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Alper Nakkas†

Vanderbilt University

Abstract

Decision makers often rely on recommendations of experts, who are more efficient and pro-

ductive at processing noisy information. This paper investigates the consequences of delegating

decision power to an expert in return of a simple contract when the expert has an ability to

create a surplus at each state of the uncertainty. We identify that surplus bringing behavior

together with asymmetric information leads to two different types of effects, which we refer to

as adjustment effect and exclusion effect. While the direction of the adjustment effect may be

ambiguous, the exclusion effect causes a divergence from the optimal decision. We show that

delegation of decision power can, in some circumstances, benefit not only the decision maker

and the expert but also other parties that may be affected by the decision.

1 Introduction

Decision under uncertainty becomes more and more difficult as the amount of information needs

to be processed in order to reach reliable conclusions expands. As a natural result, decision makers

often rely on recommendations of experts, who are more efficient and productive at processing

noisy information. While an expert can be thought as a profit maximizing entity, in many economic

circumstances, it may simply be a person or firm that benefits from the better judgements of the

decision maker.

There are many situation in which the decision makers rely on the experts, even without paying

any virtual costs. Individuals almost always seek advices from their family members, friends, and

colleagues, especially for big decisions that involve uncertainties. In most trials, litigants delegate

their decision powers concerning their cases to lawyers because the lawyers, as experts, not only

improve the likelihood of winning the clients’ cases, but also have a positive impact on the amount

of the award that the plaintiff will receive in the case of winning the trial. Doctors, mechanics..etc

are other good examples where the decision maker’s rely on the experts’ opinions.

∗This is a very preliminary draft. Please do not circulate.
†Owen Graduate School of Management, Nashville, TN 37203, USA. Contact: alper.nakkas@owen.vanderbilt.edu.
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Firms also rely on the recommendations of the experts in many situations. For example, in the

retailing industry, many firms seek strategic recommendations from their leading manufacturers

regarding key category management decisions such as category assortment, a practice often referred

as category captainship. The category captains are not paid employers of the retailers but they

benefit indirectly from any increase in the category demand. For example, Coors Brewing, which

is the third-largest brewing company in the United States, helps for a number of its retail clients

in the alcoholic beverages category to improve their profitability. The key insight provided by

Coors Brewing company to one of their retail clients was that the retail chain’s core shopper best

matched the characteristics of premium light beer purchasers. However, the retailer was not able to

convert its shoppers into premium light beer buyers. In addition, they did a study on what products

perform well in a particular region and developed best practice planograms for the retailers for which

they served as a category captain (Progressive Grocer 2007). For another retailer, Small Planet

strategists found that placement of the organic/natural items was not a critical success factor when

compared to things such as the type of consumer (heavy vs light), variety, and duration of shopping

trip (Progressive Grocer 2007).

When there are uncertainties associated with the decision making process, an expert can be

helpful in different dimensions such as generating key insights to improve operation aspects or

surplus enhancing strategies. In this paper, we focus on two types of benefits that the experts

can provide to the decision makers. The experts usually (1) provide insights which are not readily

available to the decision makers and help decision makers take a more informed action and/or (2)

improve the inefficiencies in the decision making process, which corresponds to an increase in the

decision maker’s surplus. The key consumer insights provided by Coors Brewing is an example

of former type of benefit, whereas a lawyers ability to determine the evidences that improve the

likelihood of winning the trial is an example of the latter type of benefit.

Ideally, a decision maker who plans to delegate her decision making privileges to an expert

(or, equivalently, follow the expert’s recommendations) would write a contract that aligns the

incentives of the expert. There is a vast literature that focuses on this issue. However, it is not

always possible for decision makers to write optimal contracts. In many cases, decision makers

prefer simple contracts which are easy to implement and monitor. Motivated by the existence of

imperfect contracts, the goal of this paper is to better understand the consequences of experts

for decisions under uncertainty. To this end, we consider a model where a decision maker relies

on an expert for a decision under uncertainty. First, we consider a model where the decision

maker is responsible for taking the optimal action when the decision is surrounded by uncertainty.

Then, we consider a simple delegation game where the decision maker relies on the decision of the

expert. We assume that the decision maker benefits from using an expert for decisions because
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the expert can (1) provide insights not readily available to the decision maker and (2) increase

the surplus. Our results are based on a comparison of these two models. We show that surplus

bringing behavior together with asymmetric information leads to two different types of effects, which

we refer adjustment effect and exclusion effect. While the direction of the adjustment effect may

be ambiguous for the decision, the exclusion effect causes a divergence from the optimal decision.

