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Abstract

In this paper we address the question of learning in two-sided matching mech-

anism that utilizes the Deferred Acceptance algorithm. We consider a repeated

matching game where at each period agents observe their match and have the op-

portunity to revise their strategy (i.e., the preference list they will submit to the

mechanism). We focus in this paper on better-reply dynamics. To this end, we first

provide a characterization of better-replies and a comprehensive description of the

dominance relation between strategies. Better-replies are shown to have a simple

structure and can be decomposed into four types of changes. We then present a sim-

ple better-reply dynamics with myopic and boundedly rational agents and identify

conditions that ensure that limit outcomes are outcome equivalent to the outcome

obtained when agents play their dominant strategies. Better-reply dynamics may

not converge, but if they do converge then the limit strategy profiles constitute a

subset of the Nash equilibria of the stage game.
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1 Introduction

Mechanism design theory usually assumes that agents know the mechanism they face and

have enough cognitive resources to respond optimally to the incentives and constrains that

are imposed by the designer. In practice this may not be the case. Agents may not have

access to a clear and detailed description of the mechanism, and/or may have difficulties

in finding their best choices. Whether agents are able to learn their optimal strategies

under a mechanism is thus of paramount importance when implementing mechanisms

in real-life settings. It is therefore surprising that the issue of learning in mechanism

design has not been a focus of the recent theoretical literature.1 This paper addresses this

research question by considering a mechanism that is increasingly used in real-life settings,

namely the mechanism built upon Gale and Shapley’s (1963) Deferred Acceptance (DA)

algorithm for two-sided matching markets.

Real life use of the DA algorithm (or its variants) now abounds. For example, the

entry market for medical interns in the US, school admission in several US cities, academic

hiring in France or college admission in Hungary all use this algorithm. In some cases

the DA algorithm was chosen because of its theoretical properties —e.g., school choice in

Boston— and in other cases the choice was “accidental” —e.g., medical interns in the US

until 1997.2 Although those markets use (almost) the same algorithm, they often differ

in the way the mechanism is presented to market participants. For instance, parents in

Boston are given a precise description of the algorithm, while job candidates in the French

academic job market have little knowledge of the algorithm used to match candidates and

departments.3

The DA algorithm is a multistep process that works as follows. There is a side of

the market that makes match proposals, and the other side either rejects or accepts the

proposals they receive. We keep with the tradition in the matching literature, calling the

proposing side men and the accepting side women. In the DA algorithm each man makes

an offer to one woman at a time (i.e., one per step). At each step of the algorithm a

1Most of the work on learning and mechanism design have been undertaken by the computer science

(e.g., Balcan et al. (2005)) or by the experimental literatures (e.g., Healy (2006)).
2See Roth and Peranson (1999).
3In fact, the French administration does not directly utilize the DA algorithm but an algorithm that

is outcome equivalent — see Iehlé and Haeringer (2010).
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woman can hold at most one offer. Thus, she has to choose between the offer received

in the given round and the offer she holds from the previous step. One of the attractive

features of this algorithm is that it naturally describes a direct mechanism, in which each

agent submits to a central clearinghouse a preference list over potential partners to match

with. The final matching is then computed using the DA algorithm with those preference

lists as the input. The preference lists of men indicate in which order the algorithm should

make offers to women, and the preference lists of women indicate which offers are to be

held or rejected.

In line with well known results, the dominant strategy for the proposing side is to list

the true preferences. However, with limited information about the applied mechanism, or

because of bounded rationality, fully informed participants may not correctly respond to

the incentives they face, even when being recommended to be truthful (if such recommen-

dations are made). This is because in spite of the relative simplicity of the DA mechanism,

the existence of a dominant strategy for the proposing side is not straightforward. More-

over, understanding what outcome a given strategy profile leads to is somewhat difficult.4

This is a reason for concern because participants with little or wrong understanding of

the mechanism may try to strategize and thus affect market outcomes. It is then crucial

to know (i) whether agents can learn how to play and converge to some sort of stable

behavior, and (ii) the type of outcome we obtain in the long run.

In a two-sided matching market an “equilibrium” is often better described by the

notion of stability, that is, a matching between the agents from both sides of the market

where no agents who are not matched together would both prefer to be matched to

one another.5 In the presence of frictions (e.g., the existence of a deadline to make

transactions or the absence of monetary transactions), stability becomes one of the most

important property sought in matching markets. Roth (1991) showed that matching

markets that do not produce stable matchings tend to perform worse or simply collapse

whereas markets that produce stable matchings do not experience failures.6 In the context

of matching markets with strong frictions, the DA algorithm is now considered to be a

4Note, however, that from a computational point of view the DA algorithm is very simple (and

polynomial).
5Stability also requires that matching is individually rational.
6McKinney, Niederle and Roth (2005) show that centralized matching markets that utilize Gale and

Shapley’s Deferred Acceptance are not always immune to market failure.
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serious contender, as it always produces a stable matching.7 The mechanism built upon

the DA algorithm has strong appealing properties. First, as we just intuited, the DA

algorithm produces a stable matching with respect to the submitted preferences. It is

also the most preferred stable matching by all men among all stable matchings. Second,

and not less interesting from the mechanism design perspective, it is a (weakly) dominant

strategy for men to submit their true preferences. One drawback, however, is that women

may have an incentive to manipulate the mechanism by reporting false preferences —

Dubins and Freedman (1981), Roth (1982).

To streamline our analysis of learning in matching games we shall consider the simplest

matching environment and use the insights of the game theoretic literature on learning.

More precisely, we shall consider a one-to-one matching market with strict preferences

between men and women, and assume that agents repeatedly play this matching mech-

anism.8 Throughout this paper, our focus will be the proposing side of the matching

mechanism. That is, we shall assume that only the individuals on the proposing side face

strategic choices. Agents on the other side of the market are simply assumed to always

submit their true preferences. This case fits well the so-called school choice problem,

where the proposing side are students’ parents and the other side are schools.9 Of course,

in real-life settings agents often do not participate repeatedly in a matching game. We

argue however that a repeated setting can be understood as a proxy for social learning.

For instance, parents participating in a school choice program usually seek information

from their acquaintances who participated in the past and who have similar preferences.

