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1 Introduction

We treat formally two issues that have been dealt with in an ad hoc manner in the marriage

matching literature: the price of stability and welfare comparisons of matchings.

In many applications stability is vital. By definition, every unstable matching contains

at least one blocking pair, a man and a woman who prefer each other to their assigned

mates. A blocking pair has the potential to cause a matching to unravel. However, in some

scenarios stability is not vital; for example, a strong central authority can prevent renego-

tiation, that is, can prevent blocking pairs from abandoning their assigned mates to form

new marriages, and can thereby prevent unstable matchings from unraveling. In particular,

a school district with a strong central administration can forbid schools from altering their

enrollments once matchings have been made by the mechanism of choice. Alternatively, if

participants are made aware that they would expect to do better under a mechanism that

doesn’t guarantee stability than under any stable matching, they might be willing and able

to commit as a group to non-renegotiation. Even when participants are not aware that they

could expect to do better under a mechanism that doesn’t guarantee stability, they may be

extremely unhappy about the results of a stable matching mechanism.1 Even when forced

or committed non-renegotiation cannot be attained, it may be so difficult for blocking pairs

to find each other that unraveling is unlikely to start and once started is likely to stall. In

cases such as these where stability is not vital, it is useful to weigh the price of stability

against the value of stability. Finally, even when stability is vital, curiosity alone motivates

an investigation of the price of stability. With all these motives in hand, we will begin our

investigation by adapting the definition of price of stability from Roughgarden and Tardos

(2007) for use in the marriage matching arena.

This brings us to our second issue. Before we can present a formal definition of the

price of stability, we need a general method for assigning values to matchings. Many

1For example, in 2002 a class-action lawsuit was brought against the National Residency
Matching Program, the matching mechanism that assigns new doctors to residencies, on
the grounds that the stable mechanism held down the salaries of new doctors. Bulow and
Levin (2006) provide theoretical support for the defendants’ claim, and Crawford (2008)
suggests improvements to the matching procedure to alleviate such problems. More details
on the case itself are available in those papers.
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studies assign values to matchings, but this has always been done in an ad hoc manner.

For example, Ergin (2002) and Klaus and Klijn (2007) observe that stability and Pareto

optimization are inconsistent when we define Pareto dominance with consideration for

only one side of the market, in other words, in markets for which we are interested in

pleasing the agents on only one side of the market. From the fact that the authors make

this observation, we can infer that they place, albeit implicitly, a higher value on stable

matchings than on unstable matchings and a higher value on Pareto optimal matchings

than on Pareto dominated matchings. (Incidentally, their observation is also an example

of an informal consideration of the price of stability.) Similarly, the observation by Roth

(1982) that stability and strategy-proofness are incompatible in certain circumstances is

also an example of informal assignment of values to matchings and informal consideration

of the price of stability. Many other instances are discussed in our literature review in the

next section.

We will provide a formal foundation for assigning values to matchings by adapting the

concept of a social welfare function for use in the marriage matching arena. Probably the

chief argument against using social welfare functions to assign values to matchings is that

men’s and women’s preferences are ordinal in nature, and therefore any comparison between

matchings that takes men’s and women’s preferences into account should not be cardinal

in nature. It will be convenient to delay the presentation of several counterarguments until

after we have defined social welfare functions and given several examples.

We can now give a brief informal preview of our two key definitions. A social welfare

function (SWF) assigns a nonnegative real number to every ordered pair consisting of a

matching and a preference profile. For a fixed market size, the price of stability associated

with a SWF f is the maximum over all preference profiles of the ratio of the maximum

value of f over all matchings and the maximum value of f over all stable matchings. Then

we will say there is a price tag attached to stability if the price of stability as just defined

is greater than one. Our definitions differ from the models on which they were based only

in that we allow the value of a SWF to vary not only with the outcome of some process (in

our case the outcome is a matching), but also with a feature of the market, the preference

profile. This makes it possible for the values we place on matchings to depend, in a variety
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of ways, on the levels of satisfaction of the participants.

The rest of the paper is organized as follows. Section 2 reviews the literature. In Sec-

tion 3 we define social welfare functions (SWFs) over marriage matchings, provide several

examples and argue that SWFs are legitimate tools for the study of marriage matching.

In Section 4 we define the price of stability for marriage matching and show that for most

of our examples of SWFs there is a price tag attached to stability. We show that for at

least two of our examples a search for that price tag does not require the construction of

strange, rare or complex preference profiles. Rather, for large markets a randomly chosen

preference profile will almost certainly show that the SWF in question comes with a price

tag attached to stability. We demonstrate that the price of stability for two of our exam-

ples is substantial. Section 5 concludes with a discussion of how simulation can provide

information about the price of stability for many scenarios that are intractable via theory.

Proofs appear in the appendix.

2 Literature Review

Although our study is the first to make a formal, systematic study of social welfare and

of the price of stability in two-sided matching markets, many authors have discussed the

relative merits of different matching mechanisms and in doing so have of necessity dealt

with social welfare and at times with the price of stability, albeit in an ad hoc manner.

