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Abstract

This article studies the interaction between simultaneous inter-group and intra-group

con�icts. We introduce power inequality between group members and consider a constant

elasticity of substitution group impact function. We explain how each group�s internal

con�ict in�uences its chance of winning in the external con�ict and show that a less

con�ictive group may expend more e¤ort in collective action if the group impact function

shows enough degrees of complementrarity. In addition, we demonstrate a possible non-

monotonic change in the equilibrium payo¤ and rent dissipation with respect to the power

inequality. (JEL Classi�cation: C72, D72, D74, H41. Keywords: Contest, Collective
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1 Introduction

This article studies the issue of simultaneous inter- and intra-group con�ict in the shadow

of power inequality between group members. There are instances in which groups engage in

costly con�icts in order to win a reward while at the same time the group members confront

each other in order to divide the reward among members of the group. When two or more

individuals within a group work collectively toward certain goal, they often encounter con�ict

from another group which has a similar interest. At the same time, individuals often confront

intra-group con�ict regarding the division of the prize..1

There are many examples. Interest groups compete for rents from government policies

while individuals within the interest group, who may have unequal powers within that group,

contest for the spoils of the victory. Firms producing a system good as complements have

to compete against another system and also have to divide pro�ts among themselves. The

same issue arises in joint R&D ventures. Countries in an alliance con�ict against another

alliance and they also have to decide how to share the burden of costs. The logic works in the

same way for the parties within a political alliance. Even in nature, many species compete

for limited resources within and between species simultaneously. One important application

of the theory is sperm competition under polyandry. There are cases in which sperms from

a male compete with each other in fertilizing the ovum, but at the same time they extract

enzymes or take other collective actions that damage (at least the likelihood of success of)

sperms of other males (Baker, 1996; Buckland-Nicks, 1998). In these examples, the nature

of internal con�ict simultaneously characterizes the shape of external con�ict, in particular,

through collective action between players within a group.2

1This area of literature dates back to Olson (1965) and later developed by Becker (1983), Palfrey and
Rosenthal (1983), Katz et al. (1990), Hardin (1995) among others. This can also be interpreted as the
collective action problem in two potentially important environments: competition between groups and internal
con�ict within a group. Please see Sandler (1992), Ostrom (2000) and Sandler and Hartley (2001) for the
literature review.

2See Münster (2007) and Münster and Staal (2010, forthcoming) for more examples.
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We analyze how the inter-group con�ict interacts with the intra-group con�ict in these

environments with special emphases on the power inequality between the group members

and complementarity in collective action. We use a standard Tullock (1980) type contest

mechanism in each con�ictive situation and include heterogeneity between group members in

terms of power inequality. We de�ne a stronger player in a group as the one who ex-ante has

a higher probability of winning the internal con�ict. We take into account the importance

of complementarity in collective action by considering a Constant Elasticity of Substitution

(CES) group impact function. Speci�cally, we consider two special and contrasting cases

of the additive and the weakest-link group impact functions. Consequently, the interplay

between internal and external con�ict turns out to be a key feature in the analysis of the

overall contest.

There are two contrasting conventional wisdoms about the question of how each group�s

internal con�ict in�uences its chance of winning in external con�ict. One view suggests that

a group with less internal con�ict has an advantage in external con�ict against a rival group

(Deutsch, 1949). The other view is that intra-group con�ict is more conducive in eliciting

e¤orts from group members for external con�ict (Lüschen, 1970). We show that both views

have some validity by clarifying the interaction between inter-group and intra-group contests.

Furthermore, we ask the following questions. Does internal con�ict matter in group members�

collective action for external con�ict? Since the players are heterogeneous in terms of their

within-group power, which player is better o¤ within a group? How signi�cantly can the

degree of power inequality change the total rent dissipation?

The severity of internal con�icts within groups is measured in terms of the rate of rent

dissipation within intra-group con�icts. Not surprisingly, as group members have similar

power, internal con�ict is more severe. In this sense, a more (less) con�ictive group is de�ned

as one in which the power inequality is less (more). We �nd that a more (less) con�ictive

group expends more e¤ort in the inter-group con�ict, in particular when collective action

requires complementary (substitutable) works between group members. This is because each

member�s incentive to contribute to collective action depends on one�s equilibrium share of the

prize in the internal con�ict. Thus, when we compare the weaker individuals within groups,
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the individual in a more con�ictive group is willing to contribute to collective action more

than the one in a less con�ictive group. The same logic holds for the stronger players. As a

result, if individiuals�e¤orts are relatively complementary in impacting the collective action,

a more con�ictive group face a free-rider problem less severely in terms of not expending

enough e¤ort in collective action.

The answer to the question about whether a stronger player is better o¤ than a weaker

player within a group is not straightforward. Although the stronger player can dominate the

weaker player in internal con�ict and have a larger share of the prize, the stronger player

has to contribute more to collective action for external con�ict. This, in turn, results in a

non-monotonic relationship between the power inequality and the players�payo¤s. This has

implications in the issues of coalition formation. The decision to join a coalition depends

crucially on the expected payo¤. In the case of possible inter- and intra-group con�icts, the

relationship between the power asymmetry and the corresponding payo¤ can be the major

driving force for coalition formation.

A similar outcome holds for the relationship between the power inequality and the rent

dissipation. The total rent dissipation is also not monotone with the power inequality and,

interestingly, is minimized when the players are symmetric. This result contrasts starkly to

the standard contest models. As the players are more heterogeneous, the total rent dissipation

gets smaller in a single contest model. However, when the players are engaged in multi-contest

(inter- and intra-group contests), the total rent dissipation can increase with the heterogeneity

of the players.

Most analyses in the group contest literature focus on issues related to contest design that

maximizes overall contest e¤ort by looking at di¤erent impact functions, cost structures and

value distributions. This area of literature originated with Katz et al. (1990). The authors

use a group impact function in which the group members�e¤orts are perfectly substitutable.

