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Abstract 

 

The paper complements the existing literature on group contests by studying bidding 
behavior of teams in the all-pay auction setting. We assume the best-shot effort 
impact, where a team's bid is a maximum of its members' bids. We account for 
possibly nonlinear bidding cost, imposing very mild assumptions on the bidding cost 
function. A special case of our model is the basic all-pay auction where the cost of 
bidding is equal to the bid. It is shown that the free-rider equilibria are the only Nash 
equilibria regardless of the number of players on each team (as long as it is finite), and 
whether the valuation of the prize is same or different across teams. Moreover, free-
riding is extreme: only one player of each team is active (exerts zero effort with 
probability less than 1), and everybody else free-rides.  
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1. Introduction

Many situations in economics can be modeled using contests. A large variety
of real-life examples involve several individuals or groups competing for a reward
(prize). The variety of contests is very rich and has been extensively studied in the
literature.

A distinct feature of a contest is the rule which determines a winner. Many
contests in economics are modeled using a Tullock contest success function, which
was introduced by Tullock in his seminal paper [13]. One can also view first-,
second-price or all-pay auctions as contests.

We consider two teams each having a finite number of players and competing
for a prize in an all-pay auction. A team’s bid is the maximum of the individual
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bids (effort levels) of its members. The prize is a public good for each member
of the team. The valuation of the prize may vary across teams, however it is the
same for each player within a team. Players choose their bids simultaneously and
independently.

The present paper is related to the works by Baik [2], Chowdhury, Lee, and
Sheremeta [4], Kolmar and Rommeswinkel [8], and Lee [10]. All these authors
use a Tullock contest success function. Kolmar and Rommeswinkel [8] use a CES
effort impact function (best-shot is a specific case of CES). Lee [10] and Chowdhury,
Lee, and Sheremeta [4] examine the weakest-link and the best-shot effort impact,
respectively, with Tullock contest success function. Baik [2] considers a general
contest success function (which depends on the effort levels of all players of all
teams) satisfying certain concavity and differentiability properties (see [2]).

The existing literature investigates both cooperative and noncooperative behavior
of players within each team. While the above mentioned studies assume players
choose their effort levels simultaneously and independently, and so behave purely
noncooperatively, Konrad and Kovenock [9] allow for correlation of players’ choices
within each group.

Surprisingly, we still know very little about the bidding behavior of teams that
compete in an auction, particularly in an all-pay auction. We are not aware of
any work that examines teams’ bidding behavior in all-pay auctions with the best-
shot effort impact. While most papers on team contests examine Tullock contests,
auctions arise in many practical situations and deserve a detailed investigation.

We investigate teams’ bidding behavior with the best-shot effort impact in an
all-pay auction setting. We assume players behave noncooperatively within each
team to model the possible lack of communication between the team’s members.
We account for possibly nonlinear bidding cost, imposing very mild assumptions on
the bidding cost function.

How would we expect teams to behave in auctions? Would we expect larger teams
to have advantage over small teams (supporting Olson’s thesis, see [12])? It turns
out that team size does not matter (assuming it is finite)!

We find that regardless of the size of each team and whether the valuation of the
prize is the same or differs across teams, the free-riding problem is always present
in equilibrium and is extreme: only one player in each team is active (i.e., ever bids
more than zero), and everybody else free-rides (always bids zero).

The paper is organized as follows. In the next section we outline our theoretical
framework and provide the necessary definitions. Results are presented in Section
3.

2. Notation and Methodology

We consider two teams bidding against each other. Each team has m` ≥ 1 players,
` = 1, 2. Denote by I` the index set of all players of team `,

I` = {1, · · · ,m`}
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A bid of player i of team ` will be denoted by x`,i, and the vector of bids
(x`,1, · · · , x`,ml

) of team `’s members 1, · · · ,m` by x`.