Unfortunately, different papers often use similar or identical terms (“fairness”, for example)

in reference to notions of welfare that are actually quite different from one another. Thus,

in this section we review the literature to compare and contrast these different notions of

welfare, allowing us to put existing results, as well as the results of this paper, in proper

context.

The most common notion of equilibrium in matching markets is that of stability. In a

traditional marriage matching market, a match is stable, if the match has no blocking pairs.

A blocking pair is a man and women who mutually prefer one another to their existing

partners.

Stability is often considered to be the top priority in matching markets. Many successive
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rounds of recontracting can be costly, so quickly arriving at a stable match can save time

and effort. Also, since stable outcomes are Pareto-efficient, stability is often thought of as

synonymous with general efficiency in matching markets. In almost all of the matching

literature, then, stability is assumed to be critical for market welfare, although it is not

always explicitly designated as such.

Gale and Shapley (1962) proved that all marriage markets have at least one stable out-

come, and provided a (now eponymous) algorithm to obtain such an outcome. Subsequent

work by Kelso and Crawford (1982) and Roth (1984) proved that stable outcomes are also

always possible in many-to-one and many-to-many matching markets respectively, given

fairly weak separability restrictions on agents’ preferences. Echenique and Oviedo (2006)

then considered several related variants of stability for many-to-many markets, and verified

slightly stronger preference restrictions which again ensure the existence of such outcomes.

In all instances, however, though a matching market’s set of stable outcomes can be

guaranteed non-empty, it is rarely single-valued. And when more than one stable matching

does exist for a market, the set has a lattice structure with respect to the interests of the

two sides of the market (for the case of one-to-one matching see Roth and Sotomayor,

1990, Theorem 3.8 attributed to Conway; for generalizations to the many-partner cases see

Blair, 1988, and Echenique and Oviedo, 2006). That is, in the case of marriage matching,

there will always be one stable matching that is most preferred by all men and least

preferred by all women. This is known as the man-optimal matching. There will also be

an analogous woman-optimal matching, with matchings in between being partially ordered

by at-least-as-good-for-every-man when moving from the man-optimal toward the woman-

optimal matching and vice versa.

This polarization of interest in stable matchings points to another potential dimension

of welfare for matchings in addition to stability, one sometimes referred to as “fairness”.

For example, if the aforementioned Gale-Shapley algorithm is used in practice it constructs

either the man- or woman-optimal matching, but showing such favoritism to one side of

the market may seem unfair to the unfavored side. Thus, there has been a substantial

amount of interest in matchings that attain some compromise between the interests of the

two sides. If stability is taken as a necessary criteria that must be satisfied, this gives rise
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to the notion of median stable matchings, which have been studied by Teo and Sethuraman

(1998), Sethuraman et al. 2006), and Klaus and Klijn (2006a, 2010).

Loosely speaking, a median stable matching is a matching that is stable, but which

favors neither side of the market over the other (to the extent that is possible). More

specifically, if there are 2k + 1 stable matchings for a two-sided market, each agent will

have a (possibly weak) preference ordering over them. The median stable matching is such

that it is every agent’s (k + 1)th most preferred out of the set of all stable matchings. If

there is an even number of stable matchings, say 2k, the median gives all agents their kth

or (k + 1)th choice out of the set of stable matchings. Teo and Sethuraman (1998) and

Sethuraman et al. (2006) prove the existence of such matchings for one-to-one and many-

to-one settings respectively using linear programming methods. Klaus and Klijn (2010)

and (2006a) do the same, though using simpler methods based on the lattice structure of

the set of stable matchings.

Romero-Medina (2005) similarly studies compromise between the two sides of the mar-

ket, defining what he calls an equitable algorithm, which selects only those matchings that

are in the middle of the lattice of stable matchings. That is, those matchings that are

in between the polarized interests of the two sides of the market. Romero-Medina (2005)

labels this set of matchings the equitable set, but the concept obviously bears a close re-

semblance to the idea of median matchings. In all five cases (Teo and Sethuraman, 1998;

Sethuraman et al., 2006; Klaus and Klijn, 2010, 2006a; Romero-Medina, 2005), the concept

of the compromise between the two sides of the market is specifically labeled as a type of

fairness.

In particular, a unique median stable matching (or equitable matching) represents a

type of endstate fairness, since all agents end up with their (k +1)th-most preferred stable

partner out of the set of 2k + 1 stable matchings. Clearly this specific type of fairness

may not be possible, however, unless the number of stable matchings is odd. Furthermore,

in the case of randomized stable matching mechanisms–literally mechanisms that select

randomly from among the set of all stable matchings–evaluating an end state may not be

meaningful. If preferences are strictly ordinal, an induced probability distribution over the

set of stable matchings (a randomized mechanism’s end state) is difficult to interpret, in
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terms of fairness or otherwise. Thus, in the absence of endstate fairness, Klaus and Klijn

(2006b) explore what they refer to as procedural fairness.