The group e¤ort is entered in a Tullock contest success function and the winner group is

decided. They show that the equilibrium group rent dissipation is unique, however one faces

multiple equilibria in terms of individual equilibrium e¤orts. Baik (1993, 2008) generalizes the

analysis by introducing asymmetric valuation within group. He shows that the equilibrium
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rent dissipation by a group depends crucially on the distribution of prize valuation and not

on the group size. However, Katz et al. (1990) and Baik (1993, 2008) do not model any

internal con�ict within the groups.3

Our model is closely related to the study by Münster (2007) in which a simultaneous

inter- and intra-group contest with Tullock contest success function is analyzed. In this

paper, the group impact function is modeled with a simpli�ed CES function, and the players

are resource constrained. The players can allocate their resources into production, inter-

group con�ict and intra-group con�ict. The prize value is determined endogenously by total

e¤ort expended on production. The main �nding of the paper is the group (or reverse group)

cohesion e¤ect which stands for a negative correlation between the intensity of inter-group

con�ict and that of intra-group con�ict. Münster (2007) further studies the optimal group

size and the optimal number of groups from a contest designer perspective. On the other

hand, our paper addresses the very di¤erent issue of the impact of the heterogeneity within

groups and complementarity on inter-group con�ict.4

The remainder of the paper is organized as follows. Section 2 lays out the basic features

of the model. Section 3 characterizes the equilibria for internal con�ict within groups and for

external con�ict between groups. Then, in Sections 4 to 6 we analyze the e¤ect of the power

inequality on the probability of winning, the players�equilibrium payo¤s, and the equilibrium

rent dissipation. We conclude in Section 7 by discussing the possible extensions.

2 Model: Collective Action and Con�ict Technologies

There are two groups, A and B, that contest for a prize whose common value is given by R.

Each group G consists of two risk-neutral players, G1 and G2, where G = A;B. The way the

prize is allocated between the two groups depends on the relative collective e¤orts put forth

by each group. A group�s share of the prize is further contested by the members of each group
3A series of analyses including Nitzan (1991), Katz and Tokatlidu (1996), Wärneryd (1998), Esteban and

Ray (2001), Konrad (2004), Niou and Tan (2005), Münster (2007), Inderst et al. (2008), Cheikbossian (2008),
Lee (2009), Kolmer and Rommeswinkel (2010) among many others, study the problem of group contests.

4Unlike Münster (2007), in our model, the concept of the group cohesion e¤ect is not decisive and it depends
crucially on the nature of the group impact function as well as the power distribution.
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simultaneously. Thus, members of the same group have a common interest and cooperate in

external contest against the rival group, but they are competitors against each other in the

division of the spoils. Each player chooses two di¤erent non-negative e¤ort: contributing to

collective activity for inter-group con�ict and contesting a given share of the prize within

the group. A player i in group A (B) allocates ai (bi) units of e¤ort toward internal con�ict

and �i (�i) units of e¤ort for collective action toward external con�ict. We assume complete

information and that all players make their decisions simultaneously.

Internal Con�ict. Contrary to a substantial part of the literature, we assume players

within a group to be heterogeneous by ability or power, where power is de�ned in terms of

advantage conferred in internal con�ict.5 Without any loss of generality, we designate player

1 of each group to be the one who has more power and thus has advantage in internal con�ict.

This advantage is embedded in the con�ict technology. Let p(x1; x2) be the probability that

player 1 wins in the internal contest when x1 and x2 are the internal e¤ort levels exerted by

player 1 and 2. Under risk neutrality, it can also be interpreted as the share that player 1

receives. Then, internal con�ict is resolved by a Tullock (1980) type contest. The contest

success function in group G is given by

p(x1; x2; �G) =
f(x1)

f(x1) + �Gf(x2)
; if x1 + x2 6= 0;

1

2
, otherwise

where f(xi) = xmi ; �G 2 [0; 1], and G = A;B:

The probability that player 2 wins is simply 1 � p. The parameter �G represents asym-

metry in power distribution within group G, with a higher �G implying a more even power

distribution.6 One way to interpret this function is that player 1 has some advantage within

the group in terms of education, experience, incumbency, technology etc. For instance, if �G
5Another way of incorporating asymmetry is the asymmetry in valuation. To our knowledge Baik (1993)

is the �rst to analyze asymmetric valuation in a Tullock type group contest. However, this analysis does
not consider internal con�ict. Follow-up analyses of Baik (2008), Lee (2009) and Kolmer and Rommeswinkel
(2010) also concentrate only on inter-group contest with asymmetric valuation under di¤erent impact functions.
Konrad (2004) and Baik et al. (2001) analyze similar setting under an all-pay auction CSF.

6This was introduced by Gradstein (1995). Please see Skaperdas (1996) and especially Clark and Riis
(1998) for axiomatization of this type of contest success function. We impose the condition m 2 (0; 2) to
ensure the existence of equilibrium in pure strategies.
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= 1; the power is evenly distributed between the two players, whereas if �G = 0, all the power

in internal con�ict is possessed by player 1 with p(x1; x2; �G) = 1:We refer to player 1 as the

stronger player and player 2 as the weaker player. We also refer to an increase in �G as the

dispersion of power and a decrease in �G as the concentration of power.

Collective Action. F (y1; y2) : R2
+ ! R+ is referred to as an impact function that repre-

sents collective action of a group in external con�ict when the stronger and weaker players

contribute y1 and y2, respectively. In the major part of the existing literature, collective

action is assumed to be a sum of each individual�s e¤ort. This assumption boils down to

a perfect substitute impact function and ignores any possibility of complementary e¤ects

in collective action. However, there are a wide variety of situations in which collective ac-

tion cannot be treated as the sum of individual members�e¤ort.7 Lee (2009), Kolmer and

Rommeswinkel (2010), and Chowdhury, Lee and Sheremeta (2011) are the studies that an-

alyze di¤erent impact functions other than perfect substitutes. However, all of the studies

concentrate on inter-group contest and do not endogenize the intra-group prize sharing rule.

