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1 Introduction

In many countries, the wholesale generation segment of the electricity sector is characterized

by the presence of both public and private generators. Since the end of 1980’s quite a few

countries have witnessed a thorough restructuring in their electricity sectors that also involved

privatization of previously state owned generators (Chile, the U.K., Norway, Argentina, New

Zealand, Sweden, Finland, Brazil, Spain, and Germany, to name a few). However, public

ownership of generation assets and capacity is still considerable. In Europe there are quite a

few countries with “mixed” wholesale electricity markets in which public generators compete

with their private counterparts: EdF in France, ENEL in Italy, Statkraft in Norway, Vattenfall

in Sweden, Fortum in Findland, CEZ in Czech Republic, and ESB in Ireland are all state-

owned companies.1 An important question in this context has been the optimal degree of

state ownership in such companies, particularly so in Europe where many network industries

have recently been opened to more private competition. For example, there has been recently

a debate in France about the optimal extent of privatization of the public utilities Gaz de

France and Electricité de France.

The mixed oligopoly literature analyzes equilibria in industries with competition between

a small number of firms whose objectives differ. Until recently, most of the literature has

focused on the particular case of public, welfare maximizing firm competing with a private,

profit-maximizing firm. Having welfare maximization as the public firm’s objective function

typically leads to more output being observed in the equilibrium of the strategic game between

the public firm and the private firm, which in turn ameliorates the inefficiency observed in

an oligopoly due to restriction of output.2 Recent papers allow for semi-public firms which

maximize a convex combination of profit and welfare. Matsumura (1998) shows that some

partial privatization is always preferable to both full nationalization and full privatization.

Similarly, White (2002) shows that the equilibrium welfare in the industry would be higher if

the public firm maximized some convex combination of welfare and profits rather than welfare

alone.

In this paper we study a model of imperfectly competitive mixed wholesale electricity

market in which a profit maximizing private generator and a public generator compete. In

contrast to the mixed oligopoly studies mentioned above, we model the public generator

as a firm that maximizes a weighted average of consumers’ surplus and its own (short-run)

profits. As in the case of welfare maximization, putting weight on consumers’ surplus in the

1See Hall (1999) for a general account of publicly owned electricity companies in Europe.
2For the initial analyses of models in which a public firm is used as an instrument for the regulation of an

industry in the way just described, see Merrill and Schneider (1966), Harris and Wiens (1980), Sertel (1988),
De Fraja and Delbano (1989, 1990), and Cremer, Marchand, and Thisse (1989).
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public firm’s objective function will work towards increasing the industry output observed in

equilibrium.

Compared to total welfare maximization, consumers’ surplus maximization is significantly

easier to instruct or implement institutionally, making it a more realistic modeling assumption

on how public firms operate. For example, consumers’ surplus can be made a part of the public

firm’s objective by appointing a number of consumer representatives to the board of managers

or to the upper management. On the other hand, there does not seem to be an obvious way

of representing the private firm’s financial interests in the public firm’s objective (which total

welfare maximization would require), as it may look inappropriate or create a conflict of

interest to place, say, a large shareholder of the private firm in the public firm’s board or

upper management.3

Note that our analysis is also applicable to electricity markets (e.g., those in the U.S.) in

which one of the privately owned generators is subject to regulation while the other privately

owned generators are pure profit maximizers.4 Alternatively, one can think of a partially

privatized public generator that follows an objective function reflecting the objectives of its

public and private owners in proportion to their ownership shares. In that case, the partially

privatized generator may be thought of as maximizing a weighted average of consumers’

surplus (public owner’s objective) and its profit (private owners’ objective).

We model the working of the mixed duopolistic wholesale electricity market as a two

stage game. In the first stage, the public authority (government or regulator) assigns an

objective function to the public (or regulated) generator. This objective function takes the

form of a weighted average of consumers’ surplus and profits of the public generator. In

the second stage the public generator engages in a Cournot competition (i.e. simultaneous

quantity-setting game) with a private generator.5 The private generator chooses its output to

maximize its own profits, whereas the public generator makes its output decision to maximize

the objective function assigned to it in the first stage, i.e. a weighted average of its own profits

and consumers’ surplus.

We study a three-node electricity network, which is the minimum configuration that allows

3To our knowledge, combination of consumers’ surplus and its own profits as the objective function for the
public firm has not been studied before in the mixed oligopoly literature.

4This would be reminiscent of the literature on strategic delegation of objectives other than profit maxi-
mization to the managers of private firms by their owners. Fershtman and Judd (1987) study the principal
agent problem between profit maximizing owners and managers in an oligopolistic context and show that the
optimal contract distorts the manager’s incentives away from maximizing profits.

5Borenstein, Bushnell and Stoft (1998) use a model with Cournot competition in their analysis of power
generation markets and provide a justification for this modelling choice. See Wolak and Patrick (1996) for
evidence that exercise of market power in the U.K. has taken place through capacity withholding. Willems,
Rumiantseva and Weight (2009) compare Cournot and Supply Function Equilibrium models of electricity
competition and suggest use of Cournot models for short-term analysis.
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us to analyze the effects of loop flows. Each pair of these nodes is connected by a transmission

line with some fixed thermal capacity. The private and the public generators are located at

two separate nodes and the consumers are located at the third node. There is no demand

for power on nodes where the producers are located and there is no generation capacity

available on the node where the consumers are located. The transmission network is subject

to congestion due to capacity constraints on lines connecting the generators and consumers.

The transmission network over which the generators are connected and serve the customers

is operated by an Independent System Operator (ISO) that utilizes a market-based conges-

tion management system. Reliability of the transmission network is achieved via explicit

nodal transmission price signals to the generators. Each generator is required to pay a nodal

transmission congestion charge for each unit of injection and withdrawal of electricity on each

node. The congestion charge on a node can be positive, zero or negative, depending on the

impact of the injection (or withdrawal) on the transmission constraint. Nodal transmission

prices are determined based on the principle that all participants pay proportionally for their

contribution to a binding transmission line constraint the ISO has to control for.6

There are a large number of papers that study Cournot competition in electricity markets

with transmission constraints. Both Hogan (1997) and Oren (1997) study a spatial model in

which private firms engage in Cournot competition. Wei and Smeers (1999) use a variational

inequality approach to compute the equilibrium on an electricity network including capacity

expansion decisions. Borenstein, Bushnell and Stoft (1998) study the competitive effects

of transmission capacity constraint when the two generators are located on different ends

of the transmission line. Willems (2002) provides an assessment of various transmission

capacity allocation rules under Cournot competition. The three-node model we use below

is an adaptation of Joskow and Tirole (2000), who show how generators may benefit from

a reduction in transmission capacity. Leautier (2001) also uses a similar simple three-node

network to study the effects of transmission constraints on equilibrium outcomes.

Our paper differs from the studies just cited by focusing on a mixed electricity market in

which a public and a private generator interact. In the particular environment studied, we

drive closed-form solutions for the equilibrium outcomes of the strategic interaction involved,

providing us an understanding of the underlying economic forces at play. We also study

the impact of the public generator’s objective function on overall welfare and characterize its

6Another (and equivalent) way to look at the same principle is that all participants pay (or get paid)
for the externality they cause on the other participants, in terms of exacerbating or relieving the congestion
on the constrained transmission facility. The transmission network model we employ is consistent with the
congestion management and pricing method, called Locational Marginal Pricing (LMO), used in most U.S.
ISO and Regional Transmission Organization (RTO) markets (PJM, Midwest ISO, ISO New England, New
York ISO, California ISO).
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optimal objective function. To our knowledge, our paper provides the first analysis of a mixed

electricity generation market under a transmission capacity constraint.