Procedurally fair randomized stable mechanisms are those in which each agent’s place-

ment in the procedure is uniformly random. This in turn means that each agent has an

equal chance at selecting their most-preferred of all stable partners, an equal chance at

selecting their second-most-preferred stable partner, and so on. Thus, although the end

state may not be considered fair ex post, the procedure is fair ex ante. Klaus and Klijn

(2006b) compare two different procedurally fair randomized mechanisms, as well as a third

which is actually a randomized extension of Romero-Medina’s (2005) equitable algorithm,

and which combines elements of both procedural and end-state fairness.

Whether considering endstate or procedural fairness, Klaus and Klijn (2006a, 2006b,

2010) and Romero-Medina (2005) frequently cite philosopher John Rawls’ (1971) concep-

tion of justice. This is with good reason, since equality of opportunity is an integral

part of Rawls’ conception, and his brand of justice has proved to have a considerable and

longstanding impact on many strands of literature. Another aspect to Rawlsian justice,

however, and one that is perhaps more often and more closely associated with Rawls in

the economics literature, is what is sometimes known as the “difference principle” or the

maximin criterion.

The maximin criterion of social welfare simply seeks to make the worst-off individual

as well off as possible. Although such a criterion is not without drawbacks (cf. Dasgupta,

1974, or Tungodden, 1999), its presence has nevertheless persisted, perhaps due to the

appealing logic of Rawls (1971) himself. Paraphrasing very loosely, Rawls (1971) envisions

an initial position of ignorance in which an individual is without any knowledge of where

they will end up in the hierarchy of society. If such an indvidual is given the ability to

choose society’s division of assets from that position, a perfectly equal society might seem

most appealing, but to the extent that any inequality is present it should only be in the

interest of making the worst-off individual(s) as well off as possible.

Unsurprisingly, this maximin criterion has made its way into the matching literature.

Masarani and Gokturk (1989) investigate what they refer to as “fair” matchings, but re-

quire four specific criteria to qualify as fair. A fair matching mechanism according to
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Masarani and Gokturk (1989) must satisfy what they label (i.) gender indifference (nei-

ther side of the market should be favored over the other, a type of endstate fairness, in

line with the aforementioned equitability or median matchings), (ii.) peer indifference (the

order of individuals in the process should not matter, in line with the aforementioned pro-

cedural fairness), (iii.) maximin optimality (the aforementioned Rawlsian criterion), and

(iv.) stability. Unfortunately, this definition of fairness proves impossible to satisfy with an

unrestricted domain of preferences (Masarani and Gokturk, 1989).

Masarani and Gokturk correctly identify a conflict between the maximin criterion and

stability in the midst of their other requirements (a result we will confirm here in isolation

from the other two qualifications), and so they then relax their definition of fairness to

include only elements i., ii., and iv, giving stability primacy over the Rawlsian maximin

principle. Still, even with this more restricted definition, fairness proves to be impossible

to guarantee for all matching markets with an unrestricted domain of preferences. Again,

we will confirm that even in isolation, gender indifference and stability are impossible to

guarantee together for all matching markets.

Though it may be arguable in the case of the maximin criterion, all of the welfare criteria

that we have reviewed so far have been ordinal in nature, relying only on agents preferring

one match to another. Alternatively, welfare could also be measured by interpreting some

kind of cardinality in individuals’ preferences, a practice that also has precedence in the

literature.

The most straightforward utilitarian welfare measure for matching markets is a simple

summation of the rankings individuals give their partners. An individual matched with

their first-ranked partner counts as one, an individual matched with their second-ranked

partner counts as two, and so on. A matching with a lower choice count is then considered

preferable to one with a higher choice count. Combining stability with utilitarianism, it

is then possible to choose a minimum choice count stable matching (McVitie and Wilson,

1971), also known as the egalitarian stable matching (Gusfield and Irving, 1989). But in

fact, the minimum choice count over all stable matchings will not always be the minimum

choice count out of all matchings, and in this paper we will show how far apart the two

can be.
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The utilitarian concept of the choice count can also be combined with notions of fairness

or justice, as well as stability. Romero-Medina (2001), for example, defines the concept of

envy for individuals in matching markets as the number of other agents matched with

partners the individual would prefer to their own. In other words, the amount of envy an

individual has in a match is simply the ranking they give to their partner in that match

minus one. An individual matched with their third ranked partner therefore envies two

other people.

Romero-Medina (2001) then defines the sex equal matching as the stable matching that

minimizes the difference between the cumulative amount envy on each side of the market.

In a classic marriage market, this is equivalent to minimizing (within the set of stable

matchings) the difference between the total men’s and women’s choice count. The sex

equal stable matching is therefore the cardinal analog to the ordinal concepts of median

matchings or Romero-Medina’s (2005) equitable matchings, aiming at compromise between

the two sides of the market.

