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Abstract

We develop a simple and tractable model of productivity growth and tech-
nology spillovers that can explain the emergence of real world empirical
productivity distributions. We assume that the outcomes of firms’ in-house
R&D efforts are governed by a stochastic growth process that depends on
the current technology level of the firm. Moreover, firms can imitate other
firms’ technologies subject to their absorptive capacities. We show that
the combined process of in-house innovation and imitation gives rise to bal-
anced growth with persistent productivity differences even when starting
from ex ante identical firms. We show that along the balanced growth path
the emerging productivity distribution can be described as a traveling wave
with a tail following Zipf’s law. Further, we take into account idiosyncratic
shocks in firms’ productivities and show that these can reduce inequality,
but at a price of lowering aggregate productivity and industry performance.
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1. Introduction

Many empirical studies report persistent inequalities in per capita income

and productivity across countries [e.g. Durlauf, 1996; Durlauf and Johnson,

1995; Feyrer, 2008; Quah, 1993, 1996, 1997]. A prominent explanation for

these productivity differences is that they stem from differences in techno-
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logical knowledge [Prescott, 1998; Romer, 1993].1 On one hand, differences

in technological know-how originate from a large variation in R&D invest-

ments across firms and the diverse outcomes of these R&D activities [Coad,

2009; Cohen and Klepper, 1992, 1996; Cohen et al., 1987]. On the other

hand, these differences originate from barriers to technology adoption and

knowledge diffusion between firms [Eeckhout and Jovanovic, 2002; Geroski,

2000; Stoneman, 2002].

Even though an increasingly globalized world and the successive advance-

ment of communication technologies should make it easier for technological

improvements to spillover from one firm to another (or from one country

to another), technology adoption still involves many challenging features,

which consolidate technological gaps between firms, industries and coun-

tries [Acemoglu, 2007]. Technology adoption is closely related to the R&D

activities of firms. In the course of their research activities firms can de-

velop the ability to assimilate and exploit other existing technologies and

thereby increase their “absorptive capacities”[Cohen and Levinthal, 1989;

Kogut and Zander, 1992; Nelson and Phelps, 1966]. However, there exist

limitations to their absorptive capacities. If a technology is too advanced

compared to the current technological level of the firm it becomes difficult

or even impossible to imitate it [Powell and Grodal, 2006].2

In this paper we argue that it is the combined process of technology de-

velopment trough in-house R&D and the imitation of external technological

knowledge by taking into account limitations in a firm’s absorptive capacity

that eventually gives rise to persistent productivity differences among firms

as they can be found in empirical studies. We analyze empirical productiv-

ity distributions and their evolution over time and develop a simple model

that can explain the emergence of these distributions.

We analyze a large data set containing information of over six million

firms in the period between 1992 to 2005. In line with previous authors

[Corcos et al., 2007; Di Matteo et al., 2005] we find that the productivity

1For an alternative explanation of productivity differences see e.g.
Acemoglu and Zilibotti [2001].

2There exists a vast literature on barriers to technology adoption. Some of
the more recent contributions include Acemoglu et al. [2010]; Acemoglu and Zilibotti
[2001]; Aghion et al. [2005]; Barro and Sala-i Martin [1997]; Eaton and Kortum [2001];
Hall and Jones [1999]; Howitt [2000].

2



distributions over these firms exhibit power-law tails over all periods of time.

Moreover, we can observe an increasing trend in the average productivity.

Building on our empirical findings we introduce a model of technological

change and innovation that is able to reproduce these empirically observed

productivity distributions. We introduce a two-sector model of monopo-

listic competition of intermediate goods producing firms and competitive

final good production akin to Acemoglu et al. [2006]. Technology levels

and innovation follows a quality ladder approach [Aghion and Howitt, 1992;

Grossman and Helpman, 1991]. Imitation takes place between intermediate

goods producing firms in different sectors [Fai and Von Tunzelmann, 2001;

Kelly, 2001; Rosenberg, 1976].

A distinctive feature of our model is that we explicitly take into account

the endogenous decisions of firms whether to undertake in-house R&D or to

imitate other firms’ technologies. The success of their imitation strategies

depends on the availability of better technologies (which depends on the cur-

rent productivity distribution) and their absorptive capacities. The explicit

formulation of firms’ R&D behavior distinguishes our model from previous

ones in the literature. Early contributions focusing on firm size and growth

rate distributions like Gibrat [1931]; Pareto [1896]; Simon [1955] as well as

more recent ones by Fu et al. [2005]; Stanley et al. [1996] do not take into

account R&D decisions of firms. Ensuing models such as Klette and Kortum

[2004]; Luttmer [2007] explicitly model firms’ R&D effort decisions but do

not incorporate the trade off firms face between making an innovation in-

house or copying it from another firm.

Starting from ex ante identical firms our model generates heterogeneous

productivity distributions with power-law tails. These productivity distri-

butions translate into Zipf’s law firm size distributions which have been

observed in numerous empirical studies [e.g. De Wit, 2005; Gabaix, 1999;

Saichev et al., 2009].

The paper is organized as follows. The empirical analysis of firm produc-

tivities is given in Section 2. The model of firm R&D behavior is introduced

in Section 3 and the evolution of the productivity distributions generated by

this model is analyzed in Section 4. In Section 6 we analyze the conditions

improving industry performance. The empirical analysis of firm productiv-

ities is given in Section 2. The proofs of all propositions and corollaries can

be found in Appendix A. A number of possible extensions of the model is
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given in Appendix B. In Section 7 we conclude.

2. Empirical Analysis

Our sample of the Amadeus database provided by Bureau van Dijk con-

tains a total of 6, 5447, 38 European firms and spans a time period from

1992 to 2005. We have eliminated missing values in the data and computed

operating revenues per worker as a measure of firm productivity A. Re-

stricting our data set to years where we did not observe a large drop in the

average number of firms at the beginning and end of the observed periods

(which is probably due to the data collecting process) we obtained a panel

of firm productivities in the years 1995 to 2004. Some descriptive statistics

are shown in Table 2. As the table reveals, the data sample exhibits a large

variance σ2A, with the maximum productivity Amax being much larger than

the average µA.

Table 1: Descriptive statistics for the years

1995 to 2004.

year N µA σA Amax

1995 513358 209.4707 1055.0 119886
1996 673103 224.6385 1069.5 134859
1997 877347 232.0827 1150.4 133521
1998 1271199 233.2350 1201.4 137000
1999 1498458 243.9753 1300.0 156010
2000 1659786 257.3738 1400.6 148717
2001 1956456 249.3301 1410.3 161474
2002 2123401 255.1301 1389.7 135008
2003 1718683 241.2756 1268.5 116992
2004 21673 218.7708 1005.6 73062

The total number of observations in the
panel is 12, 313, 464.

The resulting productivity distributions for the years 1995 to 2004 and

the corresponding average productivities are shown in Figure 1. As can be

seen from Figure 1, the productivity distributions over different years are

well characterized by power-law tails with an exponent of minus two. The

cutoff at lower productivity levels is due to data limitations which do not

consider output below a threshold level. Moreover, the upward trend in the
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Figure 1: (Left) Productivity distribution in the years 1995 to 2004. The dashed line
indicates a power-law P (A, t) ∝ A−2 with exponent minus two and support A ≥ Amin =
102. The figure suggest that the distributions are close to a power-law with an exponent of
around two for A ≥ Amin = 102. (Right) The average productivity (arithmetic, geometric
mean and median) is increasing over the periods 1995 to 2004.

geometric mean and the median of the productivity values suggest a slow

increase in aggregate productivity.

Motivated by the distributions shown in Figure 1, we estimate a power-

law of the form

P (A, t) =
λ(t)− 1

Amin(t)

(
A

Amin(t)

)−λ(t)

, (1)

for each year t = 1995, . . . , 2004 with a cut-off Amin. The cut-off Amin is the

productivity below which we cannot reasonably assume that the distribu-

tion is described by a power-law. Our estimation procedure follows the one

suggested by Clauset et al. [2009].3 The estimation results for the exponent

λ and the cut-off Amin are shown in Table 2. The estimates for the exponent

λ all indicate an exponent which is slightly above two.

We note here that Corcos et al. [2007] have estimated the productivity

distributions using the same data set, while also controlling for physical and

3Assuming that our sample is generated by a power-law distribution for values of
A ≥ Amin the maximum likelihood estimator of the exponent λ is given by [Muniruzzaman,
1957]

λ̂ = 1 +N

(

N
∑

i=1

ln
Ai

Amin

)−1

,

where Ai, i = 1, . . . , N are the observed productivity values. For the estimation of the
cut-off Amin and the variances see Clauset et al. [2009].
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Table 2: Estimation results for the power-law exponents λ

and the cut-off Amin for the years 1995 to 2004.

year Ntail λ̂ Âmin

1995 513358 2.36*** (0.00) 286.00*** (22.39)
1996 673103 2.40*** (0.02) 1539.00*** (245.70)
1997 877347 2.37*** (0.03) 1552.00*** (504.16)
1998 1271199 2.33*** (0.05) 1546.00* (960.74)
1999 1498458 2.28*** (0.03) 2750.00*** (633.24)
2000 1659786 2.35*** (0.04) 592.00 (518.01)
2001 1956456 2.26*** (0.04) 2650.00*** (776.24)
2002 2123401 2.24*** (0.02) 2574.00*** (585.84)
2003 1718683 2.31*** (0.01) 1026.00* (675.51)
2004 21673 2.44*** (0.017) 216.00*** (9.573)

* p < 0.1; ** p < 0.05; *** p < 0.01 result from a two-
tailed z-test under the null-hypothesis of parameter being
zero. Variances are shown in parentheses. Ntail gives the
number of data points used for the estimation of the power-
law parameters.

human capital. Similar to our results, these authors find that the distribu-

tions are well described by a power-law with an exponent of two. They show

that this result is also robust when disaggregating over different sectors.

In the following sections we will introduce a model that is able to generate

productivity distributions with power-law tails as we have found them in our

empirical analysis.

3. The Model

3.1. Environment

A unique final good, denoted by Y (t), is produced by a representative

competitive firm using labor and a set of intermediate goods xi(t), i ∈ N =

{1, 2, ..., n}, according to the production function

Y (t) =
1

α
L1−α

n∑

i=1

(ǫi (t)Ai(t))
1−α xi(t)

α, α ∈ (0, 1),

where xi(t) is the economy’s input of intermediate good i at time t, Ai(t) is

the technology level of sector i at time t, and ǫi (t) is a productivity shock
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assumed to be i.i.d. across sectors and over time (see more discussion in

Section 5). We normalize the labor force to unity, L = 1. The final good

Y (t) is used for consumption, as an input to R&D and also as an input

to the production of intermediate goods. The profit maximization program

yields the following inverse demand function for intermediate goods,

pi(t) =

(
ǫi (t)Ai(t)

xi(t)

)1−α

,

where the price of the final good is set to be the numeraire.

Each intermediate good i is produced by a technology leader which can

produce the best quality of the input at the unit marginal cost. The leader

is subject to the potential competition of a fringe of firms that produce the

same input at the constant marginal cost χ, where 1 < χ ≤ 1/α. A higher

value of χ indicates less competition. Bertrand competition implies that

technology leaders monopolize the market, and set the price equal to the

unit cost of the fringe,

pi(t) = χ.

and sell at that price the equilibrium quantity xi(t) = χ− 1
1−αAi(t). The

profit earned by the incumbent in any intermediate sector i will then be

proportional to the productivity in that sector

πi(t) = (pi(t)− 1)xi(t) = ψǫi (t)Ai(t), (2)

where ψ ≥ χ−1
α χ− 1

1−α which is monotonically increasing in α and decreasing

in χ. In equilibrium, output is proportional to aggregate productivity as

follows

Y (t) =
1

α
χ− α

1−α

n∑

i=1

ǫi (t)Ai(t) =
1

α
χ− α

1−αA,

where aggregate productivity is A(t) =
∑n

i=1 ǫi (t)Ai(t).