The paper is organized as follows. In Section 2 we introduce the general features of the

loop flow network model we study. In Section 3 we analyze the equilibria both when the

transmission constraint is not binding (the “uncongested” equilibria) and when it is binding

(the “congested” equilibria). In Section 4 we analyze the optimal choice of objective function

for the public/regulated generator. In Section 5 we provide a summary of our results and

offer some concluding remarks. Proofs of two of the propositions are relegated to an appendix

at the end.

2 The Model

We consider a simple model of the electricity sector, where there are two generators supplying

electricity to a single market.7 One of these generators, denoted by P, is purely private and

its objective is to maximize its profit. The other one is a public or regulated one, denoted

by R, and it is assumed to maximize a weighted average of consumers’ surplus and its own

profits. That is, the public generator’s objective function is assumed to be

γCS(·) + (1− γ)ΠR(·) (1)

where CS(·) is the total consumers’ surplus, ΠR(·) is its own profit, and γ ∈ [0, 1] is the weight
on consumers’ surplus. Note that the case of γ = 0 refers to a pure private generator and

γ = 1 to a generator concerned solely with maximizing consumers’ surplus, while γ = 1/2

would have the public generator value consumers’ surplus and its own profit equally.

In this paper we study the short-run output decisions of the generators and assume a

constant returns to scale short-run production technology of Ci(qi) = ciqi, where qi is the

output of generator i = P,R.

The consumers’ demand for power is represented by an affine inverse demand function,

p(Q) = a−Q, where Q ≡ qP + qR. Defining αi = a− ci, i = P,R, as the grade of efficiency

for generator i, we assume the following conditions on the demand and cost parameters:

Assumption 1: αP > αR > 0.

Assumption 2: 2αi − αj > 0, i, j ∈ {P,R}, i 6= j.

Assumption 1 states that each generator finds it profitable to serve the whole market on

its own and the private generator has a lower marginal cost. Assumption 2 posits that the
7The model of the electricity network is similar to the one studied in Joskow and Tirole (2000).
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marginal cost differential between the two generators is not “too large” and it guarantees that

when both generators are pure profit maximizers, the equilibrium is an interior one when the

transmission capacity constraint is not binding.

Network Structure We assume that the network is a three-node network, which is the

simplest model of electricity network that involves loop-flows in electricity transmission (see

Figure 1). In this case electricity sent from one node to the other not only affects the flow

on the line connecting these two nodes, but also the congestion on the other two lines. We

study a simple three-node network with two generation nodes and one consumption node.

The public generator is located on node 1, the private generator is located on node 2, and

consumers are located on node 3.8 There is no generation on node 3 and no consumption on

node 1 or node 2.

Figure 1: Transmission Network

The transmission line between two generation nodes is assumed to have a given capacity

of K. The implication of this in our model, which is a consequence of electricity flowing from

the generators to the consumers following the path of least resistance,9 is a constraint on by

8There are a number of reasons for connecting the two generation nodes, even if this creates a loop flow.
First, to increase the reliability of the network; in case of an outage of one of the lines connecting the generators
directly to the consumers, both generators continue to supply electricity through the indirect line. In fact,
a reliable operations dispatch procedure employed by all dispatchers (utility or ISO) called “n-1 contingency
dispatch” is a reflection of this fact. Second, the market we are modeling can be interpreted as a sub-market
in a larger interconnection with fixed available transmission capacities or transmission reservations on the
lines, in which case the line connecting the two generators serves other transactions in other sub-markets and
thus our ISO does not have the discretion to dismantle it.

9This is because electrons follow a unique path on an electrical transmission network determined by Kir-
choff’s Law rather than the direction of trade.
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qP and qR given by

| qP − qR |≤ 3K. (2)

Transmission Market The grid is operated by an Independent System Operator (ISO)

that is in charge of ensuring the safe and reliable utilization of the grid by auctioning trans-

mission congestion rights, or Transmission Capacity Reservations (TCRs), as in Smeers and

Wei (1997, 1999). The nodal transmission rights allow the generators to withdraw and inject

up to a specific amount of electricity from and into the transmission network at a specified

transmission node. As in Smeers and Wei (1997, 1999), it is assumed that transmission rights

are actively traded at pre-dispatch time. Let λi ∈ R, i = 1, 2, 3, be the price of the TCR at
node i. That is, λi is the price of withdrawing a unit of electricity from node i. An entity

would have to pay λi to withdraw a unit of electricity from (and pay −λi to inject into) node
i, in addition to the price of the unit of electricity. Without loss of generality, we normalize

the TCR prices by setting λ1 = 0.

Generators compete in two markets; the electricity generation market and the TCR mar-

ket. In the electricity generation market generators are assumed to engage in Cournot com-

petition, i.e. they compete by simultaneously choosing output levels. The quantities they

choose are pre-dispatch quantities submitted to ISO. They also trade transmission rights at

the TCR market. Both generators are assumed to take TCR prices as given in making their

decisions, i.e., the TCR market is competitive.

With the above cost and demand specifications, the private generator’s maximization

problem becomes

max
qP≥0

ΠP = [αP − (qP + qR)] qP − (λ3 − λ2)qP . (3)

Note that the profits of the private generator involve a separate component, namely (λ3−
λ2)qP , which arises from payments due to having to acquire TCRs for each unit of electricity

generated and delivered. On the other hand, the public generator’s maximization problem

becomes

max
qR≥0

ΦR = γ

∙
1

2
(qP + qR)

2

¸
+ (1− γ) {[αR − (qP + qR)] qR − λ3qR} . (4)

Note that the first term (weighted by γ) involves the effect of consumers’ surplus on the

public generator’s objective function, while the second term (weighted by (1− γ)) shows its

profit arising from production and transmission.
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3 Analysis of Equilibria

We first explain the equilibrium condition in the TCR market, which takes into account the

externality each generator imposes on the other when transmitting a unit of electricity.

When the grid is not congested, production by a generator does not impose any positive

or negative externality on the other, implying TCR prices of λ2 = λ3 = 0 in equilibrium.

However, when the grid is congested, an additional unit of production by one generator

creates a positive externality on the other by decongesting the line connecting them. The

private generator, located on node 2, receives λ2 at node 2 and pays λ3 at node 3 for each

unit of electricity it sends from node 2 to node 3. Hence the marginal transmission cost for

the private generator is λ3 − λ2. Similarly, the public generator located at node 1 receives

λ1 (≡ 0) at node 1 and pays λ3 at node 3 for each unit of electricity it sends from node 1

to node 3, implying that the public generator is willing to pay up to λ3 to benefit from the

positive externality created by the additional unit of production by the private generator. In

equilibrium we must have λ3 − λ2 = −λ3 (marginal cost = marginal benefit), or

λ2 − 2λ3 = 0. (5)

When this condition is not met, a trader can earn profits through pure arbitrage, by paying

both generators the market price to ramp up their productions by a unit each and collecting

the associated TCRs from both. This would continue to meet the line constraint and result in

a net profit for the trader if the TCR prices do not meet the above condition. In equilibrium

no generator wants to hold more or fewer TCRs than it already has.

