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Abstract 

 

It is already recognized by some specific models in the existing literature that altruism 
may have socially counterproductive effects. Economic theory also shows that self-
interest often produces socially efficient outcomes. This paper explores the 
relationship between altruistic preferences and systems of punishment. The central 
argument is that altruism has detrimental effects on the efficacy of punishment and the 
resultant incentives of agents to co-operate with socially efficient equilibria. The 
sequential punishment model is presented - akin to an infinitely-repeated stage game, 
but sufficiently simple to allow determinate optimal penal codes to be derived - and 
the impact of different levels of altruism fully analysed. It is shown that high levels of 
altruistic motivation - close to but slightly less than full altruism - cause the socially 
efficient equilibrium to break down. Although the model is a stylized representation 
of social interaction, the key effects that drive these results should appear in many 
more specific examples. In summary, these are the temptation effect (more altruistic 
individuals are less tempted to do harm to others), the willingness effect (more 
altruistic individuals are less willing to inflict punishment), and the severity effect 
(punishments, such as a fine where the revenue is redistributed, are less severe for 
more altruistic individuals, because they place a higher value on the contribution of 
the revenue to the welfare of others).  
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[W]hen altruism improves static non-cooperative outcomes, it lessens
the severity of credible punishments. An altruist may well be
perceived as a “softy” and his threats may not be taken seriously.
[Bernheim & Stark, 1988]

[T]he most efficient way to provide low payoffs, in terms of incentives
to cheat, is to combine a grim present with a credibly rosy future.
[Abreu, 1986]

1 Introduction - A Parable

The central problem of economic and social policy, indeed the essential
prerequisite of the social order itself, is that of bestowing upon the individual
agent the inventive to act in a manner which is beneficial for society as a whole.
Such incentives can be intrinsic to the individual (altruistic preferences) or
extrinsic (threats of punishment if the individual agent does not comply with the
socially prescribed action). This paper analyses the interaction between these
two alternative “technologies”. We see that the two methods of achieving social
order cannot be freely mixed at will, and that, in order for extrinsic incentives to
work most effectively, it is necessary to limit the operation of intrinsic incentives,
so as to avoid counterproductive interference between the two. An important
implication is that the heavy (perhaps predominant) reliance upon extrinsic
incentives in sophisticated human societies may in fact be a socially optimal
“policy mix”, rather than a mere second-best correction for the inadequate
intrinsic motivation to “do the right thing”.

Altruistic behaviour has been fruitfully modelled in economic theory using
infinitely-repeated stage games [Fudenberg & Maskin, 1986] [Abreu, 1986], and
infinite dynamic sequential games such as models with overlapping generations
[Samuelson, 1958] [Hammond, 1975] [Cremer, 1986]. The traditional view is
that apparent altruistic co-operation can occur in such models with self-
interested agents through the use of punishment equilibria which can deter
actions which would be individually optimal but socially sub-optimal in a non-
repeated or non-sequential game. This paper provides a general workhorse
model in which the results of such models can be extended in order to

∗I would like to express my gratitude to the United Kingdom Economic and Social Research
Council and the Royal Economic Society for funding this research. I would also like to thank
Kevin Roberts, Peter Hammond, Chris Wallace, Godfrey Keller, Alan Beggs, Scot Peterson
and Michael Griebe for their helpful advice and comments on various drafts of this paper.
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accommodate bona fide altruistic motivation. In common with the infinitely-
repeated stage game model, agents in the model are infinitely-lived and discount
the future. In common with overlapping generations models, on the other hand,
players move sequentially, and each player only gets to move once during the
entire game.1

The sequential punishment model presented in this paper is intended to
capture an abstract essential feature of the social and economic world in a simple
but general manner. Other models with a similar idiom include the “Robinson
Crusoe” economy [Ruffin, 1972], Samuelson’s “pension game” [Samuelson, 1958]
and Diamond’s model of fiat money in a “coconut economy” [Diamond, 1984].
Each of these models can be illustrated intuitively with the help of a simple
“parable”, as can the sequential punishment model.

Consider a desert island where individuals are sufficiently settled to have
established their own “back gardens”. Each individual is sitting in their garden
drinking a cold beer. One by one, at regular discrete intervals, one inhabitant
finishes their drink, and must decide whether or not to walk to the bin, or
to throw their bottle into one of their neighbour’s gardens. All gardens are
adjacent, and each person’s bin is a variable distance away.2 It is possible for
each inhabitant to be threatened that, if they throw their bottle, everyone who
subsequently finishes their beer will throw a bottle into the malefactor’s garden.
Sometimes this threat will be enough to make every inhabitant walk to the bin
every time, leading to a socially efficient litter-free island. Sometimes the threat
will not be enough, and some or all of the bottles will be thrown, leading to a
socially inefficient outcome.

The central feature encapsulated in this model is the fundamental vicar-
iousness of human social interaction. In any society, individuals are able to
impose negative externalities upon one another for personal gain, in myriad
ways. However, the very existence of this problem also offers a potential
solution, in that it creates the possibility of punishing miscreants who take
such opportunities, by threatening them with harm in the future.3 Another
potential solution to the problem, however, is altruism; if people care about
others, they will refrain from harming them.

This paper aims to show that these two alternative incentive technologies
can interact with one another in a perverse manner. The question we will set
out to answer is whether greater altruism on the part of the inhabitants of the
island will always make it easier to achieve a litter-free island. The answer is a
resounding and conclusive “no”. In particular, it is shown that too high a level
of altruism will in general lead to a worsening of the societal outcome. Altruism
“dents” social incentive systems based upon extrinsic rewards or punishments.

2 Overview

It is commonly recognised that the repetition of stage games such as
the prisoners’ dilemma, or the Cournot and Bertand oligopoly games, allows

1This may seem an unrealistic assumption, but it can be argued that we only need split a
finite number of players into an infinite number of “egos” [Hammond, 1975].

2Imagine a giant pie-shaped island, each garden being a “wedge” - everyone is sitting at
the middle of the island.

3Throughout the paper, we will use “harm” to refer to the inflicting of a negative externality
and “punish” to the specific use of such harm opportunities to construct punishment equilibria.
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apparently altruistic behaviour to be incentivized, resulting in a Pareto superior
outcome for the players.4 However, such apparent altruism only reflects
“enlightened self-interest”. This paper introduces genuine altruistic motivation,
exploring its effect on the achievability of a socially efficient equilibrum.

The well-known “Folk Theorem” establishes that, if players are suffi-
ciently patient, any equilibrium which Pareto dominates the min-max pay-
off in the stage game can be supported as a subgame perfect equilibrium
in the infinitely repeated game [Aumann & Shapley, 1992] [Rubinstein, 1979]
[Fudenberg & Maskin, 1986]. The key implication is that, with imperfect
altruism leading to a Pareto-inefficient equilibrium in the stage game, if there is
sufficiently low discounting of the future then a Pareto efficient outcome in the
infinitely-repeated game can be achieved. This paper asks the reverse question.
Given a certain positive level of impatience, how high or low can the level of
altruism be in order for a socially efficient outcome to be attained? It is shown
that, in general, there must be a “Goldilocks” level of altruism, which is neither
too high or too low.

In a game in which individuals make sequential moves (or in a repeated
simultaneous-move game structure), they are able to punish one another based
upon their previously observed behaviour. Individuals who are less altruistic
are more willing to harm others because they place a lower value on the cost to
the person being harmed. We shall therefore call this the willingness effect.
Agents are also more afraid of being harmed because they value their own
welfare more relative to that of others. For example, if a criminal is fined
a certain amount and the revenue spent on other individuals, this is a more
severe punishment for a less altruistic criminal because the fact that the fine
revenue is spent on others mitigates the effect of the fine on the criminal’s
utility by a smaller amount than if the criminal were more altruistic.5 We shall
therefore refer to this as the severity effect. Together, these two effects create
a potential social benefit from individuals not being too altruistic. However,
this must be balanced against the greater temptation towards wrongdoing by a
less altruistic individual. Hence there is also a temptation effect from greater
altruism.

Stark and Bernheim have observed that altruism can reduce the cred-
ibility of punishment if the potential punisher is perceived as a “softy”
[Bernheim & Stark, 1988]. They observe that this can lead greater altruism
to have a negative impact6 but argue that this must be analysed on a case-by-
case basis. We establish a canonical framework in which to study the interaction
of this willingness effect with the severity and temptation effects. This enables
us to establish the stronger result that a high level of altruism will in general
be socially detrimental. The central result of this paper is that, under certain
fairly non-restrictive assumptions, the three effects conspire to render a socially
efficient outcome impossible if the level of altruism becomes high enough.7

4This framework has important implications for such varied theoretical areas as
environmental economics (international co-operation in pollution abatement can be seen as
a repeated game) and competition policy (firms are sometimes able to collude in a repeated
oligopoly game, to the detriment of overall social welfare) [Rees, 1993].

5The revenue from the fine could, of course, be “thrown away” in order to avoid this adverse
effect, but this would be wasteful in that it would create a deadweight loss to punishment.

6This is precisely the phenomenon we term the willingness effect.
7In terms of the island parable, the assumptions we must make are that the cost of having

a bottle land is weakly greater than the cost of walking to a bin at the edge of the island, that
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3 The Model

Suppose there are an infinite number of players and that distinct players,
referenced by the period in which they move, each get a chance in sequence
to impose damage upon another player. In period t, player t receives a harm

opportunity, and must decide whether to accept or reject it, and a “target”
for the harm opportunity, player At. If player t chooses to accept their harm
opportunity , then player At suffers a cost in felicity of 1 unit. If player t
rejects the opportunity, then there are no changes in felicity. If player t accepts,
then he gains felicity equal to the benefit, πt,

8 which is drawn randomly and
independently from a distribution defined by the density function g(π), with

support [π̂, 1], where 0 ≤ π̂ < 1.9 Therefore,
∫ 1

π̂
g(π)dπ = 1. All players

publicly observe the value of πt before player t moves.
The move made by player t in period t can be conceived to consist of choosing

a trigger level, Tt, for the realized value of the benefit above which they
will accept the harm opportunity10, and the individual whom they harm, At.
A player’s strategy maps the observed past history at period t (including the
observed value of πt) to the move they make.

We will derive results assuming a continuous distribution of the benefit
with bounded support. We assume throughout that g(π) is twice continuously
differentiable. We will frequently use as an exemplar the case where the benefit
has a continuous uniform distribution. Here the probability density function
for the distribution of πt will take the value 1

1−π̂ between π̂ and 1. Most
straightforwardly, with π̂ = 0, g(π) = 1 between 0 and 1.

4 Players’ Preferences

Players do not act to maximise their “private utility”, or felicity. Instead,
players act to maximise their social utility function11, which is a weighted
sum of the felicities of all players.12 We assume all players are risk-neutral and
share the same discount rate δ. We let θ represent the weighting placed upon

players move in sequence, with perfect information about past play, and that all individuals
share the same coefficient of altruism θ (the weighting they place on the welfare of others
relative to their own welfare) and discount the future at rate δ.

8π is used indicate the vector of random benefit values.
9Intuitively, this assumption is sufficient to ensure that no partially altruistic individual

ever wants to be harmed. In terms of the parable from section 1, the cost of having a bottle
land in one’s garden is equal to the cost of walking to a bin at the edge of the island. Although
this might seem a restrictive assumption, we can always, by taking the limit as the expected
value of π, π̄ =

R

1

π̂
πg(π)dπ, goes either to π̂ or 1, examine the cases where the cost of a

bottle landing is almost identical to the cost of walking to the bin (π̄ −→ 1), or almost always
greater than the cost of walking to the bin (π̄ −→ π̂). (See subsection 8.1.)

10Note that they do so after they observe the benefit value, so this is tantamount to choosing
whether or not to punish for any given benefit value. It nonetheless proves useful later on to
think in terms of trigger levels.

11We will frequently use the term “social utility” in order to emphasise the inclusion of
altruistic preferences. However, the modelling role of the social utility function is similar to
any standard utility function.

12Effectively, every individual’s social utility function is a social welfare functional which
aggregates the orderings represented by all players’ felicities, and which satisfies the Pareto
principle, independence of irrelevant alternatives and unrestricted domain. Ratio scale
comparability [Roberts, 1980] must be assumed, with all individuals gaining 0 felicity in the
state of the world where no harm opportunities at all are taken.
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the felicities of others in each player’s social utility function. We assume that θ
is identical for all players and is always strictly less than 1.

Definition 1. Let fi,t be the felicity of player i in period t:

fi,t =





−1 if Tt < πt and t 6= i and At = i

πt if Tt < πt and t = i and At 6= i

πt − 1 if Tt < πt and t = i and At = i

0 otherwise





(1)

Let δ be the discount rate13 and let θ be the coefficient of altruism:

0 ≤ δ < 1 (2)

θ < 1 (3)

Let ut be the expected utility of player t looking forward from period t:14

ut = Eπ




∞∑

j=t+1


δj−t


ft,j + θ

∞∑

k 6=t
fk,j







∣∣∣∣∣
π1...πt

=

∞∑

j=t+1


δj−t


Eπ [ft,j]

∣∣∣∣
π1...πt

+θ

∞∑

k 6=t
Eπ [fk,j ]

∣∣∣∣
π1...πt






5 The Single-Move Game

Consider first a single-move sequential punishment game in which a single
individual (individual 1) has an opportunity to harm another (this can be
thought of as a special case of the infinite-move game in which δ = 0 so that
there is no future). It is obvious that the individual’s altruism level must be
sufficiently high in order to prevent him or her from yielding to the temptation
to inflict harm socially inefficiently, and so here the deleterious willingness and
severity effects of greater altruism do not apply. In this simple case there is
therefore no sense in which too much altruism is bad for society. It is clearly
socially efficient for a harm opportunity to be taken if and only if π1 > 1. The
individual receiving the harm opportunity (individual 1), meanwhile, will choose
to inflict harm if and only π1 > θ, since he values 1 unit of harm done to another
individual at θ.15 The outcome can therefore only be socially efficient, meaning
socially efficient for all possible revealed benefit values, if θ = 1.

13The role of the assumption of discrete time periods with discounting of the future can be
justified as the simplest way of capturing the idea that the technology used to detect deviation
is imperfect and thus takes time [Cremer, 1986].

14The assumption that players are infinitely lived may appear restrictive, but its primary
role is to simplify the model. Versions of the Folk Theorem have been proved for games
with finitely-lived players and overlapping generations [Kotlikoff et al., 1988] [Kandori, 1992]
[Messner & Polborn, 2003], and the general result is that having finitely-lived agents reduces,
but does not eliminate, the possibility of supporting mutually beneficial equilibria in an
infinitely-repeated stage game framework. It therefore seems reasonable to focus on the role
of altruism by assuming away the issue of finite lifespans.

15We can assume that the individual receiving the harm opportunity will definitely harm
another individual rather than himself because θ < 1. We assume that if he is indifferent, he
will not inflict harm.
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6 The Infinite-Move Game

Once we introduce an infinite series of sequential moves, where different
individuals receive an opportunity to inflict harm one after the other, the effect
that altruism has on the willingness to punish and on the severity of punishment
becomes important. The socially efficient outcome can now be achieved when
individuals are less altruistic than the level required in the single-move game,
through the use of punishment equilibria.