To our knowledge, the only study that uses a generalized impact function and endogenizes

within-group prize share rule in a simultaneous decision making setting is by Münster (2007).

This is later axiomatized by Münster (2009). We also follow the axiomatic structure of

Münster (2009), and extend collective action from the additive functional form to a general

CES impact function.

F (yi; yj) =
�
yri + y

r
j

� 1
r ;

From the properties of a CES function, one can note that (i) F (yi; yj) is concave, Fi(y1; y2) �

0, Fii(y1; y2) � 0, and Fij(y1; y2) � 0, where i; j = 1; 2 with i 6= j and the subscripts indicate

partial di¤erentiation. Hence, collective action is increasing in each member�s contribution,

7For example, Scully (1995) states "[p]layers interact with one another in team sports. The degree of
interaction among player skills determines the nature of the production function." Also, in the early literature
of voluntary contributions to a public good, Hirshleifer (1983) studies the case that the aggregate e¤ort
level can be the smallest contribution within a group, which is assuming the perfect complements between
individuals�e¤orts. The paper acknowledges a possible complementary e¤ect in collective action. However,
the e¤ect of complementary e¤orts between group members has not been thoroughly studied in a model of
group contests. Borland (2007) also argues that while the production function in baseball is nearly additive
in the sense that hitting and pitching are separate activities, players�e¤orts are almost perfect complements
in American football. Please see Konrad (2009) chapters 5.5 and 6.3 for detailed discussion in this.
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but at a diminishing rate. (ii) This impact function is designed to have a constant returns to

scale. (iii) r 2 (�1; 1] represents the degree of complementarity between individuals�e¤orts.

External Con�ict. The group impact function (external con�ict technology) is also as-

sumed to be driven by a Tullock (1980) type CSF. The crucial point here is that the group

impact function depends on collective contributions by individual members of each group.

Let q(F (�1; �2); F (�1; �2)) denote the probability that group A wins in external con�ict.

Hence:

q(F (�1; �2); F (�1; �2)) =
F (�1; �2)

F (�1; �2) + F (�1; �2)
, if F (�1; �2) + F (�1; �2) 6= 0;

1

2
, otherwise

The probability that group B wins is simply 1� q. To economize on notation, we will often

use � = (�1; �2) and � = (�1; �2). For instance, q(F (�); F (�)) =
F (�)

F (�)+F (�) .

3 Equilibrium Analysis

3.1 Internal Con�ict within Groups

The players in group A maximize the objective functions represented by

VA1 = p(a1; a2; �A)q(F (�); F (�))R� a1 � �1

VA2 = [1� p(a1; a2; �A)]q(F (�); F (�))R� a2 � �2:

Our formulation assumes that each player makes a decision on his choice of e¤ort in internal

and external con�icts simultaneously. It is particularly useful if we interpret q(F (�); F (�))

as the probability that group A wins in a winner-take-all external contest. However, if we

take the alternative, non-probabilistic interpretation of q(F (�); F (�)) as the share of A�s

contested resource, the analyses will still work. In the following we will interpret our results

in terms of winner-take-all probability.
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Similarly, the objective functions for the players in group B are given by

VB1 = p(b1; b2; �B)[1� q(F (�); F (�))]R� b1 � �1

VB2 = [1� p(b1; b2; �B)][1� q(F (�); F (�))]R� b2 � �2:

We �rst derive an invariance result that each player�s winning probability in their internal

con�ict (p; 1� p) is independent of the level of their contributions to external con�ict (�;�).

The equilibrium probability of winning and losing in internal con�ict is constant and depends

only on the respective group�s power distribution parameter �G. This result, summarized in

the following Lemma, considerably simpli�es our analysis.

Lemma 1 In equilibrium, both the stronger and weaker players of group G choose the

same level of e¤orts for internal con�ict ( a�1 = a�2 and b
�
1 = b�2). As a result, the winning

probabilities for the stronger and weaker players depend only on �G; p(a�1; a
�
2; �A) =

1
1+�A

and

p(b�1; b
�
2; �B) =

1
1+�B

:

Proof. The �rst order conditions with respect to internal con�ict in group A are given by

@VA1
@a1

=
�Af

0(a1)f(a2)

[f(a1) + �Af(a2)]2
q(F (�1; �2); F (�1; �2))R� 1 = 0

@VA2
@a2

=
�Af

0(a2)f(a1)

[f(a1) + �Af(a2)]2
q(F (�1; �2); F (�1; �2))R� 1 = 0:

The �rst-order conditions can be summarized by

f(a1)

f 0(a1)
=
f(a2)

f 0(a2)
=

�A
(1 + �A)2

q(F (�1; �2); F (�1; �2))R: (1)

Since f(x)
f 0(x) is strictly increasing in x, condition (1) implies that both the players in group

A choose the same level of e¤orts, a�1 = a�2 for internal con�ict regardless of their possibly

di¤erent choice of �1 and �2 for external con�ict. By proceeding in a similar manner, we

can also derive that

f(b1)

f 0(b1)
=
f(b2)

f 0(b2)
=

�B
(1 + �B)2

[1� q(F (�1; �2); F (�1; �2))]R (2)
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This implies that b�1 = b
�
2, i.e., both the stronger and weaker players in each group exert the

same level of e¤ort for the internal con�icts. However, the total e¤ort spent on internal

con�ict can be di¤erent for each group. The equilibrium conditions (1) and (2) lead us to

the result that the stronger player�s winning probabilities in Group A�s internal con�ict is

p(a�1; a
�
2; �A) =

1
1+�A

and the same for the weaker player is 1�p(a�1; a�2; �A) = �A
1+�A

. A similar

result holds for group B internal con�ict with p(b�1; b
�
2; �B) =

1
1+�B

.