Definition 2.1. Given a vector of bids of team `’s members x` = (x`,1, · · · , x`,ml
),

team `’s bid is a real number B(x`), where B is a function of m` variables of the
following form:

B(x`) = max
i∈I`

x`,i (2.1)

Definition 2.2. A strategy of player i of team ` is a probability distribution over
a subset of R+ (the set of bids of player i). A strategy profile of player i of team `
will be denoted s`,i.

Definition 2.3. Team `’s strategy is an m`-tuple of its members’ strategies
(s`,1, · · · , s`,ml

). Team `’s strategy profile will be denoted s`.

Team `’s strategy s` generates a probability distribution over the set of team `’s
bids corresponding to s`. This probability distribution will be denoted T (s`). Notice
that s` completely determines T (s`), however s` is not characterized by T (s`).

Given team `’s strategy s`, denote the upper bound of the support of T (s`) (or
equivalently, the upper bound of the set of team `’s bids corresponding to s`) by s̄`,

s̄` = sup {x ≥ 0 : x is in the support of T (s`)}
Similarly, denote the lower bound of support of T (s`) by s`,

s` = inf {x ≥ 0 : x is in the support of T (s`)}
The prize acquired by the winning team is a public good for each member of the

team. That is, the prize is nonrival (consumption of the prize by one member of
the team does not reduce the amount of the prize available to other members of the
same team) and nonexcludable. All players in each team have the same valuation of
the prize. Denote by v` the valuation of team `’s member. We allow for possibly
different valuations across teams, i.e., v1 6= v2.

3. Results

In an all-pay auction setting, the payoff function of a generic player i of team ` is
given by:

u`,i(x`, x−`) =

 v` − c(x`,i) if B(x`) > B(x−`)
v`
2
− c(x`,i) if B(x`) = B(x−`)
−c(x`,i) if B(x`) < B(x−`)

(3.1)

Here c(·) is the cost function, which represents the cost (or disutility) of bidding.

Assumption 3.1. The cost function c(·) is the same for all players, increasing,
unbounded from above, c(0) = 0, and continuous.

Introduce the following notation for a profile of bids s:

s̄` = max
j∈I`

s̄`,j.
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3.1. Equal valuations across teams.

Assumption 3.2. v1 = v2 = v

Let r denote c−1(v); it follows by Assumption 3.2 that r is uniquely determined.
Notice that for the simplest case when c(x) = x, we have r = v. The remaining
results in this subsection are derived under Assumptions 3.1 and 3.2.

Lemma 3.3. Let s∗ be a Nash equilibrium. Then:

(1) s̄∗` = s̄∗−` = s̄∗.
(2) s̄∗ = r.
(3) Let k` be such that s̄∗k` = r, then uk`(s

∗) = 0 for ` = 1, 2.

Proof. (1) Suppose WLOG s̄∗1 < s̄∗2, then the player k2 from team 2 is better-off
shifting mass from (s̄∗1, s̄

∗
2] to s̄∗1, which is a contradiction.

(2) Clearly, s̄∗ ≤ r. Suppose s̄∗ < r, then by bidding slightly above s̄∗ player k1
from team 1 can increase his payoff.

(3) Immediate consequence of (2).

Theorem 3.4. A strategy profile s∗ such that one player from each team randomizes
according to

F (x) =
c(x)

v
on [0, r], (3.2)

and all the remaining players bid 0 with probability 1, is a Nash equilibrium. Such
Nash equilibrium will be called a free-rider equilibrium.

Note: clearly, there exist m1m2 distinct free-rider equilibria.

Proof. Let t1 and t2 be active players of teams 1 and 2, respectively. Denote the cdf
of team `’s bids (i.e., cdf of the maximum of the bids of team `’s members) by F`(·).
Notice that for any 0 ≤ x ≤ r:

u`,t`(x, s
∗
−t`) = vF−`(x)− c(x) = 0 (3.3)

Therefore active player of team ` is indifferent between all strategies in [0, r].
Bidding above r would give him negative payoff, hence active player of team `
would not deviate from his strategy described by 3.2.

