
)J
j=1
∈ RJ such that δA∗j +∑J

k=1A
∗
kβkj = aj, for all j, and

∑J
j=1A

∗
jqj+c > 0. Let e

∗ =
(∑J

j=1 aj

)
/
(∑J

j=1A
∗
jqj + c

)
.

The strategic profile s∗ = (s∗i )
I
i=1, where s

∗
i (x) = e∗, for all i and x, defines a

stationary Markovian Nash equilibrium of the differential game.

Proof. We show that the policy s∗ = (s∗i )
I
i=1, where s

∗
i (x) = e∗, for all i and

x, satisfies the HJB equation 1

δV i (x) = max
ei∈R+

{ ∑J
j=1 aj ln (qjeixj)− cei

+
∑J
j=1 V

i
j (x)xj

(
αj −

∑J
k=1 βjk ln (xk)− qj ((I − 1) e∗ + ei)

) } .
(7)

1Here and below, V ij (x) is the partial derivative of V
i (x) with respect to xj .
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where

V i (x) =
∑J
j=1A

∗
j ln (xj) +B

∗,

A∗j = (1/δ)
[
aj −

∑J
k=1A

∗
kβkj

]
, for all j,

B∗ = (1/δ)
∑J
j=1

[
Iaj (ln (qje

∗)− 1) +A∗jαj
]
,

e∗ =
(∑J

j=1 aj

)
/
(∑J

j=1A
∗
jqj + c

)
.

Using V ij (x) = A∗j/xj , for all j, and rearranging, (7) becomes

δV i (x) = max
ei∈R+


∑J
j=1

(
aj −

∑J
k=1A

∗
kβkj

)
ln (xj)∑J

j=1 aj ln (ei)−
(∑J

j=1A
∗
jqj + c

)
ei

+
∑J
j=1 aj ln (qj) +

∑J
j=1A

∗
jαj −

∑J
j=1A

∗
jqj (I − 1) e∗

 .
It is immediate to verify that the control (ei)

I
i=1 = (s

∗
i (x))

I
i=1 = (e

∗)
I
i=1 satisfies

the first order conditions(∑J
j=1 aj

)
/ei −

(∑J
j=1A

∗
jqj + c

)
= 0, for all i,

and, thus, maximizes the RHS of (7). After substitution, (7) writes

δV i (x) =
∑J
j=1

[(
aj −

∑J
k=1A

∗
kβkj

)
ln (xj) + aj (ln (qje

∗)− 1) +A∗j (αj − qj (n− 1) e∗)
]
.

and, using

A∗j = (1/δ)
[
aj −

∑J
k=1A

∗
kβkj

]
, for all j,

B = (1/δ)
∑J
j=1

[
aj (ln (qje

∗)− 1) +A∗j (αj − qj (n− 1) e∗)
]
,

we can confirm our conjecture that

V i (x) =
∑J
j=1A

∗
j ln (xj) +B

∗.

�

Proposition 2 below characterizes the optimal policy.

Proposition 2. Assume that there exists A0 =
(
A0j
)J
j=1
∈ RJ such that δA0j +∑J

k=1A
0
kβkj = naj, for all j, and

∑J
j=1A

0
jqj+c > 0. Let e

0 =
(∑J

j=1 aj

)
/
(∑J

j=1A
0
jqj + c

)
.

An optimal policy is s0 =
(
s0i
)I
i=1
, where s0i (x) = e0, for all i and x.

Proof. We show that the policy s0 =
(
s0i
)I
i=1
, where s0i (x) = e0, for all i and

5



x, satisfies the HJB equation 2

δV (x) = max
(ei)

I
i=1∈RI+


∑I
i=1

[∑J
j=1 aj ln (qjeixj)− cei

]
+
∑J
j=1 Vj (x)xj

(
αj −

∑J
k=1 βjk ln (xk)− qj

∑n
i=1 ei

)  .
(8)

where

V (x) =
∑J
j=1A

0
j ln (xj) +B

0,

A0j = (1/δ)
[
Iaj −

∑J
k=1A

0
kβkj

]
, for all j,

B0 = (1/δ)
∑J
j=1

[
Iaj

(
ln
(
qje

0
)
− 1
)
+A0jαj

]
,

e0 =
(∑J

j=1 aj

)
/
(∑J

j=1A
0
jqj + c

)
.

