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1. INTRODUCTION 

 

 In the absence of aggregate demand uncertainty, getting price dispersion in 

equilibrium is a challenge. Diamond (1971) was the first to point out the difficulty. In 

his model the equilibrium price distribution is degenerate and all firms post the 

monopoly price. Diamond assumed that buyers sample one firm at a time. Burdett and 

Judd (1983) allowed for sampling more than one selling offer per period and show 

that price dispersion will arise if the probability of sampling more than one seller is 

between zero and one. If however the probability of sampling more than one seller 

goes to one we will converge to a single price equilibrium in which all firms post the 

competitive price. If the probability of sampling more than one seller goes to zero we 

will converge to a single price equilibrium in which all firms post the monopoly price 

(as in the Diamond model).  

 While getting equilibrium price dispersion is a challenge for search models, I 

argue in Eden (2013), that getting single price equilibrium is a challenge for Prescott 

type models that assume uncertainty about aggregate demand. The original Prescott 

(1975) model assumed that prices are set in advance and cheaper goods are sold first. 

In Eden (1990) I describe a sequential trade process that is consistent with Prescott’s 

assumption. Buyers arrive at the market place sequentially. Each buyer sees all 

available offers, buys at the cheapest available price and disappears. Sellers must 

make irreversible selling decisions before they know the aggregate state of demand 

and in equilibrium they are indifferent between prices that are in the equilibrium 

range because the selling probability is lower for higher prices. Sellers in the model 

make time consistent plans and do not have an incentive to change prices during the 

trading process. Prices are thus completely flexible. The special case of no uncertainty 

about aggregate demand yields a single price equal to the competitive price. This is 
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similar to the special case in which all buyers sample more than one price in the 

Burdett-Judd model.  

 There are versions of the Prescott model that assume price rigidity. See for 

example, Dana (1998, 1999) and Deneckere and Peck (2012). For the positive 

implications of the theory it does not matter whether a flexible price or a rigid price 

version of the model is employed. But sometimes the rigid price versions of the 

Prescott model tends to be lumped together with menu costs models that have very 

different empirical implications. See Eden (2001) and Baharad and Eden (2004). To 

distinguish the model from the menu cost literature I use here the flexible price 

version.  

 I follow Bental and Eden (1993) by allowing for storage and use the model to 

explain variations in price dispersion among goods sold by supermarkets. The model 

says that price dispersion is higher for (a) goods with more demand uncertainty and 

(b) goods with higher cost for delaying trade, like storage cost, depreciation and 

interest cost. I find strong support for the first hypothesis.   

 

2. THEORY 

 

As was said above, price dispersion in Prescott type models requires aggregate 

demand uncertainty. Here I use a version of the model in Bental and Eden (1993) to 

get a relationship between a specific measure of price dispersion and a specific 

measure of demand uncertainty.  

 

Sellers:  

The economy lasts forever. There are many goods and many sellers who can 

produce the goods at a constant unit cost. The unit cost of producing good j  is λ j . 

Production occurs at the beginning of each period before the beginning of trade. The 
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seller knows the distribution of demand but at the time production decisions are made 

he does not know the realization.  

Selling is uncertain. The representative seller faces a tradeoff between the 

probability of making a sale and the price: The lower the price, the higher is the 

probability of making a sale. In each period, sellers of good j  have to choose 

between Z j  price tags: P1 j < ...< PZj . Posted prices do not change over time and 

therefore I drop the time index. I also drop the good index and consider a good with 

prices P1 < ...< PZ .2 

The seller takes the probability that he can sell at each of the Z  prices as 

given. The probability of making a sale at the price Pi  is qi , where  

1= q1 > ...> qZ > 0 . Goods that are not sold are carried as inventories to the next 

period. A unit stored can be used to reduce production next period and the value of a 

unit of inventories is therefore βλ , where 0 < β <1  reflects the cost of delay, storage 

cost and depreciation.  

Sellers will post the pricePi  on a strictly positive and finite number of units 

only if: 

 

(1)    qiPi + (1− qi )βλ = λ  

 

The arbitrage condition (1) is key. The left hand side of (1) is the expected revenues 

from putting the price tag Pi  on one unit. With probability qi  the seller will get the 

quoted price and with probability 1− qi  he will get the value of inventories. The right 

hand side is the unit production cost. The seller will put the price tag Pi  on 0 < x < ∞  

units, only if the two are equal. Otherwise, if qiPi + (1− qi )βλ > λ  he will produce and 

                                                
2 There is no incentive in equilibrium to announce a price Pi < p < Pi+1  because the probability of 

making a sale at this price is the same as the probability of making a sale at the price Pi+1 . 
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put the price tag on infinitely many units and if qiPi + (1− qi )βλ < λ  he will not put 

the price tag on any unit.  