It remains to show that no inactive player i wants to deviate from 0. Notice that

u1,i(x, s
∗
−i)− u1,i(s∗) =

c(x)

v

[
c(x)

v
· v − c(x)− v

∫ x

0

F`(z)dF`(z)

]
= −c(x)

∫ x

0

F`(z)df`(z) < 0.

Hence no inactive player wants to deviate from 0, so s∗ is a Nash equilibrium.

Theorem 3.5. Free-rider equilibria of Theorem 3.4 are the only Nash equilibria.
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Proof. Suppose, by contradiction, there is a Nash equilibrium s∗ and a team ` in
which more than 1 player are active (i.e., bid 0 with probability strictly less than
1). Let player k of team ` be such that s̄∗k = r, where r = c−1(v). But then
uk(0, s∗−k) > 0, while uk`(r, s

∗
−k) = 0. By continuity of the payoff function there

exists δ > 0 such that uk(x, s∗−k) < uk(0, s∗−k) for all x ∈ (r − δ, r]. This implies
s̄k ≤ r − δ < r, which contradicts our assumption. Hence free-rider equilibria are
the only Nash equilibria.

3.2. Different valuations across teams. It remains to work out the case v1 6= v2.
The following assumption takes care of this case without loss of generality.

Assumption 3.6. v1 > v2.

Let r denote c−1(v2); it follows by Assumption 3.6 that r is uniquely determined.
The remaining results in this subsection are derived under Assumptions 3.1 and 3.6.
The following lemma is an analogue of Lemma 3.3.

Lemma 3.7. Let s∗ be a Nash equilibrium. Then:

(1) s̄∗` = s̄∗−` = s̄∗.
(2) s̄∗ = r.
(3) Let k2 be such that s̄∗k2 = r, then uk2(s

∗) = 0.

Theorem 3.8. A strategy profile s∗ such that one player from team 1 randomizes
according to

F (x) =
c(x)

v2
on [0, r], (3.4)

one player from team 2 randomizes on [0, v2] according to cdf

F2(x) = (1− v2
v1

) + c(x)
v1

, (3.5)

and all the remaining players bid 0 with probability 1, is a Nash equilibrium. Such
Nash equilibrium will be called a free-rider equilibrium.

Proof. Let t1 and t2 be active players of teams 1 and 2, respectively. Denote the cdf
of team ` by F`(·). Observe that for any 0 ≤ x ≤ r:

u2,t2(x, s
∗
−t2) = v2F1(x)− c(x) = 0,

Therefore active player of team 2 is indifferent between all strategies in [0, r]. Since
bidding above r results in negative payoff, active player of team 2 would not deviate
from his strategy described by 3.5.

Similarly, observe that for active player t1 of team 1, for any 0 ≤ x ≤ r:

u1,t1(x, s
∗
−t1) = v1F2(x)− c(x) = v1 − v2,
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hence player t1 is indifferent between bids in [0, r]. Bidding above r would give him
a payoff strictly less than v1 − v2, therefore player t1 would not deviate from the
strategy described in 3.4.

It remains to show that no inactive player of either team would deviate from 0.
Let i be a player of team 1 who bids 0 with probability 1. Observe that for every
x ∈ (0, r]:

u1,i(x, s
∗
−i)− u1,i(0, s∗−i) =

c(x)

v2

[
v1
c(x)

v1
− c(x)

2v1
v1

]
− c(x)

=
c(x)

v2

[
c(x)− c(x)− c(x)

2

]
− c(x)(1− c(x)

v2
)

< 0

Consequently no inactive player of team 1 wants to deviate from 0. Apply the
same argument as in the proof of Theorem 3.4 to show that no inactive player of
team 2 wants to deviate from 0. This completes the proof.

Lemma 3.9. There is no Nash equilibrium in which more than one player of team
2 is active.