A socially efficient outcome can be achieved in the infinite-move game by
using the information available, and the fact that players are able to choose
whom they harm, to enforce credible threats of future punishment upon players
who are tempted to socially inefficiently inflict harm in the current period. The
ability of a player to inflict harm then plays the dual role of a temptation
to impose a deadweight loss upon society at benefit to oneself, but also the
opportunity for society to credibly threaten to punish those who do so. This
means that there can then be some advantages to players being less than fully
altruistic, since the threat of punishment is more severe the less altruistic players
are, both because less altruistic players are willing to inflict harm more often
(the willingness effect), but also because the loss of social utility from being
harmed in place of another is greater for a less altruistic player (the severity
effect).

It turns out that, provided there is sufficiently low discounting, the severity
effect dominates and the lower constraint on the required level of altruism
drops away because decreasing the level of altruism beyond a certain point
always increases the severity of punishment more than enough to outweigh
the increased temptation to deviate from the socially efficient equilibrium by
inflicting harm (see Theorem 3). Most significantly, however, it transpires that
too much altruism will, for any value of the discount rate, prevent the socially
efficient outcome from being achieved (see Theorem 2).

The possibility of achieving this kind of socially efficient subgame perfect
Nash equilibrium begs the question of how it is that the players are to be co-
ordinated upon playing it. We might think of a social planner declaring the
equilibrium that will be played, and then each player behaving unilaterally
with no ability to communicate with the others. On the other hand, we could
imagine a kind of “original position” [Rawls, 1999], where the players together
agree to the planned equilibrium that will maximise their collective expected
social utility. This is relevant since generally speaking although the equilibrium
outcome will be socially efficient, the off-equilibrium behaviour prescribed by
the punishment strategies will not be, and so there would be the temptation for
a social planner to intervene in order to achieve a socially efficient outcome
in the subgame beginning once someone has actually deviated. The social
planner could, if able to alter the expectations of all players about the strategies
being played by all the others, improve social welfare once someone has actually
deviated by “letting bygones be bygones” and re-coordinating all players upon a
new socially efficient equilibrium in the subgame starting in the current period.

The most stringent requirement we could put on punishment equilib-
ria is that they be renegotiation-proof. This equilibrium concept refine-
ment has been applied to other repeated games [Farrell & Maskin, 1989]
[Benoit & Krishna, 1993], and shown to reduce the number of supportable
equilibria. Sometimes, depending on the context, efficient subgame-perfect
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Figure 1: Socially efficient equilibria and the socially optimal level of altruism

equilibria can be rendered unsupportable. The reason is that often the most
severe punishments are not renegotiation proof because everyone would prefer
to “let bygones be bygones” and renegotiate to a Pareto-superior path. In
this paper, however, we stick with the requirement that punishment equilibria
be subgame-perfect rather than renegotiation-proof. Intuitively, we assume that
the social planner (or the community’s decision-making process) is able to avoid
the temptation to let malefactors “off the hook”.

Figure 1 provides a preliminary schematic for the possible subgame-perfect
socially efficient equilibria which are supportable for different values of θ and
δ in the sequential punishment model. The most lightly shaded area A shows
values of (θ, δ) where, by using “Nash reversion” (which requires each individual
along an equilibrium path where a previous deviator is being punished to take
their harm opportunity whenever πt > θ, as they would in a single-move game) a
socially efficient equilibrium can be constructed. Individuals are incentivized to
co-operate with the equilibrium due to the threat of focusing future punishment
onto any deviator from the initial path.

The darker grey area B shows those values of (θ, δ) for which social efficiency
can only be supported by using a punishment path more severe than Nash
reversion. This requires that the individuals doing the punishing be required
to go “beyond their comfort zone” by inflicting harm for values of πt ≤ θ for
which they would not do so in a single-move game, due to their partial altruism.
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The main analytic task of this paper is to characterize the nature of the socially
efficient equilibria that can be supported using the most severe available path.
The black region shows those values of (θ, δ) for which social efficiency is not
supportable, even with the use of such an optimal path. The central result
of the paper is that this region is “thinnest” at a socially optimal level of

altruism, θ∗, and it will be shown that, under the fairly general assumptions
made regarding the distribution of the benefit and the shared value of θ and δ,
it is always the case that 0 < θ∗ < 1 (see Theorem 4).

7 Punishment Paths

The sequential punishment model has close parallels with the traditional
framework of infinitely-repeated games with discounting. Seminal results for
the nature of the optimal penal codes in these types of game were provided by
Abreu [Abreu, 1988], who showed that optimal punishment can be exhaustively
described using punishment paths. These will in general have a carrot-

and-stick structure, with players incentivized to co-operate with the more
unpleasant early stages of the path by the “carrot” offered by the return to more
pleasant co-operative behaviour in the later part of the path.16 The introduction
of non-stationary carrot-and-stick punishments is particularly interesting in
the sequential punishment model because partially altruistic individuals must
themselves be threatened with harm if they refuse to co-operate with the
punishment of others. This feature of the model generates a rich interaction
between the altruistic preferences of the players and the structure of optimal
punishment paths.

Strategy profiles and the corresponding equilibria in the sequential punish-
ment model can be described in terms of an initial path and a punishment

path. Along the initial path, no harm opportunities are permitted to be taken.
If a player deviates from the initial path, then a punishment path tailored for
that player is initiated. If a player deviates from an ongoing punishment path,
then a new punishment path tailored for the most recent deviator is initiated.

A punishment path, denoted by ψ, is a vector of trigger levels for π above
which harm opportunities are taken in a punishment equilibrium. Punishment
paths provide a natural way to conceive of punishment equilibria in the
sequential punishment model. If a punishment path, which was initiated in
period j through a deviation by player j, is being followed in period t, then
player t sets their trigger level Tt equal to ψt−j (so that player t takes the harm
opportunity when πt > ψt−j) and punishes player j by setting At = j.

16Abreu also foresaw that his method would have far-reaching applications in other models:

Analogues to the theorems established here ought to appear in any model
with discounting and a “repeated” structure. Finally, the conceptualization
of punishment in terms of paths and deviations from prescribed paths should
prove useful in other contexts.

[Abreu, 1988]

The sequential punishment model analysed here is one such context. Although the
sequential punishment model is not strictly-speaking a repeated stage game, the ability of
individuals to condition their behaviour on the past, with deviations immediately observable
next period, gives it an essentially analogous structure.
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Definition 2. A punishment path, denoted ψ, is a vector of trigger levels,
subscripted by the point reached along the path.17 Trigger levels must lie within
the support for π, therefore ∀k : ψk ∈ [π̂, 1]. The set of possible punishment

paths is Ψ, so that ∀ψ : ψ ∈ Ψ. A flat punishment path, ψ̃ ∈ Ψ̃, has the

property that ∀k : ψ̃k = ψ̃. (We use ψ̃ to denote both a flat path and the trigger

level that defines it.) The set of flat paths is Ψ̃.

Following Abreu’s argument, in order to find out if the socially efficient
outcome is supportable for any given θ and δ, it is in general necessary to derive
the optimal punishment path. Along a punishment path, it will clearly be
desirable to harm the most recent deviator as much as possible. Since players
are indifferent as to whom they harm, any harm opportunities taken along an
optimal punishment path will therefore be “focussed” upon the most recent
deviator.

We can imagine choosing a fixed punishment, and then finding out the most
severe path we can support given the use of that fixed punishment for any
deviation. However, as argued by Abreu, we will only have found the most
severe path we can support if we are in fact using that path to punish any
deviation from any ongoing punishment path. Hence the optimal punishment
path must be used to punish any deviation from itself. This is a useful recursive
symmetry which we exploit in constructing the conditions for supportability
below.

There are two constraints at each point along a punishment path. The first
concerns the “sqeamishness” of partially altruistic individuals in implementing
the “stick”. Individual t is only willing to take a harm opportunity when πt ≤ θ

if they are themselves threatened with punishment, in order to give them an
incentive to inflict harm when it is unpleasant for them to do so. The second
constraint concerns the “carrot” part of the path. In order to provide a carrot,
it is necessary that trigger levels be higher later in the path (so that harm
is inflicted only for high benefit values). This may involve individuals being
required to abstain from taking a harm opportunity when πt > θ, for which
they will also need to be given an incentive via carrot-and-stick punishment.

The second constraint turns out to be more difficult to deal with, but we
are able to prove that, as θ −→ 1−, this constraint becomes insignificant,
because even when it is not imposed, the socially efficient outcome becomes
unsupportable using the optimal path anyway. Also, in many cases the second
(“upper”) constraint will not bind at any point along the path, whereas the first
(“lower”) constraint must always bind at the beginning of the optimal path. It
is therefore the first constraint which primarily drives the shape of optimal
punishment paths in the sequential punishment model.

Ignoring the upper constraint, optimal paths will be shown to have a quasi-

flat structure, meaning that the trigger level is identical following the second
point along the path. This is a surprising result, since optimal penal codes
in infinitely-repeated stage game models, such as the Cournot and Bertrand
oligopoly models, involve a finite number of periods of punishment followed by
a return to full co-operation, where the Pareto efficient outcome in the stage
game is restored [Abreu, 1986] [Lambson, 1987]. The different result in the

17We use the term “period” to refer to “game time” and “point” to refer to the current
position along an ongoing path.
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sequential punishment model is driven by the presence of altruistic preferences,
which cause “neutral observers” who are not being punished (but who are still
affected by the carrot created by the remainder of the punishment path) to
be more sensitive to variation in the trigger levels than the individual being
punished (the first have a more concave inter-temporal utility function than
the second). Intuitively, with partial altruism (θ < 1), the individual being
punished is hurt partly or primarily simply because they are being punished,
whereas the values of the benefit for which harm opportunities are taken makes
more relative difference to a “neutral observer”.

The socially efficient outcome is supportable for given values of δ and
θ if and only if there exists a ψ such that the corresponding strategy profile
forms a subgame perfect Nash equilibrium. Checking for supportability involves
two conditions. Firstly, the punishment path ψ must be sustainable. This
requires that individuals be incentivized to co-operate with the punishment
path, either by punishing when they would prefer not to in a single-move game,
or by refraining from punishing when they would prefer to. Secondly, given a
sustainable path, it must be of sufficient severity to incentivize all players to
co-operate with the initial path, so that the socially efficient outcome occurs in
equilibrium.

Definition 3. Let Uk : Ψ −→ R be the per-period average discounted expected
utility of the individual being punished along path ψ, looking forward from point
k. Let Vk : Ψ −→ R be the per-period average discounted expected utility of a
“neutral observer” who is not being punished along path ψ.18

Uk(ψ) ≡
(

1 − δ

δ

) ∞∑

i=k+1

[
δi−k

∫ 1

ψi

(θπ − 1)g(π)dπ

]
(4)

Vk(ψ) ≡
(

1 − δ

δ

) ∞∑

i=k+1

[
δi−k

∫ 1

ψi

(θπ − θ)g(π)dπ

]
(5)

Note that, for a flat path ψ̃, these functions simplify to give ∀k : Uk(ψ̃) ≡
U(ψ̃) ≡

∫ 1
eψ(θπ − 1)g(π)dπ and ∀k : Vk(ψ̃) ≡ V (ψ̃) ≡

∫ 1
eψ(θπ − θ)g(π)dπ.

(Note also that the subscript to indicate the point reached along the path can
be suppressed for a flat path.)

The supportability constraints are as follows. λk : Ψ −→ R is the lowest
possible net loss of utility from refusing to punish when required to at point k
along punishment path ψ (this only “bites” when ψk < θ) and µk : Ψ −→ R is
the lowest possible net loss of utility from punishing when required not to along
punishment path ψ (this only “bites” when ψk > θ). κ : Ψ −→ R, meanwhile, is
the lowest possible net loss in utility from defecting from the initial path, given
that path ψ is used to punish such a deviation.

In order for punishment path ψ to support a socially efficient equilibrium,
it must be the case that ∀k : λk(ψ) ≥ 0, ∀k : µk(ψ) ≥ 0 and that κ(ψ) ≥ 0.
The optimal punishment path is the one which minimises U0(ψ) subject to these
constraints, which is the same as maximizing the severity of the punishment
path for the punishee, denoted by φ : Ψ −→ R.

18R denotes the set of real numbers.
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λk(ψ) ≡
(

δ

1 − δ

)
Vk(ψ) −

(
δ

1 − δ

)
U0(ψ) + ψk − θ (6)

µk(ψ) ≡
(

δ

1 − δ

)
Vk(ψ) −

(
δ

1 − δ

)
U0(ψ) − ψk + θ (7)

κ(ψ) ≡ −
(

δ

1 − δ

)
U0(ψ) + θ − 1 (8)

φ(ψ) ≡ −
(

δ

1 − δ

)
U0(ψ) (9)

The optimal path, ψ∗ is therefore the path that maximizes φ (ψ) whilst

satisfying all the supportability constraints. The optimal flat path, ψ̃∗ is
defined in an analogous manner.

8 The Optimal Flat Path

In this section, we proceed to exhaustively derive the nature of the socially
efficient equilibria which can be supported using the optimal flat punishment
path. The uniform distribution is used as an illustrative example, but Theorems
1, 3 and 4 apply for any continuous benefit distribution. Theorem 2 only applies
to equilibria supported by flat paths. It will be generalized later on.

Intuitively, the impact of the level of altruism on the severity of the optimal
flat punishment path, and the resultant supportability of the socially efficient
equilibrium, depends upon the interaction of the temptation, severity and
willingness effects laid out in section 2. The temptation effect means that
lower altruism makes a socially efficient outcome harder to support, ceteris
paribus. The severity effect, by contrast, makes a given punishment path more
severe with a lower coefficient of altruism, and so increases the supportability of
the socially efficient equilibrium, ceteris paribus. The willingness effect makes
individuals more willing to punish with lower altruism, thus also rendering
sustainable punishment paths more severe, and social efficiency easier to
support, ceteris paribus.

The key result to be established is that, as θ −→ 1− and individuals become
perfectly altruistic, the interaction of the three effects leads to a breakdown
of the socially efficient equilibrium. The intuition is, firstly, that when θ = 1,
the severity of any punishment path will be 0, and the optimal path will not
involve any harm being inflicted. This is because perfectly altruistic individuals
do not mind harm being focused from other people onto them, and so there
is no loss of utility from defecting from the punishment path, and therefore
individuals cannot be incentivized to do any punishing at all. The constraint
for supportability of the initial path must therefore be just fulfilled with equality
at this point (because there is also no temptation to defect).

If the coefficient of altruism is reduced slightly below θ then, since very
little punishment can be sustained with such a high coefficient of altruism, the
willingness and severity effects must be negligible. Hence the temptation effect
must dominate, and social efficiency must be rendered unsupportable. However,
as θ is further reduced, provided δ is sufficiently high, the combined willingness
and severity effects will eventually become large enough to offset the temptation

11



effect and lead the condition for social efficiency to be supported again. For high
enough values of δ, this can continue to occur as θ −→ −∞, meaning that social
efficiency can be supported even with infinite malevolence. (This phenomenon
is driven by the severity effect - see Theorem 3.)