 

Buyers: 

Buyers arrive at the market place after sellers have already made their 

production decisions. Upon arrival they see all available offers and each buyer buys 

one unit at the cheapest available price. (Thus buyers’ reservation price is sufficiently 

high).  

The number of buyers that arrive in the market place in a typical period ( N ) is 

an iid  discrete random variable that is uniformly distributed on the interval [x,Zx] , 

where both x  and Z  are good specific parameters. The random variable  N  may take 

Z  possible realizations: N1 < ...< NZ . State s  occurs when  
N = Ns  with probability  

 Prob( N = Ns ) = π = 1
Z . The difference between two consecutive realizations is 

constant and is given by: Ns − Ns−1 = N1 = x  for all s .  

 Buyers arrive in a sequential manner. The first batch of x  buyers buys in the 

first market at the price P1 . If s = 1  and no more buyers arrive trade is over for the 

period. If s >1  an additional batch of x  buyers arrive and buys in the second market 

at the price P2 . Again, if s = 2  no more buyers arrive and trade is over for the period. 

Otherwise, if s > 2  a third batch arrives and buys in the third market at the price P3  

and so on. We thus have Z  hypothetical markets that open sequentially. When 

 
N = Ns , the first s  markets open and the goods allocated to these markets are sold. 

The goods allocated to the last Z − s  markets are not sold and are carried as 

inventories to the next period.  

 

Equilibrium: 

Using xi  to denote the supply to market i , I define equilibrium as follows. 
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Equilibrium is a vector of prices (P1,...,PZ ) , a vector of probabilities (q1,...,qZ )  and a 

vector of supplies (x1,..., xZ )  such that (a) the probability that market i  will open and 

goods with price tag Pi  will be sold is:  qi = Prob( N ≥ Ns ) = (Z − i +1)π , (b) the 

arbitrage condition (1) is satisfied and (c) the supply to market i  is equal to the 

potential demand: xi = x  for all i . 

 

Thus in equilibrium markets that open are cleared. Note that we may describe sellers 

in this model as “contingent price takers”. They assume that they can sell any amount 

at the price Pi  if market i  opens. Note also that production in each period is Zx − I , 

where I  is the beginning of period inventories. In equilibrium production is strictly 

positive because some goods are sold in each period and therefore some production is 

required to keep the available supply at the level Zx . See Eden (2013) for a formal 

analysis and for the efficiency of the equilibrium outcome.   

 

Empirical implications:  

In state s , when exactly s  markets open, sx  units are sold and (Z − s)x  units 

are carried as inventories to the next period. The maximum amount sold over weeks 

is: H = Zx . The minimum amount sold over weeks is: L = x . We can therefore 

obtain an estimate for Z = 1
π  by observing the amount sold over a sufficiently long 

period. Using the maximum weekly amount sold as an estimate of H  and the lowest 

weekly amount sold as an estimate of L , I compute the ratio HLU = H
L  and use it as 

an estimate of Z . (HLU  stands for High-Low Units).  

 To compute the ratio of the highest to lowest price in a typical week, I use (1) 

to get:    

 

(2)  Pi = βλ + (1− β ) λ
qi
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Since the probability that all the Z  markets will open is qZ = π , in any given week 

the highest price is: 

  

(3) PH = PZ = βλ + (1− β ) λ
qZ

= βλ + (1− β )λ
π

 

 

Since the probability that the first market will open is 1, the lowest price in any given 

week is: 

 

(4)  PL = P1 = λ  

 

Dividing (3) by (4) leads to:  

 

(5)  HLP = P
H

PL = β + (1− β ) 1
π

 

 

Using HLU  as an estimate for Z = 1
π  leads to: HLP = β + (1− β )HLU  which is 

equivalent to:  

 

(6)  HLP −1= (1− β )(HLU −1)  

 

The left hand side of (6) is the percentage average difference between the highest and 

the lowest price. This is proportional to the percentage difference between the highest 

and the lowest sale week. I also use the following log approximation because of 

measurement issues that will be discussed later.  

 

(6’)  ln(HLP) = (1− β )ln(HLU )  
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Cost shocks: 

I now allow for cost shocks. I assume that at the time the seller makes the 

production decisions in week t , he knows the unit cost for this period, λt , and the 

distribution of the unit cost next period. The next period’s cost is a random variable, 

 
λt+1 , and its expected value is denoted by:  λt+1

e = E( λt+1) . Since a unit of inventories 

can be used to cut next period’s production, the value of inventories is the expected 

discounted cost in the next period, βλt+1
e . We can therefore modify the arbitrage 

condition (1) as follows.  