2 The Model

A decision maker (D) faces an optimization problem, which inherently depends on a random event

m. The decision maker observes the value of the random event, m, with density f(m). The

differentiable cumulative distribution function, F (m), is supported on [0, 1]. Let µ and σ be the

mean and variance of m, respectively. The decision maker has a twice continuously differentiable

von Neumann-Morgenstern utility function U(y,m, n), where y ∈ R, a real number, is the action

taken by the decision maker and n ∈ R measures the information processing ability of the decision

maker. Throughout the paper we shall assume that, for each m, denoting partial derivatives by

subscripts in the usual way, U1(y,m, n) = 0 for some y, and U11(·) < 0, so that U has a unique

maximum for each given m and n; and that U12(·) < 0 and U13(·) > 0. The latter conditions

ensure that the best value of y from a fully informed agent’s standpoint is a strictly decreasing

function of the true value of m and strictly increasing function of n, respectively.1 For simplicity,

we assume that U is linear in the random variable m. In order to differentiate between directions

of the actions, we say that the action y′ is softer than y if y′ < y and more aggressive if y′ > y.

2.1 Decision under Uncertainty

We start with the decision maker’s problem when she chooses the optimal action under uncertainty.

The decision maker maximizes her expected utility by solving

max
y

∫ 1

0
U(y,m, n)f(m)dm. (1)

Let yD be the decision maker’s optimal choice of action when the decision maker chooses her action

under uncertainty.

Proposition 1. The decision maker’s optimal action under uncertainty, yD = y(µ, n), is a de-

creasing function of unconditional expected event µ = E[m] and increasing function of the decision

maker’s information processing ability n.

1These assumptions are not critical for the purpose of the paper. We could have similar results with different
assumptions on cross partial derivatives. We use these assumptions only to have a clear exposition.
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In order to choose the optimal decision, the decision maker averages all possible marginal

benefits and costs in all states of the random variablem and balances these averages. This averaging

behavior of the decision maker naturally leads to a sub-optimal choice of action. Due to the sub-

optimality of the action to be taken, there is room for an improvement in the outcome and the

decision maker has incentives to seek help from an expert. The decision maker’s optimal action

under uncertainty, yD, is determined by the decision maker’s ability to process information and the

moments of the distribution of random variable m.

2.2 Decision with an Expert

We now consider the situation that the decision maker seeks help from an expert (E). We capture

the expertise of the expert by assuming that the expert has private information about m, whereas

the decision maker observes the value of a random variable, m, with density f(m). The decision

maker’s utility U(y,m, δn) is determined by the action taken by the decision maker upon receiving

the expert’s recommendation, the true value of m, and the expert’s information processing ability

δn. We assume that δ ≥ 1 in order to capture the expert’s superior efficiency in processing the

information. Therefore, the expert is beneficial for the decision maker not only because he eliminates

the randomness from the decision process but also he generates a surplus for the decision maker.

We focus on the extreme situation that the expert’s utility enhancing ability is known to the

decision maker and it is presumably a result of the cooperation between the expert and the decision

maker.2 For instance, a category captain increases demand...etc. In practice, the expert’s recom-

mendation can be implemented immediately or can be censored by the decision maker (e.g., getting

a second opinion). For simplicity, we assume that it is too costly for the decision maker to censor

the recommendations of the expert. The expert’s utility is presumably a function of the action he

recommends as an expert, the true value of the state, and his information processing ability and

denoted by V (y,m, δn). We assume that V (y,m, δn) is continuous in y and, for each m and δn, a

unique ȳE = argmaxy V (y,m, δn) exists.