There will in general exist an optimal level of altruism θ∗, in the sense that
it allows the socially efficient outcome to be supported for the widest range of
δ, δ∗. θ∗ has the general property that it is low enough for the punishment path
to involve inflicting harm for the widest possible range of benefit values, but not
any lower, in order to avoid the temptation effect outweighing the severity effect
as θ is further reduced. As we shall see later, for a “sufficiently flat” benefit
distribution, the optimal punishment path is always flat. Even when the optimal
path is not flat, however, Theorem 2 provides an important intermediate step in
proving the core result of the paper - that too high a level of altruism is socially
detrimental - for these more general cases.

In this section, we will derive the properties of the optimal flat punishment
path denoted by ψ̃∗. Along such a path, the co-operation constraints at every
point are identical, and so ∀k : λk(ψ̃) ≡ λ(ψ̃) and ∀k : µk(ψ̃) ≡ µ(ψ̃). Assuming

that ψ̃∗ is greater than π̂ (i.e. that individuals cannot be incentivized to punish
for all possible values of the benefit), then an expression for the optimal flat
trigger level can be found by setting λ(ψ̃∗) = 0 so that all individuals are being
pushed right up against the limit of their willingness to punish given that they
themselves are threatened with punishment if they refuse. Substituting in (4)
and (5) into (6), equating with 0 and rearranging gives us the following equation

for ψ̃∗.

ψ̃∗ = θ − (1 − θ)
δ

1 − δ

∫ 1

eψ∗

g(π)dπ (10)

Although this only implicitly defines ψ̃∗, and cannot be solved without
making specific assumptions about the functional form of g(π), it can be totally
differentiated and rearranged to yield the following expression for the derivative
d eψ∗

dθ
. The shows the willingness effect - the impact of a change in the coefficient

of altruism upon the optimal flat trigger level. We should note at this point that
as θ −→ 1−, this expression becomes unambiguously positive; the willingness
effect negatively affects the severity of punishment as θ increases at an already
high level of altruism (and thus positively affects the severity of punishment as
θ is decreased).

dψ̃∗

dθ
=

(1 − δ) + δ
∫ 1

ψ̃∗
g(π)dπ

(1 − δ) − δ(1 − θ)g(ψ̃∗)
(11)

If θ is low enough, individuals will be willing to punish for all possible vales
of the benefit. This will imply that λ(ψ̃∗) ≥ 0 when ψ̃∗ = π̂. The following
theorem derives the relevant value of θ.

Theorem 1. If θ ≤ δ+(1−δ)π̂ then punishment will occur for all benefit values
along the optimal path.

(If θ ≤ δ + (1 − δ)π̂ then ψ̃∗ = π̂, otherwise ψ̃∗ = θ − (1 − θ) δ
1−δ

∫ 1
eψ∗
g(π)dπ.)

Proof. Substituting expressions (4) and (5) into (6) and making this greater

than or equal to 0 where ψ̃∗ = π̂ gives us (1 − θ) δ
1−δ

∫ 1

π̂
g(π)dπ + π̂ − θ ≥ 0.

12



Since
∫ 1

π̂
g(π)dπ = 1, rearranging yields the stated inequality. If θ > δ+(1−δ)π̂,

on the other hand, then ψ̃∗ must be where λ(ψ̃∗) = 0 in an interior solution as
described by equation (10).

Having derived the optimal flat punishment path, we are now in a position
to characterise the socially efficient equilibria which can be supported using it.
Substituting in (4) into (8) gives us the following for κ(ψ̃∗), (along with its total
derivative with respect to θ):

κ
(
ψ̃∗
)

= − δ

1 − δ

∫ 1

eψ∗

(θπ − 1)g(π)dπ + θ − 1 (12)

dκ

dθ
= 1 − δ

1 − δ

(∫ 1

eψ∗

πg(π)dπ +
(
1 − θψ̃∗

)
g(ψ̃∗)

dψ̃∗

dθ

)
(13)

We can now prove that, for any functional form for g(π), there will exist
values of θ close to but below 1 for which social efficiency will not be supportable
(i.e. for which κ(ψ̃∗) < 0).19

Theorem 2. As altruism becomes perfect, the optimal flat punishment path
cannot support the socially efficient equilibrium, for any value of the discount
rate.
(As θ −→ 1−, ψ̃∗ −→ 1, κ

(
ψ̃∗
)
−→ 0 and dκ

dθ
−→ 1, therefore as θ −→ 1−,

κ
(
ψ̃∗
)
−→ 0−.)

Proof. As θ −→ 1, it can be seen from expression (10) that ψ̃∗ −→ 1. The RHS
of (12) thus goes to 0. Meanwhile, the RHS of (13) goes to 1. Since κ(ψ) is
a continuously differentiable function, it must therefore be the case that κ(ψ)
falls below 0 for some values of θ close to but less than 1.

We will now show that, if δ is high enough, then, once ψ̃∗ = π̂, so that
punishment is occurring for all possible values of the benefit, the severity effect
will dominate. This means that as θ −→ −∞, κ(ψ̃∗) −→ ∞ and so social
efficiency becomes unambiguously supportable. The following theorem derives
the required condition on δ.

Theorem 3. If δ > 1
1+π̄ then the socially efficient equilibrium can be supported

with infinite malevolence.

(If δ > 1
1+π̄ then κ

(
ψ̃∗
)
−→ ∞ as θ −→ −∞.)

Proof. By Theorem 1, when θ ≤ δ + (1 − δ)π̂ and so ψ̃∗ = π̂, there is no

further willingness effect and so d eψ∗

dθ
= 0. As θ −→ −∞, this must occur.

Therefore, as can be seen from (12), as θ −→ −∞, κ(ψ̃∗) −→ ∞ provided
that δ

1−δ >
1R

1

π̂
πg(π)dπ

. (This is because, as θ −→ −∞, any part of (12) not

containing θ becomes negligible.) It can similarly be seen from (13) that these
same conditions will ensure that dκ

dθ
< 0 once θ ≤ δ + (1 − δ)π̂. Letting π̄ ≡∫ 1

π̂
πg(π)dπ and rearranging yields the stated result.

19We will prove this result more generally for any generic optimal punishment path in
section 10, Theorem 7.
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The above theorem shows that as the coefficient of altruism becomes
infinitely negative, the severity effect will dominate if δ > 1

1+π̄ . Since this
lower bound for δ is less than 1, there will be a range where too high a level of
altruism renders the socially efficient equilibrium unsupportable but, once θ is
below the upper limit, no arbitrarily high degree of malevolence will do so. If,
however, δ∗ < δ < 1

1+π̄ then both too high and too low a level of altruism will
cause a breakdown of efficiency.

There are a number of approaches which we could take in defining the socially
optimal level of altruism in the sequential punishment model. In a world where
we were unable to achieve the first-best solution, we could ask what the impact
of a change in the coefficient of altruism is upon the efficiency of the second-
best equilibrium. This we do in section 11. In this section, we concentrate on
worlds where the first-best solution is available, and ask what value of θ allows
the socially efficient outcome to be supportable for the widest range of δ. We
thus not only consider the best we can do in each possible world, but begin by
considering the broader and more “philosophical” issue of which is the best of
all possible worlds to be in.

The following theorem defines the socially optimal level of altruism, θ∗ and
corresponding minimum δ, δ∗. It also establishes that δ∗ ≤ 1

1+π̄ for any benefit
distribution, so that both too high and too low a level of altruism relative to θ∗

will cause a break-down of social efficiency, for values of δ close to, but above,
δ∗. The optimal coefficient of altruism has a number of key features. Firstly, it
must be “knife-edge” socially efficient equilibrium so that κ(ψ̃∗) = 0. Secondly,
it must be the case that δ is just high enough so that punishment can occur
for all values of π, in order that punishment paths are maximally severe for the
individual being punished.

Theorem 4. The socially optimal level of altruism is always strictly positive
and strictly less than 1.

(The socially optimal level of altruism is θ∗ = 3+π̄π̂−
√

5+2 π̄π̂+π̄2π̂2−4 π̄−4 π̂
2(1+π̄) , where

0 < θ∗ < 1.)

Proof. The socially optimal level of altruism is where both κ(ψ̃∗) = 0 and
θ = δ+(1−δ)π̂. The following two equations must therefore hold simultaneously:
(Equation (15) is derived from Theorem 1. Equation (14) is derived from setting

equation (12) equal to 0 and plugging in ψ̃∗ = π̂ and π̄ ≡
∫ 1

π̂
πg(π)dπ.)

δ

1 − δ
=

1 − θ

1 − θπ̄
(14)

θ = δ + (1 − δ)π̂ (15)

Equations (14) and (15) together form a quadratic equation system, yielding
the following solution: (Note that the second solution to the quadratic can be
discounted since we require that θ∗ < 1 in order for (15) to be satisfied with
δ∗ < 1.)

δ∗ =
3 − 2 π̂ − π̄π̂ −

√
5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂

2 (1 − π̂) (1 + π̄)
(16)

θ∗ =
3 + π̄π̂ −

√
5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂

2 (1 + π̄)
(17)
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To interpret (16) and (17), we first need to observe that√
5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂ is decreasing in π̂ and π̄ and so its value will lie

between
√

5 (when π̂ = 0 and π̄ = 0) and 0 (when π̂ = 1 and π̄ = 1). Therefore,
it can immediately be seen that, since

√
5 < 3, the socially optimal level of

altruism defined by (17) will always be positive. Also, since θ∗ is increasing
in π̂, its upper limiting value will be 1, as π̂ −→ 1−. Since 0 < θ∗ < 1 and
0 ≤ π̄ < 1, it can therefore also be seen from (14) that 0 < δ∗ < 1.

In order to be certain that (17) defines a point where a further decrease in
θ will render the socially efficient initial path unsupportable, we need to show
that δ∗ from (16) lies weakly below 1

1+π̄ , derived in Theorem 3. Dividing the

RHS of (16) by 1
1+π̄ yields the following ratio, which we need to show is always

weakly less than 1:

3 − 2 π̂ − π̄π̂ −
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂

2 (1 − π̂)
(18)

Note first that when π̄ = 1, (18) also equals 1. If the derivative of (18) with
respect to π̄ can be shown to be always positive when (18) is positive, then this
will be sufficient to establish that (18) is always less than 1. Differentiating (18)
with respect to π̄ gives us:

2 − π̂ − π̄π̂2 − π̂
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂

2
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂ (1 − π̂)
(19)

Denoting
√

5 + 2 π̄π̂ + π̄2π̂2 − 4 π̄ − 4 π̂ by β, (18) and (19) become respec-
tively:

3 − 2 π̂ − π̄π̂ − β

2 (1 − π̂)
(20)

2 − π̂ − π̄π̂2 − π̂β

2β (1 − π̂)
(21)

Both (20) and (21) are decreasing in β. Therefore they can only be positive
when β is low enough. Setting (20) equal to 0 and solving for β yields the
following:

β = 3 − 2 π̂ − π̄π̂ (22)

Since (18) must always be positive, β must be weakly lower than this.
Plugging (22) into (21) yields the following expression, which is always

positive, showing that β can never be high enough to make (21) negative.

1 − π̂

3 − 2 π̂ − π̄π̂
(23)

We have therefore established that δ∗ ≤ 1
1+π̄ for all the relevant values of

π̂ and π̄. Thus, if θ is further reduced below θ∗ with δ unchanged at δ∗, the
supportability constraint on the socially efficient initial path will be broken. θ∗

is therefore optimal in the sense that a lower level of altruism could, for some δ
values, render the socially efficient outcome unsupportable. Also, by Theorem
2, a big enough increase in θ will cause the socially efficient equilibrium to break
down.
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Note that if we take the case where π̂ = 0 for simplicity, the solution to (14)
and (15) becomes the following:

θ∗ = δ∗ =
3 −

√
5 − 4π̄

2(1 + π̄)
(24)

8.1 Illustration: unitary distribution cases

In this subsection, we produce some graphics to compare the socially optimal
level of altruism in a number of key cases. For one of them, we assume that
π̂ = 0 and we vary π̄ (this case was solved in equation (24)). We compare this
to the two extreme unitary distribution cases (where we vary π̂). The first is
where π̄ −→ 1, so that the probability density is infinitely concentrated around
the point where the benefit of punishing to the punisher is equal to the cost of
punishing to the punishee. The second is where π̄ −→ π̂, so that the probability
density is infinitely concentrated around π̂, and thus the benefit is always less
than the cost. By taking the limit of (14) and (15) as π̄ −→ π̂, we get the
following solution for the case where the benefit is always π̂:

θ∗ =
3 + π̂2 −

√
(π̂2 + 2π̂ + 5) (1 − π̂)

2

2 (π̂ + 1)
δ∗ =

3 + π̂ −
√
π̂2 + 2π̂ + 5

2 (π̂ + 1)

For the case where π̄ −→ 1 and so the benefit is always 1, we get the following:

θ∗ =
π̂

2
+

1

2
δ∗ =

1

2

Finally, if we take a “symmetric” distribution where π̄ = π̂
2 + 1

2 then we get the
following:

θ∗ =
6 + π̂2 + π̂ −

√
(π̂2 + 4π̂ + 12) (1 − π̂)2

2 (3 + π̂)

δ∗ =
6 − π̂2 − 5π̂ −

√
(π̂2 + 4π̂ + 12) (1 − π̂)

2

2 (3 + π̂) (1 − π̂)

Figures 2 through 4 illustrate the value of (24) as π̄ changes and the values of
the above expressions as π̂ changes. The two unitary distribution cases represent
the two extreme values of θ∗ given a particular value of π̂. The “symmetric”
distribution case can be seen to lie somewhere between them. A number of
observations are worth noting. Firstly, θ∗ is increasing in both π̂ and π̄. This
can be related to the impact of the willingness, severity and temptation effects.
When π̂ is high, the point where optimal paths become maximal, and the
willingness effect becomes 0, is reached more quickly as θ is reduced, and so
the socially optimal level of altruism is higher.

When π̂ is fixed and π̄ is increased, on the other hand, then the severity
effect is reduced at all values of θ so that, when the willingness effect becomes
0, the value of δ must be higher in order to be at a “knife-edge” point where
the social efficient outcome is just supportable. Again, the balance between
the severity effect and the temptation effect is effectively tilted in favour of the
temptation effect, leading to a higher socially optimal level of altruism.
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Figure 2: Range of θ∗ given π̂

Figure 3: Range of δ∗ given π̂
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Figure 4: Range of θ∗, δ∗ given π̄

The second key observation to make is that the range of θ∗ is quite narrow for
any given π̂. Again, this is due to the interaction of the three effects. This can
be most clearly seen by considering the unitary distribution where the benefit
is always close to 1. This means that the willingness effect is always 0, because
as soon as the optimal flat trigger level ψ̃∗ falls below 1, all of the probability
mass lies above the trigger level, and so any further reduction in θ and ψ̃∗ has
no impact. This explains why δ∗ is always 1

2 , because this is the value of δ
that will lead the temptation and severity effects to exactly cancel out as θ is
reduced. It is, however, still necessary that ψ̃∗ = π̂ in order to reach θ∗.20

8.2 Illustration: continuous uniform distribution

Figure 5 illustrates the application of Theorems 2, 3 and 4 to the case of
a uniform distribution with support between 0 and 1 and therefore where ∀π :
g(π) = 1. The key features are the socially optimal level of altruism θ∗ and
corresponding minimum δ∗ where, by substituting in π̄ = 1

2 , expression (24)
tells us is at θ∗ = δ∗ = 1 − 1√

3
, and the value of δ = 1

1+π̄ = 2
3 above which the

severity effect dominates as θ −→ −∞, resulting in a horizontal asymptote for
the black region where social efficiency is not supportable.