Of course, Romero-Medina (2001) only selects from the set of stable matchings, claiming

that stability is a requirement for “fairness”. We will show explicitly here that, as it does

with most criteria, the requirement of stability conflicts with the goal of minimizing envy

across the two sides of the market, a property we call balancedness. More generally, Klaus

(2009) defines a fair matching as one that is both stable and envy-free (meaning no agent

is any better or worse off than another), and proves that such matchings are impossible to

guarantee in marriage matching markets, even with monetary transfers allowed.

Finally, there are also cases in which only the welfare of one side of the market is of con-

cern. Balinski and Sönmez (1999), Ergin (2002) and Klaus and Klijn (2007) study student-

school matching problems in which the students’ welfare is the only concern. Schools are

treated as objects with fixed “priorities” rather than agents with manipulable preferences.

They define efficiency as Pareto-efficiency from the sole perspective of the student side of

the market, a form of stability for the student side of the market, and fairness as the tradi-

tional notion of stability, taking into account the preferences of students and the priorities

of schools. Ergin (2002) and Klaus and Klijn (2007) then establish conditions on preferences

to ensure the existence of what they call fair and efficient matching mechanisms.
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The common theme in all of these previous works is the primacy of stability over all

other criteria. Our major departure in this paper is the fact that we consider the sacrifices,

in terms of other welfare criteria, that must be made if stability is to be maintained. We

consider how great the cost of stability can potentially be, and how likely it is that such a

cost will have to be incurred given a random set of preferences.

Our goal in this paper is not to suggest that stability is an undesirable property. It’s

merits are clear. Rather, our goal is simply to point out the fact that it does entail tradeoffs,

and to begin to clarify what those tradeoffs are.

3 Social Welfare Functions

The model considered here is the simple marriage matching problem first popularized by

Gale and Shapley (1962). The model features two finite disjoint sets of agents denoted M =

{m1, m2, . . . ,mn} and W = {w1, w2, . . . , wn}. We adopt the marriage market interpretation

and refer to the two sets as men and women, but alternative interpretations categorize

agents as firms and workers, or workers and machines. Each agent has a complete, strict,

transitive preference ordering over the agents on the other side of the market. Man i’s

preferences are given by a one to one and onto ranking function rmi
: W → {1, 2 . . . , n}

where wj is preferred to wk by mi if rmi
(wj) < rmi

(wk). Woman j’s preferences are

similarly represented by rwj
. A market’s ranking profile, Pn, is then simply the collection

of all agents’ preference orderings induced by their ranking functions.

The outcome of a marriage matching problem is a matching of men and women given by

a one-to-one and onto function µ: M → W . A matching is said to be stable if there does not

exist a blocking pair {mi, wj} such that rmi
(wj) < rmi

(µ(mi)) and rwj
(mi) < rwj

(µ(wj)).

As proved by Gale and Shapley (1962), at least one such matching always exists. Let

S denote the set of all stable matchings. Let µM and µW be the men-propose and the

women-propose Gale-Shapely matching, respectively.

Definition 1. A social welfare function (SWF) f assigns a positive real number to every or-

dered triple (n, µn, Pn), where Pn and µn are, respectively, a ranking profile and a matching

for M ∪W with |M | = |W | = n.
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We will write f(µn, Pn) rather than f(n, µn, Pn) and we will sometimes write µ rather

than µn and/or P rather than Pn if n is fixed or if it is not necessary to specify n.

We now introduce three examples of SWFs and nine examples of families of SWFs. The

first two examples are formalizations of the priority placed on stability and Pareto efficiency

which, as we mentioned in our literature review, is implicit in much of the existing work

on matching.

Example 1 .

f(µ, Pn) =

{
2 if µ is stable

1 otherwise

Example 2 .

f(µ, Pn) =

{
2 if µ is Pareto efficient

1 otherwise

Example 3 . the utilitarian SWF

f(µ, Pn) =
1∑

a∈M∪W ra(µ(a))

As we also mentioned in our literature review, the utilitarian SWF appears in the

marriage matching literature as well; its denominator is the sum of the number of propos-

als in the men-propose and the number of proposals in the women-propose Gale-Shapley

algorithm (the choice count). Also, its denominator is the notion of envy described by

Romero-Medina (2001). It is a simple measure of aggregate satisfaction.

Families of Social Welfare Functions.

Our first few examples of families of SWFs reflect the possibility that some priority

may be given to specific individuals or groups of individuals (entire genders), culminating

in the general notion of monotonicity.

Example 4 . f is a-focused for some a ∈ M ∪W ; that is, f(µ, Pn) > f(µ′, Pn) if

ra(µ(a)) < ra(µ
′(a))

Example 5 . f is strictly female monotonic; that is, f(µ, Pn) > f(µ′, Pn) if µ female Pareto
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dominates µ′, that is, if no female prefers µ′ to µ and some female prefers µ to µ′.

Example 6 . f is strictly male monotonic.