   

(7) qiPit + (1− qi )βλt+1
e = λt  

 

Using  ψ t =
λt+1
e

λt
, we can write (7) as: 

 

(8) Pit = βiψ tλt + (1− βiψ t )
λt
qi

 

 

We can now follow the steps (2) to (6) to get the following relationship. 

  

(9) 
Pit
H

Pit
L = βiψ t + Zi (1− βiψ t )  

 

Taking the average of (9) over weeks and assuming that the average of ψ t  over 

weeks is approximately 1 leads to a relationship that is similar to (6).3 The required 

modification is that now we should compute HLP  as the average ratio of the highest 

to lowest price over weeks.  

 

                                                
3 The average ψ  is approximately 1 if the cost shocks are iid  and small. 
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Regressions to be estimated: 

I now add a classical measurement error term to (6) and (6’): 

 

(10)  HLP −1= (1− β )(HLU −1)+ ε   

 

(10’)  ln(HLP) = (1− β )ln(HLU )+ ε '  

 

where ε  (ε ' ) is independent of HLU −1  ( ln[HLU ]) and has zero mean, HLP  is 

computed as the average ratio over weeks and HLU  is the ratio of the highest to 

lowest aggregate sales. Note that HLP  is an average of extreme points while HLU  

uses two extreme points of aggregate sales.  

 In the UST model price dispersion requires uncertainty about demand and 

therefore there is no intercept in (10) and (10’). But the hypothesis of zero intercept is 

rejected by the data suggesting that as in search models, there is price dispersion even 

in the absence of demand uncertainty. I therefore add to the regression (10’) three 

variables suggested by search theory: The average price, total revenues and the 

number of stores that sold the good.  The average price was used by Pratt et.al (1979) 

in an earlier study. Sorensen (2000) used the purchase frequency and the average 

wholesale price. Here I have data only from the sellers’ side and I therefore use 

aggregate revenues to capture the importance of the goods in the buyers’ budget 

(aggregate revenues = aggregate spending). The number of stores that offer the good 

is related to the number of price offers sampled by the typical buyer; a variable that 

plays a key role in the Burdett-Judd model. I also use category dummies and size 

variables to capture the difference in the cost of not selling across products.  

I assume that the average (over weeks) of the log difference between the 

highest and the lowest price for good i , ln(HLPi ) , is described by the following 

equation.  
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(11)  ln(HLPi ) = b0 + b1 ln(HLUi )+ b2 ln(Revi )+ b3 ln(AvPi )+ b4 (#Storesi )  
 + djiCDjij∑ + s jiSDjij∑ + ei  

 

where b  are parameters, ln(Rev)  is the log of total revenues (over stores and weeks), 

ln(AvP)  is the log of average price (averaged over stores and weeks), #Stores  is the 

number of stores that sold the product, CD  are category dummies (CDj = 1 if product 

i  belong to category j  and CDj = 0  otherwise), SD  are category specific 

normalized size measures and e  is an error term. The size variables will be described 

later. They are included in the regression as a proxy for shelf space and the cost of 

trade delays.  

 There is of course the problem of using extreme observations that may be the 

result of measurement errors. For this reason I ran (11) after replacing the range 

measures by standard deviations measures of dispersion. But this did not change the 

main results.   
 

Unit surprise measures 

 Price surprises are the residuals in a regression of prices on information 

available to the buyer before he gets to the marketplace, like the identity of the store 

and the date. Should we attempt to explain the dispersion of price surprises, as in 

Lach (2002), or the dispersion of actual prices? The answer depends on the 

underlying model. To illustrate this point, let us consider an extreme case in which all 

prices are perfectly predicted by the identity of the store. In the Burdett-Judd model 

this is equivalent to the assumption that all buyers see all prices and this leads to a 

degenerate price distribution equal to the competitive price. In the UST model buyers 

see all prices and it does not matter whether they can predict prices ahead of their 

arrival time. Therefore the UST model is a theory of price dispersion and it is not 

about the dispersion of price surprises. 
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 Another reason for controlling for “store effects” is that different stores may 

provide different services. Kaplan and Menzio (2013) find that about one-sixth of 

price dispersion can be attributed to store-level quality and amenity differences. 

Unfortunately, in the UST model (and in the Burdett-Judd model) it is difficult to 

distinguish between a store that is indifferent among all prices in the equilibrium 

range but consistently chooses to be at the low price range to a store that is in the low 

price range because it provides low services. It is also hard to believe that the 

difference between the average price dispersion of milk and the average price 

dispersion of hot dogs occurs because there is more dispersion in the services 

provided by stores that sell hot-dogs. In our samples, stores that sell hot dogs also sell 

milk and it is unlikely that store effects drive the results. I therefore choose not to 

control for store effect when constructing measures of price dispersion.  

