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1 Introduction

Pure public goods possess the feature that they are nondepletable (consumption by one
individual does not a¤ect the supply available for other individuals) and nonexcludable
(exclusion of an individual from the bene�ts of a public good is impossible). These charac-
teristics of public goods imply that its private provision creates a situation in which positive
externalities are present: a consumer�s private contribution to the provision of the public
good provides a direct bene�t not only to the consumer herself but also to every other
consumer, independently of whether they are providers of the public good or not. The
failure of each consumer to internalize the bene�ts conferred upon all other consumers of
her public good provision is often referred as the free-rider problem: each consumer has an
incentive to enjoy the bene�ts of the public good provided by others while withholding her
own contribution.

The standard mechanism for the private provision of a public good, called the voluntary
contribution mechanism (VCM) (�rst studied by Olson (1965)), relies on voluntary contribu-
tions. The standard voluntary contribution mechanism is usually modeled in the literature
as the Prisoner�s Dilemma game. This mechanism does not have the ability to overcome the
free rider problem since it results in a systematic underprovision (low levels of public good
contributions are a dominant strategy for each player) of the public good when it is socially
desirable1 .

Numerous fund-raising mechanisms or institutions have been proposed in the literature to
elicit socially optimal levels of public good contributions. Theoretically, sophisticated ef-
�cient allocation mechanisms or mechanisms based on tax-subsidy schemes and penalties
have been designed to solve or mitigate the free-rider problem (eg. Groves and Ledyard
(1977), Walker (1981), Boadway et al. (1989), Roberts (1992), Varian (1994a,b), Andreoni
and Bergstrom (1995), Falkinger (1996)). In practice, however, these schemes are either
complex and di¢ cult to implement, and/or have generally failed to achieve socially optimal
contributions levels and/or require a degree of coercion that are not available to private
organizations, such as charities, and therefore, cannot be implemented by these organiza-
tions2 .

Scholars have recently begun to explore the e¤ectiveness of less coercive mechanisms, in-
cluding step-level provision points, auctions, contests and lotteries.

The underprovision problem of the VCM can be remedied by the introduction of a step-level
provision point (a commonly known minimum threshold that contributions must meet or
surpass for the public good to be provided to all members (Andreoni (1998)). With the
provision point, the VCM is typically modeled by the game of Chicken, also known as the
�Battle of the Sexes"3 . There are no dominant strategies in this game and the zero con-
tribution equilibrium is Pareto dominated by a positive-contribution equilibrium. However,
coordination problems arise due to the multiplicity of positive-contribution equilibria. These
equilibria form a set which cannot be Pareto ranked and create a con�ict called the �cheap
riding" problem4 since it provides individual incentives to attempt to obtain an equilibrium
outcome with unequal distribution of contributions. Furthermore, assurance problems (the
fear of having one�s contribution wasted if the provision point is not met) also develop in
this framework. Suppose that contributing all the aggregate wealth is socially desirable. In
this case, if the provision point is set equal to the aggregate wealth, then the e¢ cient equi-
librium outcome becomes a focal point in which the�cheap rider" problem does not arise but
the monetary risk from the assurance problem becomes the greatest. This is because this
highest provision equilibrium is unstable: small departures from equilibrium contributions

1Refer to the classical paper by Bergstrom, Blume and Varian (1985) for further discussion on the
relevance of this model. Ledyard (1995) provides a good survey of the experimental evidence.

2 Individuals are assumed not to have the right to opt out of the mechanism, that is, these mechanisms
are not individually rational.

3 In this game, players agree that it is better to cooperate than not to cooperate but they disagree about
the best outcome.

4This term was introduced by Isaac, Schmidtz and Walker (1988).
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by one participant causes the best response for the other participants to jump to zero con-
tribution. The ine¢ cient zero contribution equilibrium outcome is stable instead. Schmidtz
(1987) proposes an institution, known as the conditionally binding assurance contract which
combines a provision point feature with a money-back guarantee (contributions are returned
if the provision point is not met). Adding full refunds does not solve the �cheap rider" prob-
lem. Furthermore, if the provision point is not set equal to the aggregate wealth, although
the assurance problem is eliminated, the fear of having one�s contribution partially wasted
if the provision point is surpassed by total contributions is still an issue. Nonetheless, if
the provision point is set equal to the aggregate wealth, then full contribution to the public
good becomes a dominant strategy and despite the existence of multiplicity of equilibria,
the full contribution equilibrium is the only strict Nash equilibrium. Isaac, Schmidtz and
Walker (1988) show that the money-back guarantee must be complete and credible for it to
be successful in promoting the provision of public goods in an environment characterized
by the assurance problem5 .

Lotteries obtain higher levels of public goods provision than a voluntary contributions mech-
anism because the lottery rules introduce additional private bene�ts from contributing (Mor-
gan (2000))6 . When a consumer purchases ra­ e tickets, she reduces the chances of winning
of all other bettors. This extra negative externality component compensates for the positive
externality mentioned above, reducing the gap between the private and social marginal ben-
e�ts of contributions. Hence, lotteries tend to mitigate the tendency for agents to free ride.
As Morgan points out, �xed-prize lotteries are seen to be subsidies that are nonlinear7 in
the amount rebated for contributions to the public good. The lottery �xed-prize can be seen
as the stipulated total rebate amount set aside from total contributions. Each individual
receives a rebate share that is proportional to her contribution to the public good relative
to total contributions8 . Morgan argues that pari-mutuel lotteries (the prize amount is a
stipulated constant fraction of the total wagers) dilute the negative externality component
and do not increase public good provision relative to the standard voluntary contribution
mechanism.

Our model is one of a complete information (agents are homogeneous) in a static framework.
A variation of the pari-mutual lottery is proposed as a public good provision mechanism9 in
this paper and its superiority with respect to the �xed-prize lottery advocated by Morgan
is theoretically proved. The total rebate (prize) amount is made endogenous by being made
equal to a nonlinearly decreasing fraction of the total contribution. The private provision
of public good is modeled by the Stag Hunt game10 . Our mechanism is individual rational,
fully self-�nancing (budgetary illusion is excluded) irrespectively of whether subjects are
in or out of equilibrium, and it does not require a credible commitment by the agency
to fully refund contributions. In fact, the proposed scheme, if properly designed, requires
zero payments made in equilibrium by the agency. Furthermore, if full contributions are
socially desirable, then the mechanism can be designed such that full contribution is a weakly
dominant strategy for each agent and the public good provision consists of the aggregate
wealth (full contributions). This feature makes this mechanism dominate other proposed
mechanisms such as auctions11 and contests (Faravelli (2008)).

5A money-back guarantee is also assumed in mechanisms based on lotteries (Morgan (2000)). If the
wagers are insu¢ cient to cover the cost of the prize, then the charity is assumed to call o¤ the ra­ e and
return each bettor�s wager.

6Experimental evidence on lotteries and auctions as methods to �nance public goods is reported by
Morgan and Sefton (2000), Orzen (2005), Schram and Onderstal (2007), Lange et al. (2007) and Lim and
Matros (2009)

7The literature examines linear subsidy schemes to private spending that are �nanced through taxation.
In addition to the papers cited above refer, for example, to Roberts (1987),(1992)?

8Morgan employs the ratio form of the Contest Success Function (Tullock (1967, 1980)) with the �mass
e¤ect parameter" set equal to one. Refer to Hirshleifer(1989) for a comparison analysis of this success
function relative to the di¤erence form one.

9Refer to Martínez-Gorricho et al (2010) for a generalization of the proposed mechanism that can be
applied to a static framework with heterogeneous agents.
10 In this game, players not only agree that it is better to cooperate than not to cooperate but they also

agree about the best outcome.
11The �rst-price all pay auction with complete information has been used extensively in the literature. The
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Gradstein (1992) argues that the dynamics of the provision of public goods should also
be taken into consideration. According to this author, the standard ine¢ ciency result is
not only to underprovision in quantity terms of a public good but also to a delay in its
provision. Thus, he urges that any discussion of government intervention should address
two issues simultaneously by trying to induce both larger and quicker contributions. The
timing of contributions is an artifact used in our model to generate price discrimination
through a time dependent subsidy scheme in order to avoid delays in contributions. Each
agent simultaneously decides not only whether to contribute but also when to make her
pledge without observing the decisions made by her counterparts.

Experimental data from voluntary contribution public goods environments report a frequent
use of strictly dominated strategies. The persistence of cooperation in public good exper-
iments is a well known phenomenon in the literature12 . Subject�s public contributions are
much greater than predicted by standard economic theories of free-riding and these contri-
butions decay over the course of multiple-round games13 . Note that agents also often fail to
contribute when it is in their own interest to do so (Saijo and Nakamura (1995)14 , Palfrey
and Prisbrey (1997)). From there, the importance of testing our theory in the laboratory.

Our theory provides several testable predictions. We evaluate our theoretical conjectures
via a series of experimental treatments that examines the contribution decisions of agents
across a number of settings. We ran 6 treatments (all of them using neutral terminology):

� one standard VCM treatment to be used as benchmark for comparison (treatment
V CM),

� another one in which rebates were a function of the absolute time of contribution
(treatment E),

� four other treatments in which rebates were a function of the relative time of contribu-
tion, each one of them presenting a di¤erent combination of exogenous and strategic
risk levels, namely

� one in which both types of risk were strictly positive and that was used as the
basis for comparison with all other treatments (treatment B or Base),

� one in which the exogenous risk was as in the B treatment and the strategic risk
was eliminated (treatment D), meaning that �contribution�became a (weakly)
dominant strategy,

� one in which the strategic risk was as in the B treatment and the exogenous risk
was eliminated (treatment A), meaning that every contributor received the same
rebate,

��nally, one in which both the exogenous and the strategic risk were eliminated
(treatment C), which meant that this treatment was, a priori, the best of them
all.