Figure 6 illustrates how the value of κ(ψ̃∗) changes (on the y-axis) for a
“cross section” taken through figure 5 where δ = 1 − 1√

3
and θ is allowed to

20Intuitively, if π̄ is high then the willingness effect becomes negligible but, since the
temptation and severity effects are then roughly equal, it still takes quite a low value of θ
before maximal punishment occurs.
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Figure 5: Socially efficient equilibria where π̂ = 0 and g(π) = 1

vary along the x-axis.21 It can be seen that κ(ψ̃∗) lies below 0 for any value of
θ apart from θ∗ = δ∗ = 1 − 1√

3
and θ = 1.22

Figure 7 shows a “cross-section” at a second key value of δ = 0.5.23 The
significance of this point is that it is where the co-operation constraint for
the Nash reversion punishment path and the co-operation constraint for the
maximal flat punishment path both bind at the boundary of the black region
(which is, for this point only, also on the boundary of the dark grey region).

A third important value of δ is that above which the temptation effect never
outweighs the severity effect as δ −→ −∞. In the case of this model, this is
where δ

1−δ = 2 =⇒ δ = 2
3 .24 This is illustrated graphically in figure 8. The

property of this particular value of δ that the severity and temptation effects
exactly cancel is the fact that the value of κ(ψ̃∗) is constant for any θ < δ. It is
instructive to compare this diagram to figures 11 and 12, which illustrate values
of δ slightly above and below 2

3 respectively.25 Here we notice that the value of

κ(ψ̃∗) increases as θ is reduced below δ when δ > 2
3 , showing that the severity

21This corresponds to the line labelled f in figure 5.
22When θ = 1 there is no temptation to defect and so social efficiency can always be

supported.
23This corresponds to the line labelled d in figure 5.
24This corresponds to the line labelled b in figure 5.
25These correspond to the lines labelled a and c in figure 5.
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Figure 6: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 1 − 1√
3

Figure 7: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 1
2
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Figure 8: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 2
3

effect outweighs the temptation effect, and the opposite occurs when δ < 2
3 .

Figures 9 and 10 show cross-sections for values of δ slightly above and below
1 − 1√

3
.26 The key feature is that when δ is below 1 − 1√

3
, the only value of θ

for which κ(ψ̃∗) is not negative is 1.

9 Quasi-Flat Paths

The next two sections will primarily be concerned with proving the result
from Theorem 2 for the general case where the optimal punishment path is not
flat. We begin by showing that, as θ −→ 1−, the socially efficient equilibrium
becomes unsupportable using the optimal quasi-flat punishment path. We
then proceed, in section 10, to establish that the same result holds even when
the optimal generic punishment path is used.

Definition 4. A quasi-flat path is one which is flat from point 2 onwards,
and is denoted by ψ̈. The point 1 trigger level is ψ̈1. The point 2 and after
trigger level is ψ̈2.

27

An important concept that will be used repeatedly in the lemmas and
theorems to follow is the definition of an average trigger level which defines
a flat path which is equivalent in terms of per-period average discounted utility

26These correspond to the lines labelled e and g in figure 5.
27This is the simplest punishment path structure enabling carrot-and-stick punishment,

because the individual required to punish at point 1 will take into account the future they
face if they co-operate, where the path continues to the less severe “carrot” part, whereas if
they defect the path will reset and the “stick” at point 1 will be repeated.
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Figure 9: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 1 − 1√
3
− 0.03

Figure 10: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 1 − 1√
3

+ 0.03
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Figure 11: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 2
3 − 0.03

Figure 12: Values of ψ̃∗ and κ
(
ψ̃∗
)

when δ = 2
3 + 0.03
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to a given non-flat path looking forward from a particular point. This average
will in general be different for the punishee and for a “neutral observer”.

Definition 5. Let the U-average and the V-average be respectively denoted as
U−1(Uk(ψ)) and V −1(Vk(ψ)). These two averages are defined below, and total
differentiation is also used to find their derivatives with respect to the trigger level
at a particular point i+ k (where i > 0 since the average is “forward looking”),
and the implicit derivative of V −1(Vk(ψ)) with respect to U−1(Uk(ψ)).

Uk (ψ) ≡
∫ 1

U−1(Uk(ψ))

(θπ − 1)g(π)dπ

≡
(

1 − δ

δ

)( ∞∑

i=1

[
δi
(∫ 1

ψi+k

(θπ − 1)g(π)dπ

)]) (25)

Vk (ψ) ≡
∫ 1

V −1(Vk(ψ))

(θπ − θ)g(π)dπ

≡
(

1 − δ

δ

)( ∞∑

i=1

[
δi
(∫ 1

ψi+k

(θπ − θ)g(π)dπ

)]) (26)

d
dψi+k

U−1(Uk(ψ)) =
(

1−δ
δ

)
δi
(

g(ψi+k)
g(U−1(Uk(ψ)))

)(
1−θψi+k

1−θU−1(Uk(ψ))

)
(27)

d
dψi+k

V −1(Vk(ψ)) =
(

1−δ
δ

)
δi
(

g(ψi+k)
g(V −1(Vk(ψ)))

)(
1−ψi+k

1−V −1(Vk(ψ))

)
(28)

d
dψi+k

V −1(Vk(ψ))

d
dψi+k

U−1(Uk(ψ))
=
(

1−ψi+k
1−θ ψi+k

)(
g(U−1(Uk(ψ)))
g(V −1(Vk(ψ)))

)(
1−θ U−1(Uk(ψ))
1−V −1(Vk(ψ))

)
(29)

The following lemma will prove useful in this and subsequent sections. It
applies to all optimal punishment paths, not just quasi-flat ones, and states that
Uk must we weakly minimised at point 0.

Lemma 1. The U-average must be weakly minimized at the beginning of an
optimal punishment path.
((a) If a punishment path ψ∗ is optimal then ∀k : Uk(ψ

∗) ≥ U0(ψ
∗).

(b) If a punishment path ψ∗ is optimal then ψ∗
1 ≤ U−1(U0(ψ

∗)) ≤ U−1(U1(ψ
∗)).)

Proof. For the first claim, note that it would be possible to construct a new
path ψ′ identical to ψ∗ except beginning at point k so that ∀i : ψ′

i = ψ∗
k+i,

resulting in the following sustainability constraints:

λi(ψ
′) ≡

(
δ

1 − δ

)
Vi(ψ

′) −
(

δ

1 − δ

)
U0(ψ

′) + ψ′
i − θ

µi(ψ
′) ≡

(
δ

1 − δ

)
Vi(ψ

′) −
(

δ

1 − δ

)
U0(ψ

′) − ψ′
i + θ

These can be rewritten as:

λi(ψ
′) ≡

(
δ

1 − δ

)
Vk+i(ψ

∗) −
(

δ

1 − δ

)
Uk(ψ

∗) + ψ∗
k+i − θ

µi(ψ
′) ≡

(
δ

1 − δ

)
Vk+i(ψ

∗) −
(

δ

1 − δ

)
Uk(ψ

∗) − ψ∗
k+i + θ
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Now, since ψ∗ must, by assumption, be sustainable, we know that, for any k

and i:

λk+i(ψ
∗) ≡

(
δ

1 − δ

)
Vk+i(ψ

∗) −
(

δ

1 − δ

)
U0(ψ

∗) + ψ∗
k+i − θ ≥ 0

µk+i(ψ
∗) ≡

(
δ

1 − δ

)
Vk+i(ψ

∗) −
(

δ

1 − δ

)
U0(ψ

∗) − ψ∗
k+i + θ ≥ 0

If we now suppose that there exists a k such that Uk(ψ
∗) < U0(ψ

∗), this
would mean, by observation, that the supportability constraints for ψ′ would
unambiguously be fulfilled at every point. Also, this would mean that φ(ψ′) >
φ(ψ∗). Therefore ψ′ would be sustainable, and would be more severe than ψ∗.
Hence ψ∗ could not be optimal - a contradiction.

For the second claim, note that the following identity holds for any path ψ:

δ

1 − δ

(∫ 1

U−1(U0(ψ))

(θπ − 1)g(π)dπ

)
≡

δ

∫ 1

ψ1

(θπ − 1)g(π)dπ +
δ2

1 − δ

∫ 1

U−1(U1(ψ))

(θπ − 1)g(π)dπ

(30)

This can be rewritten as:

(
δ

1 − δ

)
U0 (ψ) ≡

(
δ

1 − δ

)
U1 (ψ) + δ

∫ U−1(U1(ψ))

ψ1

(θπ − 1)g(π)dπ

Since we know from the argument made above that U0 (ψ∗) ≤ U1 (ψ∗), we

also know that
∫ U−1(U1(ψ∗))

ψ∗

1

(1 − θπ)g(π)dπ ≥ 0, and therefore that ψ∗
1 ≤

U−1(U1(ψ
∗)).

Finally, identity (30) can also be rewritten as:

0 ≡ δ

∫ U−1(U0(ψ))

ψ1

(θπ − 1)g(π)dπ +
δ2

1 − δ

∫ U−1(U0(ψ))

U−1(U1(ψ))

(θπ − 1)g(π)dπ

Since U−1(U0(ψ
∗)) ≤ U−1(U1(ψ

∗)), in order for this to hold it must follow that
U−1(U0(ψ

∗)) ≥ ψ∗
1 . Intuitively, the U-average must be “dragged down” from

below by the trigger level at point 1.

Lemma 1 implies that the optimal quasi-flat path must have a weakly lower
trigger level in period 1 (ψ̈∗

1) than in period 2 and after (ψ̈∗
2 ≡ U−1(U1(ψ

∗))).28

This fits the intuition that the “stick” of harsher punishment should come earlier
in the punishment path so that the “carrot” of less harsh punishment later on
will operate as an incentive to co-operate with the harsher punishment earlier
on. The optimal quasi-flat path will clearly also satisfy λ1(ψ̈

∗) = 0.
The trade-off which drives the optimal quasi-flat path is between a “bigger

stick” at point one and the resulting “nicer carrot” at point two and after.
(See sections 9.5 and 9.6 for more detailed examples of this principle in action.)
The gain in severity of the punishment path from a reduction in the point
one trigger level depends upon the probability density at that benefit value,

28Note that, for a quasi-flat path, ∀k : ψ̈∗

2
≡ V −1(Vk(ψ̈∗)) ≡ U−1(Uk(ψ̈∗)).
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whilst the effectiveness of the carrot in offsetting this to ensure sustainability
also depends on the probability density at the point two and after trigger level.
The cost of incentivizing co-operation with a lower trigger level at point one,
however, does not depend upon the probability density at the point one trigger
level, since it is “paid” in full if the value of the benefit turns out to be in the
relevant range. Intuitively, therefore, if (and only if) the probability density
function for the benefit is sufficiently flat will this cost will always outweigh
the benefit of making the quasi-flat punishment path non-flat. Theorem 5 will
establish this sufficient condition on the probability density function g(π) to
ensure that the optimal quasi-flat punishment path will be flat.

9.1 A taxonomy of optimal quasi-flat paths

An important lesson to draw from the discussion so far is that the framework
of strategy profiles constucted from punishment paths does not, in and of itself,
provide enough structure to allow a complete and comprehensive solution to
the problem of finding the form of optimal punishment in a specific context
such as that of the sequential punishment model. Although they all share a
similar carrot-and-stick structure, each particular model requires its own toolkit
of “tricks” to derive the precise shape of the optimal paths.

The concept of a quasi-flat punishment path turns out to be essential to
analysing the equilibria supportable by optimal generic punishment paths in the
sequential punishment model. This is because, as will be shown in section 10, it
is always possible to construct a quasi-flat path whose severity (φ) value forms an
upper bound for all sustainable generic paths, and to derive sufficient structure
from this to extend Theorem 2 to all the necessary general cases. Also, quasi-flat
paths themselves come in a variety of “flavours”, the differences between them
driven by the optimal structure of carrot-and-stick punishment in the sequential
punishment model, and its interaction with the partially altruistic preferences
of the players, along with the limits on the support for the distribution of the
benefit π.

It is natural to ask at this point why quasi-flat paths emerge naturally from
the structure of the sequential punishment model whilst, as we shall discuss
later, optimal punishment in the infinitely-repeated Bertrand and Cournot
games involves complete “front-loading”, with as much punishment as possible
packed into the early stages of the path. The answer is that it is the presence
of partial altruism which drives the “flattening-out” of the tail of paths in the
sequential punishment model.

The positioning of trigger levels at point 2 and onwards involves a trade-off,
allowing greater punishment to be “bought” at point 1, but at the cost of less
severe punishment later. The “sacrifice ratio” will be given by expression (29),
which measures the increase in “carrot” (measured as a higher V-average) for
a given reduction in “effectiveness” of the path (a higher U-average), brought
about by a rise in a later trigger level, ψk+i. It can be seen that this ratio is
more favourable when ψk+i is lower. (The benefits and costs are discounted, so
the exchange ratio, given a particular trigger level, looks the same for all future
periods.) It is therefore optimal to “spread out” the punishment evenly over
the entire tail.

There are a number of possibilities for the precise form that the optimal
quasi-flat path can take. By Lemma 1, it is impossible for the trigger level at
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point 1 to be higher than at point 2 onwards. This leaves seven possibilities,
types A-G. Type A is the maximal path characterised in Theorem 1. Possibility
B is a quasi-maximal path, where the trigger level is “maxed-out” at point
1 but not from point 2 onwards. Type C is a flat path. The next type, D,
is a path where the amount of punishment at point 1 runs up against the
constraint imposed by not being able to make the future “carrot” attractive
enough to allow more severe punishment. This happens because we reach the
top of the support of the distribution for π (i.e. ψ̈2 reaches 1). We shall call this
a quasi-minimal path. With type E paths, on the other hand, the amount of
punishment at point 1 runs up against constraint (7) in that we cannot further
increase ψ̈2 without rendering the path unsustainable. We shall refer to this
case as a carrot-constrained path. A sixth possibility, F, is that there is an
optimal marginal trade-off between punishment in point 1 and punishment at
point 2 and after. We shall call this a carrot-maximized path. The seventh
and final case, G, is one where no punishment at all can be incentivized; this is a
minimal path. Figures 13 through 19 illustrate the various possible structural
types of optimal quasi-flat path.

We shall also find it essential in the lemmas and theorems to follow to
distinguish between two different types of optimal path. Fully-constrained

paths must satisfy all co-operation conditions defined by (6) and (7). Semi-

constrained paths only need satisfy the conditions defined in (6). A fully-
constrained optimal quasi-flat path satisfies co-operation conditions λ1 ≥ 0,
λ2 ≥ 0, µ1 ≥ 0 and µ2 ≥ 0. Given quasi-flatness, these form a sufficient
condition for all the co-operation constraints to be fulfilled. A semi-constrained
optimal quasi-flat path is one which is only constrained to satisfy λ1 ≥ 0 and
λ2 ≥ 0 (though it may, by “chance”, also satisfy µ1 ≥ 0 and µ2 ≥ 0, and
therefore also be in the set of fully-constrained paths).