While we assume that the same population with the same (true) preferences repeatedly

plays a matching game, the constraints we impose on the updating behavior can dispense

with this assumption. That is, we shall consider that agents in our model only know

their true preferences, the preferences they submitted in the previous period, and the

7This is true for “classic” matching markets. Many-to-one markets where there are complementarities

between agents constitute an example where the existence of stable matchings is not guaranteed — see

Roth and Sotomayor (1990).
8All our results easily carry out to more complex environments such as school choice —see Abdulka-

diroğlu and Sönmez (2003).
9Schools in a school choice problem are not agents per se, but rather perceived as “goods to be

consumed,” and schools’ “preferences” (needed to run the algorithm) are in fact exogenous rankings

of students imposed by the authorities built, for instance, upon students’ grades, social characteristics

(distance to school, presence of siblings in the school, etc.)
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identity of the partners they were matched with. In other words, an agent updating in

our model may well think that other agents’ preferences are changed or that some agents

were replaced by new ones with different preferences.

While our approach in this paper is theoretical, it is our contention that our learning

model should take into account the specificities of a matching game. First, an important

aspect of a matching mechanism is that strategies consist of orderings. Consequently,

strategy sets are large. While the presence of large strategy sets is not a real issue in most

games, it makes our task difficult here because it is difficult (if not impossible) to reduce

strategic choice to that of a parameter. The size of the strategy sets also implies that

approaches based on statistics about the performance of past actions, e.g., reinforcement

learning (Roth and Erev (1995)), are not well suited to our context. Second, and equally

important aspect of a matching mechanism is the frequency of play. Most centralized

markets operate once a year. It is therefore natural to consider Cournot type dynamics,

i.e., situations where at each period many (if not all) agents update their strategies at the

same time. Hence, we will need to address whether dynamics with simultaneous updating

converge. In this paper we focus on better-reply dynamics. As we shall see, better-replies

in a matching game are not very demanding, and have a strong intuitive interpretation. In

particular, an attractive feature of our approach is that better-replies do not necessitate

knowing the strategy profile of the other players.

Models of learning in games are often presented as equilibrium selection devices, and

this question does not lose its importance here. Indeed, although the game we study

admits, for each man, a weakly dominant strategy, Haeringer and Klijn (2009) showed

that in fact it admits many Nash equilibria. In particular, any stable matching can be

sustained as an equilibrium outcome.10 Thus, we need to verify whether simple dynamics

lead to a Nash equilbrium. If so, the second and perhaps more important question is

whether in the limit individuals play their dominant strategy (or at least whether the

limit profile is outcome equivalent to the dominant strategy profile).

We first characterize the better-replies in a matching game. Better-replies can be

described by a combination of four types of changes: reshuffle below, reshuffle above,

move-up and move-down. Reshuffling below (resp. above) consist of changing the relative

10In fact, the set of stable matchings is usually a strict subset of the set of equilibrium outcomes —see

Haeringer and Klijn (2009).
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order of the agents that are declared less preferred (resp. more preferred) than the current

matched partner. For instance, if an individual submitted the preference list a, b, c, d, e

(in this order) and is matched to, say, c, then submitting the list b, a, c, d, e is a reshuffling

above change (and the list a, b, c, e, d is a reshuffling below). Moving-down consists of

declaring less preferred than the current match an individual that was declared more

preferred than the current match but truly less preferred. For instance, if an individual

submitted the list a, b, c, d, e and is matched to c and truly prefers c to, say, b, then the

list a, c, b, d, e is a move-down. It is important to note that we do not specify where below

c the individual b is moved. A move-up is a converse: if there is an individual that is truly

preferred to the current match but declared less preferred, then moving him above is a

move-up. We show that, holding the strategy of other agents fixed, only a move-up can

improve the outcome of an agent. That is, moving-down and reshuffling (below or above)

have no impact on the outcome (for the individual changing). When individuals do not

know the stragegy profile of the other inviduals, this changes uniquely characterize the

better-replies.

We then consider a dynamic model of repeated matching where at each period indi-

vidual use a better-reply to update their strategies. Our main results are the following.

When we consider only move-ups, convergence of the better-reply dynamics is guaranteed.

However, the limit outcome can be large, but it always coincide with a stable matching.

When move-downs are also allowed, then the dynamic process can cycle. However, if

it does not cycle then the limit outcome is unique and correspond to the man-optimal

matching.

In Section 2 we present the model. In Section 3 we characterize the better-replies and

in Section 4 we consider the better-reply dynamics.

2 Framework

The market consists of two finite disjoint sets: the men, M = {1, . . . ,m}, and the women,

W = {1, . . . , n}. Each man m ∈ M is endowed with a strict preference relation Pm over

the set W ∪ {m}.11 Similarly, each woman w ∈ W has a strict preference relation Pw

over M ∪ {w}. We denote by P = (Pv)v∈M∪W a profile of preferences, and use the usual

11When an agent remains unmatched, we denote it as being matched to himself or herself.
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notation P−v to denote the profile P\Pv. We denote by Pv the set of all preference relation

of individual v ∈ M ∪W , and by P the set of all preference profiles. For a preference

profile Pv ∈ Pv, let Rv denote the weak preference relation associated with Pv. Similarly,

for a preference profile P ∈ P , R denotes the weak preference profile asociated to P .

Given a set G ⊆ M ∪W , PG and RG denote the profile of strict and weak preferences

restricted to individuals in G.

Assumption 1 (Market thickness) There are at least as many women as men.

We need the market thickness assumption only for expositional convenience. The

results provided in the paper would not change qualitatively in absence of this assumption.

A matching is a one-to-one mapping µ : M ∪W →M ∪W such that

• For each man m ∈M , µ(m) ∈ W ∪ {m}.

• For each woman w ∈ W , µ(w) ∈M ∪ {w}.

• For each agent v ∈M ∪W , µ(µ(v)) = v.

Given a set G ⊂M and a matching µ we denote by µ(G) the set of individuals to whom

the members of G are matched, i.e., µ(G) = {v ∈ G ∪W : µ(m) = v for some m ∈ G}.
A matching µ is individually rational if for each v ∈ M ∪W , µ(v)Rvv. A matching

µ is blocked by a pair (m,w) if wPmµ(m) and mPwµ(w). A matching µ is stable if it

is individually rational and it is not blocked by any pair (m,w) ∈ M × W . Given a

preference profile P we denote by S(P ) the set of stable matchings.

It is well known that for any (strict) preference profile P the set of stable matchings

is nonempty (Gale and Shapley, 1962). A stable matching can be obtained using Gale

and Shapley’s deferred acceptance (DA) algorithm. Their algorithm, with men making

proposals to women, works as follows:

Step 1: Each man m proposes to his most preferred woman among the ones that are ac-

ceptable for him. If there is no such woman then the man is matched to himself.