3.2. Technological Change

The productivity of each intermediate good i ∈ N is assumed to take

on values along a quality ladder with rungs spaced proportionally by a fac-

tor Ā > 1. Productivity starts at Ā0 = 1 and the subsequent rungs are

Ā1, Ā2, Ā3, . . . . A firm i, which has achieved ai productivity improvements
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then has productivity Ai = Āai .4

Firm i’s productivity Ai ∈ {1, Ā, Ā2, . . . } grows as a result of technology

improvements, either undertaken in-house (innovation) or due to the imita-

tion and absorption of the technologies of other firms. The technology comes

from firms in other sectors that were successful in innovating in their area

of activity [Fai and Von Tunzelmann, 2001; Kelly, 2001; Rosenberg, 1976].

At time step t = ∆t, 2∆t, 3∆t, . . . , ∆t > 0, a firm i is selected at random

and decides either to imitate another firm or to conduct in-house R&D,

depending on which of the two gives it higher expected profits.5

3.2.1. Innovation

If firm i conducts in-house R&D at time t then it makes η(t) productivity

improvements and its productivity changes as follows

Ai(t+∆t) = Āai(t)+η(t) = Ai(t)Ā
η(t). (3)

η(t) ≥ 0 is a non-negative integer-valued random variable with a certain dis-

tribution. Let us denote ηb = P(η(t) = b) for b = 0, 1, 2, . . . to quantify the

distribution. It holds
∑∞

b=0 ηb = 1. From the productivity growth dynamics

above we can go to an equivalent system by changing to the normalized

log-productivity ai(t) = logAi(t)/ log Ā. Then the in-house update map in

Equation (3) is given by

ai(t+∆t) = ai(t) + η(t). (4)

In the following we will consider log-productivity to be always normalized

by log Ā. An illustration of this productivity growth process can be seen in

Figure 2. Note that log-productivity undergoes a simple stochastic process

with additive noise, while productivity follows a stochastic process with mul-

tiplicative noise [Karlin and Taylor, 1975, 1981], with the stochastic factor

4Consider a firm with productivity A(t) = Āa at time t and assume that its productivity
at time t+∆t is A(t+∆t) = Āa+1. The productivity growth rate g of the firm at time t
is then

g =
A(t+∆t)−A(t)

A(t)
=
Āa+1 − Āa

Āa
= Ā− 1,

and thus 1 + g = Ā.
5We will explain in more detail the innovation and imitation process in Section 4.

There we will also assume that firms are risk averse and perceive expected profits with
noise when deciding between innovation and imitation [Sandmo, 1971].
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ai ai + 1 ai + 2 ai + 3

a

η1 η2 η3

Figure 2: Illustration of the innovation process of firm i with log-productivity logAi =
ai log Ā = ai (setting log Ā = 1). With probability η1 firm i makes one productivity
improvement and advances by one log-productivity unit, with probability η2 firm i makes
two productivity improvements and advances by two log-productivity units, etc..

being the random variable Āη. In the limit of continuous time we obtain a

geometric Brownian motion for productivity [Saichev et al., 2009, pp. 9].

3.2.2. Imitation

In the case of imitation, firm i with productivity Ai(t) selects another

firm j ∈ N at random and attempts to imitate its productivity Aj(t) as long

as Aj(t) > Ai(t) which is equivalent to aj(t) > ai(t). Conditional on firm i

selcting a firm j with higher productivity, firm i tries to climb the rungs of

the quality ladder which separates it from aj(t). We assume that each rung is

climbed with success probability q. Moreover, the attempt finishes after the

first failure. This reflects the fact that knowledge absorption is cumulative

and the growth of knowledge builds on the already existing knowledge base

[Kogut and Zander, 1992; Weitzman, 1998].

Taking the above mentioned process of imitation more formally, firm i’s

productivity changes according to

Ai(t+∆t) = Ai(t)Ā
κ = Āai(t)+κ, (5)

where κ is a random variable which takes values in {0, 1, 2, . . . aj(t)− ai(t)}
and denotes the number of rungs to be climbed towards aj(t). The distri-
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ai ai + 1 ai + 2 aj

a

q q 1 − q

Figure 3: Illustration of the imitation of log-productivity aj of firm j through firm i with
log-productivity ai, where the log-productivity of firm i is logAi = ai log Ā = ai (setting
log Ā = 1). Firm i successfully imitates two log-productivity units (with probability q2)
but fails to imitate the third log-productivity unit (with probability 1− q). It then ends
up with a log-productivity of ai + 2.

bution of κ depends on the distance aj(t)− ai(t) and is quantified as

P(κ = k) =







qk(1− q) if 0 ≤ k < aj(t)− ai(t),

qk if k = aj(t)− ai(t),

0 otherwise.

(6)

Note, that it hold
∑∞

k=0 P (κ = k) = 1, as necessary. For q = 0 it holds

Ai(t+∆t) = Ai(t), for q = 1 it holds Ai(t+∆t) = Aj(t) while for 0 < q < 1

it holds that Ai(t) ≤ Ai(t + ∆t) ≤ Aj(t). This motivates us to call the

parameter q a measure of the absorptive capacities of the firms. The higher

q, the better firms are able to climb rungs on the quality ladder.

Switching to normalized log-productivity in Equation (5) we obtain

ai(t+∆t) = ai(t) + κ. (7)

An illustration of this imitation process can be seen in Figure 3.

If firm i with log-productivity ai(t) attempts to imitate firm j with log-

productivity aj(t) > ai(t) then the expected log-productivity i obtains is

10



given by

E (ai(t+∆t)|ai(t) = a, aj(t) = b) = a(1− q) + (a+ 1)q(1− q) + (a+ 2)q2(1− q)

+ · · ·+ (b− 1)qb−a−1(1− q) + bqb−a

=
b−a−1∑

c=0

(a+ c)(1− q)qc + bqb−a

= a+ q
1− qb−a

1− q
.

If q < 1 and b is much larger than a, the following approximation holds:

E (ai(t+∆t)|ai(t) = a, aj(t) = b) ≈ a+
q

1− q
.

In this case, the log-productivity firm i obtains through imitation does not

depend on the log-productivity of firm j but only on its success probability q.

However, it depends on the log-productivity of firm j if aj(t) is close to ai(t).

The latter becomes effective for example for firms with a high productivity

when there are only few other firms remaining with higher productivities

which could be potentially imitated.

3.3. Relationship with the Existing Literature

Our productivity growth function is related to other prominent models

in the literature on economic growth and technological change. For example,

Howitt and Mayer-Foulkes [2002] study a productivity growth equation of

the following form

Ai(t+∆t) =







Ā(t+∆t) with probability µ(t),

Ai(t) with probability 1− µ(t),
(8)

where µ is a parameter and Ā(t+∆t) is the maximum productivity level in

the industry at time t+∆t. The expected level Ai(t) then obeys

Ai(t+∆t) = µ(t)Ā(t+∆t) + (1− µ(t))Ai(t).

Subtracting Ai(t) on both sides of the above equation leads to

∆Ai(t) = µ(t)
(
Ā(t+∆t)−Ai(t)

)
.
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A similar productivity growth dynamics can be found in a number of models

such as in Howitt [2000] and in an extended form in Acemoglu et al. [2006].

The main difference between Equation (5) and Equation (8) is that in the

latter firms always attempt to imitate the world leading technology while

in the first the technology a firm can successfully imitate depends on the

available technologies in the whole population of firms (and not only the

leading one) and the absorptive capacities of the firm. Equation (5) thus can

be interpreted as a more explicit and consistent formulation of absorptive

capacities influencing the imitation process and productivity dynamics of

firms.

The relationship of our model to a number of previous contributions

in the literature deserves some more attention. Klette and Kortum [2004]

introduce a general equilibrium model of technological change that is able

to reproduce a number of empirical regularities. In their model a firm’s

R&D effort decision is endogenous. However it only depends on the stock

of knowledge of the firm and does not allow technology spillovers. Luttmer

[2007] proposes a model of combined innovation and imitation with entry and

exit dynamics which generates firm size distributions that are consistent with

empirical evidence. Luttmer [2007] assumes that only entering firms imitate

the technologies of other firms while incumbent firms engage only in in-

house R&D. In contrast, in our model a firm decides between innovation and

imitation depending on which of the two gives it a higher expected payoff.

Finally, Alvarez et al. [2008]; Lucas [2008] study an imitation process similar

to the one presented in this paper. However, these authors do not take into

account limitations in the ability of firms to imitate external knowledge

and they do not explicitly model the strategic decisions of firms whether to

undertake in-house R&D or to copy other firms.

4. Evolution of the Productivity Distribution With No Innovation-

vs.-Imitation Choice

In this section, we analyze the evolution of productivity distribution first

in a world where all firms innovate through in-house R&D, and then in a

world where all firms try to imitate more productive firms. We show that

in the former case the variance of the productivity distribution increases

over time. In contrast, in the latter case, the variance decreases over time

converging to a mass point at the productivity level of the initially most
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productive firm. Neither case is consistent with the evidence discussed in

Section 2. Then, in Section 5 we move to the main contribution of the paper,

i.e., the characterization of productivity distribution in a world where firms

choose optimally whether to innovate or to imitate existing technologies.

4.1. Notation

Consider the distribution of normalized log-productivity in the popula-

tion of N ∈ N firms over time. Recall that normalized log-productivity only

takes values in the set S = {1, 2, . . . , amax} with amax ∈ N ∪ {∞}. This

set can be finite when there exists a maximum attainable log-productivity

amax or equal to the integers S = N when amax = ∞. Let Pa(t) indicate

the fraction of firms having log-productivity a ∈ S at time t ∈ T . Thus,

the row vector P (t) = [P1(t) P2(t) . . . Pa(t) . . . ] represents the distribution

of log-productivity at time t. It holds that Pa(t) ≥ 0 and
∑∞

a=1 Pa(t) = 1.6

In what follows we may omit for simplicity either a or t in the arguments of

Pa(t) whenever it is no source of confusion.

In order to analyze the evolution of P (t), we borrow tools from stochastic

approximation theory as they have been used in the literature on evolution-

ary game theory [see e.g. Benaim and Weibull, 2003; Sandholm, 2006]. Our

dynamics of innovation and imitation induces a discrete time, discrete space

Markov chain
(
(PN (t))t∈T

)∞
N=N0

, where the chain indexed by N takes on

values in the state space (simplex) PN = {P ∈ R
|S|
+ : PN ∈ Z

|S|,
∑

a∈S Pa =

1} indicating the fraction of firms with a certain log-productivity a ∈ S.

At times t ∈ T = {0,∆t, 2∆t, . . . }, with ∆t = 1/N , exactly one firm in the

population of N firms is selected at random and given the opportunity to in-

troduce a technology improvement (through either innovation or imitation,

as discussed below). The conditional probability Tab : P
N → R

|S|×|S|
+ that a

firm with log-productivity a switches to log-productivity b at time t is given

by

Tab(P ) = P

(

PN (t+∆t) = P +
1

N
(eb − ea)

∣
∣
∣
∣
PN (t) = P

)

, (9)

6Note, that when s = N the vector P (t) is unbounded to the right implying log-
productivity to be not bounded from above. If we would also allow for log-productivity
to decay then P (t) should in principle also be unbounded to the left. However, in the
following we will restrict our analysis to the semi-bounded case without decay. The case
of productivity decay will be discussed in Appendix B.1.

13



where ea ∈ R
|S| is the standard unit basis vector corresponding to log-

productivity a ∈ S. The conditional transition probabilities of our Markov

chain (PN (t))t∈T are then given by

P
(
PN (t+∆t) = P + z

∣
∣PN (t) = P

)

=







PaTab(P ) if z = 1
N (eb − ea), a, b ∈ S, a 6= b,

1−∑b∈S
∑

b 6=a PaTab(P ) if z = 0,

0 otherwise.

(10)

In the following subsections, we derive the matrix T(P ) with elements

Tab(P ), a, b ∈ S, under the individual firm laws of motion associated with

innovation (Equation (4)) and imitation (Equation (7)), respectively.