 The above reasoning does not apply to unit dispersion: If aggregate demand is 

perfectly predictable then all the stores in the UST model will choose a single price 

(the Walrasian price). This suggests that we should take out a UPC specific seasonal 

element in aggregate demand. For example, the demand for cold drinks may be higher 

during the summer and the demand for hot dogs may be higher in the 4th of July.  

To get a cleaner measure of demand uncertainty, I use Ui,t−L  to denote the 

aggregate number of units sold from good i  in week t − L  and ran the following  

regressions: 

 

(12)  ln(Uit ) = ai + bi52 ln(Ui,t−52 )+ ε it  

 

(12’) ln(Uit ) = ai + bi52 ln(Ui,t−52 )+ bi1 ln(Ui,t−1)+ bi2 ln(Ui,t−2 )+ bi3 ln(Ui,t−3)+ ε it  

 

Note that in (12) there is only one lag of 52 weeks designed to capture seasonality. In 

(12’) I added the most recent 3 lags. I then look at the difference between the highest 
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and the lowest residuals from the regression and define HLRUi = ε i
H − ε i

L , where 

ε i
H = maxt{ε it}  is the highest value of the residual in (12) and ε i

L = mint{ε it}  is the 

lowest value of the residual. I use HLRU  (high-low residual unit) as a range measure 

of demand uncertainty. The residual standard deviation measure of uncertainty, 

SDRUi , is the standard deviation of ε i . 

   

3. DATA 

 

I use a large weekly data set from Information Resources, Inc. (IRI). These 

scanner data contain weekly observations of the revenues from each good and the 

number of units sold. The data cover 31 categories in 50 different markets and contain 

both grocery stores and drug stores from several different chains during the years 

2001-2007. A full utilization of this huge data set is beyond the scope of this paper. 

Here I look at the sample of grocery stores in Chicago during the years 2004 and 

2005. I identify a product with a Universal Product Code (UPC) and obtain prices by 

dividing revenues by the number of units sold.  

I exclude from the sample store-UPC combinations (cells) with zero revenues 

in some of the sample’s weeks, UPCs that were sold by less than 10 stores and 

categories with less than 10 UPCs. The first exclusion is applied to get a reliable 

measure of the number of stores that sold the good. The second is aimed at reliable 

measures of cross sectional price dispersion, and the last allows for within category 

comparison and economizes on the number of category dummies and size variables. 

The result of these exclusion are “semi balanced” samples in which the number of 

stores vary across UPCs but stores that are in the sample sold the product in all of the 

sample’s weeks. After implementing the exclusions, I get 1084 UPCs for the 2005 

sample and 665 UPCs for the 2004 sample. I also use the combined 04-05 sample 
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with 104 weeks. This combined sample has only 324 UPCs because a store-UPC cell 

is included only if the cell’s revenues were positive in all weeks. 
 

3.1 The Week Starting on January 17, 2005 

I start with a description of the data for a randomly chosen week: The week 

starting on January 17, 2005. Looking at a single week provides information about the 

relationship between the search variables and price dispersion but not about the 

relationship between demand uncertainty and price dispersion. Nevertheless I start 

with a description of the within week correlations to get a sense of the data without 

the above exclusions.    

In the chosen week, 8602 UPCs were sold by more than one store. The 

average ratio (actual ratio - not the log difference) of the highest to lowest price over 

all UPCs is 1.36 and its standard deviation is 0.47. The highest ratio of HLP = 15  

occurs in a UPC that is sold by 2 stores. For 94% of the UPCs the ratio HLP  is less 

than 2.  

 Scatter plot diagrams are sometimes used to get a visual description of the 

data, but these diagrams are not useful when there are many observations. Here I use 

shares in totals diagrams that are based on the Lorenz curve. Unlike the Lorenz curve 

I plot several variables in the same diagram. The following example illustrates.  

 

An example: 

There are two groups of 6 individuals. The income distribution is the same in 

both groups and is described in the second column of Table 1. The age distribution is 

different. The age distribution of group 1 is in the third column of Table 1 (age 1) and 

the age distribution of group 2 is in the last column (age 2). In group 1 the correlation 

between income and age is -1. In group 2 the correlation between income and age is 

0.83.    
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 Table 2 uses Table 1 to compute the accumulated shares in income and age. 