Each woman declines all but her most preferred man among the men who proposed

to this woman and are acceptable to it (if any).
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Step k, k ≥ 2: Each man who has been declined in the previous step proposes to his

most preferred woman among the women that have not yet declined him and are

acceptable for him. If there is no such woman then the man is matched to himself.

Each woman declines all but her most preferred man among the men who proposed

to this woman and are acceptable to it and the man it did not decline in the previous

step (if any).

The algorithm stops when every man is either matched to a woman or to himself.

Given a preference profile P , we denote by ϕ(P ) the man-optimal stable matching, i.e.,

matching obtained by the DA algorithm we just described.

In the sequel, P ∗ denotes the true preference profile, which is fixed throughout the

paper, and µ∗ the man-optimal stable matching under the true preferences.

It is easy to see that the set of men and women, the true preference profile P ∗, the

set of all preference profiles P and the DA algorithm defines a strategic form game where

the set of players is M ∪W , the set of strategies of player v is Pv, outcomes are given by

ϕ and are evaluated by players using their true preferences.

A preference relation Pm weakly dominates the preference relation P ′m if, for any profile

P−m, man m is always at least as well off with Pm as with P ′m,

ϕ(Pm, P−m)(m)R∗mϕ(P ′m, P−m)(m) .

Theorem 1 (Dubins and Freedman (1981), Roth (1982)) For each man m ∈ M ,

the preference P ∗m weakly dominates any other preference Pm ∈ P.

3 Comparing strategies

In order to build our learning model we need first to characterize better-replies in a

matching game, or — said differently — we need to understand how to compare strategies

This step is even more necessary since most of the matching literature has ignored other

strategies than a weakly dominant one — the truthful preferences.

Since being truthful is a weakly dominant strategy one may intuit that the “closer”

we are to the true preferences the better and hence that for a man m a better-reply with

respect to some strategy profile Pm is any preference P ′m that is “closer” to P ∗m than is
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Pm. As we shall see in Section 3.1 a notion of distance between preferences is in fact not

related to the concept of better-replies but rather that of dominance.

3.1 Dominance relations

To determine whether Pm or P ′m is closer to P ∗m, we need a metric to compare preferences.

A common way and natural way to do so is by considering the so-called Kemeny distance

(Kemeny, 1959), which consists of comparing the number of pairs of alternatives that are

ranked differently between Pm and P ∗m to determine the distance between Pm and P ∗m.

This in turn allows us to see whether the distance between Pm and P ∗m is smaller or larger

than the distance between P ′m and P ∗m. In our context, it is more useful to consider a

related concept, which we call Kemeny set.

Definition 1 Given a preference relation P ∗v , the Kemeny set of the preference relation

Pv with respect to P ∗v is the set of all pairs (v, v′) that are not ordered identically in Pv

and P ∗v .

K(Pv, P
∗
v ) = {(v, v′) : vPvv

′ and v′P ∗v v}

It is readily verified that the Kemeny distance between the preferences Pv and P ∗v is

simply the cardinality of the Kemeny set.

We are now ready to state the main result of this section: for each man m ∈ M , if

the Kemeny set of a preference ordering Pm is a subset of the Kemeny set of another

preference ordering P ′m, then for any profile of preferences of the other men and of the

women, the strategy Pm weakly dominates the strategy P ′m.

Theorem 2 A preference ordering Pm dominates another preference ordering P ′m if, and

only if, K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m).

The proof of Theorem 2 is in the Appendix. An immediate consequence of Theorem 2 is

that we can order preference orderings when comparing their Kemeny sets. Note however

that this ordering is not complete, since it is possible for that two preference orderings

Pm and P ′m that neither K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m) nor K(P ′m, P

∗
m) ⊂ K(Pm, P

∗
m) hold.

This characterization can be for instance useful in data analysis to measure how far

agents are from their true preferences.
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3.2 Better replies

Recall that we denote m’s true preferences by P ∗m. The reported preferences, Pm may but

do not need to be truthful.

Definition 2 P ′m is a better reply than Pm to P−m if and only if

ϕ(P ′m, P−m)R∗mϕ(Pm, P−m) ,

according to m’s real preferences P ∗m.

Consider then a man m who submitted a preference list Pm and is matched to some

individual v. Suppose that the man m would like to submit now a different preference

list, P ′m. For any Pm and P ′m that list the same set of women, P ′m is achievable by making

one or more changes of the four types:

(i) Changing ranking of a woman originally below v, to a different position still below v

(i.e., reshuffling below).

(ii) Changing ranking of a woman originally above v, to a different position still above v

(i.e., reshuffling above).

(iii) Changing ranking of a woman originally below v to a position above v (i.e., move

up).

(iv) Changing ranking of a woman originally above v to a position below v (i.e., move

down).

We show below what effect each type of change in ranking has on the matching, ϕ.

And in particular that some of the change types have no bearing on which woman the

man m is matched to under ϕ.

Notice that in the DA algorithm as soon as a man is matched to his final partner he is

never asked again to propose to a lower ranked individual. That is, the relative ranking

of the individuals that are ranked below his match in his submitted list is irrelevant. So,

if all mean re-arrange the relative ranking of the individuals that are ranked below their

match (but keeping all these individuals still ranked below their match), then the final

matching is the same.
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Observation 1 Let P and P ′ such that for each manm, L(Pm, ϕ(P )(m)) = L(P ′m, ϕ(P )(m)),

and otherwise P and P ′ are the same. Then ϕ(P ) = ϕ(P ′).

In the observation, L denotes the lower-contour set, i.e., L(Pm, ϕ(P )(m)) denotes the

set of all women ranked lower than ϕ(P )(m) in ranking Pm. Similarly we later use U

to denote an upper-contour set. That is, U(Pm, ϕ(P )(m)) denotes the set of all women

ranked above ϕ(P )(m) in ranking Pm.

The next proposition states that the a property similar to Observation 1 also holds if

all (or some) men change the relative ranking of the women ranked above their current

match.

Proposition 1 Let P and P ′ such that for each man m, U(Pm, ϕ(P )(m)) = U(P ′m, ϕ(P )(m))

and L(Pm, ϕ(P )(m)) = L(P ′m, ϕ(P )(m)). Then ϕ(P ) = ϕ(P ′).

Proof Let P 1 = (P ′m1
, P−m1) and µ1 = ϕ(P 1). Since ϕ is strategy-proof µ1R1

m1
µ. Sup-

pose that µ1(m) 6= µ(m). So, µ1P 1
m1
µ and thus µ1Pm1µ, which contradicts the strategy-

proofness of ϕ. Hence, µ1(m) = µ(m).