4.2. Productivity Dynamics Under Innovation

In this section, we assume that all firms enage in R&D. More formally,

this is the equilibrium outcome when firms have no absorptive capacity for

imitation (q = 0). The random variable η(t) ∈ S is restricted to natu-

ral numbers as possible realizations of the process of in-house innovations

are represented by our discrete probabilistic framework.7 Moreover, we as-

sume that the random variable η has a maximal achievable value of m log-

productivity units. Then, the probability distribution of η is defined by the

row vector [η0 η1 . . . ηm], with ηb representing the probability to increase the

productivity by b units and η0 = 1 −∑b≥1 ηb. Thus, the transition matrix

for log-productivity due to in-house R&D corresponding to Equation (3) is

Tin =










η0 η1 . . . ηm 0 . . .

0 η0 η1 . . . ηm 0

0 η0 η1 . . .
. . .

...
. . .

. . .
. . .

. . .










.

7We can however easily approach continuous imitation and innovation processes, since
we can approximate the continuous case to an arbitrary precision by mapping the contin-
uous productivities to finer grained discretizations.
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The evolution of the log-productivity distribution in Equation (23) is given

by
∂P (t)

∂t
= P (t)(Tin − I).

Consider first particular the case where one step of innovation is achieved

with probability p, thus, η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2. In

matrix-vector notation the evolution of the log-productivity distribution can

be written as follows

∂P (t)

∂t
= P (t)









−p p 0 . . .

0 −p p 0 . . .

0 0 −p p 0 . . .
. . .

. . .
. . .









.

For each level of log-productivity a this means that

∂Pa(t)

∂t
= p(Pa−1(t)− Pa(t)). (11)

Using Equation (11) we can derive the log-productivity distribution at time

t ∈ R+.

The intuition conveyed by the simple process above can be generalized

to any (non-decaying) process. In particular, there is a positive drift of

the random innovation process. Thus, the log-productivity approaches a

Gaussian shape in the limit of large times t, due to the central limit theorem.

Mean and variance rise linearly with t. The original productivity growth

dynamics corresponds to an exponential growth process with multiplicative

noise while the log-transformed process is described by an additive noise.

This observation can be summarized in the next proposition.

Proposition 1. If E(η) > 0 and q = 0 then the log-productivity distribution
approaches a Normal distribution N (tµη, tσ

2
η), for large t, with µη = E(η)

and σ2η = Var(η). The productivity distribution converges to a lognormal

shape with mean µA = etµη+
1
2
tσ2

η and variance σ2A =
(

etσ
2
η − 1

)

e2tµη+tσ2
η .

The key finding here is that the variance of the log-productivity distri-

bution increases over time. It is also worth noting that for large times t, the

lognormal distribution will be close to a power-law (or Pareto distribution)

for a wide range of productivities, as stated in the next corollary.
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Figure 4: (Left) The log-productivity distribution P (a, t) for different periods and p = 0.1
when firms can only increase their productivity through in-house R&D. (Right) The log-
productivity distribution P (t) for different periods and q = 1 in the case of pure imitation.

Corollary 1. The asymptotic productivity distribution can be approximated
by a power-law distribution for A = O(e(µη+2σ2

η)t).

The time evolution of the log-productivity distribution P (t) for different

periods and p = 0.1 starting from an exponential initial distribution in the

case of pure in-house R&D can be seen in Figure 4. From the figure we see

that the variance of the distribution is increasing in time, as it is predicted

by Proposition 1.

4.3. Productivity Dynamics Under Imitation

In this section, we consider the polar opposite case when firms have not

independent capacity to innovate through in-house R&D, and can only in-

troduce technological progress through imitating other firms’ technologies.

More formally, this is an equilibrium outcome if ηi = 0 for i ≥ 1. The long-

run outcome is easy to guess: all firms will converge to the same productivity

level, equal to the largest productivity level in the initial distribution. How-

ever, the analysis of this case is instructive, since it provides key insights for

the general case in which firms face a non-trivial choice between innovation

and imitation.

Consider the transition matrix for imitation. The conditional transition
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probability from log-productivity a to log-productivity b > a is given by

T im
ab (P ) = qb−aPb + qb−a(1− q)Pb+1 + qb−a(1− q)Pb+2 + . . .

= qb−a

(

Pb + (1− q)
∞∑

k=1

Pb+k

)

= qb−a (Pb + (1− q)(1− Fb)) , (12)

with F being the cumulative distribution of P as defined by Fb =
∑b

c=1 Pc.

For b < a imitation of b is omitted by firm a, thus T im
ab (P ) = 0. The staying

probability for b = a is thus T im
aa (P ) = 1−∑b>a T

im
ab (P ).

The transition matrix Tim with elements given by Equation (12) for the

imitation process in Equation (5) is interactive.8 It depends on the current

distribution of log-productivity Pa(t) and it is given by

Tim(P ) =










S1(P ) q(P2 + (1− q)(1− F2)) q2(P3 + (1− q)(1− F3)) . . .

0 S2(P ) q(P3 + (1− q)(1− F3)) . . .

0 0 S3(P )
. . .

...
...

. . .
. . .










,

with Sa(P ) = 1 −∑∞
b=a+1T

im
ab = 1 −∑∞

b=a+1 q
b−a (Pb + (1− q)(1− Fb)).

For q = 1 we get

Tim(P ) =










F1 P2 P3 P4 . . .

0 F2 P3 P4 . . .

0 0 F3 P4
. . .

...
...

. . .
. . .

. . .










,

since Sa(P ) = 1 −∑∞
b=a+1 Pb = Fa(t), where the cumulative distribution

function is given by Fa(t) =
∑a

b=1 Pb.

The evolution of the log-productivity distribution is given by

∂P (t)

∂t
= P (t)(Tim(P (t))− I), (13)

8For an interactive Markov chain the conditional transition probabilities depend on the
current distribution [Conlisk, 1976].
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which can be written in vector-matrix notation as

∂P (t)

∂t
= P (t)









S1(t)− 1 P2(t) P3(t) P4(t) . . .

0 S2(t)− 1 P3(t) P4(t) . . .

0 0 S3(t)− 1 P4(t) . . .
. . .

. . .









,

where Sa = 1−∑∞
b=a+1 q

b−a (Pb + (1− q)(1− Fb)). From Equation (13) we

can derive the ordinary differential equation (ODE) governing the evolution

of the cumulative log-productivity distribution in a more compact form.

Proposition 2. Assume firms cannot innovate in-house (η0 = 1 and ηi =
0, for all i ≥ 1), then the evolution of the cumulative log-productivity distri-
bution F (t) is given by

∂F (a, t)

∂t
= F (a, t)2 − F (a, t) + (1− q)(1− F (a, t))

a−1∑

b=0

qbF (a− b, t). (14)

For q = 0 Equation (14) is trivially satisfied, as ∂F (a, t)/∂t = 0. The

boundary conditions are F (0, t) = 0 and F (∞, t) = 1. From Proposition 2

we can determine the asymptotic distribution in the limit of large times t.

Corollary 2. If there exists a maximal initial log-productivity ā such that
Fa(0) = 1 for all a ≥ ā then the asymptotic cumulative log-productivity
distribution of Equation (14) is given by

lim
t→∞

Fa(t) =

{

0, if a < ā,

1, if a ≥ ā.
(15)

Note, that Equation (15) is equivalent to limt→∞ Pā(t) = 1. Thus all

probability mass concentrates at ā in the course of time.

When absorptive capacity limits are strong and thus climbing a rung on

the quality ladder is unlikely (i.e., small q), we neglect terms of the order

O(q2) and derive the following corollary.

Corollary 3. Assume firms cannot innovate in-house (η0 = 1 and ηi = 0,
for all i ≥ 1), and that q is small such that terms of the order O(q2) can be
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neglected. Then the evolution of the cumulative log-productivity distribution
is given by

∂F (a, t)

∂t
= qP (a, t)(1− F (a, t)). (16)

Consequently, for q → 0 we get from Equation (16) that ∂F (a, t)/∂t = 0.

On the other hand, when almost no limit to absorptive capacity exists

(q close to one) we neglect terms of the order O((1−q)2) and we derive from

Equation (14) the following corollary.

Corollary 4. Assume firms cannot innovate in-house (η0 = 1 and ηi = 0,
for all i ≥ 1), and that 1−q is small such that terms of the order O((1−q)2)
can be neglected. Assume that Fa(t) is a sufficiently smooth distribution.9

Then the evolution of the cumulative log-productivity distribution is given
by

∂F (a, t)

∂t
= (2q − 1)

(
F (a, t)2 − F (a, t)

)
. (17)

In the special case of q = 1 we find that we recover the knowledge growth

dynamics analyzed by Lucas [2008] . The result is given in the following

proposition.

Proposition 3. Assume that firms cannot innovate in-house (η0 = 1 and
ηi = 0, for all i ≥ 1), and that there are no absorptive capacity limits for
imitation (q = 1). Then, the cumulative log-productivity distribution follows
the ODE

∂F (a, t)

∂t
= F (a, t)2 − F (a, t). (18)

Starting from an arbitrary initial cumulative distribution F (a, 0), the cumu-
lative log-productivity distribution at time t is given by

F (a, t) =
F (a, 0)

F (a, 0) + et(1− F (a, 0))
. (19)

Note, that the distribution P (t) can always be extracted from the cu-

mulative distribution F (t) and vice versa.

The time evolution of the log-productivity distribution P (t) for different

periods and q = 1 starting from an exponential initial distribution in the

9For a precise notion of sufficiently smooth see the proof.
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case of pure imitation can be seen in Figure 4. The figure reveals that the

distribution concentrates its mass at the maximum initial productivity level

as time increases.

5. Equilibrium Productivity Growth

In this section we study the case in which firms face a non-trivial choice

can increase productivity through both innovation (in-house R&D) or the

imitation of other firms. The decision on which of the two strategies gives

it a higher expected utility from profits. The basis of expected profits is the

expected value of productivity obtained through in-house R&D and through

imitation, given their current log-productivity level, the realization of the

productivity shock, and the current distribution of log-productivities in the

population.

We first consider expected the expected productivity of firm i if it inno-

vates. We have that

Ain
i (t) := E

in
i (Ā

ai(t)+η(t)) = Āai(t)P(η(t) = 0) + Āai(t)+1
P(η(t) = 1) + . . .

Assuming that P(η(t) = 1) = p and P(η(t) = 0) = 1− p for some p ∈ (0, 1)

we obtain

Ain
i (t) = Āai(t)(1− p+ Āp).

It follows that

aini (t) := logAin
i (t) = ai(t) + log(1− p+ Āp),

where we have assumed that log Ā = 1. Next, we consider imitation. Let

Aim
i (t) := E

im
i (Ai(t)) be the expected productivity of firm i if it imitates.

We then have that10

Aim
i (t) = eai(t)Sai(t)(P (t)) +

∞∑

b=ai(t)+1

ebqb−a (Pb(t) + (1− q)(1− Fb(t))) .

10For q = 1 this simplifies to

Aim
i (t) = eai(t)Fai(t)(t) +

∞
∑

b=ai(t)+1

ebPb(t) = eai(t)



Fai(t)(t) +

∞
∑

b=ai(t)+1

eb−ai(t)Pb(t)



 .
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We then can write

aimi (t) := logAim
i (t) = ai(t)+log



Sai(t)(t) +

∞∑

b=ai(t)+1

eb−ai(t)qb−a (Pb(t) + (1− q)(1− Fb(t)))



 .

The productivity shock is assumed to be strategy-specific, ǫi (t) ∈ {ǫini (t) , ǫimi (t)}.
Firms observe the realizations of the ǫi (t) before deciding whether to un-

dertake in-house R&D or innovation. The expected profit of firm i when

innovating in-house is given by

πini (t) = ψAin
i (t)ǫ

in
i (t)

and similarly, the expected profit of firm i through imitation is

πimi (t) = ψAim
i (t)ǫimi (t),

where ǫini (t) and ǫimi (t) are i.i.d. non-negative random variables. Then the

ex-ante probability that a firm’s profit from innovation is larger than from

imitation is given by

P(πimi (t) > πini (t)) = P(Aim
i (t)ǫimi (t) > Ain

i (t)ǫ
in
i )(t)

= P(log ǫini (t)− log ǫimi (t) < aimi (t)− aini (t)).