The decision maker and the expert plays a delegation game. The sequence of events in the game

is as follows. First, the expert observes the true state of m (i.e., his “type”). Then, the decision

maker offers a simple contract. We define a contract as simple if the contract requires a single

threshold. Thresholds here are considered on a broad spectrum and can be imposed on variables

such as profit, volume of sales, number of products, quality level...etc. The utility that is generated

by the threshold is denoted as T . After a utility threshold T is offered, the expert either accepts

or rejects the offer. If the offer is accepted, then the expert recommends an action y, which in

return is implemented by the decision maker. For simplicity, we assume that if the expert accepts

2We consider a situation in which the expert’s ability is uncertain for the decision maker in the robustness section.
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the contract and cannot achieve the goal set by the decision maker, then the expert pays a very

high penalty to the decision maker. If the expert rejects the contract offer, then the decision maker

updates her beliefs about m and decides on the action y. Technically, we model the delegation

game as a screening game in which the (uninformed) decision maker makes a take-it-or-leave-it

offer to the (informed) expert. All aspects of the game except m are common knowledge. We are

interested in the pure strategy perfect Bayesian equilibria of the game.

2.3 The First Best Benchmark

Before we start the analysis of the delegation game, it is useful the determine the first best bench-

mark for the decision maker. The first best outcome of the decision maker is a solution of the

decision maker’s problem when she knows the true state of m and, moreover, she is as efficient as

the expert in processing information. Thus, the first best benchmark is the solution of the problem

max
y

U(y,m, δn). (2)

Let yF be the optimal action in the first best benchmark. Because there is no uncertainty, the

decision maker does not average the marginal benefits and costs across all states of the random

event but rather balances marginal benefit and cost at the true state m while enjoying the increased

information processing ability.

Proposition 2. The decision maker’s first best action, yF = y(m, δn), is a decreasing function of

the event m and increasing function of the expert’s information processing ability δn.

2.4 Delegation Game

In order to determine whether the expert accepts a given utility threshold T , we first consider the

optimal decision of the expert. The expert’s problem for a given level of the threshold T is

max
y

V (y,m, δn)

s.t. U(y,m, δn) ≥ T.

The expert chooses his optimal action from the feasible set that is determined by the expert’s

ability to generate extra surplus as well as the target determined by the decision maker. The

following proposition shows that the expert has a unique best response for each threshold T set by

the decision maker.

Lemma 1. There exists a unique solution yE = y(m, δn, T ) that is monotonic in T for the expert’s

problem.
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Intuitively, the expert chooses his optimal action under the constraint that the decision maker

is satisfied with the outcome of the action. Let Y (m, δn, T ) be the set of feasible actions for the

expert. Notice that because U is a concave function, Y (m, δn, T ) is a closed range on the real line.

Let yLE and yHE be the lower and upper bounds of Y (m, δn, T ), respectively. If the expert’s utility

is monotonic on Y (m, δn, T ), then the optimal choice of the expert is on the boundary and either

yLE or yHE . However, if the expert’s utility is not monotonic on Y (m, δn, T ), then the expert chooses

an action in the interior of Y (m, δn, T ) since V is a continuous function and Y is a closed set. The

decision maker is better off in the latter situation, simply because the incentives of the decision

maker and the expert are better aligned. Then, the optimal action that the expert chooses has the

following form:

yE = y(m, δn, T ) =


yLE , ȳE < yLE ;

ȳE , ȳE ∈ [yLE , y
H
E ];

yHE , ȳE > yHE .

(3)

The function yE represents the best response behavior of the expert for a given threshold under

the condition that the expert has already accepted the decision maker’s offer. Notice that yE is

increasing in T when ȳE < yF since yLE is increasing in T . Similarly, yE is decreasing in T when

ȳE > yF since yHE is decreasing in T . Intuitively, by increasing the threshold, the decision maker

shrinks the set of feasible actions for the expert, which forces the expert to recommend an action

that is closer to the decision maker’s ideal action. Throughout the rest of the paper, without loss

of generality, we assume that ȳE < yF for all types of the expert.

Anticipating the best response behavior of the expert, the decision maker tailors her target

selection. The decision maker screens the types of the expert by choosing a borderline type. Let mb

be the borderline type of the expert, who can deliver at most T . That is, for a given threshold T ,

the borderline type mb is the value of m that satisfies U(m, δn) = T . Thus, the range [0,mb] is the

set of expert types that cannot accept the utility threshold T when the expert’s ability is δn. The

borderline type chooses an action that coincides with the decision maker’s first best action when

the true state is mb and the expert’s information processing ability is δn. Notice that the decision

maker does not necessarily try to choose an action that would leave the expert indifferent between

accepting or rejecting the contract, which is typical in principal agent models. The decision maker

rather chooses an action that brings the maximum possible surplus when the expert’s incentive

compatibility constraint is never binding. Let T (mb, δn) be the utility threshold that generates mb

as the borderline type when the expert’s information processing ability is δn.