The poorest 17% makes about 5% of the income, the poorest 33% makes 14% of the 

income and so on. In group 1 the age of the poorest 17% is 29% of the total age 

(which is the same as total income in this example and is equal to 210). In group 2 the 

age of the poorest 17% is only 5% of the total age. Figure 1 plots the data in Table 2. 

The accumulated share of age curve is above the diagonal for group 1. For group 2 it 

is below the diagonal. It coincides with the Lorenz curve initially and then departs 

from it. We can see that the correlation is 1 within the poorest 14% (the first two 

observations) and is 1 within the top 5% (the last two observations) but this perfect 

correlation is spoiled by the middle two observations (the correlation between age and 

income in the middle income group is -1). Figure 1 thus provides more information 

than the correlation coefficients.4  
 

                                                
4 Yitzhaki (2003) argues that Gini related measures of variability and correlations may be superior to 

standard measures when the distribution is not normal.  Here I use a Lorenz curve type graph as a 
substitute for scatter diagrams and use standard statistics. 
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Table 1*: An income by age example 
	
   Income	
   age	
  1	
   age	
  2	
  

1	
   10	
   60	
   10	
  
2	
   20	
   50	
   20	
  
3	
   30	
   40	
   40	
  
4	
   40	
   30	
   50	
  
5	
   50	
   20	
   30	
  
6	
   60	
   10	
   60	
  

* The first column is a serial number, the second is income, the third is the age in group 1 and the last 
is the age of group 2.  
 
 
Table 2*: The accumulated shares (example) 
Fraction	
  	
   acc.	
  Income	
   acc.	
  age	
  1	
   acc.	
  age	
  2	
  

0.17	
   0.05	
   0.29	
   0.05	
  
0.33	
   0.14	
   0.52	
   0.14	
  
0.5	
   0.29	
   0.71	
   0.33	
  
0.67	
   0.48	
   0.86	
   0.57	
  
0.83	
   0.71	
   0.95	
   0.71	
  

1	
   1	
   1	
   1	
  
*The first column is the fraction of the population, the second is the share of income that is made by 
the fraction in column 1 (thus for example a third of the population makes 14% of total income). The 
third column is the share in total age in group 1 (thus for example the poorest third accounts for 50% of 
the total age) and the last column is the share in total age of group 2. 
 
 

 
Figure 1: A plot of the data in Table 2 (example) 
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UPCs instead of people: 

 I now turn to the IRI data for the randomly chosen week. In Figure 2, the graph “acc. 

HLP” is analogous to a Lorenz curve where UPCs play the role of people. The UPCs 

are ordered by price dispersion from low to high. The graph denoted by “acc. HLP” is 

the sum: NHPLi
i=0

m

∑  where m  varies from zero (the UPC with the lowest ratio) to one 

(the UPC with the highest ratio) and NHLPi =
ln(HLPi )
ln(HLPj )j∑  is the normalized 

ln(HLP) . 

 The graph “acc. HLP” indicate a substantial dispersion in (the log of) HLP  

across UPCs. In Figure 2A, the share of the lowest 20% is zero and the share of the 

highest 20% is 50%. (This is analogous to the statement that the share of the poorest 

20% in national income is zero and the share of the top 20% is 50%).  

The graph “acc. #stores” describes the accumulated share in the total number 

of UPC-store cells and is analogous to the acc.age graph in Figure 1. The fact that it is 

on the right of the diagonal suggests a positive relationship between the number of 

stores and price dispersion. Indeed, the standard correlation between ln(HLP)  and the 

number of stores is 0.53. To get more information we may compare the slopes of the 

two curves. We see that the slope of the “acc. HLP” graph is initially zero and then 

increases gradually. The slope of the “acc. #stores” graph is also increasing gradually. 

This suggests a positive correlation within most segments of the UPC population. 

This is apparent when computing the following conditional averages. The average 

ratio of high to low price is 1.11 for UPCs sold by 2 stores, 1.18 for UPCs sold by less 

than 10 stores and 1.52 for UPCs sold by more than 10 stores.   

The “acc. Ln(Rev)” graph is the cumulative share in total revenues. This graph 

is also to the right of the diagonal suggesting a positive relationship between price 

dispersion and revenues. The share of UPCs with less than the median amount of 
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price dispersion in total revenues is 40%. This is more than the share in the total 

number of stores (30%) but still the curve is below the diagonal. Also here the slope 

of the curve increases gradually as in the “acc. HLP” curve suggesting that the 

correlation occurs within most segments of the UPC population. The standard 

correlation between log HLP and log revenues is 0.46. 