In order to make our model more tractable we make a specific assumption

on the distribution of the shocks. More precisely, we assume that ǫini (t) and

ǫimi (t) are independently type-II extreme value (Frechet) distributed with

parameter β ≥ 0. It then follows that log ǫini (t) and log ǫimi (t) are inde-

pendently type-I extreme value (Gumbel) distributed with parameter 1/β.

Under this assumption it follows that the probability that the firm chooses

imitation rather than in-house R&D is given by [see e.g. Anderson et al.,
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1992]11

pimβ (ai(t), P (t)) = P
(
πimi (t) > πini (t)

)
=

eβa
im
i (ai(t),P (t))

eβa
im
i (ai(t),P (t)) + eβa

in
i (ai(t))

=
1

1 + e−β(aimi (ai(t),P (t))−aini (ai(t)))
.

(20)

With the previously derived expressions of ain(ai(t)) and a
im(ai(t), P (t)) we

can write the innovation probability as follows

pinβ (ai(t), P (t)) =
1

1 +

(
Sai(t)

(t)+
∑

∞

b=ai(t)+1 e
b−ai(t)qb−a(Pb(t)+(1−q)(1−Fb(t)))

1−p+Āp

) β
ln(Ā)

.

(21)

Next, we define D(P ) as the diagonal-matrix of all probabilities pimβ (a, P ),

i.e.

D(P ) =










pimβ (1, P ) 0 . . .

0 pimβ (2, P ) 0 . . .
... 0 pimβ (3, P ) 0 . . .

...
. . .

. . .
. . .










.

Putting the above results together, the conditional transition matrix

T(P ) with elements (Tab(P ))a,b∈S can be written in the compact matrix

form

T(P ) = (I−D(P ))Tin +D(P )Tim(P ). (22)

With the above definition of the transition matrix T we are now ready to

introduce the dynamics of the log-productivity distribution P (t).

Proposition 4. In the limit of a large number N of firms, the evolution
of the log-productivity distribution P (t) for the Markov chain (PN (t))t∈T is
given by

dP (t)

dt
= P (t)(T(P )− I) = P (t)(D(P )Tim(P ) + (I−D(P ))Tin − I), (23)

for some initial distribution P (0) ≥ 0.

11If log ǫ1 and log ǫ2 have a cdf Flog ǫ(x) = exp(−e−βx) then their difference ∆ log ǫ =
log ǫ2 − logψ1 has a logistic cdf F∆ log ǫ(x) = 1/(1 + e−βx).
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Observe that Equation (23) can be solved for a function P (t) that is

continuous in a ∈ R+. The resulting solution trajectory coincides with the

one for discrete values of a if we evaluate it only at the discrete points a ∈ S,

because the evolution of P (t) at the discrete values of a is independent of

any values not coinciding with the discrete ones. Hence, in the following, we

will consider P (t) being continuous in both time t and log-productivity a.

Accordingly, we will replace the derivative with respect to time in Equation

(23) with a partial derivative.

Equation (23) can be rewritten in matrix-vector notation as

∂P (t)

∂t
=
[
P1(t)p

im
β (1, P ), P2(t)p

im
β (2, P ), . . .

]







S1(t) P2(t) P3(t) . . .

0 S2(t) P3(t) . . .
. . .

. . .







+
[
P1(t)(1− pimβ (1, P )), P2(t)(1− pimβ (2, P )), . . .

]







1− p p 0 . . .

0 1− p p . . .
. . .

. . .







− [P1(t), P2(t), . . . ] .

For log-productivity a the dynamics is then given by

∂Pa(t)

∂t
= Pa(t)

(
P1(t)p

im
β (1, P ) + · · ·+ Pa−1(t)p

im
β (a− 1, P ) + Sa(t)p

im
β (a, P )

)

+ (1− p)Pa(t)
(
1− pimβ (a, P )

)
+ pPa−1(t)

(
1− pimβ (a− 1, P )

)
− Pa(t)

= Pa(t)

(
a−1∑

b=1

pimβ (b, P )Pb(t) + pimβ (a, P )Sa(t)

)

+ (1− p)Pa(t)(1− pimβ (a, P ))

+ pPa−1(t)(1− pimβ (a− 1, P ))− Pa(t). (24)

With Equation (24) the evolution of the productivity distribution is com-

pletely determined and can always be computed by numerical iteration.12

12Note that if q = 1 Equation (24) yields

∂Pa(t)

∂t
= Pa(t)

(

a−1
∑

b=1

pimβ (b, P )Pb(t) + pimβ (a, P )Fa(t)

)

+ (1− p)Pa(t)(1− pimβ (a, P ))

+ pPa−1(t)(1− pimβ (a− 1, P ))− Pa(t). (25)
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However, in order to better understand the emerging log-productivity dis-

tributions and their dependency on the model parameters, we analyze in

the following sections two limit cases. In Section 5.1 we study the weak

selection limit (β → 0) where firms choose randomly between innovation

and imitation, while in Section 5.2 we consider the strong selection limit

β → ∞ where firms have a perfect evaluation of the expected outcomes of

their innovation and imitation strategies. In both cases we will show that

the productivity distribution is a traveling wave with tails that exhibit a

power law behavior.

5.1. Weak Selection Limit (β → 0)

In the weak selection limit as β → 0 firms choose between innovation

and in-house R&D uniformly at random with probability pimβ (a) = 0.5 for

all 1 ≤ a <∞. Inserting this into Equation (24) gives

∂Pa(t)

∂t
=

1

2
Pa(t)

(
a−1∑

b=1

Pb(t) + Sa(t)

)

+
1− p

2
Pa(t) +

p

2
Pa−1(t)− Pa(t).

Similar to the results obtained in Sections 4.2 and 4.3 we can derive from

the above equation the dynamics of the cumulative distribution function

F (a, t), in the limit of q close to one

∂Fa(t)

∂t
=

2q − 1

2
(F (a, t)2 − F (a, t))− p

2
(F (a, t)− F (a− 1, t)) . (26)

This differential equation for F (a, t) can be solved numerically subject to

the boundary conditions lima→∞ F (a, t) = 1 and lima→0 F (a, t) = 0. An

example of the resulting probability mass function is given in Figure 5. Our

analysis reveals that the distribution obtains a stable shape moving to the

right (with increasing log-productivity) over time. Such a solutions is called

a traveling wave. More precisely, a traveling wave is a solution of the form

Fa = f(a−νt) such that for any s ≥ t it must hold that Fa(t) = Fa+νs(t+s).

This is stated in the next proposition.

Proposition 5. Let Fa(t) be a solution of Equation (26) with Heaviside
initial data F (a, 0) = Θ(a − ā) for some ā ≥ 0 and define mǫ(t) = inf{a :
Fa(t) > ǫ}. Then

lim
t→∞

mǫ(t)

t
= ν
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for some constant ν ≥ 0, and Fa(t) is a traveling wave of the form

Fa = f(a− νt)

for some non-decreasing function f : R+ → R+.

In the following we derive the precise shape of the traveling wave solu-

tion of Equation (26). For this purpose, it is important to observe that in the

limit of q = 1 we can build on the model analyzed by Majumdar and Krapivsky

[2001].

Proposition 6. Assume that η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2
with p ∈ [0, 1]. Consider β = 0 and q close to one such that terms of the
order O((1 − q)2) can be neglected. Consider Heaviside initial conditions
F (a, 0) = Θ(a− ā) for some ā ≥ 0.

(i) If we assume that the front of the traveling wave solution of Equation
(26) follows an exponential distribution with exponent λ ≥ 0 for a
much larger than νt, i.e. P (a, t) ∝ e−λ(a−νt), then the traveling wave
velocity ν is given by

ν =
2q − 1− p+ peλ

2λ
, (27)

where the exponent λ of the front of the distribution is given by13

λ = 1 +W

(
2q − 1− p

pe

)

. (28)

(ii) If we assume that P (a, t) ∝ eρ(a−νt), ρ ≥ 0, for a much smaller than
νt then the exponent ρ is given by

ρ =
1

2

(

2q − 1 + p+ 2W
(

−p
2
e

1−p−2q
2

)
))

. (29)

Note that the assumption of a power law tail in Proposition 6 is not

very restrictive, as such tail distributions are common for a broad class of

probability distributions [Alfarano and Lux, 2010]. Our numerical analysis

shows that the results of Proposition 6 hold also for other initial distributions

which are concentrated enough, such as an exponential distribution with an

exponent that is large enough. Moreover, one can shown that the average

13W (x) is the Lambert W function (or product log), which is implicitly defined by

W (x)eW (x) = x, and one can show that W (x) = −∑∞

n=1
nn−1

n!
(−x)n for |x| < 1/e.
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Figure 5: (Left) The log-productivity distribution P (a, t) for period t = 200, p = 0.119,
q = 1. The distribution obtained by numerical integration of Equation (38) is indicated
by a circles while the theoretical predictions are shown with a dashed line. The front of
the traveling wave decays as a power-law with exponent λ = 2. (Right) Traveling wave
velocity ν for different values of p ∈ [0, 1] and q = 1 at t = 100.

log-productivity is given by14

E(a) = νt− 3

2λ
ln t+O(1).

By solving the continuous dynamical system corresponding to Equation (26)

we can compute F (a, t) for large times t. The resulting traveling wave

velocity ν can be seen in Figure 5 (right) for different values of p.

Observe that for p = 1/(1 + e2) = 0.119 we obtain an exponential log-

productivity distribution with λ = 2, which corresponds to a power-law

productivity distribution with exponent −2 as we have seen them in the

empirical analysis in Section 2.15 Further, using Equation (29) we can de-

termine the exponent ρ for this value of p yielding ρ = 1.231. This can be

seen in Figure 5 for time t = 200 and setting q = 1.

In the following we will derive some intuition for what happens in the

case of β small but positive. As we will show, our analysis reveals that

with increasing values of β the decisions of individual firms will be closer

their optimal choice and this translates to the aggregate level enhancing the

productivity growth rate of the economy. To simplify our analysis we set

q = 1. We can give the following proposition.

14See Majumdar and Krapivsky [2001].
15Note that P (a, t) ∝ e−λa = e−λ logA = A−λ.
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Proposition 7. Assume that

Pa = N

{

eρ(a−νt), if a ≤ νt,

e−λ(a−νt), if a > νt,

and that for β small enough ρ is given by Equation (29). Then the traveling
wave velocity is given by

ν =
1

λ

(

1 + γ

2 + γ
−
(
eλ − 1

)
(eρ − 1)

eλ+ρ − 1

( ∞∑

b=1

e−λb

2 + γ (1 +Ae−λb)
+

∞∑

b=0

e−ρb

2 + γ (Be−ρb + Ceb)

)

+
1

2 + γ

(

1 + p
(

eλ − 1
)))

where λ is given by the root of dν
dλ = 0,

A =
(e− 1) (eρ − 1) eλ

(eλ − e) (eλ+ρ − 1)
,

B =

(
eλ−1

)
(e− 1)eρ

(eλ+ρ − 1) (e1+ρ − 1)
,

C =
e
(
eλ − 1

)
(eρ − 1)

(eλ − e) (e1+ρ − 1)
,

and γ = β/(ln(Ā)(1 + p(Ā− 1))).

The expression for dν
dλ = 0 can be found in the proof of Proposition 7 in

Appendix A. A comparison of the traveling wave velocity ν for β = 0,

β = 0.05 and β = 0.1 is given in Figure 6. We find that with increasing

values of β the velocity and hence the average productivity growth rate

increases.

5.2. Strong Selection Limit (β → ∞)

In the strong selection limit, there exists a critical log-productivity level

below which it is more profitable for firms to imitate other firms, while for

those firms above the threshold it is more profitable to conduct in-house

R&D. This is stated in the following proposition, where we assume that

q = 1.