Lemma 2. T (mb, δn) is an increasing function of both mb and δ.

Lemma 2 shows that there is a one-to-one correspondence between mb and T (mb, δn) for any
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δ ≥ 1. So, the decision maker’s problem can be written as choosing her optimal action by solving

the problem

max
mb

∫ mb

0
U(µb, n)f(m)dm+

∫ 1

mb

T (mb, δn)f(m)dm (4)

where µb = E[m|m ≤ mb] is the expected value of m when the decision maker knows that the

random event m is in the range of [0,mb]. The first term of the decision maker’s expected profit is

the decision maker’s utility when the expert rejects the offer and the second term is her utility when

the expert accepts the offer. While in the latter case the decision maker simply receives the utility

she asks for, in the former case she updates her beliefs about the true state of m and maximizes her

expected utility over the updated set of states. The reason for the change in the decision maker’s

optimal action in case of a rejection is that the decision maker updates her beliefs about m as a

Bayesian agent. In particular, once the decision maker offers a contract that is characterized by mb

and the expert rejects it, the decision maker would infer that the true state of m cannot be higher

than mb since the expert would certainly accept the offer in such a case.

Lemma 3. The decision maker’s optimal strategy is to choose the borderline type m∗
b that solves

the first order condition

∂U(mb, δn)

∂mb
= λ(mb)

[
U(mb, δn)− U(µb, n)−mbf(mb)

∂U(µb, n)

∂µb

]

where λ(m) = f(m)
1−F (m) is the hazard rate function associated with the distribution of m.

The decision maker chooses the utility threshold that balances the total marginal cost and total

marginal benefit. On one hand, when the decision maker increases the borderline type marginally,

she benefits from (1) the decrease in the noise related to the true state of m in case of a rejection

and (2) the increase in the utility she will receive in case of an acceptance. While in the latter

case the increase in the utility is simply because at each agreement the decision maker will receive

more utility, in the former case it is due to the increased expected utility when the decision maker

decides on the action without seeking any help from the the expert. On the other hand, an increase

in the borderline type leads to a loss for the decision maker due to the possibility that the expert

rejects the contract for additional types. For these types, the decision maker loses the possible

improvement that the expert could have brought. Let m∗
b be the optimal borderline type and

T ∗ = T (m∗
b , δn) be the utility threshold that generates m∗

b as the borderline type.
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3 Equilibrium and Results

We start with the definition of pure strategy perfect Bayesian equilibrium in our context. A strategy

profile is defined as S = (SD, SE) where SD and SE represent the strategies of the decision maker

and the expert, respectively. The decision maker’s strategy SD is consist of her utility threshold T

choice and the action choice when the expert rejects the utility threshold. The expert’s strategy SE

is consist of a decision of accept (A) or reject (R) for each type of the expert represented by ϕ(m)

and the action taken by each type when the utility threshold is accepted. Let U(S) and V (S) be

the utilities that the decision maker and the experts receive, respectively, when the strategy profile

is S. The beliefs of the decision maker about the expert’s type when the expert rejects the offer is

represented by ξ(m), which attains a probability to each type m.

Definition 1. A strategy profile S∗ = (S∗
D, S

∗
E) and the belief structure ξ∗ is a perfect Bayesian

equilibrium if and only if it satisfies the following conditions:

Sequential Rationality: Given ξ∗,

E[U(S∗
D, S

∗
E)] ≥ E[U(SD, S

∗
E)] for any SD ̸= S∗

D

E[U(S∗
D, S

∗
E)] ≥ E[U(S∗

D, SE)] for any SE ̸= S∗
E

Bayes Consistency of Beliefs: Given S∗, the decision maker’s belief system ξ∗(m) is consistent

wherever possible. That is,
∫ 1
0 ξ∗(m)dm = 1 at each information set of the decision maker.

The above definition embeds the notion of the perfect Bayesian equilibrium in the following

sense. First, the decision makers strategy is a best response to what she knows at that point, what

the expert optimizes, and to her beliefs on the actual state of the random event. Second, the experts

strategy is a best response to what he knows at that stage (the decision maker’s utility threshold

request and true state of the random event) and his conjectures on the beliefs of the decision maker.