Our hypotheses were such that we could order treatments in terms of their performance
(number of contributors and net contributions per capita): we expected C to be better

exists no pure strategy Nash equilibrium and a complete characterization of its equilibria appears in Baye
et al. (1996). Barut and Kovenock (1998) study symmetric multiple prize all-pay auctions with complete
information. Goeree et all (2005) propose a class of lowest-price all-pay auctions which involves both an
entry fee and a reserve price as an optimal fund-raising mechanism in an incomplete information setting.
12Several explanations have been o¤ered in the literature for why there is so much cooperation: kindness

(altruistic preferences, warm-glow preferences) and �confusion" or decision error. Both explanations bias
contributions upwards. See Palfrey and Prisbrey (1997) and Anderson et al. (1998)
13Subjects generally begin by contributing about half of their endowments to the public good. As the

game is iterated, the contributions �decay" toward the dominant strategy level and stand at about 15-25%
of the endowment by the tenth iteration (Isaac and Walker (1988). The declines in contributions might be
consistent with learning and endgame e¤ects.
14Saijo and Nakamura do not justify their results by arguing confusion but by arguing the presence of

many spiteful subjects, those who free ride in order to maximize ranking.
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than A and D (lower risk) and B to be worse than A and D (higher risk), but we did not
know what to expect from the comparison between A and D. Also, we expected E to be
equivalent to the V CM (no externality) and both of them to be worse than B (externality).
Our hypotheses can therefore be represented as follows:

C � best fA;Dg < worst fA;Dg � B � E � V CM (1)

Our empirical results support almost every one of our hypotheses: we obtained the following
ordering of the treatments in terms of their performance

C � A � D � B � E � V CM (2)

That is, the only two hypotheses that were rejected were that C � A and that D � B. In
both cases, the intuition behind the hypothesis was that the strategic risk in the treatment
on the left-hand side was lower than in the one on the right-hand side. Empirical evidence
seems to reject, therefore, the idea that people care about strategic risk. It is quite a
surprising result, and we do not have a de�nitive explanation for this �anomaly�. Our
best shot at it is based on the idea that, when making risky decisions, some people seem
not to weight their payo¤s using the associated probabilities but they simply �count� the
number of �good� outcomes (in which the person �wins� and gets extra money) and the
number of �bad�outcomes (in which the person �loses�and has to pay/give up some money)
and then they simply choose the option with the highest number of �good�outcomes (see,
for example, Sánchez Villalba (2009) for a case in which such rule of thumb seems to be
followed).

On the other hand, the experimental evidence seems to also categorically determine that
A � D, which is consistent with the results in the previous paragraph and implies that
changes in the exogenous risk are more important than changes in the strategic risk.

The paper is organized as follows. A simple version of the more general public game pre-
sented in Martínez-Gorricho et al. (2010), with homogeneous agents and complete infor-
mation is formalized in section 2. Section 3 compares private provision via the proposed
mechanism with other mechanisms proposed in the literature, such as �xed-prize lotteries
and auctions. Experimental designs and tests of many implications of the theory are intro-
duced in section 4. Section 5 presents the results of our experiments. Section 6 concludes
with a discussion of directions for future research. Proofs are contained in the Appendix.

2 The Model

Consider a very simple simultaneous linear public game with N homogeneous and risk
neutral expected utility maximizers agents. Each consumer i consumes an amount of xi of
the private good and donates an amount gi � 0 to the supply of the public good. The total
supply of the public good, G =

PN
i=1 gi, is the sum of the contributions of all individuals.

Each player�s preferences are represented by the payo¤ function: ui(xi; G) = xi+
G, where

 2

�
1
N ; 1

�
is the marginal per capita return (MPCR). Each individual i is endowed with

wealth w which she allocates between the private good xi and his gift gi. Let G�i denote
the sum of all gifts by consumers other than i.

A Nash equilibrium in this model is a contribution pro�le g� such that for every player i,
(x�i ; g

�
i ) solves

max
xi;gi

ui(xi; gi +G
�
�i) = xi + 
(gi +G

�
�i)

st: xi + gi = w
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0 � xi � w; 0 � gi � w

Although there does not exist an explicit cost of investing in the public good by contributing
a positive amount, there exists an implicit opportunity cost in terms of foregone private con-
sumption. Given that 
 < 1, each individual�s opportunity cost of contributing to the public
good exceeds the marginal return of investing in the public good. Clearly, not contributing
to the public good strictly dominates any player�s other action. Therefore, the unique equi-
librium predicted contributions induced by the Voluntary Contribution Mechanism (VCM)
are null, and as a result, the public good is not provided in equilibrium.

On the contrary, the social optimum contribution pro�le ĝ solves:

max
fgig

NX
i=1

ui(w � gi; G) = Nw �G+ 
NG

st: 0 �
NX
i=1

gi � Nw

Given that N
 > 1, if Ĝ = Nw, then social payo¤s are maximized. All aggregate wealth to
be contributed to the public good is the socially e¢ cient outcome.

Our environment is characterized by extreme free riding when in fact, the public good is
socially desirable. The VCM results in a systematic underprovision of the public good
relative to the �rst-best allocation. Our goal for this paper is designing a mechanism that
induces both larger and quicker contributions to the supply of the public good.

3 Subsidy Scheme Mechanisms

In this section, di¤erent budget balancing subsidy schemes are analyzed. We introduce an
extra dimension in the consumer�s problem, called �the timing of contributions". Now, each
agent simultaneously decides not only whether to contribute or not and by how much, but
also when to make her pledge without observing the decisions made by the other agents.
Note that the game continues to be a static game. The timing of contributions is a simple
artifact that allows us to generate price discrimination through a time dependent subsidy
scheme. Speci�cally, the opportunity cost of contributing to the supply of the public good
is lowered for earlier contributions.

Given the added complexity introduced by the time variable and the subsidies, we focus on
a simpler version of the game characterized by binary contributions only: each agent must
decide privately whether to �contribute" (C) her total endowment to the public good or
�refrain from contributing" (R). De�ne the following contribution index variable:

�i =

(
1 if player i chooses C

0 if player i chooses R

Let � 2 f0; 1gN be a pro�le of contribution indexes. Let time be a continuous variable
that starts at 0 and runs inde�nitely. Let ti denote player i�s contribution time: the time
at which player i chooses to contribute to the public good if (he decides to do) so. Let
t 2 RN+ be a pro�le of contribution times. De�ne TC(t) as the contributors�contribution
time set for a given pro�le of contribution times, that is, the collection of contribution times
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by contributors only given t. Thus, ti 2 TC(t) if and only if �i = 1. Let n denotes the
number of contributors and equals the cardinality of the contributors�contribution time set
TC(t). Each player�s action space is fC;Rg�R+. Player i�s preferences are represented by
the payo¤ function:

ui(�; t) = si(�; t) + (1� �i)w + 


0@ NX
j=1

�jw �
NX
j=1

sj(�; t)

1A
where si(�; t) denotes the total subsidy (instantaneous cash rebate) obtained by player i
in the game. The public good provision is given by the sum of all gifts in excess of the
total subsidy payments. These subsidies are assumed to be bounded above by the wealth
endowment: si(�; t) � w for all (�; t) pro�les. This guarantees that the mechanism is self-
�nancing. For individuals to have the right to opt out of the mechanism, si(�; t) � 0 if
�i = 0. In order to maximize the total net contributions to the public good, si(�; t) = 0 if
�i = 0.

3.1 The Absolute Time Subsidy Scheme

Under the Absolute Time Subsidy Scheme (ATSS), the subsidy function faced by player i is
a function that is only dependent on the contribution time chosen by player i. This scenario
resembles a �for a limited time only" market sale promotion. This type of promotion
has been taken place some time ago in the province of Tucumán (Argentina), where the
taxpayers were waived one of the bimonthly instalments of the property tax if they were
paid altogether a the beginning of the �scal year. Another example that demonstrates that
this kind of promotion is very popular and spread around the world, refers to waived fees
applied to early registrations for a scienti�c conference.

Formally, si(�; t) = �i � �(ti), where �(�) is a monotonically decreasing function in player i�s
contribution time, being strictly decreasing at some instant in time. Therefore, player i�s
preferences are represented by the payo¤ function:

ui(�; t) = �i � �(ti) + (1� �i)w + 

NX
j=1

�j(w � �(tj))

The �nal term represents the payo¤ from the public good.

Under the Absolute Time Subsidy Scheme, then a unique (pure strategy) Nash equilibrium
outcome exists in the linear public good game and it is characterized by a null provision of
the public good.

Proof. A Nash equilibrium in this model is contribution index and time pro�le (��; t�) such
that for every player i, (��i ; t

�
i ) solves

max
f�i;tig

ui(�; t) = w � (1� 
)�i(w � �(ti)) + 

X
j 6=i

��j (w � �(t�j ))

If �(0) < w, then w��(ti) > 0 for all ti and given that 
 < 1, �refrain from contributing" (R)
is the unique best �rst component response of each player to any other players�strategies.
If �(0) = w, let ~t be the largest time instant for which the subsidy obtained by any player is
equal to the wealth endowment: �(ti) = w if and only if ti � ~t. The strategy �refrain from
contributing" (fR; tig 8ti) continues being a best response to any other players�strategies.
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Furthermore, �contribute at a time instant not larger than ~t " (fC; tig for ti � ~t) is also
a player i�s best response to the other players�strategies. No further best responses exist.
As a result, in any (pure strategy) Nash equilibrium outcome, the sum of all gifts does not
excess the total subsidy payments so that the public good is not provided in equilibrium.

This mechanism is completely ine¤ective at mitigating the extreme free-riding problem. It
keeps being a pervasive outcome of the public good game.

3.2 The Relative Time Subsidy Scheme

If properly designed, a time-dependent price discrimination subsidy scheme could be suc-
cessful in promoting the provision of the public good by generating a negative externality
via competition among contributors to get the rebates. This arti�cially generated nega-
tive externality helps reducing the gap between the private and socially marginal bene�t of
contribution. This mechanism can be modeled as a (within-group) tournament game being
the subsidy payments the prizes awarded. Each contributor is paid a rebate based on how
her contribution time ranks in comparison to the other contributors� contribution times.
The agent with the shortest contribution time among contributors gets the highest rebate.
Rebates are weakly decreasing in rank so that the contributor with the largest contribution
time gets the lowest (non-necessarily positive) rebate. The tie-breaking rule is such that
players contributing at same time share the subsidies equally in expected terms. This sce-
nario is a variation of the popular �while stocks last" market sale promotion in which the
�rst contributors get a positive discount. However, we allow the discount rate (rebate) not
be necessarily uniform for these earlier contributors.