Given the above description of equilibrium in the TCR market, equilibrium in the overall

system is characterized by the following conditions:

• Equilibrium in the electricity generation market:

γ(qP + qR) + (1− γ)(αR − 2qR − qP )− λ3 ≤ 0
qR ≥ 0 and qR [γ(qP + qR) + (1− γ)(αR − 2qR − qP )− λ3] = 0 (6)

αP − 2qP − qR − λ3 + λ2 ≤ 0
qP ≥ 0 and qP [αP − 2qP − qR − λ3 + λ2] = 0 (7)

• Feasibility in TCR market:
| qP − qR |≤ 3K (8)
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• Equilibrium in the TCR market:

λ2 − 2λ3 = 0 (9)

Expressions (6) and (7) above are the first order conditions for the public and private

generators, respectively, in the (constrained) maximization problem they face when they

compete by choosing their quantities independently, while taking the TCR as given. As

we show below, for a given γ and K, there may exist an “uncongested” equilibrium where

the transmission capacity constraint (2) is not binding in equilibrium, as well as “congested”

equilibrium where it is binding (each equilibrium involving different λ2 and λ3.)

3.1 Uncongested Equilibria

We first look at the case where the capacity of the line connecting the two generators, K, is

sufficiently large so that the grid is not congested for any value of γ.10 As discussed above,

in this case we have λ2 = λ3 = 0 in equilibrium. The public generator’s response function is

qR(qP ; γ) =

(
min

n
max

n
0, (1−γ)αR−(1−2γ)qP

2−3γ

o
, a− qP

o
for qP ∈ [0, a)

0 for qP ∈ [a,∞)
(10)

while the private generator’s response function becomes

qP (qR) =

(
αP−qR
2

for qR ∈ [0, αP )

0 for qR ∈ [αR,∞)
(11)

Note that the (“uncongested”) response function of the public generator depends on γ.

Figure 2 depicts the response functions of generators for different values of γ. In panel I, γ

is relatively small, γ ∈ [0, cR/(a + cR)). In this case the public generator’s and the private

generator’s outputs are strategic substitutes, as in a standard Cournot model. In uncongested

equilibrium, the efficient private generator always produces more than the inefficient public

generator.

10In fact, a sufficient condition for there to be no congestion for any γ is K ≥ a/3, given that beyond total
output level a market saturates.
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Figure 2: Response Functions of Generators

Panel II depicts a case where γ ∈ [cR/(a + cR), 1/2). In this case the public generator’s

and the private generator’s outputs are still strategic substitutes but there is a kink at qP =

[(1− 2− γ)− αR + (2− 3− γ)cR]/(1− γ) beyond which the slope of the public generator’s

response function changes to−1. When both γ and qP are large enough, the public generator’s
best response is to produce just enough to complete the total output to a (at which point the

market is saturated and consumers’ surplus reaches its maximum value).

Panel III depicts the case of γ = 1/2. Here, the public generator’s response function is

vertical at qR = αR until qR + qP = a, at which point the slope changes to −1.
For γ > 1/2, which is illustrated in panel IV, public generator’s response function is first

positively sloped, and then the slope changes to −1. Hence, for small amounts of qP , the
public generator views private generator’s output as a strategic complement. This is due to

the fact that the public generator puts a relatively larger weight on consumer surplus than

10



on its profits when γ > 1/2.11

Let qUR(γ) and q
U
P (γ) be the uncongested equilibrium output levels of the public and private

generators, respectively, for a given γ. The (uncongested) equilibrium output choices by the

public and private generators are

qUR(γ) =

⎧⎪⎨⎪⎩
2(1−γ)αR−(1−2γ)αP

3−4γ if 0 ≤ γ < γ,
(1−γ)αR
2−3γ if γ ≤ γ < γ,

a if γ ≤ γ ≤ 1.
(12)

and

qUP (γ) =

(
(2−3γ)αP−(1−γ)αR

3−4γ if 0 ≤ γ < γ,

0 if γ ≤ γ ≤ 1.
(13)

respectively, where

γ =
2αP − αR

3αP − αR
(14)

is the value of γ beyond which the private generator is ousted from the market and

γ =
2a− αR

3a− αR
(15)

is the value of beyond which the market is saturated by the public generator’s output. The

total output therefore is

QU(γ) =

⎧⎪⎨⎪⎩
(1−γ)(αP+αR)

3−4γ if 0 ≤ γ < γ,
(1−γ)αR
2−3γ if γ ≤ γ < γ,

a if γ ≤ γ ≤ 1.
(16)

Equations (12) and (13) reveal that there are two types of uncongested equilibria. In the

first case, both the public and the private generators produce a positive amount. This case

corresponds to small values of γ, the weight on consumer’s surplus in the public generator’s

objective function. When γ is large enough, only the public generator produces a positive

amount.

As a direct result of Assumption 2, the public generator always produces a positive amount,

11The intuition behind the positive slope of public generator’s response function is as follows. When the
private generator increases its output at a given level of public generator’s output, price decreases. This leads
to an increase in the consumers’ surplus and a decrease in the public generator’s profit. The optimal response
for the public generator is to increase its output until the increase in consumer surplus weighted by γ is just
equal to the decrease in marginal profit weighted by 1− γ. The fact that γ, the weight on consumer surplus,
is greater than 1/2 results in an increase rather than a decrease in public generator’s output as an optimal
response to an increase in private generator’s output. On the other hand, a decrease in the private generator’s
output will lead to a decrease in the public generator’s output as the optimal response for the same reason.
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even when γ = 0, in an uncongested equilibrium. As shown below, the public generator’s

equilibrium output is increasing in γ in the uncongested case, therefore, there does not exist

an uncongested equilibrium where the public generator produces zero output.

From (2) we know that whether there is congestion on the grid or not depends on the

difference between the generators’ output levels. To facilitate the characterization of the

congestion equilibria, consider the difference between the uncongested equilibrium output

levels of the two generators. Letting ∆qU(γ) ≡ qUR(γ)− qUP (γ), this difference is

∆qU(γ) =

⎧⎪⎨⎪⎩
αR − αP +

γ(αP+αR)
3−4γ if 0 ≤ γ < γ,

(1−γ)αR
2−3γ if γ ≤ γ < γ,

a if γ ≤ γ ≤ 1.
(17)

To analyze the impact of γ on the nature of equilibria, define κ(γ) as the capacity level

that makes the capacity constraint at the uncongested equilibrium, characterized by (12) and

(13), just binding for a given γ:

κ(γ) ≡ 1
3
| ∆qU(γ) | (18)

It is easily shown that ∂∆qU(γ)/∂γ ≥ 0 for all γ ∈ [0, 1]. Given αR < αP , ∆qU(0) < 0

and ∆qU(1) = a > 0. Since ∆qU(γ) is continuous in γ in the relevant region, there must exist

a γ̂ ∈ [0, 1] such that for γ ∈ [0, γ̂], ∆qU(γ) ≤ 0 and for γ ∈ (γ̂, 1], ∆qU(γ) > 0. Thus, this

unique threshold level of γ is calculated as

γ̂ =
3(αP − αR)

5αP − 3αR
. (19)

Note that γ̂ is always less than 1/2. Thus, the relative magnitudes of the uncongested

equilibrium output levels depend on the weight attached to the consumer surplus in the public

generator’s objective function. The private generator produces more for smaller levels of γ,

while the public generator’s output is higher as γ increases beyond γ̂. Recall also that the

private generator will be ousted from the market when γ further increases and reaches γ

(> γ̂). Therefore, as the weight attached to consumers’ surplus in the objective of the public

generator increases beyond a threshold, the public generator produces more than its private

counterpart despite its cost inefficiency and it may even push the private generator outside

the market.