Figure 2B describes the subsample of 4537 UPCs that were sold by more than 

10 stores during the week of January 17, 2005. Here 90% of the UPCs have a ratio of 

high to low price below 2. The maximum ratio is 10 and is less than the maximum 

ratio of 15 in the larger sample. The “acc. HLP” graph shows that the fraction of 

UPCs with no price dispersion is small. The “acc. #stores” curve is to the right of the 

diagonal suggesting a positive correlation between HLP and the number of stores. The 

standard correlation between the number of stores and ln(HLP)  is 0.33 and is less 

than in the larger sample. Unlike Figure 2A here I did not plot the “acc.Ln(Rev)” 

graph because it was too close to the diagonal. But the correlation between ln(Rev) 

and ln(HLP)  is still positive and is equal to 0.25. Comparing the graphs in Figures 

2A and 2B suggest more variability of ln(HLP) in the larger sample. The difference in 

the standard deviation is however small. The standard deviation of ln(HLP)  is 0.26 in 

the large sample of 8602 UPCs and 0.25 in the smaller sample of 4537 UPCs. The 

Gini coefficient in the larger sample is 0.26 while it is 0.17 in the smaller sample. 
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A. The Sample of 8602 UPCs sold by more than 1 store. 

 
 

 
B. The sample of 4537 UPCs sold by more than 10 stores  

 
Figure 2: Cumulative shares for the week starting January 17, 2005. 

UPCs are ordered from low to high price dispersion (HLP) 

 

 3.2 Applying the exclusions and the construction of the main variables  

 To construct measures of aggregate demand uncertainty, I use the 3 samples 

described above: The 2005 sample with 1084 UPCs, the 2004 sample with 665 UPCs 

and the combined 04-05 sample with 324 UPCs.  
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 To economize on space I provide summary statistics in Table 3 only for the 

largest 2005 sample. The first column is the category name. The second is the number 

of UPCs in each category. There are for example, 56 UPCs in the beer category. The 

third is the average (maximum, minimum) number of stores per UPC. The average 

number of stores in the beer category is 21, the maximum number of stores is 35 and 

the minimum number of stores is 11. The next four columns provide the averages of 

the main variables.  

The columns ln(HLU) and SDU are unit dispersion measures used as proxies 

for aggregate demand uncertainty. With the risk of repetition I now describe the 

construction of the main variables in detail. The variable HLUi  is constructed as 

follows. I use Uit  to denote the aggregate amount (over all stores) of UPC i  sold in 

week t , Hi = maxt{Uit}  to denote the maximum weekly amount sold during the year 

(or during the sample period when the combined sample of 2 years is used) and 

Li = mint{Uit}  to denote the minimum weekly amount sold during the year. 

HLUi = Hi / Li  is the ratio between the amount sold in the highest sale week and the 

lowest sale week. The fourth column in Table 3 is the average of the log of this 

variable, ln(HLU ) , over the UPCs in the category. For beer the average log 

difference is 1.01 implying an average ratio between the highest and the lowest week 

of HLU = 2.73.  

 To construct the variable SDU let SDUi  denotes the standard deviation of 

ln(Uit )  over weeks. Column 5 is the average of SDUi  over the UPCs in the category. 

For beer the average is 0.25.  

 The columns ln(HLP) and SDP are price dispersion measures.  

The variable HLP  is constructed as follows. Let Pit
H (Pit

L ) denote the highest 

(lowest) price of UPC i  in week t . HLPit = Pit
H / Pit

L  is the ratio in week t  and 

ln(HLPi ) , is the average of the log of this ratio over 52 weeks. The average reported 

in column 6 is over all the UPCs in the category.  
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The variable SDP  was constructed as follows. Let Pits  denote the price of 

UPC i  in week t  store s  and SDPit  denote the standard deviation of ln(Pits ) over 

stores. The variable SDPi  is the average of SDPit  over weeks. In column 7 we have 

the average of SDPi  over the UPCs in the category. For beer the average standard 

deviation is 0.06.  

 I also attempted to include proxies for the cost of not selling (1− βi ) that is the 

proportionality constant in (6). As was said above 1− β  represents the cost of 

delaying revenues, storage cost and depreciation. Ideally we would therefore like to 

have information on the shelf life of each UPC and the shelf space that it takes. It also 

matters whether the good needs to be refrigerated or not. In the data there is only a 

size measure that may serve as a proxy for “shelf space”. But the size measures are 

not comparable across categories. They are in terms of a fraction of a “regular pack” 

and the size of a “regular pack” is sometimes in units of volume (for example, rolls 

for toilet paper) sometimes in terms of square feet (100 square feet is the regular pack 

for paper towel) and sometimes in units of weights (the regular pack of beer is 288 

oz). For this reason I constructed 18 “size dummy” variables. The “size dummy” for 

beer was constructed as follows. First I normalized the size of all the 56 UPCs in the 

beer category so that the largest size is 1. I then assigned the value of zero to UPCs 

that are not in the beer category and the normalized beer size to UPCs within the beer 

category. Similar treatment was applied to other categories. The last column in Table 

3 is the average normalized size. The maximum is 1 by construction. The minimum 

normalized size is in parentheses. For example, the average size in the beer category 

is 0.47 implying that on average the size of a UPC is about half the size of the largest 

UPC in the category.  