Formally, de�ne the �earlier contribution times set" relative to a given alternative or con-
tribution time ti 2 TC(t) by a given contributor i as a subset of all contribution times in
TC(t) such that ti is the largest contribution time in TC(t):

TCi (t) �
�
tj j tj 2 TC(t) and ti > tj

	
for all ti 2 TC(t)

Similarly, de�ne the �no later contribution times set" relative to a given alternative or
contribution time ti in TC(t) by a given contributor i as a subset of all contribution times in
TC(t) such that no contribution time tj 2 TC(t) is larger than contribution time ti 2 TC(t):

TCi (t) �
�
tj j tj 2 TC(t) and ti � tj

	
for all ti 2 TC(t)

We construct the rank position of each contributor by assigning to each contributor an
integer number which is equal to the cardinality of her �earlier contribution times set" plus
one. That is,

ri � rank(ti) = 1 +#TCi (t) for all ti 2 TC(t)

Similarly, de�ne

�ri = #TCi (t) for all ti 2 TC(t)

Let ej 2 RN+ be the jth column vector of the (N �N) identity matrix I. Let � 2 RN be a
row vector of rebates such that w � �j 8j = 1; :::; N and that �j � �j+1 8j = 1; :::; N with
strict inequality for at least j = 1. The expected subsidy obtained by any agent i is given
by:

8



si(�; t) =

8>><>>:
�eri if �i = 1 and ri = ri�

1
�ri�ri+1

�P �ri
j=ri

�ej if �i = 1 and ri < ri

0 if �i = 0

Player i�s payo¤ function can be written as:

ui(�; t) = w � (1� 
)(�iw � si(�; t)) + 


0@X
j 6=i

�jw �
X
j 6=i

sj(�; t)

1A
Note that this tournament game is not a zero-sum game since rebates are only earned by
early contributors. This non zero-sum nature creates incentives for cooperation in terms of
contributions to the public good. On the other hand, there are no incentives for any coop-
eration or reciprocality in the timing of contributions. If there are at least two contributors,
and given that someone will end up getting the highest rebate, all contributors will try to
get it.

Under the Relative Time Subsidy Scheme, if at least two agents contribute to the public
good in any Nash equilibrium, all contributors must contribute at time zero.

Proof. The proof is by contradiction. Suppose not so that 1 < n � N players choose to
contribute to the public good at di¤erent time instants. Let focus �rst on the last player in
contributing. If she contributed in a time instant di¤erent from the penultimate agent in
contributing, she would be strictly worse o¤ contributing than refraining from contributing
since �n < w. Hence, if she contributes to the public good, she must do so at the same time
as the penultimate contributor. Now, lets partition the set of contributors according to their
contribution times. If the partition (collection of subsets of the contributors set) contains
at least two sets, let focus on any player who is not a member of the subset characterized
by the shortest contribution time. Given that �1 > �j 8j = 2; :::; N , this player can obtain
a strictly higher expected payo¤ if she deviates by choosing a contribution time such that
no player contributes to the public good earlier than her. As a result, all contributors must
contribute at the same time instant. Suppose they contribute at a time moment di¤erent
from zero. Then, any player can obtain a strictly higher expected payo¤ if she deviates and
chooses a contribution time of zero, thus becoming the �rst contributor earning the rebate
�1.

Assuming existence, we could try to characterize the potential Nash equilibria of the game.
It is clear that if all other agents refrain from contributing to the public good and �1 < w,
the unique best �rst component response of any player to the other players� strategies is
refraining from contributing and as a result, the public good is not privately provided in
equilibrium. If all other agents refrain from contributing to the public good and �1 = w,
then any possible strategy is a best response to the other players� strategies. We have a
continuum of equilibria also characterized by a null private provision of the public good.
Suppose now at least one player chooses to contribute to the public good (1 � n � N). Can
this outcome be supported in a Nash equilibrium? Suppose so. Given the above lemma, let
��n�(�) denote the expected rebate obtained by any contributor in equilibrium in the game
given �: ��n�(�) � 1

n�

Pn�
j=1 �j > �n�(�) where n�(�) denotes the number of contributors in

equilibrium given �. The necessary condition for any given contributor not willing to deviate
and refrain from contributing is:


(w � �n�(�)) � w � ��n�(�) , ��n�(�) � (1� 
)w + 
�n�(�) (3)

This condition speci�es a lower bound for the expected rebate obtained by any contributor
in any equilibrium of the game. This lower bound corresponds to a particular convex
combination of the wealth endowment and lowest rebate earned by a contributor being the
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convex combination parameter the MPCR. The condition can be interpreted in the following
terms: the opportunity cost of contributing to the public good for a contributor (given by
w���n�(�)) cannot exceed the gains obtained from her contribution (given by 
(w��n�(�))).

If there were no contributors in equilibrium, the additional necessary condition must be
satis�ed for these no contributors not willing to deviate and contribute to the public good:


(w � �n�(�)+1) � w � ��n�(�)+1 , ��n�(�)+1 � (1� 
)w + 
�n�(�)+1 (4)

This condition speci�es an upper bound for the expected rebate that would obtained any
contributor in any equilibrium of the game if a non contributor deviated and decided to
contribute to the public good.

Given the parameter values of the model, it is possible to characterize many rebate vectors
that satisfy these upper bound and lower bound conditions. As a result, multiplicity of Nash
equilibrium follows.

Under the Relative Time Subsidy Scheme, multiple (pure strategy) Nash equilibrium out-
comes might exist in the linear public good game characterized by multiple public good
provision levels.

For any rebate vector � 2 RN , the equilibrium social welfare is given by:

NX
j=1

ui(�
�; 0) = Nw + (N
 � 1)n�(�)(w � ��n�(�))

The private provision of public good is given by the equilibrium net contributions to the
public good n�(w���n�(�)) while the percentage of total net contributions to the public good
over aggregate wealth is given by 1

Nwn
�(w � ��n�(�)).

Our main task is designing the rebate vector that provides the highest well being in equilib-
rium. It is clear that the greater the private provision of the public good, the better o¤ are
the players. In order to maximize welfare and achieve the equilibrium outcome closest to the
�rst best we should choose a rebate vector �� such that all players contribute in equilibrium:

n�(��) = N . The necessary condition for this to be satis�ed is that ��N �
PN

j=1 �j�N(1�
)
N
�1 .

This condition establishes an upper bound for the lowest rebate provided. In order to
maximize welfare, it should not be positive. In principle, we could set up it to be nega-
tive. If we constrained it to be nonnegative, then we obtain that social welfare is given by
N [1 + (N
 � 1)
]w so that it is increasing in both population size and the MPCR. Total
net contributions are given by N
w while the percentage of contributions over aggregate
wealth is given by 
. We could also design this rebate vector such that no other partial
contribution equilibrium exists with 1 � n�(�) < N . By doing this, we reduce any possible
coordination issues that agents might face when playing the game. As a result, if properly
designed, the Nash equilbrium outcomes in the linear public good game could be reduced
to two: one in which all players contribute and there is no delay in equilibrium and one in
which no one contributes to the public good. The �rst equilibrium outcome corresponds
to a Nash equilibrium that Pareto dominates any Nash equilibrium characterized by a zero
public good provision, becoming a focal equilibrium to be played in the game. Furthermore,
we could also design it in such a way that it satis�es the Risk Dominance re�nement.

Under the Relative Time Subsidy Scheme, if the subsidy scheme is properly designed, there
is a unique Nash equilibrium with positive public good level provision and it is characterized
by no delay and by all players being contributors to the public good. This equilibrium Pareto
dominates the equilibrium outcome in which the public good is not privately provided.

Our main results from this section are that a RTSS can be designed in a way such that:
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1. There is no delay in equilibrium: Instant contributions are generated by this mecha-
nism even when agents are extremely patients, that is, players do not discount future
payo¤s.

2. All agents contribute their entire endowment in equilibrium

3. The Nash equilibrium outcome Pareto dominates the equilibrium outcome generated
by the VCM.

Some comparisons can be performed relative to other suggested mechanisms in the literature
such as the �xed-prize lottery mechanism suggested by Morgan(2000).

The payo¤ of any player who participates in the lottery is given by: u(xi; gi) = w � gi +�
gi

gi+G�i

�
R+ 
(

PN
j=1 gj �R) where R is the �xed-prize set apart from gross contributions

to the public good. It can be shown that our mechanism outperforms Morgan�s mechanism
in all welfare criteria cited above for all values of R. Thus, our mechanism which can be
interpreted as a parimutuel lottery with rebates being a non uniform percentage of total
bets is superior to any �xed prize lottery.

4 Experiment design

The experiment took place on the 7 and 8 of October 2010, at the LaTEX computer lab-
oratory (University of Alicante, Spain). 144 participants were recruited from the pool of
students that attend the University of Alicante and were allocated to sessions according to
their time preferences.15 No person was allowed to participate in more than one session.

The experiment consisted of 6 sessions and 6 treatments, namely, A(verage), B(ase), C(ertain),
D(ominant), E(xogenous time) and VCM (voluntary contribution mechanism). Sessions
lasted between 90 and 120 minutes. Participants were allowed into the lab according to
their arrival time and they entered and freely chose where to sit. They were not allowed to
communicate for the entirety of the session and could not see other people�s screens.

In each session instructions were read aloud by the instructor and, in order to ensure their
correct understanding, the participants were asked to complete a �short quiz� (shown in
appendix A; correct answers and the rationale for them were provided by the instructor
after a few minutes). For the same reasons, participants then played two �trial�(practice)
rounds whose outcomes did not a¤ect their earnings. After each of these �rst three stages
the instructor answered subjects�questions in private. The experimental rounds (12 per
treatment) were then played, and after that, subjects completed a questionnaire with in-
formation regarding personal data and the decision-making process they followed. Finally,
each participant was paid an amount of money consisting of a �xed amount (1:50 e) and
a variable component equal to the earnings obtained in one of the rounds, randomly cho-
sen using an urn with balls. The exchange rate used to translate experimental currency
(�pesetas�)16 into money was

100 �pesetas�= 10 e (5)

and the average person was paid 14:48 e.

In each session, the 24 participants were grouped into three 8-member matching groups,
that remained �xed throughout the session. In each round, subjects in a matching group
were randomly grouped into two 4-person groups.
15Between four and six �reserve�people were invited to each session and some of them had to be turned

down because the target number of participants (24 per session) was reached. Each one of them was paid
the 5e show-up fee before being dismissed.
16This is the traditional �experimental currency�used in the LaTEX laboratory.
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Each experimental round consisted of three stages: the �Scenario calculator�, where a player
could try di¤erent combinations of her own and the members of her group�s choices and see
how they impact on her payo¤s; the �Choice�one, where participants had to make a decision
that would a¤ect their payo¤s, and the �Feedback�one, where they got information about
the round outcome.