Figure 3 shows κ(γ) and the uncongested equilibria for given combinations of K and γ.

The proposition below summarizes the results on uncongested equilibria.
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Figure 3: Uncongested Equilibria

Proposition 1 For γ and K such that K ≥ min{κ(γ), a
3
}, there is an uncongested equilib-

rium, where

i. qUP ≥ qUR > 0 if γ ∈ [0, γ̂],

ii. qUR > qUP > 0 if γ ∈ (γ̂, γ],

iii. qUR > qUP = 0 if γ ∈ (γ, 1].

3.2 Multiple Congested Equilibria

For a given γ, if K < κ(γ), then the equilibrium necessarily involves congestion on the grid.

Since the capacity constraint involves the absolute value of the difference between output

levels, there are potentially two equilibria for each level of K. That is, with congestion the

TCR prices λ2 and λ3 are no longer zero, and there are two sets of λ2 and λ3 that satisfy

(6)-(9).
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Figure 4: Response Functions at a Specific γ

Figure 4 displays the response functions of the generators for a specific γ ∈ (γ̂, 1
2
). Note

that this is a case where the private generator produces more than the public generator in

the uncongested case. Hence point U in Figure 4 is an uncongested equilibrium for a capacity

level K ≥ κ(γ). Take a K < κ(γ). The lines implied by | qP − qR |= 3K correspond to the

capacity constraint in this case. In the TCR market nodal transmission rights are traded,

and the equilibrium TCR prices shift the best response functions of the two generators such

that equilibrium in the electricity market occurs at either point P , or point R, where the

response functions (10) and (11), the TCR market equilibrium condition λ2−2λ3 = 0 and the
capacity constraint lines | qP − qR |= 3K are satisfied simultaneously at γ. In other words,

for each (γ,K) pair that leads to congested equilibrium there will be multiple equilibria, each

corresponding to a different set of TCRs. At point P , which we call P − type equilibrium,

the private generator produces more, and at point R, which we call R− type equilibrium, the

public generator produces more.

The example below illustrates the role of TCR’s and the functioning of the nodal pricing

scheme in resolving of the congestion on the constrained transmission line.
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Example 1 Consider the case where γ = 0. In this case, the unconstrained equilibrium

output levels of the public and the private generators are

qUR(0) =
2αR − αP

3
(20)

and

qUP (0) =
2αP − αR

3
(21)

respectively. Since γ = 0, at the uncongested equilibrium the private generator produces

more than the public generator and ∆qU(0) = αR − αP < 0. Now consider K such that

| αR − αP |> 3K, i.e. the uncongested equilibrium is not attainable. In order to bring

production in line with the capacity constraint, either the effective cost of production to the

public generator needs to be decreased or the effective cost of production to the private generator

needs to be increased (or both). The constrained equilibria outcomes are

qCR =
αP + αR ∓ 9K

6
(22)

qCP =
αP + αR ± 9K

6
(23)

λC2 = (αR − αP )± 3K < 0 (24)

λC3 =
(αR − αP )± 3K

2
< 0 (25)

In one of the constrained equilibria the private generator produces more, and in the other it

produces less. In both cases the public generator pays λC3 (a different negative amount in each

case) at the margin for each unit of electricity transmitted, thus lowering its effective marginal

cost to cR + λC3 < cR. The private generator, on the other hand, receives λC2 and pays λ
C
3 for

each unit of electricity it transmits, bringing its effective marginal cost to cP + λC3 − λC2 > cP

in each case. With the introduction of these congestion prices, the response function of each

generator moves accordingly. One could also interpret this “adjustment” in terms of prices

rather than costs. The effective price the public generator receives from the sale of a unit of

electricity would then be pC − λC3 > pC, while the private generator would be selling the same

good at an effective price of pC − λC3 + λC2 < pC.

Proposition 2 below gives the output produced by the generators and equilibrium TCR

(nodal) prices at congested equilibria studied in this section.
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Proposition 2 For each (γ,K), such that K < min
©
κ(γ), a

3

ª
there exist multiple congested

equilibria, where either the private or the public generator produces more. The equilibrium

values for the variables are:

qCR(γ,K) =
αP + (1− γ)αR ∓ 3K(3− 2γ)

6− 5γ (26)

qCP (γ,K) =
αP + (1− γ)αR ± 9K(1− γ)

6− 5γ (27)

λC3 (γ,K) =
3(1− γ)αR − (3− 5γ)αP ± 3K(3− 4γ)

6− 5γ (28)

λC2 (γ,K) = 2λ
C
3 (29)

Proof. See Appendix.

Remark 2 Note that (26)-(29) characterize the congested equilibria where both generators
produce strictly positive amounts. Congested equilibria where only one of the generators

produces is also possible. In the proof of Proposition 2 we give the analysis of such cases as

well.

We observe that each congested equilibrium will be associated with a different level of

profit for ISO and a different total surplus (welfare). In the next section when we consider the

optimal choice of γ, the parameter determining the objective function of the public generator,

we will also study the implication of different equilibria on the profits of ISO.

4 Optimal γ: What Objective to Delegate to the Public

Generator?

The equilibrium levels of production calculated above are for a given γ and K. Observe that

γ, the weight given to consumers’ surplus in the public generator’s objective function, can be

viewed as a policy tool. This brings out the question of choosing γ optimally. We take the

total surplus

W (qP , qR;K, γ) =

Z qP+qR

0

P (Q)dQ− p(Q)Q+ΠP (qR, QP )

+ΠR(qR, QP ) +ΠISO(qR, QP )
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as the measure of welfare, which, given the specifications of our model, becomes

W (qP , qR;K, γ) = αRQ−
Q2

2
− (αR − αP )qP . (30)

Recall that for a given γ and K, there will exist multiple congested equilibria. In order to

carry out welfare analysis in that case, we have to deal with the multiplicity of equilibria. A

plausible criterion to select among equilibria is to look at the profits of ISO.

4.1 Profits of ISO

The profits of ISOmay be of concern for a number of reasons. ISO is in charge of administering

the TCR market and operating the transmission network. The TCR market is assumed to

operate much like a competitive market, each generator taking the transmission prices it faces

as given and equilibrium prices being those that equate demand and supply for transmission

rights at each node.

We have not ascribed a separate objective function to ISO other than perhaps allowing it

to act like a “Walrasian auctioneer” in the TCR market, announcing the final prices that will

drive the TCR market into equilibrium. In our model, as in the operation of any ISO that

uses market-based congestion management, TCR pricing involves of transfers to and from

ISO depending on the signs of λ2 and λ3, as well as the relative magnitudes of qR and qP .

The profits of ISO are given by

ΠISO = λ3qR + (λ3 − λ2)qP (31)

and given that λ2 = 2λ3 in equilibrium, the equilibrium level of ISO profits will be

ΠISO = λ3(qR − qP ). (32)

Note that when the equilibrium is uncongested, we have λ2 = λ3 = 0, and hence ΠISO = 0.

However, in the case of congested equilibria, profits of ISO can be positive or negative, as

indicated by (32) above.

It may very well be the case that the public authority (government) requires that ISO runs

no losses. Recall also from our characterization of congested equilibria in Section 3.2 above

that for each given pair of γ and K, there will be one set of λ2 and λ3 that corresponds to

the constraint qR − qP = 3K in equilibrium, and another that corresponds to qP − qR = 3K.