Using Vj (x) = A0j/xj , for all j, and rearranging, (8) becomes

δV (x) = max
(ei)

I
i=1∈RI+


∑J
j=1

(
Iaj −

∑J
k=1A

0
kβkj

)
ln (xj)

+
∑I
i=1

[∑J
j=1 aj ln (ei)−

(∑J
j=1A

0
jqj + c

)
ei

]
+n
∑J
j=1 aj ln (qj) +

∑J
j=1A

0
jαj

 .
It is immediate to verify that the control (ei)

I
i=1 =

(
s0i (x)

)I
i=1

=
(
e0
)I
i=1

satisfies
the first order conditions(∑J

j=1 aj

)
/ei −

(∑J
j=1Ajqj + c

)
= 0, for all i,

and, thus, maximizes the RHS of (8). Subtituting, (8) writes

δV (x) =
∑J
j=1

[(
Iaj −

∑J
k=1A

0
kβkj

)
ln (xj) + Iaj

(
ln
(
qje

0
)
− 1
)
+A0jαj

]
,

and, using

A0j = (1/δ)
[
Iaj −

∑J
k=1A

0
kβkj

]
, for all j,

B0 = (1/δ)
∑J
j=1

[
Iaj

(
ln
(
qje

0
)
− 1
)
+A0jαj

]
,

we verify that
V (x) =

∑J
j=1A

0
j ln (xj) +B

0.

�

The literature often identifies the stationary Markovian Nash equilibrium
with the open access solution and the optimal policy with the cooperative so-
lution (Levhari and Mirman, 1980; Fischer and Mirman, 1996). A well-known
result is that open access leads to the "tragedy of the commons" (Gordon, 1954),

2Here and below, Vj (x) is the partial derivative of V (x) with respect to xj .

6



i.e. to overfishing with respect to the cooperative solution. The following corol-
lary of Propositions 1 and 2 displays a necessary and suffi cient condition under
which the "tragedy of the commons" arises within the framework considered
here.

Corollary 1. There is overfishing under the open access solution, with respect
to the cooperative solution (i.e., e∗ > e0) if, and only if,

∑J
j=1

(
A∗j −A0j

)
qj =

(1− 1/I)
∑J
j=1A

∗
jqj > 0.

Proof. Immediate, remarking that A∗j = (1/I)A
0
j , for all j, and remembering

that e∗ =
(∑J

j=1 aj

)
/
(∑J

j=1A
∗
jqj + c

)
and e0 =

(∑J
j=1 aj

)
/
(∑J

j=1A
0
jqj + c

)
.

�

4 The economic mechanism.

A mechanism is a pair (M,ρ), consisting of a message space M ≡ ×Ii=1Mi and
an outcome function ρ.
Under the mechanism, each participant i is asked to announce a message

mi in Mi. The outcome function ρ is a mapping from M into RI+ × RI , which
translates joint messages m = (mi)

I
i=1 into efforts (Ei (m))

I
i=1 and transfers

(Ti (m))
I
i=1 to be implemented by the participants.

The specific mechanism used below is as follows.
We let Mi ≡ RI × RI+, for all i. A generic message of agent i is denoted

mi =
(
(Eik)

I
k=1 , (Pik)

I
k=1

)
.

The component Eik is interpreted as a fishing effort agent i is willing for
agent k. Likewise, the component Eii is a fishing effort that agent i is willing
for himself. The component Pik is a compensatory price that agent i is proposing
to pay to agent k per unit of his own fishing effort. Finally, Pii is a compensatory
price that agent i is willing to receive per unit of the other participants’fishing
efforts.

Agent i’s fishing effort is given by

Ei (m) = (1/I)max
{
0,
∑I
k=1Eki

}
. (9)

In order to obtain the transfer to be paid by agent i, several steps are needed.
To begin with, for all k, rearrange the sequence (Pik)

I
i=1 in ascending order.

In case where Pik = Pjk, for some i and j, rearrange in ascending order of
indexes. Then, define the agent k’s personalized price Pk (m) as the N -th term
of the ordered sequence, with N = I/2, if I is even, and N = (I + 1) /2, if I is
odd.
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Finally, agent i’s transfer is given by

Ti (m) =
∑
j 6=i Pj (m)Ei (m)− Pi (m)

∑
j 6=iEj (m) . (10)

The following properties of the mechanism will prove to be useful below.