Finally, the decision makers actual beliefs and the experts conjectures on the decision makers beliefs

coincide and the probability assigned to every node is computed as the probability of that node

being reached given the strategy profile, i.e., Bayes’ rule.

We can now summarize the equilibrium behaviors and payoffs of the decision maker and the

expert. The following proposition shows that the strategies that are derived in the previous section

are indeed form a perfect Bayesian equilibrium with a reasonable belief structure.

Proposition 3. Let S∗
D = (T ∗, y(µ∗

b , n)), where µ∗
b = E[m|m ≤ m∗

b ], S
∗
E = (ϕ∗(m), y(m, δn, T ∗)),

and ϕ∗(m) = A when m ≥ m∗
b and ϕ∗(m) = R otherwise. Then, the strategy profile S∗ = (S∗

D, S
∗
E)

together with ξ∗(m) is a perfect Bayesian equilibrium, where ξ∗(m) = f(m) at the initial information
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set of the decision maker and

ξ∗(m) =


f(m)
F (m∗

b )
, m ≤ m∗

b ;

0, m > m∗
b ,

when the expert rejects the utility threshold offer T ∗, i.e., ϕ∗(m) = R.

In the equilibrium, the decision maker offers the utility threshold T ∗ and the expert accepts

the offer if m ≥ m∗
b and rejects it otherwise. By setting a utility threshold, the decision maker

benefits from two channels. First, even if the expert rejects the decision maker’s offer, the decision

maker learns something about the random event and makes a better informed decision in cases

where the expert rejects the offer. Second, in cases where the expert accepts the offer, the decision

maker enjoys a higher utility than the benchmark utility. We refer the utility gains of the decision

maker as a result of the first effect as the information value of the delegation game, whereas the

second one as the utility value of the game. Lemma 2 shows that the information value of the

delegation game is greater than the utility value for relatively low values of δ. This is because, as

δ increases, the expert’s help becomes more attractive, which increases the relative importance of

the information value against the utility value. Thus, the decision maker has to make a tradeoff

between the information and utility values of the delegation game.

Our next result is about the impact of the delegation of the decision power on the action taken.

Because the incentives of the decision maker and the expert are not perfectly aligned, the expert

tries to take an action that is closest to his ideal action, whereas the decision maker tries to make

the expert to take the action that is closest to her ideal action by setting a suitable target. The

following proposition summarizes the difference between the actions taken by the decision maker

and the expert. Let y∗E be the resulting action of the delegation game.

Proposition 4. There exists a type m∗ such that (i) if m ∈ [0,m∗
b), then y∗E > yD, (ii) if m ∈

[m∗
b ,m

∗], then y∗E ≥ yD, and (iii) if m ∈ (m∗, 1], then y∗E < yD. Moreover, the range [m∗
b ,m

∗]

exists if and only if δ ≥ δ∗, where δ∗ is such that y(m∗
b , δ

∗n, T ∗) = yD.

Proposition 4 suggests that the delegation of the decision right to an expert can make the action

taken more or less aggressive. We find that taking more or less aggressive action is due to two effects:

(1) the adjustment effect and (2) the exclusion effect. The adjustment effect can either make the

action more or less aggressive and is due to the decision maker’s imperfect knowledge about the

state of the random event and the increased efficiency that the expert brings into the decision

making process. In particular, the adjustment effect is a result of two potentially conflicting forces:

(1a) the increased information processing ability which leads to a more aggressive optimal action

and (1b) the elimination of uncertainty which makes the optimal action more or less aggressive.
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Figure 1: Comparison of the optimal actions taken by the decision maker and the expert as a
function of the random event.

When the true state of the random event is low (i.e., m is small), the adjustment effect suggests

a more aggressive optimal action since both the processing efficiency and better information lead

to an aggressive action. However, when the true state is high, the adjustment effect is ambiguous

since higher information processing efficiency leads to more aggressive action but better information

leads to a less aggressive one. The adjustment effect suggests a less aggressive action only if the

effect of better information dominates the effect of higher information processing. The magnitude

of the adjustment effect is measured by |yF (m) − yD| when the true state of the random event is

m. The exclusion effect, on the other hand, always prescribes a less aggressive action and is due to

the expert taking advantage of its position and changing the optimal action in a way to increase

his utility. The magnitude of the exclusion effect is measured by |yF (m)− yE | when the true state

of the random event is m.