Example 7 . f is strictly monotonic; that is, f(µ, Pn) > f(µ′, Pn) if µ Pareto dominates µ′,

that is, if no male or female prefers µ′ to µ and some male or female prefers µ to µ′.

Our next family of SWFs, Rawlsian SWFs, relate to the maximin optimality of Masarani

and Gokturk (1989) as follows: for P fixed, µ is maximin optimal if and only if µ maximizes

a Rawlsian SWF.

Example 8 . f is Rawlsian; that is, f(µ, Pn) > f(µ′, Pn) if

max{ra(µ(a)): a ∈ M ∪W} < max{ra(µ
′(a)): a ∈ M ∪W}.

Our next example combines the spirit of democracy with the context of matching.

Given Pn, we define a dominating set of matchings as one such that each member defeats

every matching outside the set in a pairwise election. We then define the Smith set as the

smallest nonempty dominating set; that is, the smallest nonempty set of matchings such

that each member defeats every matching outside the set in a head to head election where

the electorate is M ∪W .

The Smith set exists for every Pn since the set of all matchings is a dominating set, the

dominating sets are nested, and the number of matchings is finite.

Example 9 . f is Smith; that is, for every P, f is maximal on the Smith Set.

Our next example is simply a generalization of the already-mentioned priority of sta-

bility to a family of SWFs.

Example 10 . f respects stability; that is, f(µ, Pn) > f(µ′, Pn) if µ is stable and µ′ is not

(for example, Example 1).

Finally, our last two examples allude to the notions of envy-freeness or gender-equality

mentioned in the literature review.

Example 11 . f respects gender balancedness ; that is, f(µ, Pn) > f(µ′, Pn) if∣∣∑
w∈W rw(µ(w))−

∑
m∈M rm(µ(m))

∣∣ <
∣∣∑

w∈W rw(µ′(w))−
∑

m∈M rm(µ′(m))
∣∣.
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The concept of gender balancedness is in the spirit of Romero-Medina (2001), seeking

to minimize the envy across the two sides of the market. Alternatively, it could instead be

the priority to maintain a balance across all individuals.

Example 12 . f respects balancedness across individuals; that is, f(µ, Pn) > f(µ′, Pn) if∑
a∈M∪W

∑
b∈M∪W/a |ra(µ(a))− rb(µ(b))| <

∑
a∈M∪W

∑
b∈M∪W/a |ra(µ

′(a))− rb(µ
′(b))|.

With definition and examples in hand, we are ready to argue that it is appropriate,

that is, reasonable and useful, to consider SWFs whose values may depend on participants’

ordinal preferences. Here are three arguments.

1. Ranking profiles are ordinal and don’t express intensity of preference, but that doesn’t

prevent a central authority, social planner or mechanism designer from possessing prefer-

ences over matchings that are held with varying degrees of intensity.

2. Ranking profiles don’t express intensities of preference, but a participant (man or

woman) probably does hold preferences over mates or even matchings with various de-

grees of intensity. These preferences might be expressible by a SWF which could perhaps

be used by the participant to decide whether to participate in the market. For example,

the preferences of participant a might be represented by an a-focused SWF, while those of

a more community minded participant b might be represented by some combination of a

b-focused SWF and a Rawlsian SWF.

3. SWFs are powerful tools that generate valid ordinal conclusions. For example, a study

of the utilitarian SWF often leads to conclusions like “If preferences are similar to what we

have seen in the past, the average man can expect a match under µ that he ranks seven

places better than his match under µ′.” (Boudreau and Knoblauch, 2010)

4 The Price of Stability

For non-cooperative games, the price of stability is defined as the ratio of a game’s best

equilibrium outcome value to its best (possibly non-equilibrium) outcome value, as mea-
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sured by some objective function (Roughgarden and Tardos, 2007, p. 446). We adapt that

notion here for a marriage matching environment in light of the concept of SWFs which

we have already described.

Definition 2 . For each positive integer n, the price of stability for a social welfare function

is

PofSn(f) = max
Pn

(max{f(µ, Pn): µ is a matching }
max{f(µ, Pn): µ ∈ S}

)
For a SWF f , we will say there is a price tag attached to stability if PofSn(f) > 1.

Our investigation of the price of stability will proceed in three stages in which we present

three types of evidence to show that it is common for stability to come with a price tag at-

tached and that the price of stability can be substantial. First we prove that PofSn(f) > 1

for five of our examples. All proofs are consigned to an appendix.

Theorem 1. There is a price tag attached to stability for Examples 3, 4, 5, 6 8, 11 and

12, n ≥ 3.

Remark . PofSn(f) = 1 trivially for f from Example 1, 10 or 2 (this last since every stable

matching is Pareto efficient). One nontrivial example for which PofSn(f) = 1 is Example

9, for which PofSn(f) = 1 because it can be shown that the set of all stable matchings is

a subset of the Smith set.

Proposition 1. If a SWF f is Smith, then PofSn(f) = 1 for n ≥ 1.