To investigate the relationship between the rent dissipated (equilibrium e¤ort expended)

in internal con�ict and the power distribution within each group, let us de�ne

�A =
a�1 + a

�
2

q(F (�); F (�))R
and �B =

b�1 + b
�
2

[1� q(F (�); F (�))]R:

The denominator of �G represents the expected value of the collective prize for group G

in the external con�ict whereas the numerator of �G is the total e¤ort expended in internal

con�ict. Thus, �G is the equilibrium rate of rent dissipation in internal con�ict. It measures

the level of resources used up for internal con�ict relative to the expected value of collective

prize for group G. The next lemma shows that the group with less power-inequality dissipates

proportionately more rent out of their expected group prize in internal con�ict. In this sense,

the group with more even power distribution is more con�ictive.

Lemma 2 �A R �B as �A R �B.

Proof. Putting f(xi)
f 0(xi)

= xi
m into equation (1) and (2), we immediately obtain �A =

�A
(1+�A)2

2m
w

and �B =
�B

(1+�B)2
2m
w . Given �A R �B, we must have

�A
(1+�A)2

R �B
(1+�B)2

.

Without loss of generality, for the rest of the paper, we assume �A � �B, i.e., the power is

more asymmetrically distributed in group A than in group B. This implies that player 1 in

group A has relatively more power than his counterpart in group B vis-a-vis their respective

player 2�s. If the power is more asymmetrically distributed in group A than in group B, then

group B is more con�ictive than group A.8 The severity of internal con�ict within a group
8This, however, does not necessarily mean that members in group B spend more resource for internal

con�ict. Since the total e¤orts depend on the size of contestable prize, people in group A may expend more
e¤orts if group A�s winning probability is much larger in the external con�ict.
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depends on the distribution of power across individual group members. As individual group

members have similar power, they compete more aggressively.

3.2 External Con�ict between Groups

Now let us study how the inter-group contest is shaped by the intensity of internal con�ict

and the distribution of power within each group. With the invariance result from Lemma 1,

we can now state each player�s objective function in relation to their contribution to external

con�ict.9 For notational simplicity, we denote the equilibrium probability that player 1 wins

in group G by p(�G). For group A members the payo¤ can be written as follows.

VA1 = p(�A)q(F (�); F (�))R� a�1 � �1

VA2 = (1� p(�A))q(F (�); F (�))R� a�2 � �2:

For external con�ict, player i in group A maximizes his payo¤ function VAi by choosing �i,

where i = 1; 2, given that all players act optimally. One can derive similar conditions for

group B members who choose �i; and the �rst-order conditions can be expressed as

F1(�)F (�)

[F (�) + F (�)]2
R =

1

p(�A)
= (1 + �A); (3)

F2(�)F (�)

[F (�) + F (�)]2
R =

1

1� p(�A)
= (

1 + �A
�A

); (4)

F (�)F1(�)

[F (�) + F (�)]2
R =

1

p(�B)
= (1 + �B); and (5)

F (�)F2(�)

[F (�) + F (�)]2
R =

1

1� p(�B)
= (

1 + �B
�B

): (6)

They can be further manipulated and summarized in the following way.

9One may think that the role of power disparity in this model is providing the exogenous division rule of
the prize. This is not true because the players�e¤ort levels are important in our comparison of the equilibrium
payo¤s and the rent-dissipation.
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F1(�)

F2(�)
=

1� p(�A)
p(�A)

= �A; (7)

F1(�)

F2(�)
=

1� p(�B)
p(�B)

= �B; (8)

F1(�)

F1(�)

F (�)

F (�)
=

p(�B)

p(�A)
=

�
1 + �A
1 + �B

�
; and (9)

F2(�)

F2(�)

F (�)

F (�)
=

1� p(�B)
1� p(�A)

=

�
�B
�A

��
1 + �A
1 + �B

�
(10)

Equations (7) and (8) tell us the relationship between the marginal contributions of

players 1 and 2 in the generation of collective action in each group. In each group, the

weaker player�s equilibrium marginal contribution to the collective action is greater than the

stronger player�s. This is because the player with less internal power is expected to receive a

smaller share of the prize in external contest.

This asymmetry in the relative marginal contributions of the two players translates into

the asymmetry in the relative total contributions. Each player�s incentive to contribute to

collective action depends on one�s equilibrium power in the internal con�ict. The relative

contribution of player 1 is greater in the less con�ictive group A. This result leads us to the

following result.

Proposition 1 ��1
��2
� ��1

��2
as �A � �B i:e:; p(�A) � p(�B). The stronger player�s relative

contribution to external con�ict vis-a-vis the weaker player�s is higher in group A where power

distribution is relatively more asymmetric.

Proof. F (yi; yj) is a homothetic function. ��1 (�
�
1) must have a linear relationship with �

�
2

(��2). This means that the slopes of the level sets of F (yi; yj) are the same along rays coming

from the origin. Let us de�ne those as sA = ��2=�
�
1 and sB = �

�
2=�

�
1. Equations (7) and (8)

can be written as

F1(1; �
�
2=�

�
1)

F2(1; ��2=�
�
1)
=
F1(1; sA)

F2(1; sA)
� F1(1; sB)

F2(1; sB)
=
F1(1; �

�
2=�

�
1)

F2(1; �
�
2=�

�
1)
;
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because Fi(yi; yj) and Fj(yi; yj) are homogeneous degree of 0. Note that
F1(1;sG)
F2(1;sG)

is increasing

in sG under Fjj(yi; yj) < 0 and Fij(yi; yj) > 0 as follows.

@

@sG

�
F1(1; sG)

F2(1; sG)

�
=
F12(1; sG)F2(1; sG)� F1(1; sG)F22(1; sG)

[F2(1; sG)]2
� 0:

Therefore we must have sA = ��2=�
�
1 � ��2=��1 = sB.

One important implication of this result is that the two groups exhibit di¤erent patterns

of ine¢ ciency. Clearly, the generation of collective action in each group is ine¢ cient, because

e¢ ciency requires that an individual is compensated with full marginal return of one�s e¤ort.