The following two special cases delineate the drivers of the adjustment and exclusion effects.

First, when the expert is used for his information processing ability only (i.e., m is deterministic

and δ > 1), the optimal action taken by the expert is always more aggressive than the decision

maker’s optimal action choice, that is yE > yD (see Appendix B for proofs). The increase in the

action is entirely due to the increased information processing ability. On the other hand, when the

expert is used for elimination of uncertainty only (i.e., m is random and δ = 1), the expert’s optimal

action recommendation can be higher or lower than the decision maker’s optimal action choice. If

m is high, then yE < yD whereas if m is small, then yE > yD. In this case, the increase/decrease

in the optimal action is entirely due to the effect of better information. Therefore, we can conclude

that while the adjustment effect can be driven by either asymmetric information or the expert’s

ability to superior efficiency in processing noisy information, the exclusion effect is driven by both
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Figure 2: Comparison of the optimal actions taken by the decision maker and the expert as a
function of the random event.

effects simultaneously.

Figure 2 illustrates the impact of the adjustment and competitive exclusion effects on the

resulting action for δ ≥ δ∗. If the true values of the random event is small, the adjustment effect

prescribes a more aggressive action, whereas the exclusion effect demands a less aggressive one.

Because the magnitude of the adjustment effect is greater than the magnitude of the exclusion

effect (|yF (m) − yD| > |yF (m) − yE |), the net effect is a more aggressive action (yE > yD). On

the other hand, when the random event has a high impact, both the adjustment and the exclusion

effects demand a less aggressive action and therefore, the net effect is to take a softer action

(yE < yD). Notice that the adjustment effect reduces the action in this case since, for the chosen

parameter set, the action-reduction effect of better information dominates the action-expanding

effect of informational efficiency.

To summarize, Proposition 4 suggests that while the expert can lead to reduction in the optimal

action, this reduction is not always due to expert’s incentives but can also be due to the adjustment

effect, which is simply the necessary change for the optimal action to be taken. The adjustment

effect can cause a convergence or divergence from the optimal decision, whereas the exclusion effect

always causes a divergence.

4 Conclusions

We consider a stylized model where a decision maker relies on an expert for a decision under

uncertainty. The goal of our research is to investigate the impact of delegating decision power

when it is not possible to write an optimal contract, which in general requires substantial costly

analysis. Decision makers benefit from expert’s (1) superior knowledge about the nature of the
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decision and/or (2) efficiency in processing noisy information. Our results are along these two

dimensions.

The overall conclusion of our research is that while using experts for decision under uncertainty

can be an excellent value proposition for decision makers, the consequences of using experts should

be better understood by decision makers. We find that the consequences of using experts may

differ depending on what the experts are used for. First, situations where the decision maker needs

the expert for costly insights but the uncertainty surrounding the nature of the decision is well

understood are perfect candidates for relying on an expert.

Second, in situations where decision makers need insights only, decision makers can use experts

who are better in processing noisy information but should be aware that the experts should be

rewarded for providing insights. Depending on the value of the random event, relying on an expert

may result in an action that is softer or more aggressive when compared to the decision maker’s

original action decision. The divergence from the decision maker’s original action is entirely due

to the adjustment effect. Finally, situations where decision makers rely on experts to increase

the efficiency in processing noisy information and provide insights related to the decision are also

suitable for the use of experts but decision makers need to compensate experts for both his superior

information and efficiency. The overall convergence/divergence of the final decision from the optimal

decision depends on the magnitudes of the adjustment and exclusion effects.

Appendix

A. Proofs of Propositions and Lemmas

Proof of Proposition 1.

Proof. Because U is linear in m, the decision maker’s problem can be rewritten as

max
y

E[U(y,m, n)] = U(y, µ, n)

where µ = E[m]. Then, the decision maker maximizes her utility according to first order condition

U1(y, µ, n) = 0.

Because U is concave in y, this first order condition leads to an optimal decision as a function of µ
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and n, i.e., yD = y(µ, n). By taking the total derivative of the first order condition, we get

U11dy + U12dµ+ U13dn = 0

dy

dµ
= −U12

U11
< 0

dy

dn
= −U13

U11
> 0

The inequalities hold since U11 < 0, U12 < 0, and U13 > 0 by assumption.

Proof of Proposition 2.