Concerning Example 7, PofSn(f) > 1 holds for some but not all strictly monotonic

SWFs. For instance, we have already seen that PofSn(f) > 1 for the utilitarian SWF ,

but PofSn(f) = 1 for the sum of the utilitarian SWF and the SWF of Example 1.

Notice that our definition of the price of stability is worst-case based in that we max-

imize over all preference profiles. Therefore for a given SWF the price of stability might

be greater than one but the ratio in the definition might be one for all but a few preference
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profiles. In the second stage of our analysis we show that for two of our examples the price

tag attached to stability is not due to rare and unusual preference profiles. In fact, for those

two examples, for large n, the ratio in the definition of the price of stability is greater than

one for nearly all preference profiles, where the meaning of “nearly all” is made precise in

the statement of Theorem 2.

Theorem 2. If f is a-focused and for each n a ranking profile is chosen uniform randomly,

or if f is utilitarian and for each n men’s preferences are identical and women’s are chosen

uniform-randomly, then

Prob(max{f(µ, Pn): µ is a matching } > max{f(µs, Pn): µsis stable}) → 1 as n → +∞.

In our third and final theorem, we prove that the price of stability can be substantial.

Theorem 3. If n ≥ 3,

for the utilitarian SWF, PofSn(f) ≥ n/3

for the a-focused SWF, f(µ, Pn) = 1/ra(µ(a)), PofSn(f) ≥ n

for the Rawlsian SWF, f(µ, Pn) = 1/ max{ra(µ(a)): a ∈ M ∪W}, PofSn(f) ≥ n/2

5 Concluding Remarks

Theorem 3 demonstrates that the price of stability can be substantial and Theorem 2

showed that a price tag attached to stability need not owe it existence to rare and unusual

preference profiles. In real-life markets, a social planner or mechanism designer might want

a combination of Theorem 2- and Theorem 3-type information; that is, she might want

to know the price of stability defined as an average over a category of preference profiles

rather than a maximum over all preference profiles. For example, the social planner might

know the approximate level of correlation (the extent to which the preferences are similar)

on each side of the market, and/or the approximate level of intercorrelation (the extent

to which men prefer women who prefer them) and wish to know the expected-magnitude
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price of stability.

A future study will use another tool to address such questions–simulation. The simula-

tion approach involves three steps: the generation of preference profiles, the construction

of matchings by the mechanisms to be tested and the evaluation of the social welfare func-

tion for each matching. The process is repeated many times to yield an approximation

of the expected level of social welfare provided by each mechanism. The social planner

then has all the information needed (including the price of stability) to choose a matching

mechanism.

The advantage of simulation is that a single approach works for any category of pref-

erence profiles and any matching mechanism. On the other hand the theoretical approach

used in this study is more rigorous and more transparent.

Appendix

Proof of Theorem 1. We treat the examples one by one.

Example 3. f the utilitarian social welfare function. Define Pn by

m1 : w2, w1, w3, ...

m2 : w2, w3, w1, ...

m3 : w3, w2, w1, ...

mk : wk, ... for k > 3

w1 : m1, m2, m3, ...

w2 : m1, m2, m3, ...

w3 : m2, m3, w1, ...

wk : mk, ... for k > 3

Where the ellipses indicate the remaining preferences are irrelevant. Since µM is men

optimal, µW is women optimal and for this Pn µM = µW , the unique stable matching

is µs = (m1, w2), (m2, w3), (m3, w1), (mk, wk) for k > 3. Then f(µs, Pn) = 1
2n+5

. For

µ = (mk, wk) for all k, f(µ, Pn) = 1
2n+3

. Therefore PofSn(f) ≥ 2n+5
2n+3

> 1.

16



Example 4. f is a-focused. Without loss of generality, suppose f is m3 focused. For

Pn, µ, and µs as in the previous proof, rm3(µ(m3)) = 1 < 3 = rm3(µ
s(m3)). Therefore,

f(µ, Pn) > f(µs, Pn) so that P of Sn(f) > 1.

Example 8. Suppose f is Rawlsian. For Pn, µ and µs as in the previous proofs,

max{ra(µ(a)): a ∈ M∪W} = 2 < 3 = max{ra(µ
s(a)): a ∈ M∪W}. Therefore, f(µ, Pn) >

f(µs, Pn) so that PofSn(f) > 1.

Example 6. f is strictly male monotonic. Define Pn by

m1 : w2, w1, w3, ...

m2 : w1, w2, w3, ...

m3 : w2, w1, w3, ...

mk : wk, ... for k > 3

w1 : m1, m3, m2, ...

w2 : m2, m1, m3, ...

w3 : m3, ...

wk : mk, ... for k > 3

Then the unique stable matching is µs = µM = µW = (mk, wk) for k ≥ 1. Consider

µ = (m1, w2), (m2, w1), (mk, wk), (mk, wk) for k > 2. Then µ male Pareto dominates µs.

Therefore f(µ, Pn) > f(µs, Pn) so that PofSn(f) > 1.