Also, notice that µ ∈ S(P 1). So, µ1R1
Mµ, where R1

M means that µ′ is weakly preferred

to µ by all men m ∈M . Since only man m1 changed his (declared) preferences between P

and P 1, and since µ1(m) = µ(m), µ1RMµ. Suppose that there exists a man m̂ such that

µ1Pm̂µ. By the Blocking Lemma12 there exists a pair (m,w) such that (m,w) block µ1

under P . If m 6= m1, then (m,w) also block µ1 under P 1, a contradiction. So, m = m1,

i.e., wPm1µ
1(m1). Since µ1(m) = µ(m) it follows that wP 1

m1
µ1(m1). So, (m1, w) block µ1

under P 1, a contradiction. Hence, µRMµ
1, and thus µ1 = µ.

Notice that in this argument, we do not employ any element of the lower-contour set.

Therefore, µ1 = µ for any order of preferences in the lower-contour set.

It suffices now to repeat the same reasoning with the profiles P 2 = (P ′m1
, P ′m2

, P−m1,m2),

P 3 = (P ′m1
, P ′m2

, P ′m3
, P−m1,m2,m3), etc. until we attain the profile P ′ to obtain the desired

result. �

Proposition 1 implies that reshuffling below and reshuffling above do not affect the

matching outcome. And therefore such changes do not constitute a better reply. Now, we

12Blocking Lemma is a standard result in the literature, and we restate it in the Appendix (see

Lemma 6).
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look into the impact of the other two possible changes: move up and move down. Recall

that a woman is moved down when she was declared more preferred than v in Pm, and in

P ′m she is declared less preferred than v. Observe that — provided the other men do not

change their submitted preference lists — any change of this type alone is inconsequential.

That is, as Lemma 1 states, if m only moved down some women, then it is easy to see

that he remains matched to the same individual.

Lemma 1 Let P and let µ = ϕ(P ). Let P ′m be such that for some woman w ranked

above µ(m) in Pm, wPmµ(m), this woman is moved down below µ(m) in P ′m, µ(m)P ′mw.

And otherwise P ′m is the same as Pm. Preferences for all other agents stay the same

P ′−m = P−m. Let µ′ = ϕ(P ′). Then µ′(m) = µ(m).

We omit the formal proof of Lemma 1 because the argument is straightforward: Since

DA is strategy-proof the man cannot end up being matched to a woman ranked higher

in the submitted preference list. Since the previous matching is still stable once the man

has changed his preferences the result follows.

Therefore, if other men do not change their submitted preferences, only the change

involving a move up may lead to a better outcome for man m. Recall that a woman is

moved up when she was declared less preferred than v in Pm, and in P ′m she is declared

more preferred than v. However, moving up may constitute a better or a worse reply.

This is because, as Lemma 2 states, if the man moves a woman w above his current match

v, he is either matched with w or with the same v. If he moves up a truly less preferred

woman, i.e., vP ∗mw, he risks being worse off.

Lemma 2 Let P and let µ = ϕ(P ). Let P ′m such that for some woman w such that

µ(m)Pmw this woman is moved up above µ(m), wP ′mµ(m). And otherwise P ′m is the

same as Pm. Preferences for all other agents stay the same P ′−m = P−m. Let µ′ = ϕ(P ′).

Then either µ′(m) = µ(m) or µ′(m) = w.

Therefore, the only possible better reply is for man m to move up a truly preferred

woman. This is the only type of change that can constitute a better reply. Other types

of changes — reshuffling below and above, as well as moves down — do not change the

match. Moving up a truly less preferred woman may either make the man worse off or

leave his match unchanged.
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It is important to notice that a better reply is not necessarily equivalent to choosing

dominating strategy. To see this, suppose that a man changes his submitted list from

Pm to P ′m by moving up a woman, say, w, above his current match, say, v. This implies

that the pair (v, w) was in the Kemeny set K(Pm, P
∗
m) and this pair is not in the set

K(P ′m, P
∗
m). However, since we do not specify where is w in the preference list P ′m, it may

well be the case that we have w declared preferred to some woman w′ under P ′m, while it

is the contrary under Pm and P ∗m. In other words, if P ′m is a better reply to P ′m is may

not be the case that P ′m dominates Pm.

We say that Pm is a best reply to P−m if there does not exists a better reply to P−m

than Pm.

Definition 3 P ′m is a best reply against P−m if and only if

@P ′′m such that ϕ(P ′′m, P−m)P ∗mϕ(P ′m, P−m).

In the reminder of the paper, we assume that the man does not know the reported

preferences of other agents, P−m, while changing his rankings. However, it is useful to

compare our results to a benchmark case where the man m knows the strategies of other

players.

If the strategies of other players, P−m, are known, a sufficient condition for a strategy

to be best reply is that all women less preferred than ϕ(P ∗m, P−m)(m) are listed below

in m’s preference ranking. It is not a necessary condition. A necessary condition would

require that only those less preferred women have to be listed below ϕ(P ∗m, P−m)(m) that

could be matched to m if m listed them above ϕ(P ∗m, P−m)(m). Notice that a best reply

is not unique. In fact, there is a whole set of best replies. They all yield the same match

for m: ϕ(P ∗m, P−m)(m).

Without knowing the strategies of other player, a manm does not know ϕ(P ∗m, P−m)(m).

In the following section we investigeate the case when the preferences of other agents are

not known to m.

3.3 Other Agents’ Strategies Unknown

Our approach of learning in the matching game assumes — we believe somewhat realis-

tically — that men do not know other agents’ submitted preferences. Moreover, we also
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assume that they are not fully aware of the mechanism providing the match. They gain the

information by trial-and-error. They observe only their own match and the preference list

they submitted. In other words, we shall assume that for a man who submitted the pref-

erence list Pm and is matched to ϕ(Pm, P−m)(m), the other men’s and women’s submitted

preferences could be any preference P̂m such that ϕ(Pm, P̂−m)(m) = ϕ(Pm, P−m)(m).

In this section, we investigate characteristics of better and best reply when the strate-

gies of other agents are unknown. In such a case, each man needs to depend on his

expectations when deciding on his strategy.

Assumption 2 For any man m ∈M , m does not know P−m.

We assume such beliefs of m where any preference profile of other agents, P−m, can

occur with some positive probability.