Proof. The first order condition is U1(yF ,m, δn) = 0, which leads to yF = y(m, δn). By taking the

total derivative, we get

UD
11dy + UD

12dm+ nUD
13dδ = 0

dy

dm
= −UD

12

UD
11

< 0

dy

dδ
= −n

UD
13

UD
11

> 0

The inequalities hold since UD
11 < 0, UD

12 < 0, and UD
13 > 0 by assumption.

Proof of Lemma 1.

Proof. Let Y (m, δn, T ) ≡ {y : UD(y,m, δn) ≥ g(T )} is the set of actions that can generate threshold

T as a feasible outcome. That is, Y (m, δn, T ) determines the set of feasible actions to achieve the

threshold T for the expert. Notice that for high enough T , Y (m, δn, T ) is an empty set since

UD(y,m, δn) is concave in y and g(T ) is increasing in T . In other words, for each type of the

expert, there is a threshold level for which the expert is unable to deliver the target no matter what

action he takes.

We first show that Y (m, δn, T ) is convex and compact. If Y (m, δn, T ) is an empty set, we are

done. So, suppose that Y (m, δn, T ) is a non-empty set. Consider the special case that UD(y,m, δ) =

g(T ). Because UD is a concave function of y, there are at most two solutions for this problem.

Let y1(m, δn, T ) and y2(m, δn, T ) be those solutions, i.e., UD(y1,m, δn) = UD(y2,m, δn) = g(T ).

Obviously, y1, y2 ∈ Y (m, δn, T ). We now show that any z ∈ [y1, y2] also belongs to Y (m, δn, T ),

which is due to the concavity of UD. Because UD is concave, we must have

UD(z,m, δn) ≥ αUD(y1,m, δn) + (1− α)UD(y2,m, δn)

13



where z = αy1 + (1 − α)y2 and α ∈ [0, 1]. Because y1, y2 ∈ Y (m, δn, T ), we have UD(y1,m, δn) ≥
g(T ) and UD(y2,m, δn) ≥ g(T ), which together with the inequality above imply that UD(z,m, δn) ≥
g(T ). So, for any z ∈ [y1, y2], it must be true that z ∈ Y (m, δn, T ). Notice that this means

Y (m, δn, T ) is a closed range in the real line, which implies that Y (m, δn, T ) has to be compact.

Now, consider the expert’s preferred action ȳE , which is assumed to be different than the decision

maker’s optimal point. If ȳE ̸∈ [y1, y2] then UE is continuous and monotonic in [y1, y2]. In that

case, Weisstrass Theorem ensures that UE attains a unique maximum in the compact and convex

set Y (m, δn, T ). In particular, if ȳE < y1 the expert will choose y1 as the optimal action and if

ȳE > y2 she will choose y2. Finally, suppose that ȳE ∈ [y1, y2]. Then, the expert will choose ȳE

rather than y1 or y2. Thus, in any case, the expert will choose a unique action.

Now, suppose that the decision maker increases the threshold from T to T ′. This will result in a

shrink in the range of feasible actions, that is Y (m, δn, T ′) ⊂ Y (m, δn, T ) for T ′ > T . If the expert’s

most preferred action ȳE is in Y (m, δn, T ′), then y(m, δn, T ) = y(m, δn, T ′). But if ȳE is not in

Y (m, δn, T ′), then there are two cases: (i) if ȳE < y1(m, δn, T ′) then y(m, δn, T ) > y(m, δn, T ′)

and (ii) if ȳE > y2(m, δn, T ′) then y(m, δn, T ) < y(m, δn, T ′). It is straightforward to see that, in

all of these cases, the optimal choice of the expert is monotonic in T .

Proof of Lemma 2.

Proof. By definition of mb we have yE(mb, δn, T ) = yF (mb, δn). By taking the total derivative of

this equality, we get

∂yE
∂mb

dmb +
∂yE
∂δn

∂δn

∂δ
dδ +

∂yE
∂T

dT =
∂yF
∂mb

dmb +
∂yF
∂δn

∂δn

∂δ
dδ[

∂yE
∂mb

− ∂yF
∂mb

]
dmb +

[
∂yE
∂δn

− ∂yE
∂δn

]
∂δn

∂δ
dδ +

∂yE
∂T

dT = 0.