Property 1. For all m ∈M and all (ek)
I
k=1 ∈ RI+, each participant i can report

a message m′i such that (Ek (m/m′i))
I
k=1 = (ek)

I
k=1 and (Pk (m/m′i))

I
k=1 =

(Pk (m))
I
k=1, where (m/m′i) = (m1, ...,mi−1,m

′
i,mi+1, ...,mI).

Property 1 means that under the mechanism, each participant is able to
decide the efforts of everyone, without modifying the current system of individ-
ualized prices.

Proof. Pick m ∈ M and (ek)
I
k=1 ∈ RI+. Consider any agent i. Let m′i =(

(E′ik)
I
k=1 , (P

′
ik)

I
k=1

)
be such that, for all k, E′ik = Iek −

∑
j 6=iEjk and P

′
ik =

Pik. It is immediate that Ek (m/m′i) = (1/I)max
{
0, E′ik +

∑
j 6=iEjk

}
= ek

and Pk (m/m′i) = Pk (m), for all k. �

Property 2. Assume that I ≥ 3. Given any (pk)Ik=1 ∈ RI+, let m ∈ M be any
joint message such that (Pik)

I
k=1 = (pk)

I
k=1, for all i. Then, (Pk (m))

I
k=1 =

(Pk (m/m′i))
I
k=1 = (pk)

I
k=1, for all i and m

′
i ∈Mi.

Property 2 states that, whenever all agents announce the same system of
individualized prices, the mechanism implements it and no unilateral deviation
by a single agent can modify it. (It is equivalent to say that, whenever all agents
but one report the same price system, then the mechanism enforces it.)

Proof. Let (pk)
I
k=1 ∈ RI+. Let m ∈M be such that (Pik)

I
k=1 = (pk)

I
k=1, for all

i.
By definition, for all k, Pk (m) is the N -th term of the sequence (Pik)

I
i=1,

rearranged in ascending order of values, and then of indexes. Since (Pik)
I
i=1 =

(pk, ..., pk), we have Pk (m) = pk.
Now, consider any i and m′i ∈ Mi. Let (P ′ik)

I
k=1 be the associated vector

of personalized prices announced by i. By definition, for all k, Pk (m/m′i) is
the N -th term of the sequence

(
P1k, ..., P(i−1)k, P

′
ik, P(i+1)k..., PIk

)
, rearranged

in ascending order of values, and then of indexes. The ordered sequence is:

(P ′ik, pk, ..., pk) , if P
′
ik < pk,

(pk, ..., pk) , if P ′ik = pk,

(pk, ..., pk, P
′
ik) , if pk < P ′ik.

In all cases, given that I ≥ 3, we obtain Pk (m/m′i) = pk. �
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Property 3. For all m ∈M ,
∑I
i=1 Ti (m) = 0.

In other words, the mechanism (M,ρ) is balanced.

Proof. For all m ∈M , notice that the transfer Ti (m) can also be written as:

Ti (m) =
∑I
j=1 Pj (m)Ei (m)− Pi (m)

∑I
j=1Ej (m) .

Summing over i, one directly obtains:∑I
i=1 Ti (m) = 0,

proving that the mechanism (M,ρ) is balanced. �

5 Regulated Multispecies Fishery.

Suppose that the fishery is regulated by using repeatedly the mechanism defined
above. With the dynamics of the resource state, this defines a differential game
(Dockner and al., 2000), where the fishers’actions are reports of messages from
their message space. Here, we define and analyse the stationary Markovian
Nash equilibria of this differential game.

Consider the differential game induced by (M,ρ). A stationary Markovian
strategy for fisher i is a function σi defined on RJ+ and having values in Mi. For
all σ = (σi)

I
i=1 and x0, define

J i (σ;x0) =
∫∞
0
[ui (e (t) ,x (t))− ti (t)] e−δitdt

subject to:
ẋ (t) = f (e (t) ,x (t)) , x (0) = x0,
e (t) = (Ei (σ (x (t))))

I
i=1 ,

ti (t) = Ti (σ (x (t)))

(11)

Definition 3 below restates Definition 1 using the appropriate notations,
corresponding to the differential game associated with (M,ρ).