In the �choice�stage a one-shot game was played. Each player was endowed with 100 �pe-
setas�and had to allocate them to one of two possible �activities�(Y or Z) interpreted as
(Gross) Contribution and No Contribution, respectively.17 We talk here of gross contribu-
tion rather than just plain contribution because in some cases contributors are entitled to
a subsidy, which means that their net contribution di¤ers from (are lower than) their gross
contributions. Formally, ki 2 K := f100; 0g, where ki is the (gross) contribution decision of
player i and it takes the value 100 (resp., 0) when she dedicates her entire endowment to
activity Y (resp., Z).

In some of the treatments they also had to choose when to make their gross contribution
(in the case of choosing Y ). Formally, ti 2 T := f1; 2; 3; 4g, where ti is the moment in time
at which player i dedicates her endowment to activity Y (economically, the moment in time
at which she (gross) contribute her endowment to the provision of the public good).

We restrict the values that ki can take because we are mostly interested in analysing the
e¤ect of time on contribution decisions. Thus, we reduced the contribution choice to an �all
or nothing�question, so that deciding how much to contribute was a relatively simple issue
and people could concentrate on the when to contribute dimension. Note that the presence
of subsidies does, in fact, relax this restriction because those who bene�t from a subsidy can,
at the end of the day, enjoy some private consumption even though they (gross) contributed
their whole endowment.

A player i�s payo¤ yi is therefore determined by her own decision pro�le di = (ki; ti) 2 D :=
K � T and the decision pro�les of the other 3 people in her group d�i 2 D3:Formally,

yi := y (di;d�i) (6)

Furthermore, since the time of contribution ti only matters when the player (gross) con-
tributes her endowment (i.e., when ki = 1, if the person does not contribute her payo¤
is independent of ti), we can reduce the decision pro�le di to a scalar variable �choice�
ci := ki � ti. Thus, the previous equation becomes

yi := y (ci; c�i) (7)

More explicitly, the payo¤ function is

yi = xi + 
G (8)

where yi is the total payo¤ of player i in a round, xi is her private consumption for the
round, G :=

P
gi is the aggregate level of net contributions gi in the group, and 
 2 (0; 1)

is the constant �marginal per capita rate�(MPCR) at which contributions are transformed
into payo¤s.18 Note that every person consumes the same amount of public good, which
re�ects the fact that the public good is both non-rival and non-excludable (that is, it is a
17The assumption of a degenerate income distribution is a �rst approach to the problem. We leave

the question of how non-degenerate income distributions a¤ect the subsidy mechanism open for future
investigation. Our preliminary results suggest, however, that the mechanism can be easily modi�ed in the
presence of said distributions.
Nevertheless, that there is a very important application for the case of degenerate income distributions,

namely, collective choice problems in which every person has one vote (hence, analogous to situations in
which everyone has the same income) and part of the money collected is redistributed to the voters (analogous
to subsidies being paid to players).
18 In the experiment, the variables were labeled neutrally: yi as �Result�, xi as �Component A�, and 
G
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pure public good). Instructions highlighted the fact that di¤erent people could get di¤erent
levels of private consumption xi (component A) but 
G was the same for everyone.

The player�s budget constraint is:
xi + gi = wi (9)

so that her private consumption is given by:

xi = wi � gi (10)

Net contribution gi is, in turn, equal to the player�s gross contribution ki 2 f0; wig minus
the subsidy she receives si 2 [0; ki]:

gi = ki � si (11)

Note that gi cannot be negative: the subsidy cannot be negative and cannot exceed the
amount (gross) contributed. This assumption implies that the system is self-�nancing: the
designer always counts with enough money as to pay the subsidies and does not need to
use her own money in any case. It can be said that bankruptcy is not possible. The actual
functional form of the subsidy depends on the treatment considered, but its general form is

si = s (ci; c�i) = s (ki; ti;k�i; t�i) (12)

that is, it depends on the choices of the person (ki; ti) and on the choices of the other
members of the group.

When a person contributes (choses activity Y), she becomes eligible for a subsidy. The
impact of the subsidy is (at least) twofold:

1. On the one hand, it decreases the person�s (net) contribution gi and so, ceteris paribus,
the person�s public good consumption 
G (second term of equation 8) and payo¤ yi.

2. On the other hand, it increases the person�s private consumption xi (�rst term of
equation 8) and, hence, the payo¤ of the person yi.

The payo¤ function can therefore be re-written as

yi = xi + 
 (W �X) = xi + (
W � 
X) (13)

where W :=
P
wi is the total wealth of the group and X :=

P
xi is the total private

consumption of the group. This formula is the one that was used in the instructions for the
treatments (see appendix): xi corresponds to �Component A�and (
W � 
X) to �Com-
ponent B�. In the experiment the MPCR is set equal to 0:6 (not di¤erent from the values
frequently used in the literature �see, for example, XX and XX) and wi = 100 for every
player, so that W = 400 and �Component B�= 0:6 � 400 � 0:6 �

P
xi = 240 � 0:6 � (sum of

components �A� of the members of the group), which is exactly the formula used in the
instructions (see appendix). Instructions highlighted the fact that di¤erent people could get
di¤erent levels of private consumption xi (component A) but 
G = 
W � 
X was the same
for everyone.

The participant�s submission of her decision (ki and ti) ends the �Choice�stage and give way
to the �Feedback�one, in which the person was informed about her choices, the information

as �Component B�.
The assumption of a linear payo¤ function is frequently used in the literature (see NN, NN among others)

and implies a corner solution. Thus, restricting attention to ki = 0 and ki = 100 is not an assumption, but
a consequence of using a linear payo¤ function.
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necessary to compute the subsidy, both her private and her public consumption, and her
payo¤ for the round. At no stage was a subject given any information about the choices or
outcomes of any other participant (at least not explicitly, though they could infer them in
some scenarios).

By clicking on the �Continue�button, participants exited the �Feedback�stage and moved
on to the next round (if any was left). Rounds were identical to each other in terms of their
structure (Scenario calculator, Choice and Feedback stages) and rules (payo¤ computations,
matching protocols), but may have di¤ered in the realised values of the random variables
(allocation of people to groups, tie breaking results). Participants were told explicitly about
this and informed that each round was independent from every other one.

4.1 Treatments

The experiment�s treatments were de�ned according to the subsidy function used.

1. The �rst case to consider is the �no subsidy� one: si = 0 always. This is the stan-
dard voluntary contribution mechanism. Whatever is (gross) contributed is also (net)
contributed: gi = ki. This is the setup we used in the VCM treatment.

2. Alternatively, we could consider cases in which the subsidy was strictly positive at
least in some scenarios. In particular, we made the subsidy be a function of (among
other possible variables) the time at which the player contributed. There are, however,
two ways in which time can be used to determine the size of subsidies:

(a) Time of contribution could be measured in �absolute� terms, meaning that the
subsidy would be a function of the exact day/hour/minute/second at which the
contribution was made: si = s (ki; ti;k�i). This implies that everyone who
contributed on, say, October 20th would receive the same subsidy. It also implies
that time a¤ects the size of the subsidy that I get only via my own time of
contribution. This setup is the one used in treatment E(xogenous time).

(b) Alternatively, time of contribution could be measured in �relative�terms, mean-
ing that the subsidy would be a function of the position (order, rank) of contri-
bution. That is, early contributors would get a subsidy di¤erent from the subsidy
obtained by late contributors. Thus, time a¤ects the subsidy I obtain not only via
my own time of contribution, but also via everyone else�s: si = s (ki; ti;k�i; t�i).
This setup is the one used in treatments A, B, C and D. They di¤er in terms of
the risk associated to each one of them, as shown in the following table:

Strategic Risk
Zero Positive

Exogenous Zero C(ertain) A(verage)
Risk Positive D(ominant) B(ase)

Table 1: Factorial design

where the exogenous risk refers to the degree variability of the subsidy function
(how heterogeneous are the subsidies received by the members of the group) and
the strategic risk refers to probability of coordination failure (as explained in
the theory section, if the subsidy is a weakly decreasing function of the position
of contribution, then the situation becomes a coordination game with multiple
equilibria).
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4.2 Selection of payo¤s and hypotheses to test

4.2.1 Base treatment

Let us start with the Base treatment. The subsidy function is:

sBi = s (ki; ti;k�i; t�i) =

8>>>><>>>>:
90 if player i is the �rst person of the group to choose Y

70 if player i is the second person of the group to choose Y

20 if player i is the third person of the group to choose Y

0 if player i is the fourth person of the group to choose Y
(14)

It can clearly be seen that the subsidy depends on the relative time of contribution19 . It
is also straightforward to see that di¤erent members of the group get di¤erent subsidies,
and hence also di¤erent private consumption levels and di¤erent payo¤s (in other words,
exogenous risk is strictly positive: the variance of the distribution is 1325). It is not so
simple to see the presence of strategic risk. For that, it is better to see matrix of payo¤s of
player i:

K�i :=
P

j 6=i k

300 200 100 0
Z 100 + 72 = 172 100 +24 = 124 100 + 6 = 106 100 + 0 = 100
Y1o 90 + 132 = 222 90 + 72 = 162 90 + 24 = 114 90 + 6 = 96

ci Y2o 70 + 132 = 202 70 + 72 = 142 70 + 24 = 94
Y3o 20 + 132 = 152 20 + 72 = 92
Y4o 0 + 132 = 132