Proposition 8. When p > 0, β > 0, q = 1 and the initial distribution P (0)
has a support which is an interval of integers (possibly infinite16), then there

16Either {a1, +1. . ., a2}, {−∞, +1. . ., a2}, or {a1, +1. . .,∞} for some a1 < a2 both integers.
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Figure 6: Traveling wave velocity ν(λ) as a function of p ∈ (0, 1) assuming that ln(Ā) = 1.
Results of numerical integration of Equation (24) are shown with circles. (Left) The solid
line corresponds to β = 0.05 and (right) β = 0.1, while the dashed-dotted line corresponds
to a value of β = 0. We see that the velocity for β > 0 is always higher than for β = 0.

exists a unique a∗ ∈ N such that for all t it holds pimβ (a, P ) > pinβ (a, P ) when

a < a∗, and pimβ (a, P ) < pinβ (a, P ) when a > a∗. (It might hold pimβ (a∗, P ) =

pinβ (a∗, P ).)

In the case of β → ∞ it follows from Proposition 8 that there exists a

threshold log-productivity a∗ such that

lim
β→∞

pimβ (a, P ) =







1, if a ≤ a∗,

0, if a > a∗.
(30)

Note that the requirement of Lipschitz continuity of V (P ) in Theorem 1

is violated in the limit β → ∞ at the threshold log-productivity a∗ and

consequently, Equations (23) and (24), respectively, are not shown to hold.

They hold, however, for any large but finite value of β. When β is large

enough we can write pimβ (a, P ) = 1−ǫ for a ≤ a∗ and pimβ (a, P ) = ǫ for a > a∗

for some small ǫ > 0 (which becomes arbitrarily small with increasing values

of β). In this section we assume that we can neglect all terms of the order

O(ǫ) in the dynamics of P (t) of Equation (24) as β becomes large enough

(but finite). We then can state the following proposition.

Proposition 9. Let q = 1 and assume that Equation (30) holds for β large
enough (but finite). Then the dynamics of the cumulative log-productivity
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distribution is given by

∂Fa(t)

∂t
=







Fa(t)
2 − Fa(t), if a ≤ a∗,

Fa∗(t)− (1− Pa∗+1(t))Fa∗(t)− pPa∗+1(t), if a = a∗ + 1,

−(1− Fa(t))Fa∗(t)− p(Fa(t)− Fa−1(t)), if a ≥ a∗ + 1.

(31)

The above difference-differential Equation (31) for F (a, t) can be solved

numerically subject to the boundary conditions lima→∞ F (a, t) = 1 and

lima→1 F (a, t) = 0. The log-productivity distribution for p = 0.1 and q = 1

obtained by means of numerical integration of Equation (31) can be seen in

Figure 7.

Similar to the results obtained in the previous section, a numerical in-

tegration of Equation (31) reveals that the limiting log-productivity distri-

bution is a traveling wave with power-law tails. This is further analyzed in

the next proposition.

Proposition 10. Let η1 = p, η0 = 1 − p and ηi = 0 for all i ≥ 2 with
p ∈ [0, 1]. Consider β = ∞, q = 1 and Heaviside initial conditions F (a, 0) =
Θ(a − ā) for some ā ≥ 0. Further, assume that Equation (31) holds for β
large enough (but finite) and that its solution is a traveling wave.

(i) If we assume that the front of the traveling wave solution of Equation
(31) follows an exponential distribution with exponent λ ≥ 0 for all
a ≥ a∗ = νt, i.e. P (a, t) ∝ e−λ(a−νt), then the traveling wave velocity
ν is given by

ν =
1

λ

(

1 + p(eλ − 1)− p(Ā− 1)(1− e1−λ)

e− 1

)

(32)

where λ is given by the root of the equation

eλ(λ− 1)− Ā− 1

e− 1
e1−λ(1 + λ) +

Ā+ e− 2

e− 1
=

1

p
. (33)

(ii) If we assume that the rear of the traveling wave solution of Equation
(31) follows an exponential function with exponent ρ ≥ 0 for all a < a∗,
i.e. P (a, t) ∝ eρ(a−νt), then the exponent ρ is given by ρ = 1/ν.

Equation (33) can be solved numerically, using standard numerical root find-

ing procedures [see e.g. Press et al., 1992, Chap. 9], to obtain the exponent
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Figure 7: (Left) The log-productivity distribution P (a, t) for p = 0.125 and ln Ā = 1 at
t = 400. The distribution obtained by numerical integration of Equation (31) is indicated
with circles while the theoretical predictions are shown with a dashed line. The front of
the traveling wave is close to a power-law with exponent λ of 2. (Right) Traveling wave
velocity ν for different values of p ∈ [0, 1] by means of numerical integration of Equation
(31) and theoretical prediction indicated by the dashed line.

λ. We find that we can generate distributions with power-law tails that re-

produce our findings in in Section 2. Inserting λ into Equation (32) further

gives the traveling wave velocity ν. This is shown in Figure 7 (right). A

comparison of the theoretical predictions for the exponents λ and ρ from

Proposition 10 with the numerical log-productivity distribution P (a, t) for

p = 0.1 can be seen in Figure 7. Finally, note that our numerical anal-

ysis shows that Proposition 10 holds also for generic initial distributions

which are concentrated enough, such as an exponential distribution with an

exponent that is large enough.

6. Efficiency and Inequality

In this section we first turn to the analysis of industry performance and

efficiency. An industry has a higher performance, measured in aggregate

intermediate goods and final good production, if it has a higher average

log-productivity.17 Equivalently, this corresponds to a higher average log-

productivity per unit of time, as measured by ν. We can derive the following

result for efficiency comparing the two extreme cases of the weak and strong

17We will consider the average productivity measured by the geometric mean µ =

n
√
A1A2 · · ·An =

(

∏n
i=1Ai

)1/n

, which is related to the arithmetic average of the log-

productivity values via 1
n

∑n
i=1 ai =

1
n

∑n
i=1 logAi = log µ. However, our results also hold

for the arithmetic average of the productivity values.
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selection limits.

Proposition 11. Assume that q = 1. Then, under the assumptions of
Propositions 6 and 10, we have that for any p ∈ (0, 1)

lim
β→0

ν(β, p) < lim
β→∞

ν(β, p).

Proposition 11 implies that aggregate productivity and output are higher if

firms perceive expected profits from innovation and imitation with vanishing

noise than with strong noise.

An illustration of the traveling wave velocities ν for the strong (β → ∞)

and weak (β → 0) selection limits can be seen in Figure 8 (left). The fig-

ure confirms the result of Proposition 11. For all values of the innovation

probability p ∈ [0, 1], the traveling wave velocity ν is higher the better firms

can evaluate the expected outcomes of their R&D strategies. Next, we can

investigate the variance σ2 in the log-productivity distribution as a measure

for inequality in the economy. This is done in Figure 8 (right) with respect

to the two extreme cases of β → 0 and β → ∞ by numerical integration

of Equations (26) and (31). We see that the variance is always higher in

the strong selection limit and the difference increases with increasing inno-

vation probability p. Taking into account the previous efficiency results we

hence find that a higher industry performance comes along with a higher in-

equality in firm’s productivities. This finding supports previous works that

highlight concentration as a typical characteristic of efficient industries [see

e.g. Westbrock, 2010, for a recent example].
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7. Conclusion

In this paper we have introduced an endogenous model of technological

change, productivity growth and technology spillovers which is consistent

with empirically observed productivity distributions. The innovation pro-

cess is governed by a combined process of firms’ in-house R&D activities and

adoption of existing technologies of other firms. The emerging productiv-

ity distributions can be described as traveling waves with a constant shape

and power-law tails. We incorporate the trade off firms face between their

innovation and imitation strategies and take into account that firms may

have only an uncertain prediction of their research and technology adop-

tion outcomes. We show that this limited rationality can reduce industry

performance and efficiency while at the same time increase inequality.

The current model can be extended in a number of directions. Three of

them are given in Appendix B. First, in Appendix B.1 we outline a model of

productivity growth and technology adoption which includes the possibility

that a firm’s productivity may also be reduced due to exogenous events such

as the expiration of a patent. Second, in Appendix B.2 we depart from the

assumption of a fixed population of firms and instead allow for firm entry and

exit. Third, in Appendix B.3 we consider an alternative way of introducing

capacity constraints in the ability of firms to adopt and imitate external

knowledge by introducing a cutoff productivity level above which a firm

cannot imitate. By introducing a cutoff, one can show that our model can

generate “convergence clubs” as they can be found in empirical studies of

cross country income differences [e.g. Durlauf, 1996; Durlauf and Johnson,

1995; Feyrer, 2008; Quah, 1993, 1996, 1997].

Finally, one could extend our framework by introducing heterogeneous

interactions in the form of a network in the imitation process and analyze

the emerging productivity distributions, such as in Di Matteo et al. [2005];

Ehrhardt et al. [2006]; Kelly [2001]. This is beyond the scope of the present

paper and we leave this avenue for future research.
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Papers 2007060, Université catholique de Louvain, Center for Operations
Research and Econometrics (CORE).

De Wit, G., 2005. Firm size distributions:: An overview of steady-state
distributions resulting from firm dynamics models. International Journal
of Industrial Organization 23 (5-6), 423–450.

Di Matteo, T., Aste, T., Gallegati, M., 2005. Innovation flow through social
networks: productivity distribution in France and Italy. The European
Physical Journal B 47 (3), 459–466.

Durlauf, S., 1996. On the convergence and divergence of growth rates. The
Economic Journal, 1016–1018.

Durlauf, S., Johnson, P., 1995. Multiple regimes and cross-country growth
behaviour. Journal of Applied Econometrics, 365–384.

Eaton, J., Kortum, S., 2001. Trade in capital goods. European Economic
Review 45 (7), 1195–1235.

Eeckhout, J., Jovanovic, B., 2002. Knowledge spillovers and inequality.

33

http://www.nber.org/papers/w14135


American Economic Review 92 (5), 1290–1307.
Ehrhardt, G., Marsili, M., Vega-Redondo, F., 2006. Diffusion and growth in
an evolving network. International Journal of Game Theory 34 (3).

Fai, F., Von Tunzelmann, N., 2001. Industry-specific competencies and con-
verging technological systems: evidence from patents. Structural Change
and Economic Dynamics 12 (2), 141–170.

Feyrer, J., 2008. Convergence by Parts. The BE Journal of Macroeconomics
8 (1), 19.

Fu, D., Pammolli, F., Buldyrev, S., Riccaboni, M., Matia, K., Yamasaki, K.,
Stanley, H., 2005. The growth of business firms: Theoretical framework
and empirical evidence. Proceedings of the National Academy of Sciences
of the United States of America 102 (52), 18801.

Gabaix, X., 1999. Zipf’s Law For Cities: An Explanation. Quarterly Journal
of Economics 114 (3), 739–767.

Geroski, P. A., 2000. Models of technology diffusion. Research Policy 29 (4-
5), 603–625.
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Appendix

A. Proofs of Propositions, Corollaries and Lemmas

Proof of Proposition 4. In the following we introduce the random vari-
able ζNP whose distribution describes the stochastic increments of (PN (t))t∈T
from the state P ∈ PN

P
(
ζNP = z

)
= P

(
PN (t+∆t) = P + z

∣
∣PN (t) = P

)
. (34)

Moreover, we introduce the functions V N , AN and AN
δ by

V N (P ) = NE(ζNP ),

AN (P ) = NE(|ζNP |),
AN

δ (P ) = NE(
∣
∣
∣ζNP I{|ζNP |>δ}

∣
∣
∣).

We then can state the following theorem by Kurtz [1970, 1971]:18

Theorem 1. Let V : R|S| → R
|S| be a Lipschitz continuous vector field.

Suppose that for some sequence (δN )∞N=N0
with limN→∞ δN = 0, it holds

that

(i) limN→∞ supP∈PN

∣
∣V N (P )− V (P )

∣
∣ = 0,

(ii) supN supP∈PN AN (P ) <∞, and

(iii) limN→∞ supP∈PN AN
δN

(P ) = 0,

and that the initial conditions P (0)N = PN
0 converge to P0. Let {P (t)}t≥0

be the solution of the mean-field dynamics

dP

dt
= V (P ) (35)

starting from P0. Then for each T <∞ and ǫ > 0, we have that

lim
N→∞

P

(

sup
t∈[0,T ]

∣
∣P (t)N − P (t)

∣
∣ < ǫ

)

= 1.