Suppose P−m is fixed, even if unknown tom. However, manm observes ϕ(Pm, P−m)(m) =

v, i.e., his own match given the preference he submitted, Pm, and P−m. We show that

strategy Pm is a best reply to P−m if all women truly preferred to v by m are listed

above v, i.e., ∀w (wP ∗mv =⇒ wPmv). Moreover, if Pm is a best reply to P−m, then

v = ϕ(P ∗m, P−m). Thus, listing true preferences is a special case of best reply.

To show this property of best reply, we first need to establish certain properties of

better replies in expected terms.

Suppose now that the man only makes changes of one type. It follows directly from

the results in the previous section that if the change is either type of reshuffling or a move

down, then his match remains unchanged with certainty (so also in expected terms).

When, however, the man moves up a woman or several women, it affects his match in

expected terms. If he only moves up truly less preferred women, it constitutes a strictly

worse reply in expected terms. If he only moves up truly more preferred women, it

constitutes a strictly better reply in expected terms. If the man moves several women out

of which some are truly less and some are truly more preferred, the result is ambiguous.

However, if a man contemplates moving up a subset of women G such that some of

them are truly more and some of them are truly less preferred, he is strictly better off

in expected terms, to move up only the subset G′ ⊂ G where all women are truly more

preferred.

This is because, by Lemma 2, when m moves up a (truly) less preferred woman he
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may be matched to her. Since he does not know the preferences of other agents, and

believes that any preference profile of other agents, P−m, can occur with some positive

probability, such a move-up makes him strictly worse off in expected terms. Conversely,

moving up a truly more preferred woman makes m better off in expected terms. Therefore,

it constitutes a better reply (in expected terms).

Proposition 2 Suppose that other agents’ preferences P−m are fixed, but not known.

Suppose that P ′m is a better reply (in expected terms) than Pm to P−m. Than it must be

that P ′m was created from Pm by moving up a set of truly more preferred women. I.e., there

exists a set of women G such that for all w ∈ G, µ(m)Pmw, wP ∗mµ(m) and wP ′mµ(m).

Note that the relative order of women in S may change between Pm and P ′m and may

not be related to their relative order in P ∗m.

Suppose first that we allow for only one woman’s (relative) ranking in m’s preferences

to change. Then moving up a more preferred woman is a necessary and sufficient condition

for P ′m to be a better reply than Pm in expected terms.

However, when we allow for ranking of multiple women to change between Pm and

P ′m, it is no longer the case. Moving up some (truly) more preferred women is still a

necessary condition for a better reply. But it is no longer sufficient. When both (truly)

less preferred and more preferred women are moved up, the result is ambiguous. This

because any of those women could be matched to m under such P ′m, which could result

in a better or in a worse match.

Suppose that we restrict that only truly more preferred women are moved up, and

no less-preferred women. Then it is a sufficient condition for a better reply, but not a

necessary one.

Nonetheless, from the necessary condition for a better reply stated in Proposition 2,

we can derive a characterization of a best reply.

Corollary 1 Suppose that other agents’ preferences P−m are fixed, but not known. Pm

is a best reply to P−m if and only if all women that are truly more preferred to µ(m) are

also listed above µ(m) in Pm. I.e., ∀w(wP ∗mµ(m) =⇒ wPmµ(m)).

Corollary 1 follows directly from Proposition 2: The only way to create a better reply

to P−m than Pm is to move up truly preferred women. But if there are no truly preferred
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women listed blow µ(m), there does not exist a better reply to P−m than Pm. Thus, Pm

is a best reply.

Moreover, let µ∗(m) = ϕ(P ∗m, P−m). If Pm is a best-reply against P−m then ϕ(Pm, P−m) =

ϕ(P ∗m, P−m) = µ∗(m). That is, under any best-reply the outcome is the same as if m re-

ported his true preferences.

3.4 Simulteneous Rankings Updating

In this section suppose that multiple men change their rankings. Clearly, if multiple men

only reshuffle below, the matching does not change. It is also the case when multiple men

reshuffle above (by Blocking Lemma).

Notice that if m only “moves down” and reshuffling then µ′(m) = µ(m).

Lemma 3 Let P and let µ = ϕ(P ). Let M̃ ⊂ M and P ′ be a profile such that for each

man m ∈ M̃ , U(P ′m, µ(m)) ⊆ U(P ′m, µ(m)), and P ′m = Pm for each man m /∈ M̃ . Let

µ′ = ϕ(P ′). Then µ′RfMµ and there is at least one man m ∈ M̃ such that µ′(m) = µ(m).

Proof Notice first that µ ∈ S(P ′), for any blocking pair under P ′ is also a blocking

pair under P and if µ /∈ IR(P ′) then obviously µ /∈ IR(P ). So, µ′RMµ and thus µ′RfMµ.

If µ′(m) 6= µ(m) for each m ∈ M̃ , then µ′PfMµ. But this contradicts the fact that ϕ is

group-strategyproof. �

Lemma 4 If the active man moves up a woman, passive men may be worse off, better

off or unchanged (according to submitted preferences).

Proof We prove the statement by constructing examples.

In the examples below all women are acceptable to all men, and all men are acceptable

to all women. Moreover, all women have the same preferences (stated and true):

Pwi
: m1, m2, m3 for i = 1, 2, 3 .

Example: Passive men are better off

Suppose that all men submit the same preferences

Pmi
: w1, w2 , w3 for i = 1, 2, 3 .
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In the stable matching, according to Pwi
and Pmi

, i = 1, 2, 3, mi is matched with wi.

Now, suppose thatm1 (and only him) changes his submitted preferences to P ′m1
: w3, w2, w2,

i.e., moves up w3. The stable matching according to the new preferences matches m1 with

w3, m2 with w1, and m3 with w2. Both passive men are better of according to their sub-

mitted preferences Pm2 and Pm3 .

Example: Passive men are worse off or unchanged Suppose that men submit following

preferences

Pm1 : w2, w3, w1

Pm2 : w1, w2, w3

Pm3 : w1, w2, w3 .

The stable matching assigns m1 and w2, m2 and w1 and w3 and m3.

Now, suppose thatm1 (and only him) changes his submitted preferences to Pm1 : w1, w2, w3,

i.e., moves up w1. The stable matching under the new preferences assigns mi with wi for

i = 1, 2, 3. Man m2 is strictly worse off, while m3 is matched to the same woman. �

4 Repeated matching

From now on we fix men and womens’ preferences P . Hereafter, the profile P ∗ will be

referred to the true preference profile.

The game we shall consider consists of a repeated matching game between men.

Women are assumed to play truthfully. At each period t ≥ 1, . . . , men have to sub-

mit a preference relation P t
M over potential mates. For each period t the outcome given

P t
M is ϕ(P t

M , PW ). To avoid cumbersome notation we shall sometimes denote the matching

ϕ(P t
M , PW ) simply by µt.