It is easy to note that the ine¢ ciency in terms of player 2 (player 1) is more pronounced

for group A (B) in which the internal power distribution is more asymmetric (symmetric).

4 Win Probability in External Con�ict

A basic, but unanswered, question is which group has a higher winning probability in external

con�ict. We can answer this question by �guring out whether q(F (�); F (�)) is greater than

1=2 or not. This is equivalent to whether F (��1;�
�
2)

F (��1;�
�
2)
is greater than 1 or not. Equations (9)

and (10) together result in

F (��1; �
�
2)

F (��1; �
�
2)
=

�
1 + �B
1 + �A

��
�A

�B � �A

��
F2(�

�
1; �

�
2)

F2(�
�
1; �

�
2)
� F1(�

�
1; �

�
2)

F1(�
�
1; �

�
2)

�
: (11)

This shows that the answer hinges on the ratio of marginal contributions between stronger

and weaker players in equilibrium. Thus, the way in which collective action is generated

through individual contributions is crucial to predicting with group will win. In addition, it

is worthwhile to study how each group�s winning probability is changed by the distribution

of power within a group.

An important factor in collective action is a possible complementarity between individual

members�contributions. The degrees of complementarity can be measured by r in the CES

13



group impact function. As is well-known, the elasticity of substitution is

d ln(y2=y1)

d lnMRS
=

1

1� r ;

which is a measure of the degree of complementarity or substitutability between individual

members� contributions. As r increases, the contributions of the two players in the same

group become less complementary (more substitutable).10 In the next proposition we derive

the relationship between the properties of the group impact function and the group winning

probability.

Proposition 2 When the group impact function is given as F (yi; yj) = (yri + y
r
j )

1
r , then the

ratio of collective action between the two groups is given by

F (��1; �
�
2)

F (��1; �
�
2)
=

�
p(�A)

� + (1� p(�A))�
p(�B)� + (1� p(�B))�

� 1
�

; where � =
r

1� r .

Thus, F (��1; �
�
2) R F (��1; ��2) as r R 1=2. If the individuals�contributions are relatively com-

plementary in the generation of collective action, the winning probability of more con�ictive

group is greater, and vice versa.

Proof. Equation (7), (8), (9), and (10) correspond to

�1
�2

=

�
1� p(�A)
p(�A)

� 1
r�1

; (5�)

�1
�2

=

�
1� p(�B)
p(�B)

� 1
r�1

; (6�)�
�1
�1

�r�1 �r1 + �r2
�r1 + �

r
2

=
p(�B)

p(�A)
and (7�)�

�2
�2

�r�1 �r1 + �r2
�r1 + �

r
2

=
1� p(�B)
1� p(�A)

: (8�)

Putting equation (5�) and (6�) into (7�), we obtain (�1�1 ) =
p(�B)
p(�A)

�
1+
�

p(�A)

1�p(�A)

� r
r�1

1+
�

p(�B)

1�p(�B)

� r
r�1
. Plugging this

10While we obtain the most popular, additive (perfect substitutes, i.e., no complementarity) impact function
as r approaches 1, we obtain the weakest link (perfect complements) impact function as r approaches �1.
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into (7�) again, we get �r1+�
r
2

�r1+�
r
2
=

 
1+
�

p(�A)

1�p(�A)

� r
r�1

1+
�

p(�B)

1�p(�B)

� r
r�1

!1�r �
p(�A)
p(�B)

�r
. Using this, we can further

manipulate the equation as follows.

F (��1; �
�
2)

F (��1; �
�
2)

=

�
�r1 + �

r
2

�r1 + �
r
2

� 1
r

=

0B@1 +
�

p(�A)
1�p(�A)

� r
r�1

1 +
�

p(�B)
1�p(�B)

� r
r�1

1CA
1�r
r �

p(�A)

p(�B)

�

=

 
p(�A)

r
1�r + (1� p(�A))

r
1�r

p(�B)
r

1�r + (1� p(�B))
r

1�r

! 1�r
r

Now, F (��1; �
�
2) R F (��1; ��2) is comparable to p(�A)� + (1� p(�A))� R p(�B)� + (1� p(�B))�.

Let us de�ne the function,

g(x) = x� + (1� x)�; where x � 1=2:

This function is increasing in � > 1 and decreasing in � < 1, because g0(x) = �(x��1 � (1 �

x)��1). Note that � must be greater than 0 for r < 1. Therefore, since p(�A) > p(�B),

F (��1; �
�
2) R F (��1; ��2) must correspond to � R 1, which is again equivalent to r R 1=2.

At �rst sight, the result in Proposition 2 appears to be counter-intuitive. Under cir-

cumstances in which collective action requires complementary e¤orts, the individuals in the

more con�ictive group contribute to collective action more than in the less con�ictive group.

Conventional wisdom advises that con�ict harms cooperation. However, our result implies

that con�ict and cooperation can coexist well, in particular, in situations of complementary

collective action.

In the case of military alliances, the individuals�contributions are more likely to be sub-

stitutable. Thus, our model predicts that leadership in each alliances matters in external

con�ict. In fact, in the Cold War era, superpower dominance was at issue in the two military

alliances, NATO and the Warsaw Pact. On the other hand, in the case of business alliances,

the individuals�contributions are more likely to be complementary. For example, the com-

plementarity between the distribution capability and the manufacturing skill is one of the

most popular reasons for the strategic alliance. Thus, the size or market power of partners

15



needs to be similar for a strong alliance to form.

A solution for F (�
�
1;�

�
2)

F (��1;�
�
2)
enables us to conduct comparative statics in terms of power distri-

bution to study whether the internal redistribution of power increase or decrease the group�s

winning probability. One famed argument by Olson (1965) in the context of public goods is

that the redistribution of wealth in favor of inequality can make individuals contribute to col-

lective action more, because an individual who gains a signi�cant proportion of total bene�ts

from public goods has more incentive to contribute. We, however, study this issue in terms of

power distribution in a group contest. The following Corollary is derived immediately from

the last Proposition.