It may be the case that ISO profits are positive for one case and negative for the other. We

may then use the non-negative ISO profit requirement as an equilibrium selection criterion.
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From (32), when the public generator produces more than the private generator in the

congested equilibrium, profits of ISO is nonnegative if and only if λ3 ≥ 0. From (28), this can
only be the case if and only if

3K ≤
∙
αR − αP +

γ(αR + αP )

3− 4γ

¸
. (33)

Observe from (17) that the right hand side of the above inequality is equal to ∆qU(γ) for γ ∈
[0, γ̂], i.e. the difference between the generators’ output levels at the uncongested equilibrium

for αP , αR, and γ that lead to a higher equilibrium output level for the private generator

than that of the public generator. Given that we are considering capacity levels K < κ(γ),

the above condition will hold only if γ > γ̂. This is the region the public generator produces

more than the private generator at the uncongested equilibrium. Thus the profits of ISO will

be nonegative in R-type congested equilibrium if and only if at the uncongested equilibrium,

corresponding to the same set of αP , αR and γ, the public generator produces more.

When the private generator produces more than the public generator in the congested

equilibrium, profits of ISO is nonnegative if and only if λ3 ≤ 0. From (28), this will be the

case if and only if

3K ≤ −
∙
αR − αP +

γ(αR + αP )

3− 4γ

¸
. (34)

Similar to the argument above, the profits of ISO will be nonegative in P-type congested

equilibrium if and only if at the uncongested equilibrium corresponding to the same set of

αP , αR and γ it is the private generator that produces more.

4.2 Optimal γ

We will first look at the choice of optimal γ in the case where the total surplus maximization

is attained at an uncongested (unconstrained) equilibrium. Unconstrained (uncongested)

welfare optimum will be achieived when the transmission capacity constraint K is sufficiently

large. As we will see below, the analysis of the unconstrained case will provide insight for the

determination of optimal γ when K is small, i.e. when the transmission line will be congested

at the welfare optimum.

Note from Figure 2 that as γ increases the reaction function of the public generator shifts,

each time leading to a unique uncongested equilibrium with the corresponding values for

qP and qR. We perform the welfare optimization in the (qR, qP ) space. As γ increases, the

equilibrium moves along the reaction function of the private generator up to γ (at which point

the private generator ceases production). Beyond γ, the equilibrium moves along qP = 0 until

qR = a (see Figure 2). Using (30) and substituting the private generator’s reaction function,
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the total surplus can be expressed as

W (qR; γ,K) =

(
−1
8
q2R + (αR − 3

4
αP )qR +

3
8
α2P if qR ∈ [0, αP )

−1
2
q2R + αRqR if qR ∈ [αP , a)

. (35)

Propositon 3 below characterizes the welfare maximizing values of γ when the transmission

capacity K is sufficiently large so that an unconstrained welfare maximum is achievable.

Proposition 3 Assume that the transmission capacity constraint K is sufficiently large so

that the transmission line will never be congested (K > αP
3
). Then the optimal objective to

be delegated to the public generator involves putting a strictly positive weight on consumers’

surplus if the efficiency deficit of the public generator is "small". Otherwise, it is optimal

to put no weight on consumers’ surplus, i.e. profit maximization is the welfare maximizing

objective for the public generator. Specifically, the welfare maximizing γ for the uncongested

case is given by

γ∗U =

(
γ∗U1 =

5αR−4αP
7αR−5αP if αR ∈

¡
4
5
αP , αP

¢
0 if αR ∈

¡
1
2
αP ,

4
5
αP

¤ . (36)

Proof. See Appendix.
Propositon 3 replicates similar results of other studies on mixed oligopolies. If the cost

differential between the private generator and the less efficient public generator is not too

high, then instructing the public generator to put a positive weight on consumers’ surplus

(γ > 0) in its objective function will be welfare enhancing in equilibrium. More aggressive

behavior on the part of the public generator will increase the total electricity generated and

sold in the market, and the positive welfare effect of this increase will more than make up for

the relatively inefficient production by the public generator.

However, note that γ∗U1 =
5αR−4αP
7αR−5αP in γ∗U is less than 1/2, the value that puts equal

weight on consumers’ surplus and profit maximization This reflects the tradeoff between

allocative efficiency and productive efficiency when the less efficient public generator gets to

increase its output with higher γ. After a point, it does not pay (in terms of total surplus)

to have the less efficient public generator displace production by the more efficient private

generator. The optimal γ never indicates at delegating consumers’ surplus maximization as

the sole objective for the public generator; in fact, consumers’ surplus never gets equal weight

with profit maximization. Moreover, if the relative cost inefficiency of the public generator

is beyond a certain point then profit maximization (γ = 0) is the optimal objective for the

public generator, with the associated less aggressive output behavior and thus less (inefficiently

produced) output by it in equilibrium.

We now turn to full characterization of optimal γ when the transmission capacity K is not
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necessarily high enough to allow implementing of the unconstrained welfare maximum using

γ∗U . When K is small welfare maximization may call for output levels that will congest the

transmission line. As we will see below, in such cases it will be optimal to have the public

generator produce more (than it would be asked to in the absence of capacity constraint) in

order to alleviate the congestion on the network, thereby allowing more electricity to flow

from producers to customers.

Recall that in the congested case there will be (γ,K) pairs that results in multiple con-

gested equilibria. Using the analysis in Section 4.1 above, in searching for the optimal γ

we will select the P-type congested equilibrium if γ < γ̂, and R-type congested equilibrium

otherwise (γ̂ being the threshold γ that determines which generator would produce more at

the uncongested equilibrium corresponding to the same set of αP , αR and γ).

Proposition 4 below characterizes the welfare maximizing values of γ for the general case,

i.e. for K both large and small.

Proposition 4 1. Let αR ∈
¡
5
6
αP , αP

¢
, i.e. the efficiency deficit of the public generator

is "small". The welfare maximizing γ for this case is given by

γ∗C =

(
γ∗C1 =

2(αP+αR)
5αP+αR+6K

> γ∗U1 if K ∈
¡
0, 6αR−5αP

3

¤
γ∗U1 =

5αR−4αP
7αR−5αP if K ∈

¡
6αR−5αP

3
,∞
¢ .

2. Let αR ∈
¡
4
5
αP ,

5
6
αP

¢
, i.e. the efficiency deficit of the public generator is in an inter-

mediate range. The welfare maximizing γ for this case is given by

γ∗C =

(
γ∗C2 =

3(αP−αR−3K)
5αP−3αR−12K ∈ (γ

∗
U1, γ

∗
C1) if K ∈

¡
0, 5αP−6αR

3

¤
γ∗U1 =

5αR−4αP
7αR−5αP if K ∈

¡
5αP−6αR

3
,∞
¢ .

3. Let αR ∈
¡
1
2
αP ,

4
5
αP

¢
, i.e. the efficiency deficit of the public generator is "large" (in

the same region where the unconstrained welfare optimum would call for γ = 0). The

welfare maximizing γ for this case is given by

γ∗C =

(
γ∗C2 =

3(αP−αR−3K)
5αP−3αR−12K ∈ (γ

∗
U1, γ

∗
C1) if K ∈

¡
0, αP−αR

3

¤
0 if K ∈

¡
αP−αR

3
,∞
¢ .