 The last row in Table 3 is the average per category. On average, a category has 

60 UPCs and 20 stores per UPC.  
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I use HLU and SDU as proxies for demand uncertainty and HLP and SDP as 

proxies of price dispersion. As can be seen there is substantial variations in these 

measures across categories. The lowest HLU is for milk (ln[HLU] = 0.78) implying 

that for an average UPC in the milk category the aggregate (over stores) amount of 

milk sold in the highest sale week is 2.18 higher than the aggregate amount sold in the 

lowest sale week. The highest HLU is for hot dogs (ln[HLU] = 2.36) implying that for 

an average UPC in this category, the aggregate amount of hotdogs sold in the highest 

sale week is 10.6 times the aggregate amount sold in the lowest sale week. 
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Table 3*: Summary Statistics for the 2005 sample 
 #	
  

UPC	
  

#	
  stores	
  
Avg	
  

(max,min)	
  
ln(HLU)	
   SDU	
   ln(HLP)	
  

	
  
SDP	
  

Av.	
  Size	
  
(Min)	
  

paper	
  towels	
   19	
   20(31,11)	
   0.95	
   0.21	
   0.15	
   0.05	
   0.31(0.13)	
  

beer	
   56	
   21(35,11)	
  	
  	
  	
  	
   1.01	
   0.25	
   0.19	
   0.06	
   0.46(0.07)	
  	
  

facial	
  tissue	
   18	
   18(26,11)	
   1.54	
   0.38	
   0.24	
   0.08	
   0.29(0.1)	
  

frozen	
  
dinners/entrees	
  

75	
   16(28,11)	
   1.61	
   0.36	
   0.32	
   0.1	
  
0.62(0.41)	
  

milk	
   64	
   22(34,11)	
   0.78	
   0.16	
   0.32	
   0.1	
   0.50(0.13)	
  

mustard	
  &	
  
ketchup	
  

21	
   20(32,11)	
   1.59	
   0.36	
   0.33	
   0.1	
  
0.32(0.13)	
  

salty	
  snacks	
   120	
   22(35,11)	
   1.26	
   0.3	
   0.3	
   0.1	
   0.47(0.16)	
  

toilet	
  tissue	
   19	
   21(34,11)	
   1.51	
   0.35	
   0.32	
   0.1	
   0.32(0.04)	
  

frozen	
  pizza	
   53	
   18(29,11)	
   1.49	
   0.32	
   0.36	
   0.11	
   0.52(0.18)	
  

peanut	
  butter	
   24	
   21(31,14)	
   1.3	
   0.26	
   0.34	
   0.11	
   0.61(0.30)	
  
yogurt	
   152	
   23(35,11)	
   1.16	
   0.26	
   0.31	
   0.11	
   0.36(0.13)	
  
carbonated	
  
beverages	
  	
  

144	
  
	
  	
  	
  	
  
23(35,11)	
  

1.55	
   0.37	
   0.37	
   0.12	
  
0.38(0.04)	
  

mayonnaise	
   19	
   23(32,11)	
   1.29	
   0.3	
   0.39	
   0.12	
   0.63(0.25)	
  

soup	
   74	
   19(35,11)	
   2.06	
   0.49	
   0.39	
   0.12	
   0.51(0.40)	
  

spaghetti/Italian	
  
sauce	
  

32	
   16(29,11)	
   1.37	
   0.31	
   0.38	
   0.13	
  
0.55(0.29)	
  

cold	
  cereal	
   133	
   21(34,11)	
   2.03	
   0.49	
   0.45	
   0.15	
   0.59(0.21)	
  

margarine/butter	
   40	
   25(35,11)	
   1.22	
   0.27	
   0.49	
   0.15	
   0.37(0.17)	
  

hotdog	
   21	
   20(34,11)	
   2.36	
   0.56	
   0.43	
   0.16	
   0.96(0.75)	
  
total	
   1084	
   	
   	
  	
   	
   	
   	
  	
   	
  
average	
   60.2	
   20(32,11)	
   1.45	
   0.33	
   0.34	
   0.11	
   0.49(0.22)	
  
* The first column is the category name. The second is the number of UPCs in the category. The third 
is the average number of stores per UPC in the category (maximum and minimum in parentheses). The 
next two columns are measure of demand uncertainty and the following two columns are measures of 
price dispersion. The average (minimum) normalized size is in the last column. Categories are sorted 
by SDP. The last row is the average across categories. Thus for example, there are on average 60 UPCs 
per category.  
  