18See also Sandholm [2006, Chap.10.2].
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In the following we prove that the conditions (i) to (iii) in Theorem 1 hold
for our framework. First, observe that

V N (P ) = NE(ζNP )

= N
∑

a,b≥1

1

N
(eb − ea)P

(

ζNP =
1

N
(eb − ea)

)

= N
∑

a,b≥1

1

N
(eb − ea)PaTab(P )

=
∑

a≥1

ea




∑

b≥1

PbTba(P )− Pa

∑

b≥1

Tab(P )





=
∑

a≥1

eaVa(P ) = V (P )

which is independent of N . This implies that condition (i) in Theorem 1
is satisfied. Note also that since Tab(P ) is continuously differentiable, V (P )
is a Lipschitz continuous function as required. Further, observe that since
|ea − eb| =

√
2 for a 6= b and 0 otherwise, (PN (t))t∈T has jumps of at most√

2/N . Hence, for δN =
√
2/N

AN
δN (P ) = NE

(∣
∣
∣ζNP I{|ζNP |>

√
2/N}

∣
∣
∣

)

= 0,

and condition (iii) in Theorem 1 holds. Finally, we find that

AN (P ) = NE(|ζNP |) ≤ N

√
2

N
=

√
2 <∞,

and also condition (ii) in in Theorem 1 is satisfied.
Theorem 1 tells us that when the number of firms N is large, nearly all

sample paths of the Markov chain (PN (t))t∈T stay within a small ǫ of the
solution of the mean-field dynamics of Equation (35), which can be written
in the compact form dP (t)/dt = P (t)(T(P )− I). 2

Proof of Proposition 1. For q = 0 (and β large such that in this case
firms always prefer innovation over imitation), the productivity Ai(t) of firm
i grows according to Equation (3), from which we get

logAi(t) = logAi(0) +
t∑

j=1

log(1 + E(j)).

Assuming that the random variables η(t) = log(1 + E(j)) are independent
and identically distributed with finite mean µη < ∞ and variance σ2η < ∞,

then by virtue of the central limit theorem 1/t
∑t

j=1 log(1+E(j)) converges
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to a normal distribution. Consequently, Ai(t) converges to a lognormal dis-

tribution with mean µA = etµη+
1
2
tσ2

η and variance σ2A =
(

etσ
2
η − 1

)

e2tµη+tσ2
η .
2

Proof of Corollary 1. The productivity probability mass function is
given by

f(A) =
1√

2πσAA
e
− (lnA−µA)2

2σ2
A .

Taking logs delivers

ln f(A) = −(lnA)2

2σ2A
+

(
µ

σ2A
− 1

)

lnA− log
(√

2πσA

)

− µ2A
2σ2A

.

As σA =
(

etσ
2
η − 1

)

e2tµη+tσ2
η tends to infinity for large t, ln f(A) becomes a

linear function of lnA. This approximation is good as long as A is not much
larger than e(µη+2σ2

η)t [Sornette, 2000, p. 373]. 2

Proof of Proposition 2. In the general case of q ∈ [0, 1] the evolution
of the cumulative log-productivity distribution is given by

∂Fa(t)

∂t
= Pa(1− q)(1− Fa) + PaFa

+ Pa−1q(1− q)(1− Fa) + Pa−1(1− q)(1− Fa) + Pa−1Fa

+ Pa−2q
2(1− q)(1− Fa) + Pa−2q(1− q)(1− Fa) + Pa−2(1− q)(1− Fa) + Pa−2Fa

+ . . .

− Fa.

This can be written as

∂Fa(t)

∂t
= Fa(t)

2 + (1− q)(1− Fa(t))
a−1∑

b=0

qbFa−b(t)− Fa(t).

2

Proof of Proposition 3. From Equation (13) we derive

∂P (a, t)

∂t
= P (a, t) (P (1, t) + · · ·+ P (a− 1, t) + P (1, t) + . . . P (a, t))− P (a, t)

= P (a, t)

(
a−1∑

b=1

P (b, t) + F (a, t)

)

− P (a, t)

= P (a, t)(F (a− 1, t) + F (a, t))− P (a, t)

= (F (a, t)− F (a− 1, t))(F (a− 1, t) + F (a, t))− P (a, t)

= F (a, t)2 − F (a− 1, t)2 − P (a, t).
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Summation over a yields

∂F (a, t)

∂t
=

a∑

b=1

(F (b, t)2 − F (b− 1, t)2)− F (a, t)

=
a∑

b=1

F (b, t)2 −
a−1∑

b=1

F (b, t)2 − F (a, t)

= F (a, t)2 − F (a, t).

The cumulative log-productivity distribution follows the recursive relation

∂F (a, t)

∂t
= F (a, t)2 − F (a, t). (36)

This can be written as

∂ lnF (a, t)

∂t
= F (a, t)− 1,

with the solution

F (a, t) =
F (a, 0)

F (a, 0) + et(1− F (a, 0))
,

and the initial distribution F (a, 0). 2

Proof of Corollary 2. From Equation (14) we see that for all a ≥ ā it
must hold that ∂Fa(t)/∂t = 0 and so Fa(t) = 1 for all t ≥ 0. In contrast, for
all a < ā and q > 0 there exists a positive probability that a firm with log-
productivity b > a is imitated, leading to a decrease in Fa(t). Eventually,
we then have that limt to∞ Fa(t) = 0 for all a < ā. 2

Proof of Corollary 3. We can write Equation (14) as

∂F (a, t)

∂t
= F (a, t)2−F (a, t)+(1−q)(1−F (a, t))(F (a, t)+qF (a−1, t))+O(q3).

This is

∂F (a, t)

∂t
= −q

(
F (a, t)− F (a− 1, t) + F (a, t)F (a− 1, t)− F (a, t)2

)

− q2 (F (a− 1, t)− F (a, t)F (a− 1, t)) +O(q3).

When absorptive capacity limits are strong then we can neglect terms of the
order O(q2) and using the fact that F (a, t)− F (a− 1, t) = P (a, t) we get

∂F (a, t)

∂t
= qP (a, t)G(a, t),
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where the complementary cumulative distribution function is defined as
G(a, t) = 1− F (a, t). 2

Proof of Corollary 4. Equation (14) can be written as

∂F (a, t)

∂t
= F (a, t)2−F (a, t)+(1−q)(1−F (a, t))(F (a, t)+qF (a−1, t))+O((1−q)3).

From this we obtain

∂F (a, t)

∂t
= F (a, t)2−F (a, t)+(1−q)

(
F (a, t) + F (a− 1, t)− F (a, t)2 − F (a, t)F (a− 1, t)

)

− (1− q)2 (F (a− 1, t)− F (a, t)F (a− 1, t)) +O((1− q)3)

By neglecting terms of the order O((1 − q)2) and approximating F (a, t) +
F (a − 1, t) ≈ 2F (a, t) for a sufficiently smooth distribution, we can further
write

∂F (a, t)

∂t
= (2q − 1)

(
F (a, t)2 − F (a, t)

)
.

2

In the following we derive a lemma and a corollary which will help us

to show that Equation (26) admits a traveling wave solution with a stable

shape. This result is given in Proposition 5.19

First, from Equation (26) we can derive the following lemma:

Lemma 1. Let F
(1)
a (t) and F

(2)
a (t) be solutions of Equation (26) with initial

data chosen such that F
(1)
a (0) ≥ F

(2)
a (0). Then for all t > 0 we have that

F
(1)
a (t) ≥ F

(2)
a (t).

Proof of Lemma 1. We introduce the difference

Va(t) = F (2)
a (t)− F (1)

a (t).

In the following we show that if Va(0) ≤ 0 then Va(t) ≤ 0 for all t > 0. We
can write Equation (26) as follows

∂Fa(t)

∂t
+ Fa(t) =

2q − 1

2
Fa(t)

2 +
3− 2q − p

2
Fa(t) +

p

2
Fa−1(t).

19Our results are heavily inspired by Bramson [1983], who analyzed the traveling wave

solution u(x, t) = w(x− νt) of the Kolmogorov equation ∂u
∂t

= f(u) + ∂2u
∂x2 .
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We then get for Va(t)

∂Va(t)

∂t
+ Va(t) =

2q − 1

2
((F (2)

a (t))2 − (F (1)
a (t))2) +

3− 2q − p

2
Va(t) +

p

2
Va−1(t)

=
2q − 1

2
︸ ︷︷ ︸

≥0

Va(t)
︸ ︷︷ ︸

≤0

(F (2)
a (t) + F (1)

a (t))
︸ ︷︷ ︸

≥0

+
3− 2q − p

2
︸ ︷︷ ︸

≥0

Va(t)
︸ ︷︷ ︸

≤0

+
p

2
︸︷︷︸

≥0

Va−1(t)
︸ ︷︷ ︸

≤0

.

Hence, we find that if Va(t) ≤ 0 for all a ≥ 0 then also ∂Va(t)/∂t+Va(t) ≤ 0.
Next, we show that if Va(t) ≤ 0 and ∂Va(t)/∂t + Va(t) ≤ 0 then also

Va(t + s) ≤ 0 for all s > 0. For this purpose, let ǫ = s/n with n ∈ N. For
n being sufficiently large (and ǫ sufficiently small) we can use a first-order
Taylor approximation to write

Va(t+ ǫ) = Va(t) +
∂Va(t)

∂t
ǫ

Va(t+ 2ǫ) = Va(t+ ǫ) +
∂Va(t+ ǫ)

∂t
ǫ

...

Va(t+ nǫ) = Va(t+ (n− 1)ǫ) +
∂Va(t+ (n− 1)ǫ)

∂t
ǫ

We can assume that Va(t) ≤ 0. If ∂Va(t)/∂t ≤ 0 then we also have that
Va(t+ ǫ) ≤ 0. Otherwise, we observe that

Va(t+ ǫ) = Va(t) +
∂Va(t)

∂t
ǫ ≤ Va(t) +

∂Va(t)

∂t
≤ 0,

so that also in this case Va(t+ ǫ) ≤ 0. We can repeat this argument for all
ǫ, 2ǫ, . . . , nǫ = s and show that Va(t+ s) ≤ 0. 2

A direct consequence of Lemma 1 is the following corollary.

Corollary 5. Let Fa(t) be a solution of Equation (26) with Heaviside initial
data, that is

Fa(0) = Θ(a− ā) =

{

0, if a < ā,

1, if a ≥ ā.
(37)

Further, define mǫ(t) = inf{a : Fa(t) ≥ ǫ} for any ǫ ∈ [0, 1]. Then we have
that Fa+mǫ(t)(t) converges uniformly to some function fǫ(a) as t→ ∞.

Proof of Corollary 5. For t0, b ∈ R+ we set for any a ≥ 0

F (1)
a (t) = Fa+mǫ(t0)(t)

F (2)
a (t) = Fa+mǫ(t0+b)(t+ b).
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Fa(t)
Fa(t+ s)

ǫ

mǫ(t) mǫ(t+ s)

Figure 9: Illustration of distributions and at times t and t+ s for s > 0.

If we start from Heaviside initial data we have that F
(1)
a (0) ≥ F

(2)
a (0) and

Proposition 1 applies. It follows that F
(1)
a (t) ≥ F

(2)
a (t) for all t > 0. We

then can write

0 ≤ Fa+mǫ(t0+b)(t0 + b) ≤ Fa+mǫ(t0)(t0) ≤ 1.

For each value of b this is a decreasing sequence of real numbers which is
bounded from below and thus its infimum is the limit. In particular, since
t0, b and ǫ were chosen arbitrarily, we obtain that Fa+m0(t)(t) converges to
some f(a) ≥ 0 from above as t→ ∞. An illustration can be seen in Figure
9. Note that since Fa(t) is monotonic and f(a) is continuous, convergence
is uniform. 2

With Corollary 5 in place we are now ready to give the proof of Propo-

sition 5.