Average Y 45 + 132 = 177 60 + 72 = 132 80 + 24 = 104 90 +6 = 96

Table 2: Payo¤ table. Base treatment

In every cell it is indicated the payo¤ of the (row) player i when her choice is ci and the
other members of the group (gross) contribute K�i pesetas. The �rst term is the private
consumption (the subsidy if Y is chosen) and the second one is the public good consumption.
Note that when player i chooses Y her �nal payo¤ (and her subsidy) depends on the position
of contribution (indicated by 1o, 2o, etc. on the row headers). The last line shows the average
payo¤ that player i gets if she chooses Y when the rest of the group (gross) contributes K�i
pesetas and all contributors make their contributions at the same moment in time. If player
i were risk neutral, hence, she would choose to contribute (Y ) if at least 2 other people in
her group also contribute (if K�i � 200): when three (resp. two) other people in her group
contribute, then contributing gets her 177 pesetas (resp. 132) while not contributing gets
her only 172 pesetas (resp. 124). Otherwise (if K�i < 200), she is better o¤not contributing
(either 106>104 or 100>96). That is, player i has an incentive to do as the others in her
group do: if they contribute, she is better o¤ contributing as well; if they do not contribute,
her optimal choice is not to contribute either. Since this situation is true for all members in
the group, the result is a coordination game with two pure strategy equilibria: one in which
everyone contributes and another in which nobody contributes. Thus, this is evidence of
the presence of strategic risk. Note that the �Full Contribution�equilibrium (FCE) Pareto-
dominates the �Zero Contribution� one (ZCE). Furthermore, the numbers in equation 14

19 In case of a tie in the time of contribution, the computer randomly asigns a position to each participant
in the tie (each one has the same probability in each of the possible positions).
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were chosen so that the FCE would also risk-dominate the ZCE.20 Thus, both criteria select
the same (good) equilibrium, which means that if this mechanism is actually implemented,
the outcome is very likely to be similar to the one associated with the FCE. Finally, it is
important to mention that the above analysis also holds if the player is risk averse and her
utility function is of the Constant Relative Risk Aversion (CRRA) type, with index of risk
aversion r as high as 1 (let us call this type of player a �moderately risk averse person�,
MRA person).21

4.2.2 Dominant treatment

The subsidy function is:

sDi = s (ki; ti;k�i; t�i) =

8>>>><>>>>:
100 if player i is the �rst person of the group to choose Y

50 if player i is the second person of the group to choose Y

30 if player i is the third person of the group to choose Y

0 if player i is the fourth person of the group to choose Y
(15)

As with the Base treatment, the subsidy depends on the relative time of contribution22 and
the exogenous risk is strictly positive (the variance of the distribution is also 1325). The
matrix of payo¤s of player i is now:

K�i :=
P

j 6=i k

300 200 100 0
Z 100 + 72 = 172 100 + 30 = 130 100 + 0 = 100 100 + 0 = 100
Y1o 100 + 132 = 232 100 + 72 = 172 100 + 30 = 130 100 + 0 = 100

ci Y2o 50 + 132 = 182 50 + 72 = 122 50 + 30 = 30
Y3o 30 + 132 = 162 30 + 72 = 102
Y4o 0 + 132 = 132

Average Y 45 + 132 = 177 60 + 72 = 132 75 + 30 = 105 100 + 0 = 100

Table 3: Payo¤ table. Dominant treatment

A risk neutral player would now realise that choosing Y (i.e., contributing) is a weakly
dominant strategy (and strictly dominant as long as someone else in the group contributes).
Thus, there is no strategic risk here: the only robust equilibrium is the FCE. And this result
also holds for MRA people. So, treatments B and D have the same level of exogenous risk
(same variance) but B has a higher (strictly positive) level of strategic risk than D (strategic
risk is zero). It is reasonable to assume that coordinating on the good equilibrium (FCE)

20Risk dominance is another criterion used to select an equilibrium when a game has multiple ones. It
re�ects the risk (payo¤ loss) associated with deviating from an equilibrium: it selects the equilibrium with
the largest associated payo¤ loss.
In the case of treatment B, deviating from the FCE means switching from Y (that yields expected payo¤

177) to Z (payo¤=172). The associated loss is 177-172=5. On the other hand, deviating from the ZCE
means switching from Z (that yields payo¤ 100) to Z (payo¤=96). The associated loss is 100-96=4. Since
the loss associated to the FCE is larger than the one associated to the ZCE, then the risk dominance criterion
selects the FCE.

21According to Holt and Laury (2002), this should encompass about 75% of the population.
22 In case of a tie in the time of contribution, the computer randomly asigns a position to each participant

in the tie (each one has the same probability in each of the possible positions).
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is easier in D than in B (less demanding in terms of belief formation). Thus, by comparing
treatments B and D we can test the following hypothesis:

Hypothesis 1 E¤ect of strategic risk (ESR): Higher strategic risk decreases the num-
ber of contributors and lowers net contributions (less of the public good is produced).

Formally, the hypothesis can be written as

KD > KB (16)

GD > GB (17)

where Kh :=
P
khi is the number of contributors in treatment h:

4.2.3 Average treatment

The subsidy function is:

sAi = s (ki;k�i) =

8>>>><>>>>:
90 if player i chooses Y and so do everyone else in her group

80 if player i chooses Y and so do two other people in her group

60 if player i chooses Y and so do one other person in her group

45 if player i chooses Y and everyone in her group choose Z
(18)

Unlike the Base and Dominant treatments, the subsidy here does not depend on the time of
contribution: it only depends on the contribution decisions of the player and of the members
of her group. Unlike B, there is no exogenous risk here: at the end of the day, every player
gets the same payo¤: the variance of the distribution is also 0. The matrix of payo¤s of
player i is now now:

K�i :=
P

j 6=i k

300 200 100 0
Z 100 + 72 = 172 100 + 24 = 124 100 + 6 = 106 100 + 0 = 100

ci Y 45 + 132 = 177 60 + 72 = 132 80 + 24 = 104 90 + 6 = 96

Table 4: Payo¤ table. Average treatment

Note that this table consists of the �rst and last row of the table of payo¤s of treatment B
(table 2). The analysis is, therefore, identical to the one developed immediately below that
table, and so are the results: the game is a coordination game, it is optimal to contribute if
at least two other people in the group do so, and the FCE is both the Pareto-dominant and
the risk-dominant equilibrium. So, treatments B and A have the same level of strategic risk
(in both treatments it is optimal to contribute if at least two other people in the group do
so, and not to contribute otherwise) but B has a higher (strictly positive) level of exogenous
risk than A (variance in B is 1325 while variance in A is 0). It is reasonable to assume that
risk averse people would prefer treatment A over treatment B because expected values are
the same but variability is lower in the �rst treatment. Thus, by comparing treatments A
and B we can test the following hypothesis:

Hypothesis 2 E¤ect of exogenous risk (EER): Higher exogenous risk decreases the
number of contributors and lowers net contributions (less of the public good is produced).
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Formally, the hypothesis can be written as

KA > KB (19)

GA > GB (20)

4.2.4 Certain treatment

The subsidy function is:

sCi = s (ki;k�i) =

8>>>><>>>>:
100 if player i chooses Y and so do everyone else in her group

75 if player i chooses Y and so do two other people in her group

60 if player i chooses Y and so do one other person in her group

45 if player i chooses Y and everyone in her group choose Z
(21)

Just like in A and unlike B and D, the subsidy here does not depend on the time of
contribution: it only depends on the contribution decisions of the player and of the members
of her group. There is no exogenous risk here either: at the end of the day, every player
gets the same payo¤: the variance of the distribution is also 0. The matrix of payo¤s of
player i is now now:

K�i :=
P

j 6=i k

300 200 100 0
Z 100 + 72 = 172 100 + 30 = 130 100 + 0 = 100 100 + 0 = 100

ci Y 45 + 132 = 177 60 + 72 = 132 75 + 30 = 105 100 + 0 = 100

Table 5: Payo¤ table. Certain treatment

Note that this table consists of the �rst and last row of the table of payo¤s of treatment
D (table 3). The analysis is, therefore, identical to the one developed immediately below
that table, and so are the results: the game is a coordination game and contributing is a
weakly dominant strategy. So, treatments C and D have the same level of strategic risk (in
both treatments contributing is a weakly dominant strategy) but D has a higher (strictly
positive) level of exogenous risk than C (variance in D is 1325 while variance in C is 0). It
is reasonable to assume that risk averse people would prefer treatment C over treatment D
because expected values are the same but variability is lower in the �rst treatment. Thus,
by comparing treatments C and D we can test the following hypothesis:

Hypothesis 3 E¤ect of exogenous risk (EER): Higher exogenous risk decreases the
number of contributors and lowers net contributions (less of the public good is produced).

Formally, the hypothesis can be written as

KC > KD (22)

GC > GD (23)

Also, treatments A and C have the same level of exogenous risk (same variance) but A
has a higher (strictly positive) level of strategic risk than C (strategic risk is zero). It is
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reasonable to assume that coordinating on the good equilibrium (FCE) is easier in C than
in A (less demanding in terms of belief formation). Thus, by comparing treatments A and
C we can test the following hypothesis:

Hypothesis 4 E¤ect of strategic risk (ESR): Higher strategic risk decreases the num-
ber of contributors and lowers net contributions (less of the public good is produced).

Formally, the hypothesis can be written as

KC > KA (24)

GC > GA (25)

4.2.5 Exogenous time treatment

The subsidy function is:

sEi = s (ki; ti) =

8>>>><>>>>:
90 if player i chooses Y at t = 1

70 if player i chooses Y at t = 2

20 if player i chooses Y at t = 3

0 if player i chooses Y at t = 4

(26)

Unlike the previous cases, the subsidy here does not depend on the decisions of the other
members of the group: it only depends on the contribution decisions of the player. There
is positive exogenous risk: the variance of the distribution of subsidies is 1325 (like in B
and D)23 but there is no strategic risk (players�decisions are strategically independent from
each other). The Nash equilibrium consists in every member of the group choosing Z (not
contributing), which is an ine¢ cient outcome (full contribution Pareto-dominates it). Thus,
by comparing treatments B and E we can test the following hypothesis:

Hypothesis 5 Absolute v Relative Time (ART): Ceteris paribus, mechanisms based on
relative time are superior to those based on absolute time. Thus, the number of contributors
and the level of aggregate net contributions is higher in the former ones than in the latter
ones.