Definition 6. Let Ψ denote the set of unconstrained paths, in increasing order
of φ. Let Ψ◦ and Ψ• be the sets of sustainable semi-constrained and fully-
constrained paths respectively, so that Ψ• ⊂ Ψ◦ ⊂ Ψ. These are similarly
ordered by φ. The optimal generic path can be defined as ψ∗ = sup Ψ• =
maxψ∈Ψ•

{φ(ψ)}. Let Ψ̈ ⊂ Ψ be the set of quasi-flat paths and Ψ̃ ⊂ Ψ̈ and

be the set of flat paths. Let Ψ̈◦ = Ψ̈ ∩ Ψ◦, Ψ̃◦ = Ψ̃ ∩ Ψ◦, Ψ̈• = Ψ̈ ∩ Ψ• and
Ψ̃• = Ψ̃ ∩ Ψ• denote analogous sets of semi-constrained and fully-constrained
quasi-flat and flat paths. Other optimal paths can be defined using these sets. So,
for example, ψ̈∗

◦ = sup Ψ̈◦ = maxψ∈Ψ̈◦

{φ(ψ)} is the optimal semi-constrained
quasi-flat path.

It should be noted at this point that the optimal semi-constrained quasi-flat
path cannot be “carrot-constrained”, since constraint (7) does not apply. Also,
observe that the optimal semi-constrained path will be at least as effective as the
optimal fully-constrained path. In other words, if all paths are ordered in φ, the
optimal semi-constrained path will equal or beat the optimal fully-constrained

path: φ (sup Ψ◦) ≥ φ (supΨ•). Analogously, φ
(
sup Ψ̈◦

)
≥ φ

(
sup Ψ̈•

)
. This

observation is key in enabling Theorem 2 to be generalized to the case where
the optimal generic path is used to punish deviations from the socially efficient
initial path.
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Define ψλk and ψµk as the values of ψk that satisfy (6) and (7) with equality:29

π̂

ψj

j

1

θ

ψλj

ψj

ψ
µ
j

Figure 13: Type A: A maximal path

π̂

ψj

j

1

θ

ψλj

ψj

ψ
µ
j

Figure 14: Type B: A quasi-maximal path

29ψλ
k

and ψµ
k

therefore represent the upper and lower limits for the trigger level that could

be sustained at point k given the structure of the entire punishment path. Note also that, for
a quasi-flat path, they will be the same for any k because ∀k : Vk(ψ̈) ≡ V1(ψ̈).
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π̂

ψj

j

1

θ

ψ̃∗

ψλj

ψj

ψ
µ
j

Figure 15: Type C: A flat path

π̂

ψj

j

1

θ

ψλj

ψj

ψ
µ
j

Figure 16: Type D: A quasi-minimal path
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π̂

ψj

j

1

θ
ψλj

ψj

ψ
µ
j

Figure 17: Type E: A carrot-constrained path

π̂

ψj

j

1

θ
ψλj

ψj

ψ
µ
j

Figure 18: Type F: A carrot-maximized path
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π̂

ψj

j

1

θ

ψλj

ψj

ψ
µ
j

Figure 19: Type G: A minimal path

Theorems 1, 3 and 4 continue to hold for the equilibria supportable by generic
optimal paths (and, therefore, quasi-flat paths) without alteration. In general,
the quasi-maximal case only occurs when θ is close to the boundary established
in Theorem 1 below which the optimal path is maximal. In section 9.5, we see
an example of this with the triangular distribution. As we shall argue shortly,
the minimal and quasi-minimal cases cannot possibly be optimal. (The proof of
Lemma 5 in the appendix verifies this.) The flat, carrot-constrained and carrot-
maximized paths illustrated in figures 15, 17 and 18 respectively represent the
three possibilities for an interior solution.

9.2 Conditions for a flat path

To intuitively derive necessary and sufficient conditions for the optimal quasi-
flat path to be flat (type C), we can use a trick from Abreu by considering the
optimal path we are able to construct using a fixed punishment for a deviation.
If this can be shown to be flat, then the optimal path constructed using iself
as a punishment will also be flat. Let Ū ≡ ( δ

1−δ )U0(ψ̄) be the expected utility

for the punishee along the fixed path ψ̄. Let λ̄k(ψ̈) ≡ ( δ
1−δ )Vk(ψ̈) − Ū + ψ̈k − θ

be the co-operation constraint at point k for quasi-flat path ψ̈ given the use of
fixed path ψ̄ to punish a deviation. Since the trigger level at point 1 should be
set so that λ̄1(ψ̈) = 0, we know that the following condition must hold:

ψ̈1 = θ −
(

δ

1 − δ

)
V1(ψ̈) + Ū = θ +

(
δ

1 − δ

)∫ 1

ψ̈2

(θ − θπ)g(π)dπ + Ū (31)
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We are seeking to maximize the disutility of the person being punished along
the quasi-flat punishment path ψ̈. This will be given by:

φ = −
(

δ

1 − δ

)
U0

(
ψ̈
)

= δ

∫ 1

ψ̈1

(1 − θπ) g(π)dπ +

(
δ2

1 − δ

)∫ 1

ψ̈2

(1 − θπ) g(π)dπ

(32)
Totally differentiating (31) gives us:

dψ̈1

dψ̈2

= −
(

δ

1 − δ

)(
θ − θψ̈2

)
g
(
ψ̈2

)
(33)

Totally differentiating (32) with respect to ψ̈2 gives us:

dφ

dψ̈2

= δ
(
θψ̈1 − 1

)
g
(
ψ̈1

) dψ̈1

dψ̈2

−
(

δ2

1 − δ

)(
1 − θψ̈2

)
g
(
ψ̈2

)

Substituting in (33) and simplifying yields:

dφ

dψ̈2

=

(
δ2

1 − δ

)
g
(
ψ̈2

)((
1 − θψ̈1

)(
θ − θψ̈2

)
g
(
ψ̈1

)
−
(
1 − θψ̈2

))

This is unambiguously negative if the following condition holds:

g
(
ψ̈1

)
<

1 − θψ̈2(
1 − θψ̈1

)
θ
(
1 − ψ̈2

) (34)

The RHS of the above expression is increasing in ψ̈1 and ψ̈2. This means
that the most stringent condition will be where ψ̈1 = ψ̈2 = π̂. Requiring that
the probability density function g(π) always be less than this ensures that the
above condition will always hold. This yields the following condition:

∀π : g(π) <
1

θ(1 − π̂)
(35)

Provided this condition holds, increasing ψ̈2 in order to further reduce ψ̈1

always makes the punishment path less effective by reducing φ. It is therefore
optimal to set ψ̈2 = ψ̈1 since to set ψ̈2 < ψ̈1 will result in a clearly non-optimal
path, by Lemma 1. Condition (35) is therefore sufficient for the optimal quasi-
flat path to be flat. (This result is verified in Theorem 5 below.)

A necessary condition for the optimal quasi-flat path to be flat can be found
by substituting ψ̈1 = ψ̈2 = ψ̃∗ into condition (34) to give the following:

g
(
ψ̃∗
)
<

1

θ
(
1 − ψ̃∗

) (36)

Theorem 5. If the benefit distribution is sufficiently flat, then the optimal
quasi-flat path is flat.

(If ∀π : g(π) < 1
θ(1−π̂) then φ

(
ψ̃∗
)
≥ φ

(
ψ̈∗
)
.)
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Proof. Lemma 5 from the appendix establishes that if ∀π : g(π) < 1
θ(1−π̂) then

the optimal semi-constrained quasi-flat path must be flat. This imples that

φ
(
ψ̃∗
◦

)
≥ φ

(
ψ̈∗
◦

)
. In order to establish the same result for the optimal fully-

constrained quasi-flat path, it is sufficient to show that if the optimal semi-
constrained quasi-flat path is flat (i.e. sup(Ψ̈◦) ∈ Ψ̃), then it will be in the set of

fully-constrained flat paths (sup(Ψ̈◦) ∈ Ψ̃•). This will mean that φ(ψ̃∗) ≥ φ(ψ̈∗
◦).

If this is the case then, since Ψ̈• ⊂ Ψ̈◦ and thus φ(ψ̈∗
◦) ≥ φ(ψ̈∗), it must follow

that φ(ψ̃∗) ≥ φ(ψ̈∗).

To see that sup(Ψ̈◦) ∈ Ψ̃•, firstly observe that if sup(Ψ̈◦) ∈ Ψ̃ then

sup(Ψ̈◦) ∈ Ψ̃◦, since sup(Ψ̈◦) is, by assumption, semi-constrained. Now note,
from expressions (6) and (7), that, if ψ̃ ≤ θ and λ(ψ̃) ≥ 0, then µ(ψ̃) ≥ 0. Hence

sup(Ψ̈◦) must be in the set of fully-constrained paths, and so sup(Ψ̈◦) ∈ Ψ̃•.
(By observation of expression (10), it must be the case that ψ̃ ≤ θ for any
conceivable optimal flat path.)

9.3 Conditions for non-flat paths

We now proceed to lay out the conditions which must hold for the various
possibile configurations of a non-flat fully-constrained optimal quasi-flat path.
Most obviously, the optimal path cannot possibly be minimal (type G) because
it can be seen from condition (10) that there will always exist a sustainable, and
more severe, flat path. Secondly, we already know the necessary and sufficient
condition for a maximal (type A) path from Theorem 1. Thirdly, taking the
case of a quasi-maximal (type B) path, we know that ψ̈1 = π̂. The value for ψ̈2

can then be derived using the λ1(ψ̈) = 0 condition. This should be checked as
a candidate for the fully-constrained optimal quasi-flat path.

For a carrot-constrained (type E) path, constraint (6) binds at point one
and constraint (7) at points two and after. In this case, the limit to how much
“carrot” can be created is imposed by the difficulty in incentivizing individuals
to refrain from punishing when they would like to along the “tail” of the
punishment path.30 The optimal carrot-constrained path is characterised by
the property that both λ1(ψ̈) = 0 and µ2(ψ̈) = 0. Solving µ2(ψ̈) − λ1(ψ̈) = 0
(applying definitions (6) and (7)) gives us:

ψ̈2 = 2θ − ψ̈1 (37)

The fact that a carrot-maximized (type F) path is also a possibility can be
seen by observation of condition (34). As ψ̈2 −→ 1, the RHS of (34) goes to
infinity. Therefore the inequality will definitely be fulfilled, and further increases
in ψ̈2 in order to decrease ψ̈1 will no longer improve the severity of the path.
If this happens before ψ̈2 reaches ψµj then the optimal quasi-flat path will be
“carrot-maximized”. A carrot-maximized path must therefore have the property
that condition (34) is satisfied with equality. Rearranging this gives us:

30Although it might be felt intuitively that if the socially efficient initial path is to be
sustainable using a particular path, then co-operation with the “tail” of the punishment path
would automatically also be sustainable, this does not necessarily follow because there is still
a less attractive future along the tail of the punishment path if punishers co-operate, rendering
the severity of punishment lower and thus making co-operation with the “tail” more difficult
to incentivize than co-operation with the initial path.

33



ψ̈2 =
g
(
ψ̈1

)(
1 − θψ̈1

)
θ − 1

g
(
ψ̈1

)(
1 − θψ̈1

)
θ − θ

(38)

The above argument from condition (34) also shows why a quasi-minimal
(type D) path is impossible, because as ψ̈2 −→ 1− the RHS of the inequality
goes to ∞. Therefore, when raising ψ̈2 in search of the optimal quasi-flat path,
a path would always become carrot-maximized before it become quasi-minimal.

9.4 The optimal quasi-flat path

We now have all the information we need to lay out the procedure for finding
the optimal quasi-flat path. Assuming that the optimal path is not maximal,
the only possibilities are a quasi-maximal, flat, carrot-constrained or carrot-
maximized path. Solving conditions (37) and (38) respectively simultaneously
with equation (40) below provides a shortcut in finding the optimal quasi-flat
path since, once the various solutions have been compared with the optimal flat
path defined by (10) and with the quasi-maximal candidate where λ(ψ̈) = 0 and
ψ̈1 = π̂, and the most severe path among them found, we can be sure that it is
optimal.31 We use this method in subsection 9.6 to analyse a specific example
of a carrot-maximized and a carrot-constrained path.

Most importantly, we can now prove the analogue of Theorem 2 for the more
general case of the optimal quasi-flat path. This requires the use of Lemma 5
from the appendix.32 Once we present Theorem 7, the result will be generalized
to all globally optimal fully-constrained paths. This will allow us to substantiate
generally, for any benefit distribution, the result that too high a level of altruism
will cause the socially efficient equilibrium to break down.33

Theorem 6. As altruism becomes perfect, the optimal quasi-flat punishment
path cannot support the socially efficient equilibrium, for any value of the
discount rate.
(As θ −→ 1−, κ

(
ψ̈∗
)
−→ 0−.)

Proof. Firstly, observe that the most severe path in Ψ̈◦, sup Ψ̈◦ must be at
least as severe as the most severe path in Ψ̈•, sup Ψ̈•. Therefore φ(sup Ψ̈◦) ≥
φ(sup Ψ̈•) and so φ

(
ψ̈∗
◦

)
≥ φ

(
ψ̈∗
)
. Now, combining with expressions (8) and

(9), we know that:

κ
(
ψ̈∗
)
≤ φ

(
ψ̈∗
◦

)
+ θ − 1 (39)

Theorem 2, combined with Lemma 5, has already established that the RHS of
expression (39) goes to 0− as θ −→ 1−. Therefore the LHS of (39) must be
strictly negative as θ −→ 1−.

31Note that we must also check the sustainability of each “candidate” because these are
necessary rather than sufficient conditions.

32In Lemma 5, we impose only that the optimal path be semi-constrained, partly to simplify
the proof but, more importantly, because we are later able to generate semi-constrained quasi-
flat paths by “flattening-out” generic paths.

33In the course of the proof for Lemma 5, we also exhaustively derive the conditions on g(π)
under which the optimal semi-constrained quasi-flat path can be maximal, quasi-maximal,
carrot-maximized and flat.
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Figure 20: Triangular probability density function

9.5 Illustration: quasi-maximal paths

Given assumption (3), condition (35) will definitely hold for a uniform
distribution with support between π̂ and 1. It is however, instructive to look
at some examples where the optimal quasi-flat path is not flat. As we have
seen, this requires a distribution with a high enough probability density around
the optimal flat trigger level. The simplest distribution for the benefit which
can produce this result is a triangular distribution. The triangular probability
density function g(π) = 50(1−π) with support between 0.8 and 1 and illustrated
in figure 20 is one such example.

The optimal quasi-flat path can be computed by using the λ1(ψ̈) = 0
condition to derive the following expression for ψ̈1, and then numerically solving
for ψ̈1 given each particular ψ̈2:

ψ̈1 = θ− δ

1 − δ

∫ 1

ψ̈2

(θπ−θ)g(π)dπ+δ

∫ 1

ψ̈1

(θπ−1)g(π)dπ+
δ2

1 − δ

∫ 1

ψ̈2

(θπ−1)g(π)dπ

(40)
Figures 21 through 26 illustrate the results of this exercise for δ = 0.48 and

δ = 0.49, with θ = 0.9. Figures 21 and 24 show the value of ψ̈2 imputed from
(40) for each value of ψ̈1. They also show the optimal flat trigger level ψ̃∗

(numerically solved using (10)), and the ψ̈2 = ψ̈1 line.
If δ = 0.5, then solving equation (10) to find the optimal flat path for

the assumed triangular benefit distribution yields ψ̃∗ = 0.8. This would be a
maximal (type A) path involving punishment for all benefit values all of the time,
as π̂ = 0.8. By making δ slightly lower than this, we prevent the optimal flat
path from being maximal because the future is no longer “important enough”
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to sustain it. For the triangular distribution, this results in the optimal path
being quasi-maximal (type B).