For now we shall consider better-reply dynamics only, but considering two cases. In

one case, men can only better-reply by doing “move-ups”, and in the other case men

can better-reply by doing “move-ups” and “move-downs”. The case when men do only

“move-downs” is easily discarded. Indeed, consider any profile P 0 where all men list

a different woman as their top choice. So, the matching µ0 is such that each man is

matched to his top choice and thus have no opportunity to make a “move-down” at t = 1.
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We also discard “reshuffling” in the updating process. It will be clear from our analysis

that adding reshuffling to the updating process will considerably weaken our convergence

results (and thus add little to our analysis of better-reply dynamics).

Traditional learning models of better-reply dynamics consider situations in which at

each period only one player updates his strategy. On of the main reasons for this assump-

tion is that players are assumed to be boundedly rational and thus may not necessarily

be able to compute a better-reply (let alone a best-reply). Better-reply dynamics then

naturally emerge from a “trial-and-error” dynamic. At each period, one player has the

opportunity to try a new strategy. If this strategy yields a higher payoff, i.e., it is a better-

reply, then the player adopts this new strategy, and goes back to his previous strategy

otherwise. Clearly, in matching game, such as school choice, the assumption that only

one player updates his strategy at each period is difficult to sustain. One we then need

to consider dynamics where more than one player can update his strategy at each period.

For the moment, we shall focus however on the case where only one man can update

his strategy, and discuss later in the section the case when several men can update their

strategy at the same time.

Our first result is about the convergence when only move-ups are allowed.

Proposition 3 Let P 0 be any preference profile and suppose that at each period only one

man updates his strategy and only “move-ups” are allowed. Then there exists t∗ < ∞
such that for all t > t∗, µt = µt∗ and µt∗ ∈ S(P ∗M , PW ).

Proposition 3 states two things. First, a move-up-only dynamic necessarily converge,

and the limit outcome is a stable matching. This shows then that a simple dynamic

process as this one is a first refinement of the the Nash equilibrium. Indeed, Haeringer

and Klijn (2009) showed that the set of Nash equilibrium outcomes includes but nor may

necessarily coincide with the set of stable matchings.

Proof We first show that the dynamics converge. To this end, suppose we have a better-

reply cycle involving two or more men. let m be one of these men, and let P 1
m, P

2
m, . . . , P

T
m

(with P T
m = P 1

m) be the preference orderings submitted by m that belong to the cycle.

So, for instance, P 2
m is a better-reply of m with respect to P 1

m against the profile P−m

extracted from the cycle. That is, the cycle consists of a sequence of profiles, P 1, P 2, . . .

and there is some t such that P t = (P 1
m, P−m) and P t+1 = (P 1

m, P−m).
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Let vk be the individual (a woman or m himself) that has been moved up between P 1
m

and P 2
m, and let vh = µ1(m), i.e., m’s match. So,

vkP
∗
mvh .

At some point (before T ), say, t1, we should obtain again vhP
t1
m vk. That is, vh has been

moved up. It is necessarily with respect to µt1(m) = v1, so,

vkP
∗
mvhP

∗
mv1 .

Notice that at t1 we have v1P
t1
m vh and vhP

t1+1
m v1. So, there is a step t2 in the cycle where

v1 is moved up (above vh). If v1 is moved up it has to be above µt2(m) = v2. So we have

vkP
∗
mvhP

∗
mv1P

∗
mv2 .

It suffices to continue the argument (with individuals v3, v4, etc.) to deduce that the only

possibility to obtain after some periods the preference ordering P 1
m is to have an infinite

number of woman, which is impossible. So, the dynamic process necessarily converge to

some profile P t∗ .

We now show that the limit outcome is necessarily stable with respect to the true

preference profile (P ∗M , PW ). Let µ = µt∗ . Suppose first that there is a man m such that

mP ∗mµ(m). Notice that we necessarily have µ(m)P t∗
mm, so man m can still update his

strategy at t∗, a contradiction. Suppose now that there is a pair (m,w) that blocks µ,

i.e., mPwµ(w) and wP ∗mµ(m). So, we have wP t∗
mµ(m). Hence, it must be that µ(w)Pwm,

a contradiction. So, µ ∈ S(P ∗M , PW ). �

Notice that the convergence result of Proposition 3 is still valid when we consider only

move-downs. However, as we commented before, the limit matchings may not necessarily

be stable matchings. If we consider move ups and move downs, the dynamics properties

differ substantially. First, as the following example shows, even if we consider that at

each period only one man updates his submitted preferences, the dynamic may cycle.

Example 1 Consider three men and three women, mi, wi, i = 1, 2, 3. Let the women’s

preferences be

Pw1 : m1,m2,m3

Pw2 : m2,m3,m1

Pw3 : m3,m1,m2
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Consider the following preference lists for the men:

Um1 : w3, w2, w1 Dm1 : w2, w1, w3

Um2 : w1, w3, w2 Dm2 : w3, w2, w1

Um3 : w2, w1, w3 Dm3 : w1, w3, w2

The following sequence of strategy profiles constitutes a cyle where at each step the

man changing his strategy is better-replying to the current strategy profile. (Dm1 , Dm2 , Um3),

(Um1 , Dm2 , Um3), (Um1 , Dm2 , Dm3) (Um1 , Um2 , Dm3), (Dm1 , Um2 , Dm3), (Dm1 , Um2 , Um3), (Dm1 , Dm2 , Um3),

. . .

Although better-reply dynamics may cycle, we can easily show, however, that when-

ever they do converge the limit matching is always the same.

Proposition 4 Let P 0 be any preference profile and suppose that at each period men

update their strategy by better-replying (i.e., move ups and downs are allowed). If there

exists t∗ <∞ such that for all t > t∗, µt = µt∗ then µt∗ = µ∗M .

Proof Suppose the dynamic converge to PM and let µ be the limit matching—i.e.,

µ = ϕ(P, PW ). Let

M+ = {m ∈M : µP ∗mµM},

M◦ = {m ∈M : µ(m) = µM(m)},

M− = {m ∈M : µMP
∗
mµ}.

Suppose M+ 6= ∅. By the blocking Lemma, there exists m /∈ M+ and w ∈ µ(M+)

such that wP ∗mµ(m) and mPwµ(w). So, wPmµ(m) —for otherwise m could update again

his revealed preferences. It follows that m made an offer to w and this offer was rejected.