Proof. See Appendix.

Figure 5 displays the welfare maximizing values of γ in (αR,K) space. Proposition 4 shows

that when the transmission capacity is limited, the public generator will be called to put pos-

itive weight on consumers’ surplus even in cases where it is highly inefficient compared to
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the private generator. When the transmission constraint K is high enough so that an uncon-

strained equilibrium can be achieved, from Proposition 3 we know that profit maximization

(i.e. less aggressive output behavior) is the optimal instruction for the public generator in

cases where αR ∈
¡
1
2
αP ,

4
5
αP

¤
. For the same interval of (in)efficiency, Part 3 of Proposition

4 reveals that when K is too small it becomes optimal to put a strictly positive weight on

consumers’ surplus and have the public generator behave more aggressively and produce more.

Figure 5: Optimal Objective Function for the Public Generator

Note also that when the public generator is sufficiently efficient, i.e. for αR ∈
¡
4
5
αP , αP

¢
, at

all levels ofK that will lead to a congested equilibrium under optimal delegation the weight to

be put on consumers’ surplus increases compared to the optimal weight in the corresponding

interval for the uncongested case (γ∗C1 > γ∗C2 > γ∗U1). As the efficiency deficit of the public

generator becomes smaller, it becomes less costly to use production by the public generator

to increase total surplus.

The intuition behind the results presented in Propositon 4 is that, when the transmission

capacity is small, more production by the ( less efficient) public generator relieves the trans-

mission constraint and allows the more efficient private generator also produce more (recall
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that the capacity constraint depends on the difference between the generators’ output levels).

Thus, if the transmission capacity on the electricity network is fixed and cannot be increased

(at least in the short run), the presence of a public generator (that produces more than its

profit maximizing counterpart would have produced) allows welfare increasing overall output

expansion in the electricity industry.

5 Discussion and Concluding Remarks

We studied a mixed electricity market in which a public generator and a private generator

competed on a simple three-node looped network model with a transmission constraint. Both

generators employed constant returns to scale technologies, and we assumed that the public

generator was less efficient than the private generator. As the objective function for the public

generator, we allowed for different convex combinations of consumers’s surplus and its own

profit. The transmission constraint led to network externalities that significantly complicated

the nature of equilibria that emerged under different objective functions assigned to the public

generator.

When the transmission capacity constraint K is sufficiently large, there is a unique un-

congested equilibrium. In that case, the higher the weight of consumer surplus in the public

generator’s objective function (i.e. the higher γ is) the more it produces in equilibrium, dis-

placing output produced by the private generator that ends up producing less. In fact, at high

enough values for γ the private generator may even be completely ousted from the market,

with public generator remaining as the sole producer. Given our assumption that the public

generator is less efficient than the private generator, it is clear that this will not be desirable

as far as total welfare is concerned if the cost differential between the two generators is suf-

ficiently high. In fact, the welfare analysis we carry on later shows that it is never optimal

to give equal weight to consumer surplus maximization as that of profit maximization in the

public generator’s objective function (i.e. we have γ = 1/2).12

12Note that there is mixed evidence on the relative efficiency of public versus private firms in the same
industries, and it would also be plausible to assume a more efficient public generator. While Borcherding,
Pommerehne and Schneider (1982), Megginson and Netter (2001), and Dewenter and Malatesta (1997) find
that costs are often higher in public firms, Millward (1982) and Willner (2001) report evidence to the contrary.
In the case of electricity generation the cost differential is typically a function of both organizational efficiency
as well as differential access to inputs. For example, the public generator may be operating a hydroelectric
power plant and the private one a natural gas fired power plant, in which case the marginal cost for the
regulated generator will (in all likelihood) be lower. Note that with a transmission constraint on the network
as in our model, production by the less efficient private generator could still be desirable, even in the case
of constant marginal cost. In certain cases that would relieve the congestion on the transmission lines by
creating a counter-flow on the congested transmission line, thereby allowing more production by the more
efficient public generator. An earlier version of this paper contains an analysis with a more productive public
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For small K, the transmission line becomes congested and multiple equilibria are possible

under the competitive nodal pricing that resolves the congestion on the transmission network.

For a given level of transmission capacity and a given objective function for the public gener-

ator, there is an equilibrium where the line is congested in one direction (with one generator,

say the private one, producing more), as well as an equilibrium where the line is congested in

the other direction (the other generator, say the public one, producing more). This compli-

cation is primarily due to the flexibility that the nodal pricing bring into the model, despite

the fact that these prices cannot be set arbitrarily.

To carry out welfare analysis, which in our case amounts to choosing an optimal objective

function for the public generator, the multiplicity of equilibrium that arose under congestion

had to be resolved first. We used the profits of ISO as the criterion for equilibrium selection.

The profits of ISO are simply the difference between what it collects and pays out in the

operation of the transmission congestion rights market. We assumed that ISO operated

under a no-loss constraint for its profits.

Our results indicate that the optimal regulatory policy, i.e. the weight of the consumers

surplus in the public generators objective function, depends on the capacity of the transmission

line as well as how inefficient the public generator is in relation to the private generator. The

optimal choice never indicates maximizing consumers surplus as the sole objective for the

public firm. In fact, if both the transmission line capacity and the efficiency gap between the

two generators are high enough, then the prescription is to ignore consumers’ surplus in favor

of maximization of profits only. On the other hand, if the transmission line capacity is small

enough, then, regardless of how inefficient the public generator is, consumers’ surplus should

always appear in public generator’s objective function.

Finding the optimal objective function to delegate to the public generator for its com-

petition with a private generator can be seen as analysis of optimal regulatory policy in the

context of a mixed oligopolistic wholesale electricity market. The public generator plays a

regulatory role by its sheer existence in the market with an objective function different than

profit maximization. Then delegating an optimal objective function to the managers of the

public generator amounts to an optimal regulatory policy.

Note that the analysis of the paper was carried out under the assumption that capacity of

the transmission line K was fixed. It has been observed by many authors that transmission

network not only transports electricity, but also promotes market efficiency as it allows gener-

ators to compete with each other.13 So, expanding the transmission capacity would in many

generator (Mumcu, Oğur and Zenginobuz, 2007).
13Going back to Joskow and Schmalensee (1983) many studies examined the interaction between the avail-

ability and market power in generation and availability of transmission capacity. Wolfram (1998), Bushnell
(1999), Bushnell and Wolak (1999), and Joskow and Tirole (2000) all show that generators benefit from a
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instances be desirable from a welfare point of view. But, as noted by Willems (2002) as well,

capacity of transmission lines cannot be expanded easily. Construction of transmission lines

takes a long time, and their expansion has been met with increasing opposition by environ-

mentalist groups. A related point is whether the private generation firms will have incentives

to engage in transmission investments.14 Our Proposition 4 indicates how the presence of a

public generator can be used as an instrument to increase electricity supplied to the market in

a welfare increasing manner in cases where a transmission line would be congested. A mixed

generation sector would be the preferred industry structure under such conditions.

Note that optimal choice of objective function can also be viewed as a search for optimal

level of privatization for the public generator. If one assumes that the objective of the public

owners (consumers’ surplus maximization) and that of the private owners (profit maximiza-

tion) are represented in the objective function of the generator according to ownership shares,

then the optimal objective function will indicate whether the generator should be left in public

hands (and aim at maximizing consumers surplus), fully privatized (hence end up maximiz-

ing profit only), or should be partially privatized with less than 100% of shares in private

hands. In our model with a public generator less efficient than its private counterpart, it is

never optimal to have full public ownership nor is it optimal to fully privatize the industry.