Example 5. f is strictly female monotonic. Follows from the previous proof by symmetry.

Example 11. f respects gender balancedness. Define Pn by

m1 : w1, wn−1, wn, ...

m2 : w2, wn, wn−1, ...

m3 : w3, w1, wn−2, ...

mk : wk, wk−2, wn−k+1, ... for k > 3

w1 : m1, mn−1, mn, ...

w2 : m1, m2, mn−1, ...

w3 : m1, m3, mn−2, ...
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wn : m1, mk, mn−k+1, ... for k > 3

The unique stable matching is µs = µM = µW = (mk, wk) for k ≥ 1. In that matching,

rm(µs(m)) = 1 for all m ∈ M , rw1(µ
s(w1)) = 1, and rwk

(µs(wk)) = 2 for all k ≥ 2. But the

matching µ = (m1, wn), (m2, wn−1), (m3, wn−2), (mk, wn−k+1) for k > 3 yields ra(µ(a)) = 3

for all a ∈ M ∪W , making it more balanced both across genders and across individuals.

Example 12. f respects balancedness. See previous treatment for example 11.

Proof of Proposition 1. Fix Pn. Suppose µs ∈ S and µ is a matching. Then for m ∈ M ,

rm(µ(M)) < rm(µs(m)) implies rµ(m)(m) > rµ(m)(µ
s(µ(m))) or else (m, µ(m)) would be a

blocking pair for µs, contradicting its stability. It follows that if µs ∈ S then no matching

defeats µs in a head to head election. Therefore, S is a subset of the Smith set. Since f

is Smith, S is a subset of arg max{f(µ, Pn) : µis a matching}. Therefore, PofSn(f) = 1.

For the proof of theorem 2 we will need a brief description of the men-propose McVitie-

Wilson (1971) algorithm, which for any ordering mi1 , mi2 , . . . ,min of men provides an

n-round sequence of proposals leading to µM . First mi1 proposes to a woman and they

form a temporary pair. Before round k, mi1 , mi2 , and mik−1
are engaged. Round k begins

when mik proposes to his favorite woman. If she is engaged she either rejects mik or accepts

him and rejects her current partner. The rejected man proposes to his next favorite, and

so on. Round k ends when a woman receives her first proposal. At the end of round n, the

matching µM has been achieved.

Proof of Theorem 2a. Without loss of generality, suppose a = m1 and rm1(w1) = 1. It is

sufficient to prove limn→+∞ Prob(µM(m1) 6= w1) = 1.

Given ε > 0 choose positive integer K > 1
ε
.

Consider three procedures. Procedure 1 is the McVitie-Wilson algorithm with propos-

ing sequence m1, m2, . . . ,mn. Procedure 2 is exactly [(n ln n)/2] proposals long and consists

of Procedure 1 truncated after [(n ln n)/2] proposals if necessary; or finished with m1 re-

peatedly proposing to w1 after w1 receives her Kth proposal or if Procedure 1 ends in fewer
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than [(n ln n)/2] proposals. Procedure 3 is [(n ln n)/2]− (K − 1)n draws with replacement

from an urn containing n balls. For i = 1, 2 let Qi be the probability that Procedure i ends

with fewer than K proposals to w1. Let Q3 be the probability that Procedure 3 ends with

fewer than K draws of ball 1.

Then Q2 < Q3, since first of all in Procedure 2 more than [(n ln n)/2] − (K − 1)n

proposals are made with w1 in play. This holds because w1 is out of play only if a man is

making a proposal after proposing to w1 and he is not m1 in the repeated-proposal-to-w1

mode. There are at most K − 1 men who make such proposals and each must make fewer

than n such proposals. Second, in each proposal with w1 in play, the probability that w1

is proposed to is at least 1/n.

Next, each of he following inequalities holds for sufficiently large n.

Q3 <
K∑

j=1

(
[(n ln n)/2]− (K − 1)n

j

)( 1

n

)j
(

n− 1

n

)[(n ln n)/2]−(K−1)n−j

≤ K

(
[(n ln n)/2]− (K − 1)n

K

)( 1

n

)K(n− 1

n

)[(n ln n)/2]−(K−1)n−K

≤ K

(
n ln n

K

)( 1

n

)K(n− 1

n

)(n ln n)/3

≤ K
(n ln n)K

K!

( 1

n

)K( 1
4
√

e

)ln n

(ln n)K 1
4
√

n
< ε

Finally, by the definitions of Procedures 1 and 2, if Procedure 1 ends with fewer than

K proposals to w1 and Procedure 2 ends with at least K proposals to w1, it must be

that Procedure 1 ends after fewer than [(n ln n)/2] proposals. By a result of Pittel (1989,

Theorem 2) this occurs with probability less than ε for sufficiently large n.