Formally, the hypothesis can be written as

KB > KE (27)

GB > GE (28)

23The variance is computed using the distribution in the equation above. However, when the game is
actually played by economic agents, the actual distribution of subsidies could be quite di¤erent (and hence
present a di¤erent variance). However, it seems reasonable to compute the variance of the distribution in
the table because the values of the subsidy are the same as in treatment B:
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4.2.6 Voluntary Contribution Mechanism (VCM) treatment

Though this mechanism does not involve the use of subsidies, for comparison reasons it
might be useful to re-write it as if subsidies were available. Thus, the subsidy function is:

sV CMi = s (ki; ai) =

8>>>><>>>>:
90 if player i chooses Y and �component A�= 90

70 if player i chooses Y and �component A�= 70

20 if player i chooses Y and �component A�= 20

0 if player i chooses Y and �component A�= 0

(29)

where ai 2 f0; 20; 70; 90g is the player�s choice of �component A�(i.e., of private consump-
tion). Thus, a player�s net contribution is gi = ki � ai if ki = 100 and gi = 0 if ki = 0:
That is, in order to compare treatment V CM to the other �ve treatments, it is better to
used the table above. However, the game is still a simple V CM game in which the player
can choose among 5 di¤erent levels of contribution, namely, gi 2 f0; 10; 30; 80; 100g: gi = 0
if the player chooses Z; gi = 10 if the player chooses Y (ki = 1) and Component A = 90
(ai = 90); etc.

It is easy to see that the subsidy functions shown in equations 26 and 29 are mathematically
identical, the only di¤erence being that the variable ti in equation 26 was relabeled as ai
in equation 29. The economic interpretation also changed: in the �rst case the explanatory
variable was the (absolute) moment in time at which the player chose to contribute; in the
second one it is the choice of the player regarding the level of her component A (private con-
sumption). Game theoretically, the change does not alter the properties of the game, which
yields the same equilibrium than in the E treatment (nobody contributes, the usual Nash
equilibrium in V CM games with linear utility functions). Thus, by comparing treatments
E and V CM we can test the following hypothesis:

Hypothesis 6 Framing e¤ect/Relevance of time (FERT): The E mechanism �based
on absolute terms� is not superior nor inferior to the V CM one. Thus, the number of
contributors and the level of aggregate net contributions are not signi�cantly di¤erent in the
former than in the latter.

Formally, the hypothesis can be written as

KE = KV CM (30)

GE = GV CM (31)

From the last two hypotheses, we can obtain a third one, namely

Hypothesis 7 Superiority of Relative Time Mechanism over VCM (SRTMVCM):
Ceteris paribus, mechanisms based on relative time are superior to the standard Voluntary
Contribution Mechanism. Thus, the number of contributors and the level of aggregate net
contributions are higher in the former ones than in the latter.

Formally, the hypothesis can be written as

KB > KV CM (32)

GB > GV CM (33)
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Before we move on to the results, an important issue needs to be commented: implicit in the
analysis above is the fact that the maximum amount of subsidies that the designer may end
up paying is the same in all treatments A; B; C andD: it is equal to 90+70+20+0 = 180 (in
B), 100+50+30+0 = 180 (in D), and 45+45+45+45 = 180 (in A and C). Furthermore,
since in all 4 cases the prediction of the model is that the FCE will be selected, we can
expect that the actual amount paid out in terms of subsidies will be exactly 180 pesetas
per group. Thus, we can determine which treatment is better by simply comparing the
number of contributors and the level of aggregate net contributions in each one of them. In
treatments E and V CM the model predicts the Zero Contribution outcome, and hence the
zero subsidy scenario. Valid comparisons between these two treatments can also be made
in terms of number of contributors and aggregate net contributions, knowing that total
spending on subsidies is the same in both treatments. Finally, the comparison between the
�rst four cases (A, B, C, D) and the last two (E, VCM) is less direct because the subsidies
paid out in equilibrium are quite di¤erent. The way to overcome this problem is to compute
the number of contributors and the aggregage net contributions as proportions/ratios of their
�rst-best counterparts, and make the comparisons based on these so computed variables.

5 Results

A total of 1728 observations were collected in the experiment. There are two variables of
interest for our analysis:

1. the number of contributors K, and

2. the aggregate level of net contributions (or, equivalently, the amount of public good
provided) G :=

P
i gi

The two of them are related as follows:

G =
X
i

gi (34)

G

N
=

1

N

X
i

gi (35)

G

N
=

K

N
� 1

K

X
i

gi (36)

i.e., the level of net contributions per capita G
N is the product of two factors: the proportion

of people in the matching group who contributes K
N and the level of net contributions per

contributor 1
K

P
i gi.
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5.1 E v VCM
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It

can be seen that E and V CM yield the same results both in terms of number of contributors
and of net contributions per capita. Thus, hypothesis 6 is not rejected. As a consequence,
we conclude that introducing time per se is not enough to improve over the VCM.

5.2 E v B
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It

can be seen that the Base treatment leads to both more contributors and more net contri-
butions per capita than the E treatment. Thus, hypothesis 5 is not rejected. Therefore, it
can be said that mechanisms based on the relative timing of contributions are superior to
those based on the absolute timing of contributions.
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5.3 B v VCM
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From

the previous two subsections, it is not surprising to �nd that the Base treatment is better
than the V CM one.

5.4 B v A
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After

a somewhat erratic beginning of the session, it can be seen that the Average treatment is
better than the Base one. That is, hypothesis 2 is not rejected. Thus, we can conclude
that reducing the degree of exogenous risk is a good policy. Further, we can also draw
another inference: that adding more dimensions to the subjects�decision problem (in par-
ticular, adding the time dimension, either in absolut or relative terms) does not necessarily
increases (net) contributions.
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5.5 B v D
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Both

the number of contributors and the net contributions per capita of treatment B are not sig-
ni�cantly di¤erent from their counterparts of treatment D. Thus, hypothesis 1 is rejected.
We can then conclude that strategic risk seems not to a¤ect players�choices. This is es-
pecially surprising because B is a coordination game (hence risk of coordination failure is
quite high) while D has a weakly dominant strategy (contributing), so we do not really
know how to explain this result. A possible explanation is related to the idea of complexity,
though since both treatments have identical rules and only di¤er in some numbers in the
payo¤ table, it is di¢ cult to support this idea. Maybe it is related to risk aversion, but
even people as risk averse as those with r = 1 should contribute all her endowment, and
they do not. Finally, it might be the result of some kind of cognitive (or in general, behav-
ioural) constraint. E.g., it might be the case that people do not measure (exogenous) risk
by computing the variance of the distribution, but they simply �count�good cases and bad
cases (above and below a reference point) and then attach equal probability to each of these
cases. Thus, if the reference point is the (focal) point 50; then in treatment B there are two
�good�possibilities (70 and 90), while in D there�s only �one and a half�(one: 100 and a
half: 50). This is in line with the idea of �chance maximisers�in Sánchez Villalba (2008).

5.6 A v C and C v D

The analysis supports the data gathered above: C (zero exogenous risk, zero strategic risk)
dominates D (positive exogenous risk, zero strategic risk) and is not signi�cantly di¤erent
from A (zero exogenous risk, positive strategic risk) and
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Thus,

this is further evidence that hypothesis 2 is supported by the data while hypothesis 1 is re-
jected. It also seems to suggest that the (net) contributions seems to be independent of
the strategic risk while it is quite sensitive to changes in the exogenous risk. If one drew
�iso-contribution�indi¤erence curves, they would be straigth lines (plotting exogenous risk
on the horizontal access and strategic risk on the vertical one.

Summarising the information of this section, one could order treatments in three groups:
the best are A and C, that are equally good and whose main feature is that exogenous
risk is zero; then second-best are B and D: the presence of exogenous risk implies less
contributors/contributions compared to the previous two treatments; �nally, the worst of
them all, E and V CM : the absence of interrelation between my own subsidies and other
people�s implies less contributors/contributions compared to the intermediate treatments.
Thus, interaction (not just time) is important, and while exogenous risk seems to be very
important, strategic risk seems to be totally irrelevant for decisions.
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6 Conclusions

The private provision of public goods is one of the fundamental topics of Public Economics
and has ample application to many real-world situations. Indeed, the presence of public
goods is one of the sources of market failure: when left alone, the private market will
provide an ine¢ ciently low level of provision of public goods. Examples of this problem can
be found in many scenarios, from the low level of charity giving in a society or of foreign aid
among states, to the low e¤ort exerted by workers when paid according to the team output,
to the underinvestment in private vigilance in a neighbourhood, to many others.

The underlying problem behind all of this situations is always the same: the clash be-
tween social and individual objectives: while the socially optimal action is to contribute,
the individually optimal action is to �free-ride�. Several studies have considered di¤erent
alternative methods designed with the objective of eliminating (or at least mitigating) the
ine¢ ciency associated with the private provision of public goods. From pricing strategies
(Lindahl), to truth-telling mechanisms (Groves-Ledyard), to alternative settings (provision
points, money-back guarantees, lotteries �a la Morgan), to a long list of etceteras.

The mechanism we propose in this paper is based on the same idea than Morgan�s (2000)
paper, namely, introducing a negative externality among the individuals that (partially)
o¤sets the positive externality present in the voluntary contribution mechanism. Our goal
was to contribute to the area of voluntary contribution mechanisms (VCM) by formulating a
theoretical model to predict the behaviour of individuals when they have to decide not only
if and how much, but also when to contribute to the public good provision. We proposed
that contributors should get a �discount�or �subsidy� for early contribution and pay the
full price otherwise. This could lead to some people �that may had not contributed at the
non-discounted price�to contribute early in order to pay less.

Our mechanism is based on voluntary contributions and improves the performance of the
best alternative (in terms of number of contributors and aggregate contributions) and yet it
is simple (easy to implement and understand), cheap and self-�nanced (it is never needed
to pour money into it from other sources). Furthermore, it can even generate an equitable
outcome.

The key feature of the mechanism is that it changes the nature of the game: the VCM
Prisonners�Dilemma is transformed into a coordination game with two equilibria: one is
the �bad� equilibrium in which nobody contributes (as in the VCM case) and the other
one is the �good� equilibrium in which everybody contributes. If properly designed, the
good equilibrium can then be selected by the two most popular criteria used to select an
equilibrium in games with multiple ones, namely, the payo¤-dominance criterion and the
risk-dominance one.

Since larger discounts were awarded to early contributors than to later ones, then di¤erent
people would receive di¤erent discounts, which in turn raised the issue of the risk associated
with the subsidy scheme. This type of risk we labelled �exogenous risk� because it was
the direct result of o¤ering di¤erent discounts to di¤erent people. On the other hand, the
existence of multiple equilibria in the coordination game implied that the risk of coordination
failure was something to take into account. We called this �endogenous or strategic risk�
because it is the result of players�actions. Further, we could crudely rank the degree of
strategic risk by �counting�the minimum number of contributors in the economy that are
needed to make my contribution a pro�table path of action: if contributing is pro�table
only if everyone else contributes as well, then the risk of coordination failure (hence, the
strategic risk) is high, because one deviation is enough to make me change my decision and
choose not to contribute instead.