Hence, µ(w)Pwm, which contradicts mPwµ(w). So, M+ = ∅.
Suppose M− 6= ∅. So, µMRMµ, and µM(M−) = µ(M−) —because M+ = ∅. By

the Blocking Lemma, there exists m ∈ M− and w ∈ µ(M) such that mPwµM(w) and

wPmµM(m) = µ(m). Since µ is the limit matching, wP ∗mµM(m). So, µM /∈ S(P ∗), a

contradiction. Hence, M− 6= ∅, and thus M◦ = M , i.e., µ = µM . �

20



We turn now to the case where several men update their submitted preferences at

the same time. When only one man can update his submitted preferences at a time, a

better-reply makes necessarily the man who updates his strategy weakly better off. In this

case no man will want to revert to his previous strategy. If simultaneous updating occurs,

if all the updating men end up worse off then they may want to revert to their previous

strategy, which in turn may create a cycle. Here again we observe differences between

the case when only move-ups are allowed and when both move-ups and move-downs are

permitted.

The next result shows that move-ups only dynamics retain their convergence properties

when simultaneous updating occurs, i.e., there is at least one man (among those who have

updated) who will not wish to revert to the strategy used before updating.

Lemma 5 Let P ′M 6= PM , and let M̃ = {m ∈ M : P ′m 6= Pm}. Suppose that for each

man m ∈ M̃ , P ′m is a move-up of Pm. Then there exists at least one man m ∈ M̃ such

that µ′Rmµ.

Proof Let PM and P ′M satisfy the conditions of the Lemma and suppose that for all

men m ∈ M̃ , µP ∗mµ
′. For each man m such that Pm 6= P ′m, let Cm be the set of individuals

that have been moved-up between Pm and P ′m.

Since DA is group-strategy proof for the men there exists a least one man m̃ ∈ M̃

such that µ′R′emµ. Since for each man m ∈ M̃ , µP ∗mµ
′, µ′(m) /∈ Cm. So, µ′R′emµ implies

µ′Pemµ. Hence, by the blocking lemma we have µ′ /∈ S(P ).

Since µ′ /∈ S(P ), either µ′ /∈ IR(P ) or there is a pair (m,w) such that wPmµ
′(m) and

mPwµ
′(w). Suppose first that µ′ /∈ IR(P ), i.e., there exists an individual v such that

vPvµ
′(v). Clearly, v ∈ M̃ , for otherwise we would have µ′ /∈ IR(P ′)—because P ′v = Pv for

v /∈ M̃ . Since µ′(m) /∈ Cm, mPmµ
′ implies mP ′mµ

′. Hence, µ′ /∈ IR(P ′), contradiction.

Hence, there exists a blocking pair (m,w). Again, m ∈ M̃ , for otherwise (m,w) would

also block µ′ under P ′. Since µ′(m) /∈ Cm, wPmµ
′ implies wP ′mµ

′, i.e., (m,w) also block µ′

under P ′, a contradiction. Hence, µ′ ∈ S(P ). This is a contradiction, the desired result.

�

As the following example shows, the previous result no longer holds under simultaneous

updating when both move-ups and move-downs are allowed.
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Example 2 Consider a market with four men and women, whose true preferences are

depicted below.

P ∗m1
P ∗m2

P ∗m3
P ∗m4

Pw1 Pw2 Pw3 Pw4

w3 w1 w2 w3 m3 m1 m2 m4

w4 w2 w3 w1 m2 m4 m3 m3

w1 w3 w1 w2 m1 m3 m1 m1

w2 w4 w4 w4 m4 m2 m4 m2

Let P be the following preference profile. Men 1 and 4 submit their true preferences,

man 2 submits the preference Pm2 : w4, w3, w1, w2 and man 3 submits the preference

Pm3 : w3, w2, w1, w4. With the profile P men 2 and 3 are matched to women 3 and 2,

respectively.

Observe that m2 truly prefers w1 and w2 to his match, w3. So a better reply for m2

is P ′m2
: w1, w4, w3, w2. As for m3, w3 is less preferred than w2, so a better reply for m3 is

P ′m3
: w2, w1, w3, w4. Let P ′ = (P ∗m1

, P ′m2
, P ′m3

P ∗m4
). Under the profile P ′ men 2 and 3 are

matched to women 4 and 1, respectively. That is, both men are strictly worse off under

P ′ than under P .
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Appendix

Lemma 6 (Blocking Lemma, Gale and Sotomayor, 1985)) Let µ be any individu-

ally rational matching and let W ◦ be the set of all workers who prefer µ to µW . If W ◦ is

nonempty, there is a pair (f, w) satisfying w ∈ W\W ◦ and f ∈ µ(W ◦) that blocks µ.

Consider two preference orderings Pv and P ′v, and suppose that we wish to “reach”

the preference P ′v starting from the preference Pv. Clearly, it may well be the case that

we need to rearrange the position of many alternatives to connect Pv and P ′v. In these

manipulations, some alternatives may be re-ranked higher while other alternatives may

be re-ranked lower.

The next Lemma states that if Pv and P ′v are two preference orderings such that Pv’s

Kemeny set (with respect to some preference ordering P ∗v ) is a subset of P ′v’s Kemeny set

then we can find a sequence of preference orderings such that starting from P ′v we can

reach Pv in a finite number of steps where each step consists of moving up in the ordering

just one alternative.

Lemma 7 Let Pv, P
′
v and P ∗v be such that K(Pv, P

∗
v ) ⊂ K(P ′v, P

∗
v ). Then there exists a

finite chain of preference orderings P 1
v , . . . , P

k
v such that

(i) P 1
v = P ′v, P k

v = Pv;

(ii) K(P h
v , P

∗
v ) ⊃ K(P h+1

v , P ∗v ), h = 1, . . . k − 1;

(iii) For each h, h = 1, . . . , k− 1, there is v such that for each v′, v′′ 6= v, v′P h
v v
′′ if, and

only if, v′P h+1
v v′′ and there is v′ such that v′P h

v v and vP h+1
v v′.

Proof Let Pv, P
′
v and P ∗v such that K(Pv, P

∗
v ) ⊂ K(P ′v, P

∗
v ). Compare Pv and P ′v

starting from the most preferred alternatives and go down in the preferences until there is

an alternative v̄ in Pv that has not the same rank in Pv and P ′v. Let v̂ be the alternative

that ranks just above v̄ in Pv. That is, for the most preferred alternatives up to v̂ the

preference orderings Pv and P ′v coincide. Construct the profile P 2
v from P ′v in the following

manner. For each v′, v′′ 6= v̄, v′P 2
v v
′′ if, and only if, v′P ′vv

′′, and let v̂P 2
v v̄ such that there

is no v′ for which v̂P 2
v v
′P 2

v v̄, i.e., alternative v̄ is moved up just below v̂.