Partial privatization allows the possibility of alleviating output restricton that comes with

imperfect competition even without the additional difficulty that tranmission line constraints

bring about. With transmission line constraints, a more aggressive output behavior through

more emphasis on cosumers’ surplus has the added advantage of relieving the transmission

line constraint, and thereby allowing the more efficient private generator also to produce more

in equilibrium

Finally, we note that our analysis is carried out for an extremely simple environment,

with a three-node network and a linear demand and cost structure. It has been aptly noted

that Cournot models of electricity networks, which ours is an example of, are usually marred

with the devil is in the details attribution, with their equilibria being highly sensitive to as-

sumptions about market structure and the assumed behavior of players involved.15 This is

mainly due to inherent difficulties involved in modelling network industries where external-

ities abound and, hence, to a large extent inescapable. We believe that the main intution

of our results should remain valid under different specifications for demand and cost, as well

as network structure. An interesting extension would be to study the tradeoff between ex-

panding transmission capacity and using the public generator’s objective function on a fixed

reduction in transmission capacity.
14See Sauma and Oren (2009).
15Neuhoff et al. (2005).
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transmission line to increase output. That would introduce a new dimension to benefit-cost

analysis of infrastructure investments and analysis of privatization initiatives in the power

industry.
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Appendix: Omitted Proofs

Proof of Proposition 2

Proof. The congested equilibrium with qCRR > qCRP is characterized by the simultaneous

solution of the following equations:

γ(qR + qP ) + (1− γ)(αR − 2qR − qP )− λ3 = 0

αP − 2qP − qR − λ3 + λ2 = 0

qR − qP = 3K

λ2 − 2λ3 = 0

This results in the equilibrium quantities given by

qCRR (γ) =
αP + (1− γ)αR + 3K(3− 2γ)

6− 5γ (37)

qCRP (γ) =
αP + (1− γ)αR − 9K(1− γ)

6− 5γ (38)

λCR3 (γ) =
3(1− γ)αR − (3− 5γ)αP − 3K(3− 4γ)

6− 5γ (39)

λCR2 (γ) = 2λ
CR
3 (γ) (40)

The set of equations that characterize the congested equilibrium with qCPP > qCPR is

γ(qR + qP ) + (1− γ)(αR − 2qR − qP )− λ3 = 0 (41)

αP − 2qP − qR − λ3 + λ2 = 0 (42)

qP − qR = 3K (43)

λ2 − 2λ3 = 0 (44)

Their simultaneous solution leads to the following equilibrium quantities:

qCPR (γ) =
αP + (1− γ)αR − 3K(3− 2γ)

6− 5γ (45)

qCPP (γ) =
αP + (1− γ)αR + 9K(1− γ)

6− 5γ (46)

λCP3 (γ) =
3(1− γ)αR − (3− 5γ)αP + 3K(3− 4γ)

6− 5γ (47)
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λCP2 (γ) = 2λ
CP
3 (γ) (48)

There are also congested equilibria where only one of the generators produces positive

level output and the other one shuts down. The congested equilibrium where only the public

generator produces is characterized by the simultaneous solution to the following equations:

γqR + (1− γ)(αR − 2qR)− λ3 = 0 (49)

αP − qR − λ3 + λ2 ≤ 0 (50)

qR = 3K (51)

λ2 − 2λ3 = 0 (52)

This results in the equilibrium quantities

qCPR (γ) = 3K (53)

qCPP (γ) = 0 (54)

λCP3 (γ) = (1− γ)αR − 3K(2− 3γ) (55)

λCP2 (γ) = 2λ
CP
3 (γ) (56)

Finally, the set of equations that characterize the congested equilibrium where only the

private generator produces is given by

γqP + (1− γ)(αR − qP )− λ3 ≤ 0 (57)

αP − 2qP − λ3 + λ2 = 0 (58)

qP = 3K (59)

λ2 − 2λ3 = 0 (60)

and their simultaneous solution leads to the equilibrium quantities

qCPR (γ) = 0 (61)

qCPP (γ) = 3K (62)

λCP3 (γ) = 6K − αP (63)

λCP2 (γ) = 2λ
CP
3 (γ) (64)
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Proof of Proposition 3

Proof. Differentiating (35) with respect to qR we get

∂W (qR; γ,K)

∂qR
=

(
αR − 3

4
αP − 1

4
qR if qR ∈ [0, αP )

αR − qR if qR ∈ [αP , a)
(65)

Noting that the second order condition is satisfied, the total surplus is maximized by setting

either qR = 4αR − 3αP or qR = αR. Given Assumption 2, simple calculations show that the

total surplus with qR = 4αR − 3αP exceeds that with qR = αR. Hence it is optimal to choose

the γ that induces qR = 4αR − 3αP and the corresponding qP = 2(αP − αR), which is equal

to γ∗U1 =
5αR−4αP
7αR−5αP , provided that it falls in the interval for γ allowed in the model, i.e. in

[0, 1] .When it is non-negative, it can easily checked that γ∗U1 < 1, given Assumption 2. Note,

however, γ∗U1 can also be negative, with αR ∈
¡
1
2
αP , αP

¢
as a result of Assumption 1 and

Assumption 2.

If αR ∈
¡
1
2
αP ,

4
5
αP

¤
and 7αR > 5αP , then γ∗U1 ≤ 0 and the total surplus is maximized at

γ∗U = 0. For the case 7αR ≤ 5αP , we have γ∗U1 ≥ 0, but in this case checking the relevant
second order condition reveals that γ∗U1 is a global minimum and the total surplus is again

maximized at γ∗U = 0.

If αR ∈
¡
4
5
αP , αP

¢
, then γ∗U1 > 0 and checking the relevant second order condition reveals

that it is indeed the global maximum.

Note that, using (18), it can be checked that the minimum transmission capacity that

will allow an uncongested equilibrium at γ∗U1 can be calculated as
¯̄
6αR−5αP

3

¯̄
. When αR ∈¡

4
5
αP ,

5
6
αP

¢
, optimal γ will induce a P-type congested equilibrium and the minimum K that

will allow an uncongested P-type equilibrium at γ∗U1 is K = 5αP−6αR
3

. When αR ∈
¡
5
6
αP , αP

¢
,

optimal γ induces a R-type congested equilibrium and the minimum K that will allow an

uncongested R-type equilibrium at γ∗U1 is K = 6αR−5αP
3

.Thus, a capacity constraint K > αP
3

will result in uncongested equilibrium at the optimal γ for all αR ∈
¡
4
5
αP , αP

¢
.

Proof of Proposition 4

Proof. We proceed by determining the optimal choice of qp and qR if the optimum surplus

is to be attained at a congested equilibrium.

Case 1: We first analyze the case where αR ∈
¡
4
5
αP , αP

¢
, i.e. when γ∗U1 =

5αR−4αP
7αR−5αP is the

total surplus maximizing value of γ in the uncongested equilibrium.

Observe that with K = |(6αR − 5αP ) /3| the equilibrium induced by γ∗U1 is just binding.

Hence for K ∈
³
|6αR−5αP |

3
,∞
´
total surplus is maximized at γ∗U1, since the choice set in the

uncongested case included all possible output levels.
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For K ∈
³
0, |6αR−5αP |

3

i
, we analyze the cases αR ∈

¡
4
5
αP ,

5
6
αP

¤
and αR ∈

¡
5
6
αP , αP

¢
separately.