Corollary @
@�A

�
F (��1;�

�
2)

F (��1;�
�
2)

�
Q 0 and @

@�B

�
F (��1;�

�
2)

F (��1;�
�
2)

�
R 0 as r R 1=2; i.e., the dispersion of

power inequality increases (decreases) the group�s probability of winning when the individuals�

contributions is relatively substitutable (complementary).

This result con�rms the intuition of Olson (1965) in a general setting. He argues that

more inequality can facilitate collective action in a public good setting when collective action

is de�ned as the sum of individuals�e¤orts (r = 1). We show that more inequality in terms

of power can facilitate collective action even in a group contest setting and it is valid for any

r � 1=2 . In contrast, it should also be emphasized that the result can be sharply reversed if

the individuals�contribution is relatively complementary as the case of r < 1=2.

Depending on the impact function, when individuals�e¤orts are relatively substitutable

or the stronger player in the group plays a signi�cant role in the collective action, the re-

distribution of power towards the stronger player facilitates collective action. This result is

consistent with Olson�s argument, because the driving force is that stronger individuals have

more incentives to contribute to collective action. By contrast, this result is sharply reversed

for the speci�c impact functions in which individuals�e¤orts are relatively complementary

or the weaker player turns out to be the important player in generating collective action.

Thus, in this case, a more equal distribution of power fosters collective action. In addition,

the power distribution in a rival group gives the idea of a �erce or a milder con�ict and this

a¤ects the amount of collective action in a similar way.
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5 Who is better o¤: the Stronger or Weaker Player?

In this section, following the literature, we restrict our attention to the two relatively simple

and contrasting cases, perfectly substitutable (additive e¤ort) and perfectly complementary

(weakest link e¤ort) group impact functions to compare the equilibrium e¤ort levels and

payo¤s. In the case of additive e¤ort group impact function, cooperation is performed by the

sum of individual group members�e¤orts, i.e., F (yi; yj) = yi + yj . In the case of weakest

link group impact function, the minimum e¤ort among individual group members establishes

the level of collective action, i.e., F (yi; yj) = minfyi; yjg. We can compute the equilibrium

e¤ort levels in external con�ict as follows. The following results, summarized in the next

proposition, holds under the needed participation constraints - i.e., the players earn non-

negative payo¤ in the equilibria. The proof of this proposition comes directly from Baik

(1993) and Lee (2009) and is not included here. For expositional simplicity, the results are

represented in terms of both the winning probabilities and the power inequality parameter.

Proposition 3 (1) Suppose F (yi; yj) = yi + yj. In this case, weaker players completely

free-ride in contributing to collective action.

��1 =
p(�A)

2p(�B)

[p(�A) + p(�B)]
2R =

�B

[2 + �B + �B]
2R �

p(�A)p(�B)
2

[p(�A) + p(�B)]
2R =

�A

[2 + �B + �B]
2R = �

�
1 and �

�
2 = �

�
2 = 0:

(2) Suppose F (yi; yj) = minfyi; yjg. It is well-known that there are multiple equilibria, but

we focus on the most e¢ cient outcome. Then, we obtain

��1 = ��2 =
[1� p(�A)]2 [1� p(�B)]
[1� p(�A) + 1� p(�B)]2

R =
�2A�B(1 + �B)

[2�A�B + �A + �B]
2R

� [1� p(�A)] [1� p(�B)]2

[1� p(�A) + 1� p(�B)]2
R =

�A�B
2(1 + �A)

[2�A�B + �A + �B]
2R = �

�
1 = �

�
2:

In the case of additive e¤ort, the winning probability in the external con�ict depends only

on the stronger players�e¤ort levels. Thus, the less con�ictive group�s winning probability is
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always higher, i.e.,

For F (yi; yj) = yi + yj , q(F (��); F (��)) =
p(�A)

p(�A) + p(�B)
� 1=2:

In contrast, in the case of weakest-link, collective action is virtually determined by the weaker

players, because the stronger players merely make the same e¤ort as much as the weaker

players in own group. In this case, the more con�ictive group�s winning probability is always

higher, i.e.,

For F (yi; yj) = minfyi; yjg, q(F (��); F (��)) =
1� p(�A)

1� p(�A) + 1� p(�B)
� 1=2:

In this sense, these two polar cases make our earlier argument in Proposition 2 and the

corresponding Corollary even clearer.

Now, let us compare the equilibrium payo¤s of the two players within a group. The

following Proposition shows that the stronger players earn higher payo¤ in the weakest link

e¤ort case. However, in the case of additive e¤ort, the result is very di¤erent.

Proposition 4 In the weakest-link case, V �G1 � V �G2 for G = A;B always. In contrast, in

the additive e¤ort case, we obtain

8>>>>>>><>>>>>>>:

(1) if �B � �A
2+2�A�1
(1��A) and �A � �B

2+2�B�1
(1��B) ; then V �A1 � V �A2 and V �B1 � V �B2

(2) if �B <
�A

2+2�A�1
(1��A) and �A <

�B
2+2�B�1
(1��B) ; then V �A1 < V

�
A2 and V

�
B1 < V

�
B2

(3) if �B � �A
2+2�A�1
(1��A) and �A <

�B
2+2�B�1
(1��B) ; then V �A1 � V �A2 and V �B1 < V �B2

(3) otherwise; V �A1 < V
�
A2 and V

�
B1 � V �B2:

Proof. The di¤erence between the two players�equilibrium payo¤s in group A is written as

V �A1 � V �A2 = (2p(�A)� 1)q(F (�); F (�))R� (��1 + a�1) + (��2 + a�2):

From Lemma 1, both the players exert the same level of e¤ort in internal con�ict, i.e., a�1 = a
�
2.