Proof of Proposition 5. By Corollary 5 we can fix a value of ǫ = 1
2 ,

where m1/2(t) is the median of F (t), and have that

lim
t→∞

Fa+m1/2(t)(t) = f(a),

for some time-independent function f(a) satisfying f(0) = 1/2. This implies
that

lim
t→∞

dFa+m1/2(t)(t)

dt
= 0,

or equivalently

∂Fa+m1/2(t)(t)

∂t
+
∂Fa+m1/2(t)(t)

∂a

dm1/2(t)

dt
= o(1).
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Using Equation (26), the above equation can be written as follows

o(1) =
2q − 1

2
Fa+m1/2(t)(t)

2 +
1− 2q − p

2
Fa+m1/2(t)(t) +

p

2
Fa+m1/2(t)−1(t)

+
∂Fa+m1/2(t)(t)

∂a

dm1/2(t)

dt
.

Integrating with respect to time over the interval [t, t + 1), considering a
value of t large enough and integrating over [0, a), we obtain

o(1) =

∫ a

0

(
2q − 1

2
f(x)2 +

1− 2q − p

2
f(x)

p

2
f(x− 1)

)

dx

+ f(a)(m1/2(t+ 1)−m1/2(t)).

The only time dependent term on the RHS from the above equation is
m1/2(t+ 1)−m1/2(t) while the LHS is constant so that we must have

lim
t→∞

(m1/2(t+ 1)−m1/2(t)) = ν

for some constant ν ≥ 0. In particular, if m1/2(t) = νt then the above
equation is trivially satisfied.

Further, we must have that Fm1/2(t)(t) = Fm1/2(t+s)(t+s), or equivalently,

Fνt(t) = Fν(t+s)(t+ s), and this is satisfied for Fa(t) = f(a− νt). It follows
that the solution of Equation (26) must be a traveling wave. Note that due
to the stable shape of the traveling wave, the above result holds for any
value of ǫ. 2

Proof of Proposition 6. First, we prove part (i) of the proposition. In
order to solve for the traveling wave solution of Equation (26) we observe
that in terms of the complementary cumulative log-productivity it can be
written as

∂G(a, t)

∂t
=

2q − 1

2
(−G(a, t)2 +G(a, t))− p

2
(G(a, t)−G(a− 1, t)). (38)

Proposition 5 implies that the dynamics of the complementary cumulative
log-productivity distribution G(a, t) in Equation (38) admits a traveling
wave solution G(a, t) = g(x), x = a− νt with velocity ν satisfying

ν
dg(x)

dx
=

2q − 1

2
(g(x)2 − g(x)) +

p

2
(g(x)− g(x− 1)). (39)

We assume that on the balanced growth path the complementary cu-
mulative log-productivity distribution G(a, t) has the traveling wave form
G(a, t) ∝ e−λ(a−νt) for a much larger than νt. Observe that for values of
a much larger than νt we can neglect the term G(a, t)2 in Equation (38).
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Then we obtain from Equation (38) the following condition for ν

λνe−λ(a−νt) =
2q − 1

2
e−λ(a−νt) − p

2
e−λ(a−νt) +

p

2
e−λ(a−1−νt).

Solving for ν yields

ν =
2q − 1− p+ peλ

2λ
. (40)

For sufficiently steep initial conditions with compact support the exponent
λ is realized that minimizes the traveling wave velocity ν. This is called
the selection principle [Bramson, 1983; Murray, 2002]. The corresponding
value of λ can be obtained from the first order conditions dν/dλ = 0, or
equivalently

2q − 1− p+ peλ = pλeλ. (41)

The minimum of Equation (40) is obtained at λ solving Equation (41). This
yields

λ = 1 +W

(
2q − 1− p

pe

)

, (42)

where W is the Lambert W function (or product log), which is the inverse
function of f(w) = wew.

Next, we show part (ii) of the proposition, where we consider the rear
of the traveling wave. For a much smaller than νt we can neglect the term
F (a, t)2 in Equation (26) to obtain

∂F (a, t)

∂t
= −2q − 1

2
F (a, t)− p

2
(F (a, t)− F (a− 1, t)).

Assuming that F (a, t) ∝ eρ(a−νt), ρ ≥ 0, we get

2ρν = 2q − 1 + p− pe−ρ. (43)

This equation can be solved numerically to obtain the exponent ρ [see e.g.
Press et al., 1992, Chap. 9]. 2

Proof of Proposition 7. Motivated by our analysis for the case of β =
0, we make the following assumption on the log-productivity distribution

Pa = N

{

eρ(a−νt), if a ≤ νt,

e−λ(a−νt), if a > νt,
(44)

with the normalization constant N given by

1

N
=

eρ

eρ − 1
+

1

eλ − 1
. (45)
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The average log-productivity is then given by

E(a) =
∞∑

b=1

bPb = N
νt∑

b=1

beρ(b−νt) +N
∞∑

b=νt+1

be−λ(b−νt)

= N

(
eλ + νt(eλ − 1)

(eλ − 1)2
+
eρ(e−ρt − 1 + νt(eρ − 1))

(eρ − 1)2

)

≈ νt,

for large t. Note that both, the distribution as well as the innovation prob-
ability are translational invariant, since they only depend on the difference
a− νt. We then can write Equation (21) for a > νt as follows

pinβ =
1

1 +

(

1+N
(e−1)e−λ(a−νt−1)

(eλ−1)(eλ−e)

1+p(Ā−1)

) β
ln(Ā)

.

For small values of β this can be written as

pinβ =
1

2 + γ
(

1 + (e−1)(eρ−1)
(eλ−e)(eλ+ρ−1)

e−λ(a−νt−1)
) ,

where we have denoted by γ = β/(ln(Ā)(1 + p(Ā − 1))) and used the fact
that

N =
(eρ − 1)(eλ − 1)

eρ+λ − 1
.

For a large enough we get pinβ ∼ 1
2+γ . Similarly, for a < νt one can show

that

pinβ =
1

2 + γ
(

(eλ−1)(e−1)eρ

(eλ+ρ−1)(eρ+1−1)
e−ρ|a−νt| + (eλ−1)(eρ−1)

(eλ−1)(eρ+1−1)
e|a−νt|

) .

For a much smaller than νt we get pinβ ∼ 0. Let us denote by A =

(e−1)(eρ−1)eλ

(eλ−e)(eλ+ρ−1)
, B =

(−1+eλ)(−1+e)eρ

(−1+eλ+ρ)(−1+e1+ρ)
, C =

e(−1+eλ)(−1+eρ)

(−e+eλ)(−1+e1+ρ)
. Then we

can write for β small enough

pinβ =







1
2+γ(1+Ae−λ(a−νt))

, if a ≤ νt,

1
2+γ(Beρ(a−νt)+Ce−(a−νt))

, if a > νt,
(46)

With the distribution given in Equation (44) and the innovation probability
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from Equation (46), we obtain for a larger than νt from Equation (25)

λν =
νt∑

b=1

(

1− 1

2 + γ
(
Beρ(b−νt) + Ce−(b−νt)

) + 1− 1

2 + γ
(
1 +Ae−λ(a−νt)

)

)

Neρ(b−νt)

+
a−1∑

b=νt+1

(

1− 1

2 + γ
(
1 +Ae−λ(b−νt)

) + 1− 1

2 + γ
(
1 +Ae−λ(a−νt)

)

)

Ne−λ(b−νt)

+

(

1− 1

2 + γ
(
1 +Ae−λ(a−νt)

)

)

Ne−λ(a−νt)

+ (1− p)
1

2 + γ
(
1 +Ae−λ(a−νt)

) + peλ
1

2 + γ
(
1 +Ae−λ(a−1−νt)

) − 1,

For a much larger than νt and large t the above equation can be written as

λν =
1 + γ

2 + γ
−
(
eλ − 1

)
(eρ − 1)

eλ+ρ − 1

( ∞∑

b=1

e−λb

2 + γ (1 +Ae−λb)
+

∞∑

b=0

e−ρb

2 + γ (Be−ρb + Ceb)

)

+
1

2 + γ

(

1 + p
(

eλ − 1
))

Rearranging for ν and taking the derivative of ν with respect to λ yields the
FOC

0 =
−2 + p− γ + eλp(−1 + λ)

(2 + γ)λ2

−
∞∑

b=0

(

e−bρ (−1 + eρ)

(

−2 +
1

(e− eλ)
2
(−1 + e1+ρ)

e−bρ

(

−(−1 + e)eρ
(

e− eλ
)2 (

−1 + eλ
)2
γ

+ebρ
(

−2eλ
(

e− eλ
)2 (

−1 + e1+ρ
) (

−1 + eλ+ρ + λ− eρ(1 + λ)
)

−e1+b
(

−1 + eλ
)2

(−1 + eρ) γ
(

e+ e2λ+ρ + eλ(−1 + λ)− e1+λ+ρ(1 + λ)
)))))

×






(

−1 + eλ+ρ
)2



2 +

(
−1 + eλ

) ( e1+b(−1+eρ)
−e+eλ

+ (−1+e)eρ−bρ

−1+eλ+ρ

)

γ

−1 + e1+ρ





2

λ2






−1

−
∞∑

b=1

(

e−bλ (−1 + eρ)

(

(−1 + e)eλ−bλ (−1 + eρ) γ
(
eλ(1 + e) + e2λ(−1 + λ)− e(1 + λ)

)

(e− eλ)
2

+(2 + γ)
(

−1− bλ+ eλ
(

1 + (−1 + b)λ+ eρ
(

1 + λ+ bλ− eλ(1 + bλ)
)))))

×
(
(−1 + e)eλ−bλ (−1 + eρ) γλ

−e+ eλ
+
(

−1 + eλ+ρ
)

(2 + γ)λ

)−2

.

46



This equation can be solved numerically to obtain the values of λ, and from
those the corresponding values of the traveling wave velocity ν. 2

Proof of Proposition 8. The threshold productivity satisfiesAim
i = Ain

i ,
or equivalently a∗ := aimi = aini . With the above values for the expected pro-
ductivities from innovation and imitation this implies that

a∗ + log(1− p+ Āp) = a∗ + log

(

Fa∗ +
∞∑

b=a∗+1

eb−a∗Pb

)

. (47)

This can be written as

1− p+ Āp = Fa∗ +
∞∑

b=1

ebPb−a∗ , (48)

or equivalently

1− p+ Āp = 1−Ga∗ +
∞∑

b=1

ebPb+a∗ = 1 +
∞∑

b=1

(eb − 1)Pb+a∗ . (49)

That is

p(Ā− 1) =
∞∑

b=1

(eb − 1)Pb+a∗ . (50)

The threshold log-productivity a∗ must satisfy the following condition

∞∑

b=a+1

(eb−a − 1)P (b, t)

{

≥ p(Ā− 1) if a ≤ a∗,

< p(Ā− 1) if a > a∗.

The uniqueness and existence of a∗ is equivalent to the strict monotonicity
of the function f(a, t) defined by

f(a, t) =
∞∑

b=a+1

(eb−a − 1)P (b, t).

f(a, t) is strictly monotonous decreasing if f(a − 1, t) − f(a, t) = (e −
1)P (a, t) > 0. This holds for all a in the support S of P (a, t) where
P (a, t) > 0. Hence, if at time t for all a ∈ S we have that P (a, t) > 0
then there exist a unique threshold log-productivity a∗ satisfying the above
condition.

Next, we show that if P (b, t) satisfies the above condition, then it also
must hold that f(a − 1, t +∆t) − f(a, t +∆t) > 0. First, consider a ≤ a∗.
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Then for q = 1, P (a, t) > 0 and F (a, t) > F (a− 1, t) we get

f(a− 1, t+∆t)− f(a, t+∆t) = (e− 1)P (a, t+∆t)

= (e− 1) (F (a, t+∆t)− F (a− 1, t+∆t))

= (e− 1)(F (a, t)2 − F (a− 1, t)2)

> 0.

On the other hand, we can write for a > a∗

P (a, t+∆t) = (1− p)P (a, t) + pP (a− 1, t),

which is positive given that P (a, t) > 0 and p ∈ [0, 1] and so f(a, t + ∆t)
is monotonic decreasing. For ∆t going to zero we obtain the corresponding
result in continuous time. 2

Proof of Proposition 9. Under the assumption that Equation (30) holds
for β large enough, we can insert Equation (30) into Equation (24) to find
that the evolution of the log-productivity distribution can be written as

∂Pa(t)

∂t
=







Pa(t)(Fa−1(t) + Fa(t))− Pa(t), if a ≤ a∗,

Pa(t)Fa∗(t) + (1− p)Pa(t)− Pa(t), if a = a∗ + 1,

Pa(t)Fa∗(t) + (1− p)Pa(t) + pPa−1(t)− Pa(t), if a > a∗ + 1.