Thus, we can write the desired partial derivatives as

dT

dmb
= −

[
∂yE
∂mb

− ∂yF
∂mb

∂yE
∂T

]
and

dT

dδ
= −

[
∂yE
∂δn − ∂yF

∂δn
∂yE
∂T

]
∂δn

∂δ
.

Notice that ∂yF
∂mb

= 0 at mb by definition. First, suppose that ȳE < ȳD. Then, by Proposition 2 and

Lemma 1, we know that ∂yE
∂mb

≤ 0, ∂yE
∂δn < 0, ∂yF

∂δn > 0, and ∂yE
∂T > 0. Thus, dT

dmb
> 0 and dT

dδ > 0 when

ȳE < ȳD. Now, suppose that ȳE > ȳD. By Proposition 2 and Lemma 1, we know that ∂yE
∂mb

≥ 0,
∂yE
∂δn < 0, ∂yF

∂δn > 0, and ∂yE
∂T > 0. Thus, dT

dmb
< 0 and dT

dδ > 0 when ȳE < ȳD.

Proof of Lemma 3.
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Proof. Notice first that T (mb, δn) = U(mb, δn) by definition. Thus, the decision maker’s optimiza-

tion problem is equal to

max
mb

∫ mb

0
U(µb, n)f(m)dm+

∫ 1

mb

U(mb, δn)f(m)dm

By using the Leibniz’s Rule, we find that the first order condition of this problem is

U(µb, n)f(mb) +

∫ mb

0

∂U(µb, n)

∂µb

∂µb

∂mb
f(m)dm− U(mb, δn)f(mb) +

∂U(mb, δn)

∂mb
[1− F (mb)] = 0

and it determines the borderline type x∗b that is optimal for the retailer. Notice that µb = E[m|m ≤
mb] =

∫mb

0 mf(m)dm by definition and ∂µb
∂mb

= mbf(mb). By rearranging the first order condition,

we get

∂U(mb, δn)

∂mb
= λ(mb)

[
U(mb, δn)− U(µb, n)−

∂U(µb, n)

∂µb
mbf(mb)

]

where λ(mb) =
f(mb)

1−F (mb)
.

Proof of Proposition 3.

Proof. Suppose that the decision maker’s beliefs are specified by ξ∗(m). By Lemma 3, we know

that it is sequentially rational for the decision maker to offer the target T ∗ = T (m∗
b , δn). Notice

that the expert has always incentives to agree with the decision maker since his outside option

is zero. Notice also that the expert whose type is m will never accept the offer if m < m∗
b since

T (m, δn) < T (m∗
b , δn) by Lemma 2 and not delivering the target is prohibitively costly. Thus, it is

sequentially rational for the expert to agree with the offer whenm ≥ m∗
b and reject it when m < m∗

b .

Now, suppose that the players follow their sequentially rational strategies. Then, whenever the

decision maker see a rejection, she will infer that the expert cannot be a type m > m∗
b . Thus, the

decision maker updates her beliefs according to the Bayes’ rule, which gives us the belief structure

specified by ξ∗(m).

Proof of Proposition 4.

Proof. First, notice that ifm < m∗
b , then the expert rejects the offer and the decision maker updates

her beliefs and takes the action as in the case where she decides without the help of the expert;

which implies that y∗E = y(µb, n) > y(µ, n) = yD.

Now, suppose that m ≥ m∗
b . Notice that the decision maker will never choose a target that

is smaller than her utility when she takes the action without the help of the expert; that is,

T (m∗
b , δn) ≥ U(µ, n). Then, y∗E < yD when the expert’s type is m∗

b and δ = 1. This implies that

15



y∗E < yD for all m ≥ m∗
b . Let m∗ be a type such that y(m∗, δn) = yD. Notice that m∗ does not

have to be in the range [0, 1]. We know that y(·) is increasing in δ. Because y(m∗, δn) = yD and

y(·) is decreasing in m∗, we must have ∂m∗

∂δ > 0. Because y∗E < yD when δ = 1, there exists a δ∗

such that y∗E = yD for m∗
b , the minimum accepting type. Thus, the range [m∗

b ,m
∗] exists only if

δ ≥ δ∗. Also, if m ∈ [m∗
b ,m

∗], then y∗E ≥ yD = y(m∗, δn) for any δ ≥ δ∗. Similarly, if m ∈ (m∗, 1],

then y∗E < yD = y(m∗, δn) since y(·) is decreasing in m.
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