Definition 3. A stationary Markovian Nash equilibrium of the differential game
induced by (M,ρ) is a vector σ∗ = (σ∗i )

I
i=1 such that, for all i, σi and x0,

J i (σ∗;x0) ≥ J i ((σ∗/σi) ;x0), where (σ∗/σi) =
(
σ∗1, ..., σ

∗
i−1, σi, σ

∗
i+1, ..., σ

∗
I

)
.

5.1 Optimality.

Proposition 3 proves that a stationary Markovian Nash equilibrium of the differ-
ential game associated with the mechanism (M,ρ) induces an optimal utilization
of the resource.
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Proposition 3. If σ∗ is a stationary Markovian Nash equilibrium of the differ-
ential game induced by (M,ρ), then the policy s0 =

(
s0i
)I
i=1
, where s0i (x) =

Ei (σ
∗ (x)), for all i and x, is an optimal policy.

Proof. Let σ∗ be a stationary Markovian Nash equilibrium of the differential
game induced by (M,ρ).
Assume, by way of contradiction, that there exists an initial state x0 and a

feasible policy s such that

W (s;x0) >
∑I
i=1 J

i (σ;x0) . (12)

Denote e (t) and x (t), for all t, the time paths of the fisher’s efforts and
resource stock, respectively, associated with the policy s, starting from the
initial state x0.
By property 1, used at each point x, each fisher i can find a strategy σi such

that, for all x,

(Ek ((σ
∗/σi) (x)))

I
k=1 = (sk (x))

I
k=1 , (13)

(Pk ((σ
∗/σi) (x)))

I
k=1 = (Pk (σ

∗ (x)))
I
k=1 . (14)

From (13), it is clear that the strategic profile (σ∗/σi) implements the same time
paths of the fisher’s efforts and resource stock as the policy s. Moreover, from
(14), the associated time path of the price system is (Pk ((σ∗/σi) (x (t))))

I
k=1 =

(Pk (σ
∗ (x (t))))

I
k=1, for all t. Thus, we have

Ji ((σ
∗/σi) ,x0) =

∫ ∞
0

[ui (e (t) ,x (t))− ti (t)] e−δitdt,

where, for all t,

ti (t) = Ti ((σ
∗/σi) (x (t))) ,

=
∑
j 6=i Pj (σ

∗ (x (t))) ci (t)− Pi (σ∗ (x (t)))
∑
j 6=i cj (t) .

Considering a similar unilateral deviation σi, by each player i in turn, and
summing over i, we get, by property 3,∑I

i=1 ti (t) = 0,

and, therefore,

∑I
i=1 Ji ((σ

∗/σi) ,x0) =
∑I
i=1

∫ ∞
0

ui (e (t) ,x (t)) e
−δitdt, (15)

= W (s;x0) .

Now, as σ∗ is a Nash equilibrium, we have, for all i,

Ji (σ
∗,x0) ≥ Ji ((σ∗/σi) ,x0) ,
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which implies, by summation over i, that∑I
i=1 Ji (σ

∗,x0) ≥
∑I
i=1 Ji ((σ

∗/σi) ,x0) . (16)

Together, (15) and (16) imply∑I
i=1 Ji (σ

∗,x0) ≥W (s;x0) ,

which contradicts our assumption (12).
Finally, as (M,ρ) is balanced, by property 3, and

∑I
i=1 Ji (σ

∗,x0) ≥W (s;x0),

for all s and x0, it follows that the policy s0 =
(
s0i
)I
i=1
, where s0i (x) =

Ei (σ
∗ (x)), for all i and x, is an optimal policy. �

5.2 Existence.

Considering the biologic and economic environment in Section 3, given by (5)
and (6), Proposition 4 identifies a stationary Markovian Nash equilibrium to
implement to the optimal policy, stated in proposition 2.

Proposition 4. Consider the biologic and economic environment described in
Section 3. Assume that there exists A0 =

(
A0j
)J
j=1
∈ RJ such that δA0j +∑J

k=1A
0
kβkj = naj, for all j, and

∑J
j=1A

0
jqj+c > 0. Let e

0 =
(∑J

j=1 aj

)
/
(∑J

j=1A
0
jqj + c

)
and p0 = (1/I)

∑J
j=1A

0
jqj. The strategic profile σ

∗ = (σ∗i )
I
i=1, where σ

∗
i (x) =((

e0
)I
i=1

,
(
p0
)n
i=1

)
, for all i and x, defines a stationary Markovian Nash equi-

librium of the differential game induced by (M,ρ).