Figures 23 and 26 show the values of the various co-operation constraints,
and the severity of the punishment paths (φ).34 In both cases, all of the
constraints are positive, showing that the punishment path is itself sustainable
and supports the initial path. In both cases, the highest value of φ(ψ̈) occurs
where ψ̈1 = 0.8. We have, therefore, two cases where the optimal quasi-flat
punishment path is “maxed-out” at point 1, so that ψ̈∗

1 = π̂. The “tail” of the
path is, however, not maxed-out.

A notable feature of the graph of the imputed ψ̈2 in figure 21 is that it initially
climbs as ψ̈1 is reduced below ψ̃∗. This means that ψ̈2 must initially be raised
to compensate for a reduction in ψ̈1 if the point 1 co-operation constraint is to
remain unbroken. Eventually, on the other hand, the imputed ψ̈2 graph begins
to fall as ψ1 is reduced. Since this line continues to lie above the dashed ψ̈2 = ψ̈1

line, these more severe quasi-flat punishment paths can only be achieved by
introducing some carrot-and-stick element into the punishment path. By doing
this, however it is possible to reduce both trigger levels below the trigger level
of the optimal flat punishment path.

Figures 24 and 26 show a situation where the graph of the imputed ψ̈2 has
a positive gradient for any change in ψ̈1. This means that it is now possible to
reach more effective paths which remain sustainable by simultaneously reducing
both trigger levels below the optimal flat trigger level, provided that ψ̈2 is
reduced by less than ψ̈1. Here we have a classic illustration of Abreu’s principle
that when being optimally punished, individuals can be persuaded to put up
with an even more unpleasant present in exchange for a relatively less unpleasant
future.

The carrot-and-stick structure of optimal quasi-flat punishment paths
illustrated here is similar to the optimal penal codes derived for infinitely
repeated oligopoly games. Abreu himself derived the properties of optimal penal
codes in the infinitely repeated Cournot game [Abreu, 1986]. He found that,
provided there is sufficiently low discounting, optimal punishment paths would
involve one period of very high output and very negative profits followed by a
return to fully collusive behaviour. Such paths cannot be any worse than the 0
discounted stream of profits that could be achieved by shutting down.

Lambson built on Abreu’s work to derive optimal penal codes in the
infinitely repeated homogeneous product Bertrand model with identical firms
and capacity constraints [Lambson, 1987]. Optimal penal codes in this model
involve a number of periods of low profits followed by a return to fully collusive
behaviour. This is because the losses per firm in any one period cannot be
infinite in the Bertrand model. The sequential punishment model is more like
Bertrand in that the severity of the punishment path at point 1 is constrained
by the fact that ψ̈1 cannot be any lower than π̂. This means that generally
there will also be some punishment along the “tail” of an optimal quasi-flat
path. The difference, however, is that in the sequential punishment model, the
tail of the optimal path involves “flattening-out” rather than “front-loading”
the remaining punishment.

34Note that because ψ̈1 < θ and ψ̈2 < θ, constraint (7) is fulfilled and so µ2 does not need
to be displayed.
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Figure 21: Trigger levels for a quasi-maximal path - θ = 0.9, δ = 0.48.

Figure 22: Co-operation constraints for a quasi-maximal path - δ = 0.48.

Figure 23: Severity of a quasi-maximal path - δ = 0.48.
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Figure 24: Trigger levels for a quasi-maximal path - θ = 0.9, δ = 0.49.

Figure 25: Co-operation constraints for a quasi-maximal path - δ = 0.49.

Figure 26: Severity of a quasi-maximal path - δ = 0.49.
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9.6 Illustration: carrot-constrained and carrot-

maximized paths

In this subsection, we will present specific numerical examples of a flat,
a carrot-constrained and a carrot-maximized path, to illustrate more of the
general principles discussed in subsection 9.1. Figures 28, 29 and 30 respectively
show the numerically calculated values for ψ̈2 given ψ̈1, the various co-operation
constraints and the effectiveness of the punishment path φ for the triangular
distribution shown in figure 20, with δ = 1

3 and θ = 0.9. Figures 31, 32 and 33
show the results for the same exercise conducted using the probability density
function given in (41) below, and shown in figure 27, with δ = 1

8 and θ = 0.9,
π̂ = 0.8 and support between 0.8 and 1. Figures 34, 35 and 36 show analysis
for the same distribution but with δ = 1

16 .

g(π) = 17.5



1 −
((

2π − π̂ − 1

1 − π̂

)2
) 1

5



 (41)

The key features to note are, firstly, that in all three cases µ2 reaches 0
before ψ̈1 reaches π̂ = 0.8, showing that the optimal path cannot possibly be
quasi-maximal. Secondly, whereas in figure 30, φ decreases as ψ̈1 is reduced,
showing that the optimal quasi-flat path is flat, in figure 33, φ reaches an
interior maximum, showing that the optimal quasi-flat path is carrot-maximized.
In figure 36, meanwhile, φ reaches a constrained maximum at the carrot-
constrained value of ψ̈1, where the x-axis begins. Note, finally, that the starting
value on the x-axis, corresponding to the carrot-maximized “candidate” for the
optimal path in each case, and the carrot-maximum denoted by the dotted line
in figure 33 were derived using the shortcut method described earlier in section
9.4, thus verifying its applicability.

Figure 27: Probability density for a carrot-maximized or carrot-constrained
path
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Figure 28: Trigger levels for a flat path - θ = 0.9, δ = 1
3 .

Figure 29: Co-operation constraints for a flat path.

Figure 30: Severity of a flat path
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Figure 31: Trigger levels for a carrot-maximized path - θ = 0.9, δ = 1
8 .

Figure 32: Co-operation constraints for a carrot-maximized path.

Figure 33: Severity of a carrot-maximized path
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Figure 34: Trigger levels for a carrot-constrained path - θ = 0.9, δ = 1
16 .

Figure 35: Co-operation constraints for a carrot-constrained path.

Figure 36: Severity of a carrot-constrained path
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10 The Optimal Generic Path

We are now ready to further generalize Theorems 2 and 6 to the case
where the optimal generic punishment path is used to support the initial path.
The result hinges upon three intuitive observations. Firstly, the optimal semi-
constrained path is quasi-flat, because it is always possible to take any given
optimal semi-constrained path and “flatten-out” the tail, producing an equally
severe path without breaking any of the co-operation constraints. Secondly, as
θ −→ 1−, it is impossible to support the socially efficient equilibrium using the
optimal semi-constrained quasi-flat path, because it must become flat (this is
proved in Lemma 5), and we already know (from Theorem 2) that the result
holds for flat paths. Thirdly, since the optimal fully-constrained generic path
must be weakly less severe than the optimal semi-constrained path, then it
must also follow that, as θ −→ 1−, the socially efficient equilibrium cannot be
supported by any sustainable path.

Theorem 7 will work by arguing, firstly, that any generic optimal punishment
path can be replaced by a semi-constrained quasi-flat path constructed by
“flattening out” to the point 1 U-average from point 2 onwards. This newly
constructed quasi-flat path will continue to fulfil the point 1 and point 2
cooperation conditions35 λ1 ≥ 0 and λ2 ≥ 0. It will therefore continue to
be in the set of semi-constrained paths, and will be as severe as the path it was
generated from.

Applying Lemma 5 from the appendix, it will therefore be shown that the
supportability constraint on the socially efficient initial path, given the use of
the generic optimal path to punish a deviation, is broken as θ −→ 1−. Whether
or not the optimal path is flat in a particular case, it is thus established that
intermediate values of the coefficient of altruism are best able to allow a socially
efficient equilibrium to be supported using globally optimal punishment paths.
Theorem 7 will, as a result, be crucial to establishing the general applicability
of the key results from section 8, which form the core contribution of this paper.

Definition 7. Let γ : Ψ −→ Ψ̈ be the function which constructs a quasi-flat path
from a generic path by “flattening-out” the trigger levels from point 2 onwards to
the point 1 U-average. This means that γ1(ψ) = ψ1 and γ2(ψ) = U−1(U1(ψ)).
Note also that φ(γ(ψ)) = φ (ψ).36

Lemma 2 below is an essential building block necessary for the proof of
Theorem 7. It establishes that for any generic punishment path looking forward
from any point k, the U-average, U−1(Uk(ψ)), must lie equal to or above the V-
average, V −1(Vk(ψ)). It should be noted that the result from Lemma 2 is based
on the assumption of risk neutral agents. Although mathematically analogous
to differing levels of risk aversion, the result is in fact generated by differing
attitudes towards the variability of benefit values under which punishment
is inflicted. The sensitivity of a “neutral observer” to the “wastefulness” of
punishment when watching others being punished is greater than the sensitivity
of the individual being punished. This makes intuitive sense, since, to take the
example of a fine, the person being fined is mainly affected in social utility terms
by the fact that they are fined, whereas altruists who value the felicity of the

35The co-operation conditions for point 3 and after are identical to those at point 2.
36Note that γk(ψ) is shorthand for (γ(ψ))k - the kth trigger level in the path γ(ψ).

43



person fined and the recipient of the revenue equally will be more sensitive to
any deadweight loss from punishment. This result should therefore have wider
implications in other models involving altruism and punishment.

Lemma 2. For any punishment path, at any point, the U-average is weakly
greater than the V-average.
(∀ψ∀k : U−1(Uk(ψ)) ≥ V −1(Vk(ψ)).)

Proof. This result follows from an application of the principle of stochastic
dominance, a key principle in the economics of risk [Rothschild & Stiglitz, 1970].
First, note from definition 3 that the per period average utility functions
for the person being punished and a neutral observer can be rewritten as
Uk(ψ) ≡∑∞

i=1[piU(ψi+k)] and Vk(ψ) ≡∑∞
i=1[piV (ψi+k)] where pi = (1−δ)δi−1

and
∑∞
i=1[pi] = 1. This means that U(ψ) and V (ψ) can be thought of as

“expected utility functions”, with the discount factor for each point along the
path taking the role of probabilities for different outcomes of a lottery. The
“expected value” of a particular path ψ looking forward from point k can then
be defined as Ek[ψ] =

∑∞
i=1[piψi+k]. Since this “expected value” is equal for

both the punishee and the neutral observer, the discounted expected utility
along a path is exactly analogous to the expected utility of a risky prospect.
Therefore if we can show that the “neutral observer” is more “risk averse” than
the punishee, the result of the lemma will follow.

The coefficient of absolute risk aversion Ra = −U ′′

U ′
measures the degree

of concavity of a utility function. If it is always higher for one func-
tion than another, then the corresponding agent is the more risk averse
[Diamond & Stiglitz, 1974]. For the two types of agent under consideration
(with utility functions U(ψ) and V (ψ) respectively), the CARA works out as
the following.

RUa =
θ

1 − θψ
− g′(ψ)

g(ψ)
(42)

RVa =
θ

θ − θψ
− g′(ψ)

g(ψ)
(43)

Since (43) is always unambigously greater than (42), the neutral observer is more
“risk averse” than the punishee, and hence will always have a lower “certainty
equivalent” from a given path looking forward, which, from definition 3, is
precisely analagous to V −1(Vk(ψ)) (as opposed to U−1(Uk(ψ)) for the punishee).

The intuition for the result in Lemma 2 is also closely related to the “sacrifice
ratio” derived in expression (29). Punishing within a certain “bracket” of values
of π, with a fixed width, has a greater effect on U−1(Uk(ψ)) (increasing the
“stick”) relative to V −1(Vk(ψ)) (decreasing the “carrot”) the higher the bracket.
Given a particular value of U−1(Uk(ψ)), V −1(Vk(ψ)) is maximized when this is
generated by a flat path looking forwards.

Lemma 3. If a punishment path is optimal, then the quasi-flat path constructed
by “flattening it out” will be in the set of semi-constrained paths.
(If a path ψ∗ is optimal then ∀k : λk (γ (ψ∗)) ≥ 0, therefore γ (ψ∗) ∈ Ψ̈◦.)
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Proof. Firstly, observe that, given the result from Lemma 2, U0(γ(ψ
∗)) =

U0(ψ
∗) and ∀k : Vk(γ(ψ

∗)) ≥ V1(ψ
∗). To see this, note the following:

(
δ

1 − δ

)
U0 (ψ) ≡ δ

∫ 1

ψ1

(θπ − 1)g(π)dπ +
δ2

1 − δ

∫ 1

U−1(U1(ψ))

(θπ − 1)g(π)dπ

(
δ

1 − δ

)
U0 (γ(ψ)) ≡ δ

∫ 1

γ1(ψ)

(θπ − 1)g(π)dπ +
δ2

1 − δ

∫ 1

γ2(ψ)

(θπ − 1)g(π)dπ

(
δ

1 − δ

)
V1 (ψ) ≡ δ

1 − δ

∫ 1

V −1(V1(ψ))

(θπ − θ)g(π)dπ

∀k :

(
δ

1 − δ

)
Vk (γ (ψ)) ≡ δ

1 − δ

∫ 1

γ2(ψ)

(θπ − θ)g(π)dπ

The claim is then straightforward to verify once it is noted that γ1(ψ) = ψ1 and
γ2(ψ) = U−1(U1(ψ)), since, by Lemma 2, U−1(U1(ψ)) ≥ V −1(V1(ψ)).

Now we can proceed to note that:

λ1 (γ (ψ)) ≡
(

δ

1 − δ

)
V1 (γ (ψ)) −

(
δ

1 − δ

)
U0 (γ (ψ)) + γ1 (ψ) − θ (44)

∀k≥2 : λk (γ (ψ)) ≡
(

δ

1 − δ

)
Vk (γ (ψ))−

(
δ

1 − δ

)
U0 (γ (ψ)) + γ2 (ψ)− θ (45)

Now take an optimal path ψ∗. By assumption, ψ∗ is sustainable, and so:

λ1 (ψ∗) ≡
(

δ

1 − δ

)
V1 (ψ∗) −

(
δ

1 − δ

)
U0 (ψ∗) + ψ∗

1 − θ ≥ 0 (46)

Given the result from Lemma 1 that ψ∗
1 ≤ U−1(U1(ψ

∗)), along with all the
observations noted so far, condition (46) is sufficient for (44) and (45) to be
weakly positive for all relevant k.

Lemma 4. The optimal semi-constrained quasi-flat punishment path is at least
as severe as the optimal fully-constrained generic punishment path.

(φ
(
ψ̈∗
◦

)
≥ φ (ψ∗).)

Proof. Consider the optimal generic path ψ∗ ∈ Ψ•. By Lemma 3, γ(ψ∗) ∈ Ψ̈◦.
Also, by definition, φ(γ(ψ∗)) = φ (ψ∗). Therefore the most severe path in Ψ̈◦,
sup Ψ̈◦ must be at least as severe as the most severe path in Ψ•, sup Ψ•. Thus

φ(sup Ψ̈◦) ≥ φ(sup Ψ•) and so φ
(
ψ̈∗
◦

)
≥ φ (ψ∗).