In summary, given ε > 0, for sufficiently large n Q1 ≤ Q2 + ε ≤ Q3 + ε ≤ 2ε. Since

Prob(µM(m1) 6= w1) is greater than or equal to the probability that w1 receives at least

1/ε proposals times the probability that µM(m1) 6= w1 given that w1 receives at least 1/ε
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proposals, for sufficiently large n, Prob(µM(m1) 6= w1) ≥ (1− 2ε)(1− ε).

Proof of Theorem 2b. Since men’s preference are identical an exchange of partners has

no effect on men’s aggregate satisfaction, so we need to consider only women’s aggregate

satisfaction.Without loss of generality assume rmi
(wn) = n for all i.

For Pn as in the hypotheses, the probability that wn receives her kth choice under the

unique stable matching µs in 1/n for k = 1, 2, . . . , n. Therefore, the probability that wn is

matched with her [n/ ln n]th choice or worse (where [n/ ln n] is the integer part of n/ ln n)

is

1− [n/ ln n]− 1

n
≥ 1− n/ ln n

n
= 1− 1

ln n
→ 1 as n → +∞

Now suppose µs(wn) is wn’s [n/ ln n]th choice or worse. There are at least [n/ ln n]− 1

women matched with men wn prefers to µs(wn). We can assume µs(wi) = mi and rwn(mi) =

i for i = 1, 2, . . . , [n/ ln n] − 1 and µs(wn) = mn. Then for i = 1, 2, . . . , [n/ ln n] − 1

if wn exchanges partners with wi, rwn(mn) − rwn(mi) ≥ [n/ ln n] − i. The trade results

in an increase in aggregate satisfaction if rwi
(mn) − rwi

(mi) < [n/ ln n] − i, which will

happen if rwi
(mn) < rwi

(mi) + [n/ ln n] − i. Since µs = µM under the hypotheses on

preferences and since rmn(wn) = n, mn must have been rejected by wi before proposing to

wn. Therefore rwi
(mi) < rwi

(mn). The trade with wi results in an increase in aggregate

satisfaction if rwi
(mi) < rwi

(mn) < rwi
(mi)+[n/ ln n]− i. The probability of this occurring

is Prob(rwi
(mi) ≤ rwi

(mn) < rwi
(mi) + [n/ ln n] − i) ≥ [n/ ln n]−(i+1)

n
, where the inequality

follows from the fact that wi’s preferences are uniform random and the fact that if rwi
(mi)+

[n/ ln n]− i > n then the probability in question is 1.

Therefore the probability that none of the trades between wn and wi increase net ag-

gregate satisfaction for i = 1, 2, . . . , [n/ ln n]− 1 is at most

Π
[n/ ln n]−1
i=1 (1− n/ ln n− (i + 1)

n
) ≤ (1− n/2 ln n

n
)n/4 ln n

where the inequality follows by considering only slightly more than the first quarter of

the factors, each of which is bounded above by (1− n/2 ln n
n

). Continuing

(1− n/2 ln n

n
)n/4 ln n = ((1− 1

2 ln n
)2 ln n)n/8 ln2 n → 0 as n → +∞ since (1− 1

2 ln n
)2 ln n → e
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as n → +∞

Finally,

Pr(max{f(µ, Pn): µ is a matching } > max{f(µs, Pn): µs ∈ S}) ≥

Pr(rwn(µs(wn)) ≥ [n/ ln n])×

Pr(some wn − wi trade increases f | (rwn(µs(wn)) ≥ [n/ ln n])

→ 1 as n → +∞ since we showed both factors approach 1.

Proof of Theorem 3. Consider the preference profile Pn:

m1 : w2, w1, ...

m2 : w2, . . . , w3, w1

.

.

mk : wk, . . . , wk+1, w1

.

.

mn−1 : wn−1, . . . , wn, w1

mn : wn, . . . , w1

w1 : m1 . . . mn

w2 : m1, m2, ...

.

.

wk : mk−1, mk, ...

.

.

wn : mn−1, mn, ...

where the ellipses indicate arbitrary preferences. Since µM = µW , there is a unique sta-

ble matching µs: (m1, w2), (m2, w3), . . . , (mn−1, wn), (mn, w1) and for the utilitarian SWF,

f(µs, Pn) = 1
n2+2

. For µ: (m1, w1), (m2, w2), . . . , (mn, wn), f(µ, Pn) = 1
3n

. Therefore
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PofSn(f) ≥ n2+2
3n

≥ n
3
.

For the a-focused SWF f(µ, Pn) = 1
ra(µ(a))

, without loss of generality we take a = mn.

Then for Pn, µ and µs from the first part of this proof, f(µ, Pn) = 1 and f(µs, Pn) = 1
n

so

that PofSn(f) ≥ n.

For the Rawlsian SWF f(µ, Pn) = 1/ max{ra(µ(a)): a ∈ M ∪W} for Pn, µ, µs as above,

f(µs, Pn) = 1/rmn(µs(mn)) = 1
n

and f(µ, Pn) = 1/rwn(µ(wn)) = 1
2

so that PofSn(f) ≥
n/2.
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