Case 1.a: Let αR ∈
¡
4
5
αP ,

5
6
αP

¤
.

For each K ∈
¡
0, 5αP−6αR

3

¢
and γ ∈

h
0, 3(αP−αR−3K)

5αP−3αR−12K

i
the (P-type) congested equilibria

move along qP − qR = 3K.16 For γ ∈
³
3(αP−αR−3K)
5αP−3αR−12K ,

3(αP−αR+3K)
5αP−3αR+12K

i
the equilibria will be

uncongested, moving along the response function of the private generator. Finally, for γ ∈³
3(αP−αR+3K)
5αP−3αR+12K , 1

i
, the (R-type) congested equilibria move along qR − qP = 3K.

Maximizing the total surplus subject to qP − qR = 3K yields αP+αR+6K
4

as the optimal

output level for the private generator and the value of γ that induces this output level for the

private generator is 2(αP+αR)
5αP+αR−6K .

Note that P-type congested equilibrium will be obtained only when γ ∈
h
0, 3(αP−αR−3K)

5αP−3αR−12K

i
.

Thus the total surplus maximizing γ that induces the P-type congested equilibrium is γ =

min
n

2(αP+αR)
5αP+αR−6K ,

3(αP−αR−3K)
5αP−3αR−12K

o
.

Notice that 2(αP+αR)
5αP+αR−6K is increasing in K and 3(αP−αR−3K)

5αP−3αR−12K is decreasing in K. Both at

K = 0 and K = 5αP−6αR
3

we have 2(αP+αR)
5αP+αR−6K > 3(αP−αR−3K)

5αP−3αR−12K . Thus for all K ∈
¡
0, 5αP−6αR

3

¢
the total surplus maximizing γ is γ∗C2 =

3(αP−αR−3K)
5αP−3αR−12K .

Now consider increasing γ in the interval
³
3(αP−αR−3K)
5αP−3αR−12K ,

3(αP−αR+3K)
5αP−3αR+12K

i
. With γ ≥ 3(αP−αR−3K)

5αP−3αR−12K
the equilibrium becomes uncongested. The question is whether it would be welfare improving

to increase γ to de-congest the line. For any K ∈
¡
0, 5αP−6αR

3

¢
, 5αR−4αP
7αR−5αP < 3(αP−αR−3K)

5αP−3αR−12K ,

thus, we are already at the decreasing part of the total surplus function. Increasing γ be-

yond 3(αP−αR−3K)
5αP−3αR−12K yields a lower surplus. Thus, it is optimal to choose γ equal to γ∗C2 =

3(αP−αR−3K)
5αP−3αR−12K .

Now consider increasing γ in the interval
³
3(αP−αR+3K)
5αP−3αR+12K , 1

i
. Now the equilibria will be

R-type congested equilibria and will move along qR − qP = 3K line.

Maximizing the total surplus subject to qR − qP = 3K yields αP+αR−6K
4

as the optimal

output level for the private generator and the value of γ that induces this output level for the

private generator is 2(αP+αR)
5αP+αR+6K

.

Recall that an R-type congested equilibriumwill be obtained only when γ ∈
³
3(αP−αR+3K)
5αP−3αR+12K , 1

i
.

Thus the total surplus maximizing γ that induces the R-type congested equilibrium is γ =

max
n

2(αP+αR)
5αP+αR+6K

, 3(αP−αR−3K)
5αP−3αR+12K

o
.

It can be checked that both 2(αP+αR)
5αP+αR+6K

and 3(αP−αR−3K)
5αP−3αR+12K are increasing in K. Both at

16The threshold gamma, 3(αP−αR−3K)5αP−3αR−12K is the value of gamma at which the (P-type) uncongested equilibrium
will be just binding when the capacity constraint is K. Note that when K = 0, this threshold is equal to bγ,
at which point the generators produce equal amounts. note also that when K =

¯̄
6αR−5αP

3

¯̄
, this threshold

takes the value γ∗U1 =
5αR−4αP
7αR−5αP .
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K = 0 and K = 5αP−6αR
3

we have 2(αP+αR)
5αP+αR+6K

> 3(αP−αR−3K)
5αP−3αR+12K . Thus for all K ∈

¡
0, 5αP−6αR

3

¢
the total surplus maximizing γ is γ∗C1 =

2(αP+αR)
5αP+αR+6K

.

Finally we need to check whether the value of total surplus at γ = 3(αP−αR−3K)
5αP−3αR−12K is greater

than the value of total surplus at γ = 2(αP+αR)
5αP+αR+6K

. Recall that both gamma induce a congested

equilibrium, the private generator producing more at the P-type equilibrium and the public

generator producing more at the R-type equilibrium. It can easily be checked that the total

output will be the same at both equilibria. For a given level of total output, the total surplus is

increasing in the more efficient private generator’s output. Thus, the total surplus maximizing

γ is the one that induces the P-type congested equilibrium, namely γ∗C2 =
3(αP−αR−3K)
5αP−3αR−12K .

Case 1.b: Let αR ∈
¡
5
6
αP , αP

¤
.

In this case, the surplus maximizing uncongested equilibrium cannot be implemented by

setting γ = 5αR−4αP
7αR−5αP due to capacity constraint.

Similar to Case 1.a, for each K ∈
¡
0, 6αR−5αP

3

¢
and γ ∈

h
0, 3(αP−αR−3K)

5αP−3αR−12K

i
the (P-type)

congested equilibria move along qP − qR = 3K; for γ ∈
³
3(αP−αR−3K)
5αP−3αR−12K ,

3(αP−αR+3K)
5αP−3αR+12K

i
the

equilibria will be uncongested, moving along the response function of the private generator;

and for γ ∈
³
3(αP−αR+3K)
5αP−3αR+12K , 1

i
the (R-type) congested equilibria move along qR − qP = 3K.

In this case the uncongested surplus maximizing value of γ, i.e. γ∗U1 =
5αR−4αP
7αR−5αP falls into

the interval
h
3(αR−αP+3K)
3αR−5αP+12K , 1

i
.

Based on the analysis in Case 1.a., we can implement a P-type congested equilibrium at

γ = 3(αP−αR−3K)
5αP−3αR−12K . However, the total surplus can be increased further if we increase γ to de-

congest the line. As γ reaches 3(αP−αR+3K)
5αP−3αR+12K the equilibrium will become an R-type congested

equilibrium. We know from the discussion above that total surplus will be maximized at

γ = 2(αP+αR)
5αP+αR+6K

at R-type congested equilibria. Thus, for αR ∈
¡
5
6
αP , αP

¤
, total surplus is

maximized at γ∗C1 =
2(αP+αR)
5αP+αR+6K

Case 2: We now analyze the case where αR ∈
¡
1
2
αP ,

4
5
αP

¢
, i.e. when 0 is the total surplus

maximizing value of γ in the uncongested equilibrium.

In this case, the minimum transmission capacity that will allow an uncongested equilibrium

at γ = 0 is K = αP−αR
3

.

The rest of the analysis is identical to the one in the previous case, except for the relevant

intervals of K. For K ∈
¡
αP−αR

3
,∞
¢
it is optimal to set γ equal to 0, whereas for K ∈¡

0, αP−αR
3

¤
it is optimal to set γ equal to γ∗C2 =

3(αP−αR−3K)
5αP−3αR−12K .
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