Theorem 7. As altruism becomes perfect, the optimal generic punishment path
cannot support the socially efficient equilibrium, for any value of the discount
rate.
(As θ −→ 1−, κ (ψ∗) < 0.)

Proof. First, note, from expressions (8) and (9) that:

κ (ψ∗) = φ (ψ∗) + θ − 1
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By Lemma 4, this implies that:

κ (ψ∗) ≤ φ
(
ψ̈∗
◦

)
+ θ − 1 (47)

Theorem 2, combined with Lemma 5 in the appendix, has already established
that the RHS of expression (47) goes to 0− as θ −→ 1−. Therefore the LHS of
(47) must be strictly negative as θ −→ 1−.

Theorem 8. If the benefit distribution is sufficiently flat, then the optimal
punishment path is flat.

(If ∀π : g(π) < 1
θ(1−π̂) then φ

(
ψ̃∗
)
≥ φ (ψ∗).)

Proof. From Lemma 5, we know that, if ∀π : g(π) < 1
θ(1−π̂) , then ψ̈∗

◦ ∈
Ψ̃•. Therefore, φ

(
ψ̃∗
)

≥ φ
(
ψ̈∗
◦

)
. Applying Lemma 4, the result follows

straightforwardly.

11 Second-Best Equilibria

For any particular level of the coefficient of altruism θ, if the discount rate
δ is low enough, so that players are sufficiently impatient, then the socially
efficient initial path will not be supportable. There will still, however, exist
a second-best optimal subgame-perfect Nash equilibrium, supported by the
optimal punishment path, in the sense that the associated initial path maximizes
efficiency by minimizing the range of benefit values for which punishment occurs.
Given condition (35) then, as shown in Theorem 8, the optimal punishment path
which supports such an optimal equilibrium will be flat. For the remainder of the
paper we will, for the sake of simplicity, assume that this condition is satisfied.

Along the second-best optimal initial path, the punishment path will be
initiated when an individual punishes for a value of the benefit below trigger
level ψ̃h. (Intuitively, the most attractive punishment opportunities will be the
most difficult to deter along the initial path.) All players will then switch to a

path where punishment is carried out above trigger level ψ̃∗, derived from the
optimal flat punishment path (which is globally optimal, under the assumptions

made). Assuming an interior solution for the optimal flat path where ψ̃∗ > π̂, ψ̃∗

and its total derivative with respect to θ will be respectively given by equations
(10) and (11). The supportability constraint on the initial path will be:

ψ̃h − θ ≤ δ

1 − δ

∫ 1

eψh
(θπ − θ)g(π)dπ − δ

1 − δ

∫ 1

eψ∗

(θπ − 1)g(π)dπ (48)

When ψ̃h is set just high enough to make (48) bind, to give us the optimal

second-best equilibrium, we will have the following implicit definition of ψ̃∗
h in

terms of itself, ψ̃∗, θ and δ:

ψ̃∗
h = θ +

δ

1 − δ

(∫ 1

eψ∗

g (π) dπ − θ

∫ eψ∗

h

eψ∗

πg (π) dπ − θ

∫ 1

eψ∗

h

g (π) dπ

)
(49)

46



Figure 37: Second-best equilibria where π̂ = 0 and g(π) = 1

Totally differentiating (49) with respect to θ and solving for
d eψ∗

h

dθ
gives us

the following expression for the overall derivative of ψ̃∗
h with respect to the

coefficient of altruism:

dψ̃∗
h

dθ
=

(1 − δ) − δ
(∫ eψ∗

h

eψ∗
g (π) πdπ +

∫ 1
eψ∗

h

g (π) dπ
)
− δ

(
1 − θψ̃∗

)
g
(
ψ̃∗
)
d eψ∗

dθ

(1 − δ) − δθ
(
1 − ψ̃∗

h

)
g
(
ψ̃∗
h

)

(50)

By observation of (10) and (49), as θ −→ 1−, ψ̃∗ −→ 1− and therefore

ψ̃∗
h −→ 1−. Additionally, note that as θ −→ 1−, the RHS of (50) goes to

1. These observations imply that there must be a region where increasing the
coefficient of altruism results in increasing ψ̃∗

h. Note also that as δ −→ 0, the
RHS of (50) again goes to 1. This implies that, for a low enough δ, increasing θ

always increases ψ̃∗
h (intuitively, this is where the future counts for sufficiently

little that the severity effect, even in combination with the willingness effect, is
never sufficient to outweigh the temptation effect).

Figure 37 shows the highest ψ̃∗
h which is supportable along the initial path

given different values of θ (along the x-axis) and δ. It can be seen that the curve
always has a slope of 1 as θ −→ 1, and that the gradient is always positive for
all θ when δ is low. Importantly, there is always a level of θ high enough but
lower than 1 where ψ̃∗

h falls below one and then back up to one as θ −→ 1. This
corresponds to the black region in figure 5 and derived analytically in Theorems
1 through 4. Finally, for high enough δ with a low enough θ, ψ̃∗

h goes above
one (i.e. the graph gets “cut off”). This is corresponds to the region where the
first-best socially efficient equilibrium is supportable.
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An important conclusion to draw from figure 37 is that the efficiency loss
from too high a level of altruism can be non-negligible. Although as θ −→ 1,
ψ̃∗
h −→ 1, there will exist intermediate levels of altruism where an increase in the

coefficient of altruism to a higher intermediate level (which is still less than 1)
could make the efficiency of the optimal second-best outcome significantly lower.
Altruism is in many realistic cases a “double-edged sword” in the sequential
punishment model, and too high a level of altruism will in general be socially
detrimental in a significant manner.

12 Conclusion

This paper has taken two areas of economic theory, the modelling of altruistic
preferences and the structure of optimal punishment paths, and shown how
they can interact to produce interesting results in a new type of model,
the sequential punishment model - a simple infinite-move sequential game
with perfect information and discounting - where players move by choosing
whether or not to take opportunities to inflict harm upon others with benefit
to themselves. Essentially, the model is an abstract representation of the
fundamentally vicarious nature of human interaction in any kind of society,
whatever its organizational principles. The central implication of the analysis
is that excessive altruism will interfere detrimentally with punishment systems,
“denting” them in such a manner that social welfare is reduced compared to a
situation with lower altruism.

The concepts of willingness, severity and temptation effects which were
used to analyse the subgame perfect equilibria of the sequential punishment
model, and to establish the existence of a socially optimal level of altruism,
should present themselves in other contexts. They would, for instance, be
highly relevant to the analysis of optimal taxation, the economic theory of
criminal punishment, and to issues surrounding the evolution of altruistic
preferences; see, for example, “Punishment and the Potency of Group Selection”
[Povey, 2010].

Sections 1 through 7 set up the notation for the sequential punishment
model, and related this to Abreu’s framework of optimal penal codes, originally
developed for repeated stage games. The main body of novel results for this
paper is in sections 8, 9 and 10, which progressively generalize the core result
of the paper - that as altruism becomes perfect the socially efficient equilibrium
breaks down - to the equilibria supportable by the optimal flat punishment path,
the optimal quasi-flat path and, finally, the optimal generic punishment path.

In the sequential punishment model, the interaction between the severity,
willingness and temptation effects can be conclusively seen to lead to the result
that an intermediate “Goldilocks” level of altruism is socially optimal. This
result was established (initially for equilibria supportable by flat paths), in
Theorem 2. The key intuition for this result is that, for a low enough value
of the discount rate δ, the temptation effect must initially dominate the severity
and willingness effects as θ is reduced from below 1. Since social efficiency is
only barely supportable at θ = 1, the constraint for supportability must be
broken as θ −→ 1−.

If individuals are sufficiently impatient, excessive malevolence will, on the
other hand, be socially damaging, due to the dominance of the temptation effect
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over the severity effect as θ −→ −∞. In contrast however, if the discount rate
δ is high enough, then even infinite malevolence does not break the socially
efficient equilibrium, because the severity effect will outweigh the temptation
effect as θ −→ −∞ (Theorem 3). The sequential punishment model also
demonstrates, therefore, an asymmetry, in that high altruism is in general more
damaging than extreme malevolence. With sufficiently effective monitoring
(leading to a δ close to 1) malevolent preferences are not of concern from a
social welfare perspective, but excessively altruistic ones remain so.

The analysis in section 9 involved the investigation of quasi-flat paths,
which maintain a simple structure of carrot-and-stick punishment, and are an
interesting illustration of the general principles governing optimal penal codes
in and of themselves. Quasi flat paths are a specific feature which emerges
from the application of optimal penal codes to the sequential punishment
model. They occur because the presence of partially altruistic preferences leads
to a “flattening-out” of the tail of the optimal punishment path. This is a
key difference between the nature of optimal penal codes in the sequential
punishment model and those found in the infinitely-repeated Cournot and
Bertrand simultaneous oligopoly stage games.

The optimality of quasi-flat paths is driven by the higher relative concavity
of the “inter-temporal” utility function of a “neutral observer” relative to the
punishee in a punishment equilibrium. This is also an interesting result which
should have wider implications. The broader society is more sensitive to the
inefficiencies brought about by random variations in punishment technology
than the individual being punished. This is because the individual cares
primarily about the fact that they are punished, and so places less relative
weighting on the deadweight loss to society from punishment. A similar
phenomenon should emerge in any model with altruistic agents and punishment
technologies. There are therefore potential applications in optimal taxation
theory and in rational choice models of criminality and punishment.

Theorem 7 completes the generalization of the results from section 8 so that
they apply to any continuous distribution of the benefit with support between π̂
and 1 (where 0 ≤ π̂ < 1), and when the optimal generic punishment path is used
to support the socially efficient equilibrium by punishing any deviation from the
socially efficient initial path. This is a satisfyingly general result, although it
does require ruling out situations where individuals would actually enjoy being
harmed. Another limitation of the treatment of the model in this paper is that
the case where θ ≥ 1, so that individuals are “martyrs”, who care about others
more than themselves, has been excluded from the outset.

Section 11 demonstrated that there is a potentially significant loss of social
efficiency from the detrimental effects of too high a level of altruism on the
social incentive systems used to induce co-operation via the punishment of
transgressors. This was an important final piece of the argument, as it is
necessary not only to show that too high a level of altruism will break the
supportability constraint on the socially efficient outcome, but also that the loss
of social welfare in the resulting second-best world will often be non-negligible.
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13 Appendix

Lemma 5. (a) As altruism becomes perfect, the optimal semi-constrained quasi-
flat path becomes flat. (b) If the benefit distribution is sufficiently flat, the
optimal semi-constrained quasi-flat path becomes flat.
((a) As θ −→ 1−, ψ̈∗

◦ ∈ Ψ̃. (b) If ∀π : g(π) < 1
θ(1−π̂) then ψ̈∗

◦ ∈ Ψ̃.)

Proof. The optimal semi-constrained quasi flat path ψ̈∗
◦ can be found by solving

a constrained optimization problem [Lagrange, 1806] [Simon & Blume, 1994]
using the following Lagrangean function:

L = −
(

δ

1 − δ

)
U
(
ψ̈
)

+ λ̄1

((
δ

1 − δ

)
V
(
ψ̈
)
−
(

δ

1 − δ

)
U
(
ψ̈
)

+ ψ̈1 − θ

)

+ λ̄2

((
δ

1 − δ

)
V
(
ψ̈
)
−
(

δ

1 − δ

)
U
(
ψ̈
)

+ ψ̈2 − θ

)

+ η̄1

(
1 − ψ̈1

)
+ η̄2

(
1 − ψ̈2

)
+ ζ̄1

(
ψ̈1 − π̂

)
+ ζ̄2

(
ψ̈2 − π̂

)

We know that the following first order conditions must hold at the
constrained maximum: ∂L

∂ψ̈1

= 0, ∂L
∂ψ̈2

= 0, ∂L
∂λ̄1

≥ 0, λ̄1 ≥ 0, ∂L
∂λ̄1

λ̄1 = 0,
∂L
∂λ̄2

≥ 0, λ̄2 ≥ 0, ∂L
∂λ̄2

λ̄2 = 0, ∂L
∂η̄1

≥ 0, η̄1 ≥ 0, ∂L
∂η̄1

η̄1 = 0, ∂L
∂η̄2

≥ 0, η̄2 ≥ 0,
∂L
∂η̄2

η̄2 = 0, ∂L
∂ζ̄1

≥ 0, ζ̄1 ≥ 0, ∂L
∂ζ̄1

ζ̄1 = 0, ∂L
∂ζ̄2

≥ 0, ζ̄2 ≥ 0, ∂L
∂ζ̄2

ζ̄2 = 0.

Substituting in to the Lagrangean from equations (4) and (5) and rearranging
yields the following:

L = − δ
(
1 + λ̄1 + λ̄2

) ∫ 1

ψ̈1

(θ π − 1) g (π) dπ

−
δ2
(
1 + λ̄1 + λ̄2

) ∫ 1

ψ̈2
(θ π − 1) g (π) dπ

1 − δ

+
δ
(
λ̄1 + λ̄2

) ∫ 1

ψ̈2
(θ π − θ) g (π) dπ

1 − δ

+
(
ζ̄1 + λ̄1 − η̄1

)
ψ̈1 +

(
ζ̄2 + λ̄2 − η̄2

)
ψ̈2

−
(
ζ̄1 + ζ̄2

)
π̂ −

(
λ̄1 + λ̄2

)
θ + η̄1 + η̄2

The relevant derivatives for the first order conditions are:

dL
dψ̈1

= δ
(
1 + λ̄1 + λ̄2

) (
θ ψ̈1 − 1

)
g
(
ψ̈1

)
+ ζ̄1 + λ̄1 − η̄1

dL
dψ̈2

=
δ2(1+λ̄1+λ̄2)(θ ψ̈2−1)g(ψ̈2)

1−δ − δ (λ̄1+λ̄2)(θ ψ̈2−θ)g(ψ̈2)
1−δ + λ̄2 − η̄2 + ζ̄2

dL
dλ̄1

= −δ
∫ 1

ψ̈1
(θ π − 1) g (π) dπ −

δ2
R

1

ψ̈2
(θ π−1)g(π)dπ

1−δ +
δ

R
1

ψ̈2
(θ π−θ)g(π)dπ

1−δ + ψ̈1 − θ

dL
dλ̄2

= −δ
∫ 1

ψ̈1
(θ π − 1) g (π) dπ − δ2

R
1

ψ̈2
(θ π−1)g(π)dπ

1−δ +
δ

R
1

ψ̈2
(θ π−θ)g(π)dπ

1−δ + ψ̈2 − θ

In order to prove the result, we must exhaustively consider the various
possibilities for the different constraints, and whether or not they bind. We also
see that this procedure relates straightforwardly and directly to the taxonomy
of quasi-flat paths laid out in section 9.1.
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13.0.1 Maximal paths

Suppose, first of all, that 0 < ζ̄1 and 0 < ζ̄2. This means that both “lower
constraints” on the trigger levels bind, so that ψ̈1 = π̂ and ψ̈2 = π̂. Therefore,
the upper constraints cannot possibly bind, and so η̄1 = 0 and η̄2 = 0. The
requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 therefore both become the following:

0 ≤
∫ 1

π̂

g (π) δ (1 − θ)

1 − δ
dπ − θ + π̂

This simplifies to give θ ≤ δ+ (1 − δ) π̂. So, only when the inequality condition
from Theorem 1 is either not fulfilled, or just fulfilled with equality, can we have
a maximal path. Rearranging this condition for δ, we know that the maximal
path will be the constrained optimum if and only if:

θ − π̂

1 − π̂
≤ δ (51)

If this condition is satisfied as a strict inequality, then, since ∂L
∂λ̄1

> 0 and
∂L
∂λ̄2

> 0, we know that λ̄1 = 0 and λ̄2 = 0. The first order conditions on ψ̈1 and

ψ̈2 therefore yield the following solution for ζ̄1 and ζ̄2.