In addition, from Proposition 3, in the case of weakest-link e¤ort, they also contribute the

18



same level of e¤ort to collective action, i.e., ��1 = ��2. Finally, by construction �A < 1 i.e.,

p(�A) > 1=2. As a result, we must have V �A1 � V �A2. The same logic applies to the players in

group B. Hence, the stronger player always has a higher payo¤ than the weaker player in the

weakest-link case.

Applying the results from Lemma 1 and Proposition 3, the di¤erence between the two

players�equilibrium payo¤s in group A for the additive e¤ort case boils down to

V �A1 � V �A2 = (2p(�A)� 1)q(F (�); F (�))R� ��1

=
p(�A)

p(�A) + p(�B)
R

�
(2p(�A)� 1)�

p(�A)p(�B)

p(�A) + p(�B)

�

The stronger player�s advantage is a higher winning probability in internal con�ict. However,

the stronger player�s disadvantage is that only he has to contribute to external con�ict because

the weaker player free rides completely, ��2 = 0. As a result, the stronger player has a (weakly)

higher payo¤ than the weaker player in group A in the weakest-link case only if the second

part of the above given expression in non negative. This condition, after expressing the

probabilities in terms of the inequality parameter becomes

�B �
�A

2 + 2�A � 1
(1� �A)

Similarly, in group B, the stronger player has a (weakly) higher payo¤ than the weaker player

in group A in the weakest-link case only if

�A �
�B

2 + 2�B � 1
(1� �B)

Combining these two conditions we obtain the result.

This result is represented in Figure 1. Since we con�ne our attention to �B � �A, let us

look at the area above 45 degree line. Loosely speaking, the result implies that when the

power inequality among the individual group members is small enough (� is high enough),

then the weaker player�s payo¤ is greater than the stronger player. This is because the weaker

19



player�s free riding bene�t is large despite his small share of the prize when the inequality

is small enough. In addition, since the relative bene�t of free riding is greater in the more

con�ictive group, the parameter range in which the weaker player�s payo¤ is greater is larger

in the more con�ictive group, as seen in Figure 1. This becomes compeltely clear when

we consider the polar case, � = �A = �B: In this case the result reduces to V �G1 R V �G2 as

�G Q 1=2:

6 Equilibrium Rent Dissipation

In this section, we compute the equilibrium rent dissipation, (a�1+ a
�
2+�

�
1+�

�
2) + (b

�
1+ b

�
2+

��1 + �
�
2); and analyze how this changes with the power inequality. We have already derived

��i and �
�
i in the previous section, here we �nd a

�
i and b

�
i for the two impact functions,

respectively. Since we are interested in the e¤ect of the power inequality on the total rent

dissipation across the groups, we now assume symmetric power inequality across the groups,

i.e., � = �A = �B and p(�) = p(�A) = p(�B) = 1=(1 + �). We �rst derive the following
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Lemma.

Lemma 3 Under symmetric power inequality across the groups, the total rent dissipation

in internal con�ict is the same in the additive and the weakest link e¤ort cases.

Proof. Inserting q(F (��); F (��)) into (1) and (2), we obtain

For F (yi; yj) = yi + yj ,

8><>: a�1 = a
�
2 =

p(�A)
2(1�p(�A))

p(�A)+p(�B)
R

b�1 = b
�
2 =

p(�B)
2(1�p(�B))

p(�A)+p(�B)
R

For F (yi; yj) = minfyi; yjg,

8><>: a�1 = a
�
2 =

p(�A)(1�p(�A))2
1�p(�A)+1�p(�B)R

b�1 = b
�
2 =

p(�B)(1�p(�B))2
1�p(�A)+1�p(�B)R:

Imposing � = �A = �B and p(�) = p(�A) = p(�B) = 1=(1 + �), the total rent dissipation

in internal con�ict for both the weakest link and the additive e¤ort case turns out to be

a�1 + a
�
2 + b

�
1 + b

�
2 = 2p(�)(1� p(�))R:

This result allows us to pin down the total rent dissipation for the contest. It is summa-

rized in the next Proposition.

Proposition 5 Given � = �A = �B, in the weakest-link case, the total rent dissipation is

monotonically increasing in �. In contrast, in the additive e¤ort case, the total rent dissipation

p(�)
2 R+ 2p(�)(1� p(�))R is increasing for � 2 [0; 3=5] and decreasing for � 2 (3=5; 1].

Proof. Using the results of Lemma 3, the following results can be immediately derived.

For F (yi; yj) = yi + yj ,

8><>: ��1 + �
�
2 + �

�
1 + �

�
2 =

p(�)
2 R

a�1 + a
�
2 + b

�
1 + b

�
2 = 2p(�)(1� p(�))R

For F (yi; yj) = minfyi; yjg,

8><>: ��1 + �
�
2 + �

�
1 + �

�
2 = (1� p(�))R

a�1 + a
�
2 + b

�
1 + b

�
2 = 2p(�)(1� p(�))R:

In the weakest-link case, The total rent dissipation is: TR = (a�1 + a
�
2 + �

�
1 + �

�
2) + (b

�
1 +

b�2 + �
�
1 + �

�
2) = (2p(�) + 1)(1 � p(�))R = �2+3�

(1+�)2
R:It is easy to show that dTRd� > 0. Hence,
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total rent dissipation is decreasing in power inequality. In the additive e¤ort case TR =

(a�1 + a
�
2 + �

�
1 + �

�
2) + (b

�
1 + b

�
2 + �

�
1 + �

�
2) = (

5
2p(�)� 2p(�)

2)R = 5��1
(1+�)2

R. It is easy to show

from dTR
d� that rent dissipation is 1/2 when � = 0, is increasing and reaches its maximum at

� = 3=5 then it declines to 3/4 when � = 1:

In the weakest-link case, The rent dissipation is increasing in power inequality, i.e., de-

creasing in p(�) both on external and internal con�ict. This is quite intuitive. As the power

inequality is smaller, the internal con�ict becomes severe. In addition, since the weaker player

determines the level of contribution to collective action, the external con�ict becomes intense

as well. Thus, the total rent dissipation (2p(�)+1)(1�p(�))R is decreasing in p(�) (increasing

in �).