We tested the theoretical predictions of the model using experimental data. We ran 6
treatments (all of them using neutral terminology):

� one standard VCM treatment to be used as benchmark for comparison (treatment
V CM),
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� another one in which discounts were a function of the absolute time of contribution
(treatment E),

� four other treatments in which discounts were a function of the relative time of contri-
bution, each one of them presenting a di¤erent combination of exogenous and strategic
risk levels, namely

� one in which both types of risk were strictly positive and that was used as the
basis for comparison with all other treatments (treatment B or Base),

� one in which the exogenous risk was as in the B treatment and the strategic risk
was eliminated (treatment D), meaning that �contribution�became a (weakly)
dominant strategy,

� one in which the strategic risk was as in the B treatment and the exogenous risk
was eliminated (treatment A), meaning that every contributor received the same
discount,

��nally, one in which both the exogenous and the strategic risk were eliminated
(treatment C), which meant that this treatment was, a priori, the best of them
all.

Our hypotheses were such that we could order treatments in terms of their performance
(number of contributors and net contributions per capita): we expected C to be better
than A and D (lower risk) and B to be worse than A and D (higher risk), but we did not
know what to expect from the comparison between A and D. Also, we expected E to be
equivalent to the V CM (no externality) and both of them to be worse than B (externality).
Our hypotheses can therefore be represented as follows:

C � best fA;Dg < worst fA;Dg � B � E � V CM (37)

Our empirical results support almost every one of our hypotheses: we obtained the following
ordering of the treatments in terms of their performance

C � A � D � B � E � V CM (38)

That is, the only two hypotheses that were rejected were that C � A and that D � B. In
both cases, the intuition behind the hypothesis was that the strategic risk in the treatment
on the left-hand side was lower than in the one on the right-hand side. Empirical evidence
seems to reject, therefore, the idea that people care about strategic risk. It is quite a
surprising result, and we do not have a de�nitive explanation for this �anomaly�. Our
best shot at it is based on the idea that, when making risky decisions, some people seem
not to weight their payo¤s using the associated probabilities but they simply �count� the
number of �good� outcomes (in which the person �wins� and gets extra money) and the
number of �bad�outcomes (in which the person �loses�and has to pay/give up some money)
and then they simply choose the option with the highest number of �good�outcomes (see,
for example, Sánchez Villalba (2009) for a case in which such rule of thumb seems to be
followed).

On the other hand, the experimental evidence seems to also categorically determine that
A � D, which is consistent with the results in the previous paragraph and implies that
changes in the exogenous risk are more important than changes in the strategic risk.

In summary, we designed a mechanism that is better than the alternative methods suggested
in the literature: it produces a larger amount of the public good (which is the e¢ cient action
to undertake in this setting) than alternative mechanisms, it is simple to understand by the
potential contributors and it is easy and cheap to implement by the fundraiser (with special
stress on the fact that it is an entirely self-�nanced mechanism). Furthermore, in some of
their variants (like in treatments A and C) it can be shown to yield an equitable outcome
(every person gets the same subsidy). On top of that, our preliminary results suggest
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that �rst best provision both in terms of number of contributors and size of contributions
may be feasible under some conditions that we are trying to pin down precisely. Also, our
preliminary results seem to indicate that the mechanism is robust to the introduction of
heterogeneity (say, in terms of income or of the rate of transformation between private and
public consumption) and of more general utility functions. All of these topics are part of
our research agenda connected to this topic, as well as others including the issues that we
could not cover so far like provision points or dynamic games.

We also showed empirical evidence (obtained in 6 experimental sessions) that supports most
of our hypotheses. Thus, the combination of a solid theoretical model and the supporting
experimental evidence suggest that the mechanism we designed can be successfully imple-
mented as a means to �nance public goods through voluntary contributions, yielding results
that are both e¢ cient and equitable. And since free-riding is a pervasive problem in our
everyday lives �from littering to road congestion to the alleviation of world poverty�this
implies that policy suggestions as the one we put forward can have a signi�cant impact on
the lives of many people.

A Instructions for treatment B24

INSTRUCCIONES

Introducción

Antes de empezar, muchas gracias por participar en este experimento. Es importante que
sepas que, aunque forma parte de un proyecto de investigación serio, este experimento NO
es un examen. No hay, por lo tanto, respuestas �correctas�ni �incorrectas�. Igualmente,
en todo momento, se preservará el anonimato de todos los sujetos participantes del mismo.

Cómo funciona el experimento

Primero que nada, te indicaremos las reglas básicas y te daremos las instrucciones necesarias.
Luego pasaremos al experimento propiamente dicho, donde se te pedirá que tomes decisiones
en una serie de situaciones que te presentaremos. Finalmente se te pagará: una parte �ja
por haber participado (1,50 e) y una parte variable que dependerá de tu actuación en las
situaciones mencionadas anteriormente.

El experimento se compone de 6 secciones:

� Instrucciones

� Mini-test

� Rondas de prueba

� Rondas experimentales

� Cuestionario

� Pago

Las repasaremos en detalle un poco más adelante.

24 Instructions for the other treatments were similar to these ones, with the logical changes in rules and
parameters needed in each case.
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Reglas básicas

Para que el experimento funcione necesitamos llevarlo a cabo de acuerdo a unas pocas, pero
estrictas, reglas:

� A partir de ahora y hasta el �nal del experimento, por favor no hables (¡no tardaremos
demasiado!) y apaga tu teléfono móvil.

� Si tienes alguna(s) pregunta(s) sobre el experimento o alguna de sus partes, simple-
mente levanta tu mano y el experimentador se acercará a tu escritorio a responderla(s).

� Por favor no uses el ordenador hasta que se te lo indique.

Las 6 secciones

1 Instrucciones

El experimentador leerá las instrucciones en voz alta. Si necesitas alguna aclaración, éste es
el momento para requerirla. Simplemente levanta tu mano y el experimentador responderá
a tus preguntas en forma privada. Por favor, no te quedes con ninguna duda sobre el
experimento. Es importante que lo entiendas con todo detalle. Formúlanos toda pregunta
que te surja en cualquier momento y que no esté claramente desarrollada en este texto.

2 Mini-test

Es para asegurarnos de que entendiste correctamente las instrucciones.

3 Rondas de prueba

El experimento está organizado en una serie de �rondas�. En cada ronda interactuarás
�mediante el ordenador únicamente�con otros participantes y tomarás decisiones que afec-
tarán el montante que obtendrás al �nal de la sesión.

Como calentamiento, primero jugarás 2 rondas de prueba. Estas rondas de prueba son
idénticas a las rondas experimentales en todos los aspectos, excepto uno: el efecto sobre el
dinero que obtendrás. Las rondas de prueba NO afectarán el montante que recibirás al �nal
del experimento. Pero te permiten observar cómo funcionan las cosas y familiarizarte con
las pantallas, tablas, botones y comandos del experimento. Las rondas de prueba también
te permiten cometer algunos errores sin por ello perder dinero.

4 Las rondas experimentales

Ésta es la parte importante. Lo que hagas durante estas rondas determinará el montante
total que obtendrás.

Las siguientes �Preguntas frecuentes�te instruirán sobre la mecánica básica de las rondas.

4.1. ¿De qué se trata todo ésto?

Comencemos por decir que el experimento consistirá en una serie de rondas. En cada
una de ellas el ordenador te agrupará con otros 3 participantes, aunque tú nunca sabrás
las identidades de dichas personas. Es decir, el experimento es anónimo: tú sabes que
compartes grupo con otras 3 personas, pero no sabrás quiénes son dichas 3 personas ni ellas
sabrán quién eres tú. El ordenador elegirá aleatoriamente a tus compañeros, todos los cuales
son a priori igualmente probables de formar parte de tu grupo. Los otros 3 participantes
serán asignados así: A partir de las 24 personas en el laboratorio, el ordenador formará 3
�megagrupos�, cada uno compuesto de 8 personas elegidas aleatoriamente por el ordenador
(es decir, cada una de las 24 personas en el laboratorio tiene la misma probabilidad de ser
asignado a un megagrupo determinado). Tú seras asignado a algunos de los 3 megagrupos, y
pertenecerás al mismo durante todo el experimento. En cada ronda, el ordenador repartirá
aleatoriamente a los 8 integrantes de cada megagrupo en 2 grupos de 4 personas cada uno.
Es decir, cada una de las otras 7 personas de tu megagrupo son a priori igualmente probables
de formar parte de tu grupo de 4.
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Nota: La composición de tu grupo en una ronda dada no tiene ningún impacto sobre la
composición de tu grupo en el futuro: cada posible composición de tu grupo es igualmente
probable en cada ronda.

Las rondas experimentales están divididas en 2 grupos: un primer grupo de 12 rondas en
el que se aplicarán las reglas especi�cadas en estas instrucciones, y un segundo grupo de 12
rondas en el que se aplicarán otras reglas �aunque similares a éstas�que te serán indicadas
al �nalizar las primeras 12 rondas.

4.2. ¿Qué tengo que hacer?

En cada ronda tienes que decidir cómo utilizar tus recursos. Para ello todos recibiréis al
comienzo de cada ronda recursos personales iguales a 100 �pesetas�.

Hay dos posibles usos para los recursos: la actividad Y y la actividad Z. Puedes elegir la una
o la otra haciendo click sobre el botón correspondiente en la pantalla �Tu decisión�(�gura
1).

Nota importante: Si eliges la actividad Y, entonces todos tus recursos (las 100 pesetas) son
direccionados a la actividad Y. Si eliges la actividad Z, entonces todos tus recursos (las 100
pesetas) son dedicados a la actividad Z.

[Figura 1: Pantalla �Tu decisión�]

4.3. ¿Cómo se determina el resultado que obtengo en cada ronda?

El resultado de la ronda depende de tu decisión respecto al uso de tus recursos (aplicarlos
a la actividad Y o a la Z) y de las respectivas decisiones de las otras personas de tu grupo.
Nota que al momento de tomar tu decisión NO SABRÁS las decisiones tomadas por las
otras personas de tu grupo.