For the dynamics of the cumulative log-productivity distribution F (a, t) =
∑a

b=1 P (a, t) we then get for a < a∗

∂Fa(t)

∂t
=

a∑

b=1

∂Pb(t)

∂t

=
a∑

b=1

(Pb(t)(Fb−1(t)− Fb(t))− Pb(t))

= Fa(t)
2 − Fa(t),

where in the last line from above we have used the results obtained in Propo-
sition 2. Next, for a = a∗ + 1 we get

∂Fa∗+1(t)

∂t
=

a∗∑

b=1

dPb(t)

dt
+
∂Pa∗+1(t)

∂t

= Fa∗+1(t)
2 − Fa∗+1(t) + Pa∗+1(t)Fa∗(t)− pPa∗+1(t)

= Fa∗(t)
2 − Fa∗(t)− (Fa∗+1(t)− Fa∗(t))(p− Fa∗(t))

= −(1− Fa∗+1(t))Fa∗(t)− p(Fa∗+1(t)− Fa∗(t)).
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Similarly, for a > a∗ + 1 we get

∂Fa(t)

∂t
=

a∗∑

b=1

∂Pb(t)

∂t
+
∂Pa∗+1(t)

∂t
+

a∑

b=a∗+2

∂Pb(t)

∂t

= Fa∗(t)
2 − Fa∗(t) + Pa∗+1(t)Fa∗(t)− pPa∗+1(t)

+
a∑

b=a∗+2

(Fa∗(t)Pb(t)− p(Pb(t)− Pb−1(t)))

= −(1− Fa(t))Fa∗(t)− p(Fa(t)− Fa−1(t)).

Putting the above results together we can write

∂Fa(t)

∂t
=

{

Fa(t)
2 − Fa(t), if a ≤ a∗,

−(1− Fa(t))Fa∗(t)− p(Fa(t)− Fa−1(t)), if a ≥ a∗ + 1.

Note that for all a ≥ 1 and t ≥ 0 we have that dFa(t)
dt ≤ 0. 2

Proof of Proposition 10. We first prove part (i) of the proposition. We
assume that the log-productivity distribution for a > a∗ is given by P (a, t) =
Ne−λ(a−νt) with a proportionality factor N = P (a∗, t). For the complemen-
tary cumulative distribution function G(a, t) = 1−F (a, t) =∑∞

b=a+1 P (b, t)
for a > a∗ this implies that

G(a, t) =
∞∑

b=a+1

Ne−λ(b−νt) =
N

eλ − 1
e−λ(a−νt). (51)

In terms of the complementary cumulative distribution function G(a, t) =
1 − F (a, t) we then can write Equation (31) for a much larger than the
threshold a∗ as

∂G(a, t)

∂t
= G(a, t) (1−G(a∗, t))− p (G(a, t)−G(a− 1, t))

Inserting Equation (51) yields

λνe−λ(a−νt) = e−λ(a−νt)

(

1− N

eλ − 1

)

− p
(

e−λ(a−νt) − e−λ(a−1−νt)
)

(52)

which gives

λν = 1− N

eλ − 1
− p

(

1− eλ
)

. (53)

Next, note that the threshold log-productivity a∗ satisfies

a∗ + log

(

F (a∗, t) +
∞∑

b=a∗+1

eb−a∗P (b, t)

)

= a∗ + log
(
1 + p(Ā− 1)

)
. (54)
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This means that the expected log-productivity obtained through innovation
equals the expected log-productivity obtained through imitation. Equation
(54) can be written as

∞∑

b=a∗+1

(eb−a∗ − 1)P (b, t) = p(Ā− 1)

Inserting P (a, t) = Ne−λ(a−νt) into the above equation and assuming that
a∗ = νt yields

p(Ā− 1) = N

∞∑

b=1

(eb − 1)e−λb = N

(
1

eλ−1 − 1
+

1

1− eλ

)

,

so that

N = p(Ā− 1)

(
1

eλ−1 − 1
+

1

1− eλ

)−1

, (55)

Inserting N into Equation (53) gives

λν = 1− p(Ā− 1)

eλ − 1

(
1

eλ−1 − 1
+

1

1− eλ

)−1

− p(1− eλ),

so that we obtain

ν =
1

λ

(

1 + p(eλ − 1)− p(Ā− 1)(1− e1−λ)

e− 1

)

. (56)

According to the selection principle we have encountered already in the proof
of Proposition 6, for sufficiently steep initial conditions of F (a, 0) the value
of λ is realized that minimizes Equation (56). The traveling wave velocity
ν as a function of λ for different values of p can be seen in Figure 10 (left).
The corresponding first-order condition (FOC) is given by

dν

dλ
=

1− e+ p(Ā+ e− 2) + (e− 1)eλp(λ− 1)− (Ā− 1)e1−λp(1 + λ)

(−1 + e)λ2
= 0

and Equation (33) follows. The FOC from above is equivalent to

e− 1

Ā+ e− 2 + (e− 1)eλ(λ− 1)− (Ā− 1)e1−λ(1 + λ)
= p, (57)

which is illustrated in Figure 10 (right).
Next, we consider part (ii) of the proposition. Observe that for values of

a much smaller than a∗ = νt we can neglect the term F (a, t)2 in Equation
(31). We then assume that the rear of the log-productivity distribution can
be described by an exponential function P (a, t) ∝ eρ(a−νt). Inserting this
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Figure 10: (Left) The traveling wave velocity ν as a function of λ for different values of
p = 0.1, p = 0.5 and p = 1. (Right) The ν minimizing value of λ for the same values of p.
The figures show that the minimizing value of λ is decreasing for increasing values of p,
and consequently, the front of the traveling wave becomes steeper. Moreover, the velocity
ν of the traveling wave increases with increasing values of p.

into Equation (31) for a smaller than a∗ gives

−ρνeρ(a−νt) = −(2q − 1)eρ(a−νt),

and hence we obtain

ρ =
1

ν
.

2

Proof of Proposition 11. The traveling wave velocity in the limit of
β → 0 follows from Equations (27) and (28) as

lim
β→0

min
λ
ν(λ;β) =

1 + p(e
1+W

(

1−p
pe

)

− 1)

2(1 +W
(
1−p
pe

)

)
,

while the traveling wave velocity for β → ∞ is given by Equation (32). We
then have that

lim
β→∞

ν(λ;β)− lim
β→0

min
λ
ν(λ;β)

=
1

λ

(

1 + p(eλ − 1)− p(Ā− 1)(1− e1−λ)

e− 1

)

− 1 + p(e
1+W

(

1−p
pe

)

− 1)

2(1 +W
(
1−p
pe

)

)
> 0.

An illustration of limβ→∞ ν(λ;β) and limβ→0minλ ν(λ;β) can be seen in
Figure 11. Since the above equation holds for all λ, it holds in particu-
lar for the value of λ minimizing limβ→∞ ν(λ;β), and hence, we have that
limβ→∞ ν(λ;β) > limβ→0 ν(λ;β). A higher traveling wave velocity ν implies
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Figure 11: The traveling wave velocity limβ→∞ ν(λ;β) as a function of λ shown with a
solid curve and limβ→0 minλ ν(λ;β) shown with a dashed line for p = 0.1 and log Ā = 1.

first-order stochastic dominance of the respective cumulative distribution
functions and therefore a higher average productivity. 2

B. Model Extensions

B.1. Evolution of the Productivity Distribution with Decay

In this section we extend the model in the sense that firms not only ex-

hibit productivity increases due to their innovation and imitation strategies

but they are also exposed to possible productivity shocks, if e.g. a skilled

worker leaves the company or one of their patents expires, leading to a de-

cline in productivity. Specifically, we assume that in each period t a firm

exhibits a productivity shock with probability r ∈ [0, 1] and this leads to

a productivity decay of δ. Otherwise, the firm tries to increase its produc-

tivity through innovation or imitation as discussed in the previous sections.

If firm i with log-productivity ai(t) experiences a productivity decay in a

small interval δt = 1/N then her log-productivity at time t+∆t is given by

ai(t+∆t) = ai(t)− δ,

where δ ≥ 0 is a non-negative discrete random variable. Denoting by P(δ =

1) = δ1, P(δ = 2) = δ2,..., we can introduce the matrix

Tdec =









0 0 . . .

δ1 −δ1 0 . . .

δ2 δ1 −δ1 − δ2 0 . . .
...

...
. . .

. . .
. . .









.
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The evolution of the log-productivity distribution in the limit of large N is

then given by

∂P (t)

∂t
= P (t)

(

(1− r)
(
(I−D)Tin +DTim(P (t))

)
+ rTdec − I

)

. (58)

B.2. Firm Entry and Exit

We assume that at a given rate γ ≥ 0, new firms enter the economy with

an initial productivity A0(t) = A0e
θt, A0, θ ≥ 0, The productivity A0(t)

corresponds to the knowledge that is in the public domain and is freely ac-

cessible.20 A higher value of θ corresponds to a weaker intellectual property

right protection. A0(t) can also represent the technological level achieved

through public R&D. New firms can start with this level of productivity

when entering. Moreover, we assume that incumbent firms cannot have a

productivity level below A0(t). Finally, we assume that incumbent firms

exit the market at the same rate γ as new firms enter, keeping a balanced

in- and outflow of firms [similar to e.g. Saichev et al., 2009]. This means

that a monopolist in sector i that exits the economy at time t is replaced

with a new firm that starts with productivity A0(t).

We assume that in each period, first, a randomly selected firm either

decide to conduct in-house R&D or imitate other firms’ technologies and,

second, entry and exit takes place. Both events happen within a small time

interval [t, t + ∆t]. We then have to modify Equation (23) accordingly. In

the case of A0 = 1 we can write in the limit of large N

∂P (t)

∂t
= (1− γ − θt)P (t)

(
(I−D)Tin +DTim(P (t))− I

)
+ (γ − θt− 1)Q.

where Q = [1 0 0 . . . ].

20In contrast, any technology corresponding to a productivity level above A0(t) embod-
ied in a firm is protected through a patent and is not accessible by any other firm. Firms
can imitate other technologies, but only if they are within their absorptive capacity limits.
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B.3. Absorptive Capacity Limits with Cutoff

We assume that imitation is imperfect and a firm i is only able to imitate

a fraction D ∈ (0, 1) of the productivity of firm j.

Ai(t+∆t) =







Aj(t) if Aj/Ai ∈]1, 1 +D],

Ai(t) otherwise.
(59)

Thus, the productivity of j is copied only if it is better than the current

productivity Ai of firm i, but not better than (1 + D)Ai. We call the

variable D the relative absorptive capacity limit. Taking logs of Equation

(59) governing the imitation process reads as

ai(t+∆t) =







aj(t) if aj − ai ∈]0, d],
ai(t) otherwise.

(60)

We have introduced the variables d = log(1+D). For small D it holds that

d ≈ D. The variable d is called the absorptive capacity limit.

We now consider the potential increase in productivity due to imitation

and the associated transition matrix Tim. Following Equation (59) we as-

sume that a firm with a log-productivity of a(t) can only imitate those other

firms with log-productivities in the interval [a(t), a(t) + d]. In this case Tim

depends only on the the current distribution of log-productivity P (t) and

simplifies to

Tim =









S1(P ) P2 . . . P1+d 0 . . .

0 S2(P ) P3 . . . P2+d 0 . . .

0 S3(P ) P4 . . . P3+d . . .
. . .

. . .
. . . . . .

. . .









,

with Pb = P (b, t) and Sb(P ) = −Pb+1−...−Pb+d. For the initial distribution

of log-productivity P (0), the evolution of the distribution is governed by

∂P (t)

∂t
= P (t)

(
(I−D)Tin +DTim(P (t))− I

)
,

where similar to the previous sections we have assumed that ∆t = 1/N and

taken the limit N → ∞.
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