Proof. Consider the strategic profile σ∗ = (σ∗i )
I
i=1, where σ

∗
i (x) =

((
e0
)I
i=1

,
(
p0
)n
i=1

)
,

for all i and x.
By definition of (M,ρ), we have 3

(Ei (m
∗))

I
i=1 =

(
e0
)I
i=1

,

(Pi (m
∗))

I
i=1 =

(
p0
)I
i=1

,

(Ti (m
∗))

I
i=1 = (0)

I
i=1 .

We must show that fisher i’s stationary Markovian strategy σ∗i (x) =
((
e0
)I
i=1

,
(
p0
)n
i=1

)
satisfies the HJB equation, for all x, 4

δv (x) = max
mi∈Mi

{ ∑J
j=1 aj ln (qjEi (m

∗/mi)xj)− cEi (m∗/mi)− Ti (m∗/mi)

+
∑J
j=1 vj (x)xj

(
αj −

∑J
k=1 βjk ln (xk)− qj

∑I
k=1Ek (m

∗/mi)
) } ,

3Here and below, we denote m∗ = σ∗ (x) =
(
σ∗1 (x) , σ

∗
2 (x) , ..., σ

∗
I (x)

)
.

4Here and below, we denote (m∗/mi) =
(
σ∗1 (x) , ..., σ

∗
i−1 (x) ,mi, σ

∗
i+1 (x) , ..., σ

∗
I (x)

)
.

vj (x) is the partial derivative of v (x) with respect to xj .
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where
v (x) = (1/I)V (x) = (1/I)

[∑J
j=1A

0
j ln (xj) +B

0
]
.

From property 1, fisher i can findmi to attain any vector of efforts (Ek (m∗/mi))
I
k=1 =

(ek)
I
k=1 ∈ RI+. From property 2, whatever the unilateral deviation mi by fisher

i, (Pk (m))
I
k=1 = (Pk (m/m′i))

I
k=1 =

(
p0
)I
k=1

. Therefore, to prove that σ∗i (x) is

fisher i’s best-reply, it will be suffi cient to show that (ek)
I
k=1 =

(
e0
)I
k=1

satisfies,
for all x,

δv (x) = max
(ek)

I
k=1∈RI+

{ ∑J
j=1 aj ln (qjeixj)−

(
(I − 1) p0 + c

)
ei + p

0
∑
k 6=i ek

+
∑J
j=1 vj (x)xj

(
αj −

∑J
k=1 βjk ln (xk)− qj

∑I
k=1 ek

) } .
Using vj (x) = (1/I)

(
A0j/xj

)
and p0 = (1/I)

∑J
j=1A

0
jqj , for all j, and

rearranging, we get

δv (x) = max
(ek)

I
k=1∈RI+


∑J
j=1

(
aj − (1/I)

∑J
k=1A

0
kβkj

)
ln (xj)

+
∑J
j=1 aj ln (ei)−

(∑J
j=1A

0
jqj + c

)
ei

+
∑J
j=1 aj ln (qj) + (1/I)

∑J
j=1A

0
jαj

 . (17)

The control ek = e0, for k = i, satisfies the first order conditions(∑J
j=1 aj

)
/ei −

(∑J
j=1A

0
jqj + c

)
= 0,

and, thus, maximizes the RHS of (17). Moreover, as ek, for all k 6= i, vanished
from the RHS of (17), ek = e0, for all k 6= i, trivially maximizes it.

Thus, substituting (ek)
I
k=1 =

(
e0
)I
k=1

and rearranging, we get

δv (x) = (1/I)
∑J
j=1

[(
Iaj −

∑J
k=1A

0
kβkj

)
ln (xj) + Iaj

(
ln
(
qje

0
)
− 1
)
+A0jαj

]
.

Using

A0j = (1/δ)
[
Iaj −

∑J
k=1A

0
kβkj

]
, for all j,

B0 = (1/δ)
∑J
j=1

[
Iaj

(
ln
(
qje

0
)
− 1
)
+A0jαj

]
,

we can confirm that

v (x) = (1/I)
[∑J

j=1A
0
j ln (xj) +B

0
]
.

�

6 Conclusion.

In progress.
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