4.4. ¿Pero exactamente cómo se determina mi resultado de la ronda?

Tu resultado total (R) es la suma de dos componentes: (1) el componente �A�, que (puede)
ser diferente para diferentes personas en el grupo; y (2) el componente �B�, que es el mismo
para cada uno de los integrantes del grupo. Formalmente,

R = A + B

Tu componente A depende de tu decisión y de las decisiones de los otros integrantes de tu
grupo:

1. si dedicas tus 100 pesetas a la actividad Z, entonces A = 100;

2. si dedicas tus 100 pesetas a la actividad Y, entonces

2.1. A = 90 si eres el primero de tu grupo en dedicarlas;

2.2. A = 70 si eres el segundo de tu grupo en dedicarlas;

2.3. A = 20 si eres el tercero de tu grupo en dedicarlas;

2.4. A = 0 si eres el cuarto de tu grupo en dedicarlas.

En caso de empate en el tiempo de dedicación por parte de 2 o más personas, el ordenador
decidirá la posición de cada una de ellas, asignando a cada persona empatada la misma
probabilidad de obtener cada una de las posiciones posibles.

El componente B depende de lo que haga tu grupo en su conjunto y se obtiene así:

B = 240 �0,6�SUMA
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donde SUMA es la suma de los componentes A de todos los individuos de tu grupo (inclu-
ido/a tú mismo/a).

Es decir que si en tu grupo tres personas asignan sus recursos a Y y la cuarta asigna sus
recursos a Z, entonces SUMA = 90 + 70 +20 + 100 = 280. El componente B es, por lo
tanto, B = 240 �0,6�280 = 240��168 = 72pesetas:

Otra forma de visualizar el cómputo de tus resultados es mediante una tabla como la sigu-
iente.

K�i :=
P

j 6=i k

300 200 100 0
Z 100 + 72 = 172 100 + 30 = 130 100 + 0 = 100 100 + 0 = 100
Y1o 100 + 132 = 232 100 + 72 = 172 100 + 30 = 130 100 + 0 = 100

ci Y2o 50 + 132 = 182 50 + 72 = 122 50 + 30 = 30
Y3o 30 + 132 = 162 30 + 72 = 102
Y4o 0 + 132 = 132

Average Y 45 + 132 = 177 60 + 72 = 132 75 + 30 = 105 100 + 0 = 100

Table 6: Payo¤ table. Dominant treatment

En cada celda se indica el resultado total (R) como la suma del componente A (el primer
término) y del componente B (el segundo término). El resultado de cada celda depende de:
(1) la acción que tú tomes y en qué posición lo hicieras en caso de elegir Y (indicada en las
�las, donde la �la Yn corresponde al caso en el cual eres el n-ésimo integrante de tu grupo
en hacer click en Y) y de (2) la suma de los recursos dedicados a la actividad Y por todos
los otros individuos de tu grupo (indicado en las columnas).

Nota importante: En la tabla se presentan los recursos dedicados a la actividad Y por parte
de todos los otros individuos de tu grupo, es decir, tus recursos no están incluidos. Las
celdas con un guión �-� son casos imposibles: por ejemplo la celda correspondiente a la
tercera �la, tercera columna es imposible porque según la columna sólo hay dos personas en
el grupo que hicieron click en Y (sólo uno de los otros integrantes del grupo dedicó sus 100
pesetas a la actividad Y, y por ello la columna es �100��el otro que dedicó sus 100 pesetas
a Y eres tú) por lo que nunca podrías ser el tercero en hacer click en Y.

Para que tengas claro cómo se calculan los resultados, veamos un par de ejemplos:

1. Si los otros individuos de tu grupo dedican 200 pesetas a la actividad Y (segunda
columna) y tú dedicas tus 100 pesetas también a la actividad Y y eres el primero en hacer
click (primera �la), entonces A = 90 por ser el primero en hacer click en Y, y B = 72
porque la suma de los componentes A de los integrantes del grupo fue SUMA = 100 +
90 + 70 + 20= 280 (componentes A del que eligió Z, tuyo, y de los que eligieron Y en
segundo y tercer lugar, respectivamente), y por tanto B = 240 �0,6�280 = 240 � �168 =
72:TuresultadofinalesporlotantoR = A+B = 90+72 = 162; exactamenteloqueseindicaenlacelda(primerafila; segundacolumna):

2. Si los otros individuos de tu grupo siguieran dedicando 200 pesetas a la actividad Y
(segunda columna), pero ahora tú dedicas tus 100 pesetas a la actividad Z (última �la),
entonces A = 100 porque dedicaste tus 100 pesetas a la actividad Z, y B = 24 porque la
suma de los componentes A de los integrantes del grupo es SUMA = 2�100 + 90 + 70 =
360(componentesAdelosqueeligieronZ��entreellost��ydelosqueeligieronY enprimerysegundolugar; respectivamente); yportantoB =
240��0; 6�360 = 240��216 = 24:TuresultadofinalesporlotantoR = A+B = 100+24 =
124; exactamenteloqueseindicaenlacelda(ltimafila; segundacolumna):

Nota importante: Tanto las fórmulas como la tabla proveen exactamente la misma informa-
ción. No hay ninguna ventaja intrínseca en usar una u otra. Simplemente son dos formas
de visualizar la misma información.
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4.5.Entonces, ¿cuánto dinero obtengo?

Tus resultados son transformados en dinero a una tasa de:

100 �pesetas�= 10 euros

Es decir, si en una ronda obtienes, por ejemplo, 150 pesetas, tu ganancia en dicha ronda es de
150�10=100 = 15euros:LapartevariabledetugananciatotalessimplementeeldineroobtenidoenALGUNAdelasrondasexperimentales; elegidadeformaALEATORIA:

[Figura 2: Pantalla �Calculador de escenarios�]

4.6. ¿Hay algo más que debería saber antes de decidir?

Si necesitas realizar algunos cálculos puedes realizarlos utilizando la pantalla �Calculador
de escenarios�, donde puedes ver el efecto de las diferentes acciones tomadas por ti y por
los otros integrantes de tu grupo. Esta pantalla te permite asignar posibles acciones a tus
compañeros de grupo y elegir tu acción, y ver el resultado de las mismas. Nota que nada
de lo que hagas en esta pantalla afecta tu pago. Es una especie de �papel borrador� que
puedes utilizar para averiguar cómo cambian tus resultados cuando cambian tus decisiones
y/o las de los otros integrantes de tu grupo. Esta pantalla está disponible al comienzo de
cada ronda, por lo que puedes utilizarla a lo largo de todo el experimento.

Papel y lápiz/bolígrafo también están disponibles para aquellos que los pre�eran: levanta
tu mano y el experimentador te los acercará.

Nota importante: Es muy importante remarcar que no existe un botón �Atrás�, por lo
que te rogamos que prestes atención a la hora de tomar tus decisiones y que sólo presiones
el botón �Continuar a la siguiente pantalla� cuando estés seguro/a de querer pasar a la
siguiente pantalla.

4.7. Pues bien, ya he tomado mi decision. ¿Ahora qué?

Después de tomar tu decision, verás la pantalla �Tu resultado�, donde se te indicará la
decisión que tomaste, en qué posición hiciste click (en caso de hacer click en Y), el resultado
de los componentes A y B, y tu resultado total (la suma de los dos anteriores). Haciendo
click sobre el botón �Continuar a la siguiente pantalla� pasarás a la siguiente ronda (si
quedara alguna por jugarse).

Figura 3: Pantalla �Tu resultado�

4.8. ¿Y luego?¿Es lo mismo en todas las rondas?

Básicamente, sí. En cada ronda, la estructura es idéntica a la descrita arriba: (1) el orde-
nador te asignará a un grupo con otros 3 participantes; (2) deberás tomar la decisión de
asignar tus recursos entre las dos actividades; y (3) verás tus resultados en la pantalla �Tu
resultado�.

Puedes ver tus resultados en rondas anteriores en el área oscura en la pantalla �Tu decisión�
(�gura 1). Dicha área incluye la información indicada en la pregunta 4.7 correspondiente a
todas las rondas pasadas.

Nota importante: Al �nalizar cada ronda hacemos �borrón y cuenta nueva�: las personas
con las que compartes grupo pueden variar de ronda a ronda y te daremos otras 100 pesetas
para que las asignes entre las dos actividades. Sin embargo las REGLAS que determinan
quién va a cuál grupo y cómo se calculan los resultados no varían. En una palabra, las rondas
son independientes unas de otras: el resultado de una ronda determinada no depende de
los resultados de rondas pasadas o futuras. Asimismo, la constitución de un grupo en una
ronda determinada no depende de los grupos formados en rondas anteriores o a formarse en
rondas futuras.

5 Cuestionario
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Te preguntaremos unas pocas preguntas que nos ayudarán a entender mejor los datos recolec-
tados en el experimento. Por favor, contesta a todas ellas.

6 Pago

¡Por �n! Se te pagará privadamente un montante �jo de 1,50 e más la suma del dinero
obtenido durante la sesión, como se explicó en la pregunta 4.5.

Y eso es todo. Una vez más, ¡muchas gracias por participar!

MINI TEST

1. ¿Cuántas pesetas obtienes si dedicas tus 100 pesetas a la actividad Y (eres el tercero
en hacer click) y los otros individuos de tu grupo dedican (en conjunto) otras 300 pesetas a
la actividad Y? ¿y si dedicaras tus 100 pesetas a la actividad Z? . . . . . . . . . . . . . . .

2. Si dedicaste tus 100 pesetas a la actividad Y y observas que tu resultado de la ronda
es 142, ¿cuántas pesetas dedicó el resto de tu grupo a la actividad Y? ¿y a la actividad Z?
¿En qué posición hiciste click? . . . . . . . . . . . . . . .

3. Si en una ronda compartiste grupo con Abel, Beatriz y Carlos, ¿implica eso que en
la siguiente ronda los tres volverán a compartir grupo contigo? ¿Que ninguno compartirá
el grupo contigo? ¿Qué algunos lo compartirán y otros no? . . . . . . . . . . . . . . . .

TABLA DE RESULTADOS �PARTE 1 DE 2

Ronda Resultado

1

2

3

4

5

6

7

8

9

10

11

12
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