Proof. Suppose not, let s∗ be an equilibrium where, without loss of generality, play-
ers i and j of team 2 are active, and s̄2,i = r. Observe that u2,i(r, s

∗
−i) = 0. However

since player j is active, u2,i(0, s
∗
−i) > 0. By continuity of the payoff function there

is a δ-neighborhood of r such that u2,i(0, s
∗
−i) > u2,i(x, s

∗
−i) for each x in that neigh-

borhood. But this implies s̄2,i ≤ r− δ < r, contradiction. This completes the proof.

Lemma 3.10. Equilibrium payoff of an active player of team 2 is zero.

Proof. Follows immediately from the fact that the least upper bound of the support
of that player is r, and c(r) = v2.

Lemma 3.11. Let s∗ be a Nash equilibrium. Then no active player from either team
places an atom in (0, r). In other words, for every team `, active player i of `, and
x ∈ (0, r): Fl,i(x) = limz→x− Fl,i(z).

Proof. Suppose by contradiction some player i of team ` places an atom at x ∈ (0, r).
Then any active player from the opposite team (−`) that randomizes up to r would
want to shift mass some very small neighborhood below x to x+ ε for ε very small.
So no active player from team −` puts a positive mass in a very small neighborhood
below x, but then it is not optimal for player i of team ` to place atom at x,
contradiction.

Recall that we denote the cumulative distribution function of the maximum of
the bids of team 1’s members, and team 2’s members by F1 and F2, respectively.

Lemma 3.12. For each x ∈ [0, r], F1(x) = c(x)
v2

.
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Proof. For x ∈ (0, r) this follows directly from Lemma 3.10 and part (4) of Lemma
3.7. By the right continuity of the cdf the result extends to [0, r].

Lemma 3.13. Let s∗ be a Nash equilibrium such that at least two players of team

1 are active. Then for each player i of team 1 and x ∈ [0, r], F1,i(x) ≥ c(x)
v2

, with

strict equality if and only if x = 0, or F1,j(x) = 1 for each player j of team 1 such
that j 6= i.

Proof. Follows directly from Lemma 3.12 and the fact that F1,i(x) ≤ 1 for each
player i and x ∈ [0, r].

Lemma 3.14. Let s∗ be an equilibrium, and F2 be the corresponding cumulative
distribution function of the bids of an active player of team 2. There exists z ∈ (0, r)

such that F2(z) ≥ c(z)
v1

.

Proof. Suppose not, i.e., for every z ∈ (0, r) we have F2(z) < c(z)
v1

. Notice that for

every player i of team 1 and every z ∈ (0, r)

u1,i(z, s
∗
−i)− u1,i(0, s∗−i) ≤ v1F2(z)− c(z) < 0.

If s1,i > 0, we get an immediate contradiction, so assume s1,i = 0. Then every
player i of team 1 randomizes between 0 and r, but then an active member of team
2 is better-off shifting mass from ε-neighborhood below r to some δ > 0 for ε and δ
very small, which is a contradiction. This establishes the claim.

Theorem 3.15. Free-rider equilibria of Theorem 3.8 are the only Nash equilibria.

Proof. From Lemma 3.9 we know that only one player of team 2 is active. It remains
to show the same about team 1. Suppose by contradiction there is an equilibrium
s∗ such that at least two players, say i and j, of team 1 are active. Without loss of
generality suppose s̄1,i ≤ s̄1,j. Let z ∈ (0, v2) be such that F2(z) ≥ z

v1
. Such z exists

by Lemma 3.14. We claim that player i of team 1 is strictly better-off deviating
from s̄1,i to z. Notice that

u1,i(s̄1,i, s
∗
−i)− u1,i(z, s∗−i) ≤

v2 − z
v1

· v2 − z
v2

· v1 − (v2 − z)

= (v2 − z)(
v2 − z
v2

− 1)

< 0

Therefore by continuity of the payoff function player i of team 1 is better-off devi-
ating from any point in a sufficiently small neighborhood of s̄1,i to s̄1,i − ε, so the
upper bound of the support of player i’s strategy is strictly less than s̄1,i, which is a
contradiction. This establishes that only one player of team 1 is active. Therefore
free-rider equilibria are the only Nash equilibria.
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