∂L
∂ψ̈1

= δ (θ π̂ − 1) g (π̂) + ζ̄1 = 0

∂L
∂ψ̈2

=
(θ π̂ − 1) δ2g (π̂)

1 − δ
+ ζ̄2 = 0

ζ̄1 = δ (1 − θ π̂) g (π̂) ζ̄2 =
(1 − θ π̂) δ2g (π̂)

1 − δ

The solutions for ζ̄1 and ζ̄2 are positive, which is consistent with our initial
assumptions.
If we take the limit of the LHS of condition (51), we can see that a maximal
path is not possible as θ −→ 1−, since, by assumption, δ < 1.

lim
θ→1−

{
θ − π̂

1 − π̂

}
= 1−

Suppose instead that ζ̄1 = 0 and 0 < ζ̄2. This implies that ψ̈2 = π̂ and that
η̄2 = 0. The requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 become the following:

0 ≤ −
∫ 1

π̂

g (π) δ (−θ π + θ + δ θ π − δ)

1 − δ
dπ−

∫ 1

ψ̈1

δ (θ π − 1) g (π) dπ+ψ̈1−θ (52)

0 ≤ −
∫ 1

π̂

g (π) δ (−θ π + θ + δ θ π − δ)

1 − δ
dπ−

∫ 1

ψ̈1

δ (θ π − 1) g (π) dπ+ π̂−θ (53)

Assuming that ψ̈1 > π̂ (otherwise we would have a maximal path, as above),
then, if the second of these inequalities is fulfilled, so is the first. This means
that λ̄1 = 0, since dL

dλ̄1
> 0. The second inequality can be rearranged to give the

following:
∫ 1

ψ̈1
δ (1 − δ) (θ π − 1) g (π) dπ − δ θ π̄ + δ2θ π̄ − δ2 + θ

1 − δ
≤ π̂ (54)
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The following inequality, however, must be satisfied:

δ (1 − δ) (θ π̄ − 1) ≤
∫ 1

ψ̈1

δ (1 − δ) (θ π − 1) g (π) dπ

Therefore, condition (54) can only be fulfilled if θ ≤ δ + π̂(1 − δ), which is the
same sufficient condition already derived for the maximal path to be optimal.
Hence this case collapses into the previous one.

13.0.2 Quasi-maximal paths

Suppose that 0 < ζ̄1 and ζ̄2 = 0. This implies that ψ̈1 = π̂ and η̄1 = 0. The
requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 become the following:

0 ≤ −
∫ 1

ψ̈2

g (π) δ (−θ π + θ + δ θ π − δ)

1 − δ
dπ−

∫ 1

π̂

δ (θ π − 1) g (π) dπ+ π̂−θ (55)

0 ≤ −
∫ 1

ψ̈2

g (π) δ (−θ π + θ + δ θ π − δ)

1 − δ
dπ−

∫ 1

π̂

δ (θ π − 1) g (π) dπ+ψ̈2−θ (56)

Assuming that ψ̈2 > π̂ (otherwise we would have a maximal path), then if
the first of these inequalities is fulfilled, so is the second. Therefore, λ̄2 = 0.
Condition (55) can be rearranged to give:

∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ + δ θ π̄ − δ + θ ≤ π̂ (57)

The first order conditions on ψ̈1 and ψ̈2 become the following:

∂L
∂ψ̈1

= δ
(
1 + λ̄1

)
(θ π̂ − 1) g (π̂) + ζ̄1 + λ̄1 = 0

∂L
∂ψ̈2

=
δ2
(
1 + λ̄1

) (
θ ψ̈2 − 1

)
g
(
ψ̈2

)

1 − δ
−
δ λ̄1

(
θ ψ̈2 − θ

)
g
(
ψ̈2

)

1 − δ
− η̄2 = 0

We now need to consider two possible cases, one where λ̄1 = 0 and one where
λ̄1 > 0. Taking the first, the first order conditions on ψ̈1 and ψ̈2 become:

δ (θ π̂ − 1) g (π̂) + ζ̄1 = 0

δ2
(
θ ψ̈2 − 1

)
g
(
ψ̈2

)

1 − δ
− η̄2 = 0

The second of these cannot possibly be fulfilled, since the LHS is unambiguously
negative. Therefore, it must be the case that 0 < λ̄1. The two first order
conditions then yield the following solutions for λ̄1:

λ̄1 = −δ (θ π̂ − 1) g (π̂) + ζ̄1

1 + δ (θ π̂ − 1) g (π̂)
(58)

λ̄1 = −
δ2
(
θ ψ̈2 − 1

)
g
(
ψ̈2

)
− η̄2(1 − δ)

δ g
(
ψ̈2

)((
θ ψ̈2 − 1

)
δ − θ

(
ψ̈2 − 1

)) (59)
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In order for the second of these expressions to be weakly positive, we must have
that:

δ <
θ − θψ̈2

1 − θ ψ̈2

(60)

Now consider whether η̄2 = 0 or η̄2 > 0. If η̄2 > 0 then ψ̈2 = 1 and so (60) cannot
be fulfilled. Hence η̄2 = 0. In that case, solving (58) and (59) simultaneously
for ζ̄1 yields:

ζ̄1 =
δ
(
θ (θ π̂ − 1)

(
ψ̈2 − 1

)
g (π̂) +

(
θ ψ̈2 − 1

))

(
θ ψ̈2 − 1

)
δ − θ

(
ψ̈2 − 1

)

Given condition (60), the denominator is positive. The numerator will be
positive if and only if the following condition holds:

g (π̂) ≥ 1 − θ ψ̈2

θ
(
1 − ψ̈2

)
(1 − θ π̂)

(61)

Since condition (55) must be satisfied with equality, we have that:

−
∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ = δ (θ π̄ − 1) − π̂ + θ

Taking limits of both sides as θ −→ 1− yields:

−δ
∫ 1

ψ̈2

(1 − π) g (π) dπ = 1 − π̂ − δ (1 − π̄)

This is not possible, since the LHS is unambiguously negative whilst the RHS
is unambiguously positive. Therefore, a quasi-maximal path is not possible as
θ −→ 1−.

13.0.3 Minimal paths

Now take the case where 0 < η̄1 and 0 < η̄2. This implies that ψ̈1 = 1,
ψ̈2 = 1, ζ̄1 = 0 and ζ̄2 = 0. Thus we have a minimal path, where no punishment
occurs at all. ∂L

∂λ̄1
and ∂L

∂λ̄2
both simplify to give 1−θ. Clearly, therefore, λ̄1 = 0

and λ̄2 = 0. The first order conditions on ψ̈1 and ψ̈2 become:

∂L
∂ψ̈1

= −δ (1 − θ) g (1) − η̄1 = 0

∂L
∂ψ̈2

= −δ
2 (1 − θ) g (1)

1 − δ
− η̄2 = 0

Neither of these can possibly be fulfilled for θ < 1, so a minimal path can never
be optimal.
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13.0.4 Quasi-minimal paths

Now we consider the case where η̄1 = 0 and 0 < η̄2. This implies that ψ̈2 = 1
and ζ̄2 = 0. The requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 become the following:

0 ≤
∫ 1

ψ̈1

−δ (θ π − 1) g (π) dπ + ψ̈1 − θ

0 ≤
∫ 1

ψ̈1

−δ (θ π − 1) g (π) dπ + 1 − θ

Assuming ψ̈1 < 1 (otherwise we would have a minimal path), then if the first
of these is fulfilled, so is the second. Therefore, ∂L

∂λ̄2
> 0 and λ̄2 = 0. The first

order conditions on ψ̈1 and ψ̈2 thus become:

∂L
∂ψ̈1

= δ
(
1 + λ̄1

) (
θ ψ̈1 − 1

)
g
(
ψ̈1

)
+ ζ̄1 + λ̄1 = 0 (62)

∂L
∂ψ̈2

= −δ
2
(
1 + λ̄1

)
(1 − θ) g (1)

1 − δ
− η̄2 = 0 (63)

The LHS of the second expression is unambiguously negative, so this shows that
quasi-minimal paths cannot be optimal.

Now consider the case where 0 < η̄1 and η̄2 = 0. This implies that ψ̈1 = 1
and ζ̄1 = 0. The requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 become the following:

0 ≤ −
∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ + 1 − θ

0 ≤ −
∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ + ψ̈2 − θ

If the second is fulfilled, so is the first. Thus, ∂L
∂λ̄1

> 0 and λ̄1 = 0. The first

order conditions ψ̈1 and ψ̈2 then become:

∂L
∂ψ̈1

= −δ
(
1 + λ̄2

)
(1 − θ) g (1) − η̄1 = 0

∂L
∂ψ̈2

= δ





(
δ θ ψ̈2 − δ − θ ψ̈2 + θ

)
λ̄2

1 − δ
+
δ
(
θ ψ̈2 − 1

)

1 − δ



 g
(
ψ̈2

)
+ λ̄2 + ζ̄2 = 0

The first condition cannot possibly be satisfied, so this case is also impossible.

13.0.5 Carrot-maximized paths

The case where ζ̄1 = 0, ζ̄2 = 0, η̄1 = 0, η̄2 = 0 is the most interesting one,
where the possibilities of a carrot-maximized and flat optimal quasi-flat path
can occur. The requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 in this case become the

following:
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0 ≤ −
∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ +

∫ 1

ψ̈1

−δ (θ π − 1) g (π) dπ + ψ̈1 − θ

(64)

0 ≤ −
∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ +

∫ 1

ψ̈1

−δ (θ π − 1) g (π) dπ + ψ̈2 − θ

(65)
By Lemma 1, we know that an optimal path must have the property that
ψ̈1 ≤ ψ̈2. There are therefore two cases to consider. First, suppose that ψ̈1 6= ψ̈2

and so ψ̈1 < ψ̈2. In that case, only (64) can bind, and so ∂L
∂λ̄2

> 0 and λ̄2 = 0.

The first order conditions on ψ̈1 and ψ̈2 then become the following:

∂L
∂ψ̈1

=
(
δ
(
θ ψ̈1 − 1

)
g
(
ψ̈1

)
+ 1
)
λ̄1 + δ

(
θ ψ̈1 − 1

)
g
(
ψ̈1

)
= 0

∂L
∂ψ̈2

=

(
− θ ψ̈2 +

(θ − δ)

1 − δ

)
δg
(
ψ̈2

)
λ̄1 +

δ2

1 − δ

(
θ ψ̈2 − 1

)
g
(
ψ̈2

)
= 0

Clearly, λ̄1 must be positive, or the first of these could not possibly be fulfilled.
Solving these two equations respectively for λ̄1 gives us:

λ̄1 = −
δ
(
θ ψ̈1 − 1

)
g
(
ψ̈1

)

δ
(
θ ψ̈1 − 1

)
g
(
ψ̈1

)
+ 1

λ̄1 = −

(
θ ψ̈2 − 1

)
δ

−θ (1 − δ) ψ̈2 − δ + θ

Finally, solving these two equations simultaneously for g
(
ψ̈1

)
gives us the fol-

lowing necessary condition for a carrot-maximized path, which, once rearranged
to make ψ̈2 the subject, verifies condition (38) derived by a more intuitive
argument in the main text in section 9.2:

g
(
ψ̈1

)
=

1 − θ ψ̈2

θ
(
1 − ψ̈2

)(
1 − θ ψ̈1

) (66)

Since λ̄1 > 0, condition (64) must be satisfied with equality. This gives us:

0 = −
∫ 1

ψ̈2

δ g (π) (−θ π + θ + δ θ π − δ)

1 − δ
dπ −

∫ 1

ψ̈1

δ (θ π − 1) g (π) dπ + ψ̈1 − θ

Taking the limit of both sides as θ −→ 1− yields:

0 = δ

∫ ψ̈2

ψ̈1

(1 − π) g (π) dπ − (1 − ψ̈1)

This condition cannot possibly be fulfilled, so a carrot-maximized path is also
impossible as θ −→ 1−.
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13.0.6 Flat paths

Consider, finally, the case where ζ̄1 = 0, ζ̄2 = 0, η̄1 = 0, η̄2 = 0 and
ψ̈1 = ψ̈2 = ψ̃. The requirements that ∂L

∂λ̄1
≥ 0 and ∂L

∂λ̄2
≥ 0 then both become:

0 ≤
∫ 1

ψ̃

δ g (π) (1 − θ)

1 − δ
dπ − θ + ψ̃

This must hold with equality, yielding condition (10) from the main text, which
defines the optimal flat path ψ̃∗.

The first order conditions on ψ̈1 and ψ̈2 become the following:

(
δ
(
θ ψ̃ − 1

)
g
(
ψ̃
)

+ 1
)
λ̄1 + δ

(
θ ψ̃ − 1

)
g
(
ψ̃
) (

1 + λ̄2

)
= 0

δ (δ θ ψ̃−δ−θ ψ̃+θ)g(ψ̃)λ̄1

1−δ +

(
1 +

δ (δ θ ψ̃−δ−θ ψ̃+θ)g(ψ̃)
1−δ

)
λ̄2 +

δ2(θ ψ̃−1)g(ψ̃)
1−δ = 0

Solving these simultaneously for λ̄1 and λ̄2 yields

λ̄1 =
δ g
(
ψ̃
)(

θ δ
(
ψ̃ − 1

)(
θ ψ̃ − 1

)
g
(
ψ̃
)
− (1 − δ)

(
θ ψ̃ − 1

))

δ (θ − 1) g
(
ψ̃
)

+ 1 − δ

λ̄2 = −

(
θ
(
ψ̃ − 1

)(
θ ψ̃ − 1

)
g
(
ψ̃
)

+ θ ψ̃ − 1
)
δ2g

(
ψ̃
)

δ (θ − 1) g
(
ψ̃
)

+ 1 − δ

The following two conditions are together sufficient for both of these expressions
to be finite and positive.

δ <
1

1 + (1 − θ)g
(
ψ̃
) (67)

g
(
ψ̃
)
≤ 1(

1 − ψ̃
)
θ

(68)

Note now that the RHS of (34) is increasing in ψ̈1 and ψ̈2, and is the same
as the RHS of (61) when ψ̈1 = π̂ and (68) when ψ̈1 = ψ̈2 = ψ̃. Hence, condition
(35) from the main text (repeated below as (69)) is sufficient for (68) to definitely
hold, and for (61) and (66) to never hold. Also, condition (69) is sufficient for
(67) to hold provided that (51) does not. (Subtracting the LHS of (51) from
(67), requiring that this be positive and solving for g(ψ̃) yields g(ψ̃) < 1

θ−π̂ ,
which will definitely be fulfilled if (69) is.)

∀π : g(π) <
1

θ (1 − π̂)
(69)

Condition (69) is therefore sufficient for the optimal semi-constrained quasi-flat
path to be flat.
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