We claim that K(Pv, P
∗
v ) ⊆ K(P 2

v , P
∗
v ) ⊆ K(P ′v, P

∗
v ). To see this, observe that for

each pair (v′, v′′) such that v̄ 6= v′, v′′, (v′, v′′) ∈ K(P 2
v , P

∗
v ) if, and only if, (v′, v′′) ∈
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K(P ′v, P
∗
v ). Also, for each pair (v′, v′′) such that v̄ ∈ {v′, v′′}, (v′, v′′) ∈ K(P 2

v , P
∗
v ) if,

and only if, (v′, v′′) ∈ K(Pv, P
∗
v ). Suppose now that there exists a pair (v′, v′′) where

v̄ 6= v′, v′′ such that (v′, v′′) /∈ K(P 2
v , P

∗
v ) yet (v′, v′′) ∈ K(Pv, P

∗
v ). So, (v′, v′′) /∈ K(P ′v, P

∗
v ),

which contradicts K(Pv, P
∗
v ) ⊂ K(P ′v, P

∗
v ). Hence, K(Pv, P

∗
v ) ⊆ K(P 2

v , P
∗
v ). Suppose

now that there exists a pair (v′, v′′) where v̄ ∈ {v′, v′′} such that (v′, v′′) /∈ K(P ′v, P
∗
v )

yet (v′, v′′) ∈ K(P 2
v , P

∗
v ). This latter implies that (v′, v′′) ∈ K(Pv, P

∗
v ), which again

contradicts contradicts K(Pv, P
∗
v ) ⊂ K(P ′v, P

∗
v ). Hence, K(P 2

v , P
∗
v ) ⊆ K(P ′v, P

∗
v ). If

P 2
v = Pv then we are done. Otherwise, construct P 3

v from P 2
v in the same way P 2

v was

constructed from P ′v, and keep doing so until we reach some P k
v such that P k

v = Pv. Since

there is a finite number of alternatives this procedure eventually stops. �

Theorem 3 For any man m ∈ M , let P ∗m, Pm and P ′m be preference relations over

W ∪ {m}. Then for any P−m, ϕ(Pm, P−m)R∗mϕ(P ′m, P−m) if, and only if, K(Pm, P
∗
m) ⊂

K(P ′m, P
∗
m).

Proof Let Pm and P ′m be such that for any P−m, ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). So, Pm 6=
P ′m, and thus there exists at lest one pair v, v′ such that vPmv

′ and v′P ′mv. Notice that all

such pairs (v, v′) necessarily belong to either K(Pm, P
∗
m) or K(P ′m, P

∗
m).13 Consider any

such pair (v, v′). So it suffices to show that (v, v′) ∈ K(P ′m, P
∗
m). To begin with, we claim

that there exists a profile P−m such that ϕ(Pm, P−m)(m) = v and ϕ(P ′m, P−m)(m) = v′.

An example of such a profile is the following. For each ŵ such that either ŵPmv or

ŵP ′mv
′ pick a man m̂ such that ŵ is m̂’s most preferred partner in Pm̂, and m̂ is ŵ’s most

preferred partner in Pŵ. Let m be v and v′’s most favourite partner according to Pv and

Pv′ , respectively. It is easy to see that for any profile P−m following these specficiations

we have ϕ(Pm, P−m)(m) = v and ϕ(P ′m, P−m)(m) = v′. Since Pm dominates P ′m, it follows

that vP ∗mv
′, and thus (v, v′) /∈ K(Pm, P

∗
m) and (v, v′) ∈ K(P ′m, P

∗
m), the desired result.

Let Pm and P ′m be such that K(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m). Using Lemma 7 it suffices to

assume that P and P ′ differ only by one alternative, say v. That is, for each v′, v′′ 6= v,

v′Pv′′ if, and only if v′P ′v′′, and v ranks higher in P than in P ′. Consider any pro-

file P−m. Observe that if alternative v is ranked below alternative ϕ(P ′m, P−m)(m) in

13Indeed, if (v, v′) ∈ K(Pm, P ∗m)∩K(P ′m, P ∗m) or (v, v′) /∈ K(Pm, P ∗m)∪K(P ′m, P ∗m), then vPmv′ if, and

only if, vP ′mv′.
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both Pm and P ′m then ϕ(P ′m, P−m) and ϕ(Pm, P−m) coincide. So, in this case we ob-

viously have ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). Similarly, if v is ranked above ϕ(P ′m, P−m)(m)

in P ′m, we also have ϕ(P ′m, P−m) = ϕ(Pm, P−m) and thus ϕ(Pm, P−m)R∗mϕ(P ′m, P−m). In

other words, the only possibility for m to change his match between Pm and P ′m is when

ϕ(P ′m, P−m)(m) is ranked above v in P ′m but ranked below v in Pm. We claim that in this

case ϕ(Pm, P−m)(m) ∈ {ϕ(P ′m, P−m)(m), v}. To see this, suppose that ϕ(Pm, P−m)(m) /∈
{ϕ(P ′m, P−m)(m), v}. Notice first that by strategy-proofness, ϕ(Pm, P−m)Rmϕ(P ′m, P−m),

and thus ϕ(Pm, P−m)Pmϕ(P ′m, P−m) —because ϕ(Pm, P−m)(m) 6= ϕ(P ′m, P−m)(m). Since

for each v′, v′′ 6= v, v′Pmv
′′ if, and only if, v′P ′mv

′′, ϕ(Pm, P−m)(m) 6= v implies

ϕ(Pm, P−m)P ′mϕ(P ′m, P−m).

This contradicts the strategy-proofness of ϕ, so ϕ(Pm, P−m)(m) ∈ {ϕ(Pm, P−m)(m), v}.
If ϕ(Pm, P−m)(m) = ϕ(P ′m, P−m)(m), then we obviously have ϕ(Pm, P−m)R∗mϕ(P ′m, P−m).

Suppose then that ϕ(Pm, P−m)(m) = v. Recall that vPmϕ(P ′m, P−m) and ϕ(P ′m, P−m)P ′mv,

andK(Pm, P
∗
m) ⊂ K(P ′m, P

∗
m). So, vP ∗mϕ(P ′m, P−m)v. It follows that ϕ(Pm, P−m)(m)P ∗mϕ(P ′m, P−m),

the desired result. �
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