In contrast, the additive e¤ort case is more interesting. The rent dissipation on internal

con�ict is obviously decreasing in p(�) (increasing in �). However, note that the rent dissipa-

tion on external con�ict is increasing in p(�) (decreasing in �). This means that more severe

the external con�ict more heterogeneous the players. It is because the free-rider problem is

overshadowed as the stronger player�s equilibrium share of the prize is larger. As a result, we

�nd that the total rent dissipation does not behave monotonically with the power inequality

as follows:
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This result, represented in Figure 2, has several important implications. First, it is well-

known that the rent dissipation is decreasing in the heterogeneity of the players in a single

contest model. This is no longer true in simultaneous-contest. Second, our result suggests

that the rent dissipation is underestimated in most papers based on the symmetric case single

contest. In fact, when the group members are symmetric, the total rent dissipation is not

maximized for the additive e¤ort case. Finally, we show that simultaneous contest can be

used to ensure full rent dissipation as in the weakest link egalitarian power case.11

7 Discussions

We develop a model of group contest in which simultaneous inter-group and intra-group con-

�ict interplay with each other. We use power inequality within groups to analyze the impact

of the heterogeneity within groups on inter-group con�ict. We also analyze the equilibrium

payo¤ and total e¤ort levels in two contrasting cases. Here we conclude by discussing poten-

tial extensions of our model. There are many interesting ways this analysis can be further

pursued, we mention only a couple of them.

Survival of the �ttest: as a group or as an individual?: One interesting example

is interspeci�c and intraspeci�c competition in ecology (Vandermeer, 1975). Competition

within and between species arises for a limited amount of resources such as space, food, or

mates. One important issue in the literature is to explain when di¤erent species can coexist

or when one species becomes extinct. Let us interpret the prize R in our model as the given

space for which two species are competing. Then, as a result of competition, each individ-

ual species occupy a portion of the space by 1
1+�A

q(F (��); F (��)), �A
1+�A

q(F (��); F (��)),

1
1+�B

(1� q(F (��); F (��))), and �B
1+�B

(1� q(F (��); F (��))).

Now, suppose that there is a minimum size of space for survival.12 Then we can predict

that the extinction of one species arises when q(F (��); F (��)) is su¢ ciently small or large.

11One may be interested in the asymmetric case of �A < �B : For example, we can conduct comparative
statics of the total rent dissipation with respect to t < 1 when �A = t�B . We have a similar result: the rent
dissipation on external competition is increasing in t, but that on internal competition is decreasing in t.
12This is common observation in biology and Ecology literature. See, for example Sha¤er (1981).
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That is to say, the outcome of interspeci�c competition should be extreme to the extent that

one species cannot occupy a minimal space. This situation can arise when two groups are

very heterogeneous in the sense that �B is su¢ ciently greater than �A, and the individual

species e¤orts are either almost perfectly substitutable or complementary. Otherwise, two

di¤erent species may be able to coexist with each species residing in a space of su¢ cient size

for survival. For the case of coexistence, we can predict two di¤erent scenarios. If both �A

and �B are relatively large, every individual may coexist. However, if both �A and �B are

considerably small, only the superior individual in each species can survive and coexist.

Management of Internal con�ict: Until now, we have been assuming that the prize is

distributed within groups entirely by internal con�ict. However, group members may be able

to make binding commitments to share a portion of the prize on egalitarian grounds.13 Then,

the adjusted con�ict technology is given by

p(x1; x2) =
�G
2
+ (1� �G)

x1
x1 + �Gx2

, where G = A;B:

�G represents the e¤ectiveness of con�ict management within a group. In other words, each

group does not have to have internal con�ict to divide this portion of the prize. On the other

hand, they still have to contest for the other portion, (1� �G); of the prize.

Another interesting interpretation is that a team organizer can control internal con�ict in

a way that the stronger and weaker players share a portion of the prize equally. In particular,

while �G can be thought of as the portion of team rewards, (1 � �G) as the portion of the

con�ictive prize.

The share of the prize of the stronger player in each group is

p(�G) =
�G
2
+ (1� �G)

1

1 + �G
:

The winning probability of the stronger (weaker) player of group G is decreasing (increasing)

in �G. Hence, the managerial problem would be to set the optimal commitment level ��G to

13See Münster (2007) and Baik and Shogren (1995) for further discussions.
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maximize the group�s winning probability.

Given the symmetric CES function, we obtain ��G = 0 if r > 1=2 and �
�
G = 1 if r � 1=2. If

group members�contributions are relatively complementary, higher �G increases the group�s

winning probability, and vice versa. Therefore, the team manager wants to distribute the

prize equally within a team if collective action is relatively complementary. Otherwise, he

would prefer to allow group members to �ght over the prize.

There are other opportunities of extending our analyses in terms of both relaxing some

of the assumption and modifying the structure to incorporate further real life applications.

As we start our analysis with pre-speci�ed groups, our analysis implicitly suggests that the

heterogeneity of individuals will be an important factor in the study of the endogenous

formation of groups. It would be an interesting exercise to extend our model to endogenize

the group formation problem. Also, in our structure the two groups share the same group

impact function, but this is not necessary in many cases. It will again be interesting to

analyze the con�ict between groups with di¤erent production functions. Recently, Clark and

Konrad (2007) study the case where an attacker has the best-shot function and a defender

has the weakest-link function. It would be worthwhile to extend their model to be a group

contest. We assume symmetric (unit) marginal cost of internal and external con�ict. A

relaxation of this assumption may provide interesting comparative static analyses. Finally,

in our model, the prize value is exogenously given. It will be interesting to study the case

where the prize is endogenously determined. In other words, we can consider a model nesting

the current analysis and that of Münster (2007) where asymmetric individuals allocate their

resources between productive activity and con�ictive activity.
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