Figure 3A is the cumulative frequency distribution of ln(HLP) in the 2005 

sample.  The maximum ln(HLP) is about 0.8 implying HLP=2.2. Recall that HLP is 

the average ratio of weeks and therefore the maximum HLP is much lower than the 

maximum in the randomly selected week.  About 70% of the UPCs have ln(HLP) less 

than 0.4 (HLP=1.5). Figure 3B describes share in totals where UPCs are ordered 
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(from low to high) by HLP. As can be seen the slopes of the “acc.HLU” curve are 

similar to the slopes of the “acc.HLP” curve. Consistent with this observation the 

correlation between ln(HLP) and ln(HLU) is 0.43. The slopes of the 

“acc.ln(Av.Price)” graph are not similar to the slopes of the “acc.HLP” graph and the 

correlation between the log of average price and ln(HLP) is -0.07. The correlation 

between ln(HLP) and the number of stores is 0.34 and the correlation between 

ln(HLP) and the log of revenues is 0.27. These correlations are similar to the 

correlations in the week of January 17.  

 

 
A. The Cumulative Frequency Distribution of the log difference 
between the highest and the lowest price averaged over weeks 

(ln[HLP]). 
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B. Cumulative Shares in totals. UPCs are ordered from low to high 

price dispersion (HLP) 
 

Figure 3: Price dispersion in the sample of 1084 UPCs sold by more 
than 10 stores in all the weeks of 2005  

  

The correlations between the main variables in the 3 samples are in Table 4.  

The correaltions between the price dispersion measures ln(HLP) and SDP and 

between the unit dispersion measures ln(HLU) and SDU are both very high (in the 

range 0.95-0.97). The correlation between the price dispersion measures and the unit 

dispersion measures (HLU&HLP, SDU&HLP, HLU&SDP, SDU&SDP) are in the 

range of 0.43-0.60.   
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Table 4*: Correlation between the main variables 
2005	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
  
ln(HLU)	
   1.000	
   	
   	
   	
  
SDU	
   0.957	
   1.000	
   	
   	
  
ln(HLP)	
   0.431	
   0.451	
   1.000	
   	
  
SDP	
   0.480	
   0.499	
   0.958	
   1.000	
  
# of UPCs 1084    
2004	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
  
ln(HLU)	
   1.00	
   	
   	
   	
  
SDU	
   0.96	
   1.00	
   	
   	
  
ln(HLP)	
   0.56	
   0.59	
   1.00	
   	
  
SDP	
   0.57	
   0.60	
   0.97	
   1.00	
  
# of UPCs 665    
04-­‐05	
   ln(HLU)	
   SDU	
   ln(HLP)	
   SDP	
  
ln(HLU)	
   1.00	
   	
   	
   	
  
SDU	
   0.97	
   1.00	
   	
   	
  
ln(HLP)	
   0.47	
   0.51	
   1.00	
   	
  
SDP	
   0.50	
   0.53	
   0.97	
   1.00	
  
# of UPCs	
   324	
   	
   	
   	
  
* This Table contains 3 correlation matrices followed by the number of UPCs. The first matrix is for 
the 2005 sample with 1084 UPCs, the second is for the 2004 sample with 665 UPCs and the last is for 
the 04-05 sample with 324 UPCs. The variables are the log difference between the highest and lowest 
weekly aggregate sales ln(HLU), the standard deviation of the log of aggregate sales (SDU), the 
average log difference between the highest and the lowest price ln(HLP) and the average cross 
sectional standard deviation of log prices (SDP). See the text for detailed definitions.  

 
3.3 Percentage difference and log difference 
 

 The choice between (6) and (6’) is not trivial: Why use an approximation 

rather than the relationship implied by theory?  

Many researchers use the log difference approximation to deemphasize 

(smooth) outliers. The problem of outliers is evident from Figure 4. Figure 4A is a 

scatter diagram of the percentage differences HLP-1 and HLU-1. Close to 90% of the 

UPCs have HLU<10. But there are extreme values of HLU, the highest being 

HLU=78. Figure 4B describes the log difference approximations ln(HLP) and 

ln(HLU). The approximation works well for relatively small differences and pull 

outliers to the bulk of the data. This is especially true for the unit dispersion measure. 

The range of the variable HLU-1 is 0.32 to 77 while the range of ln(HLU) is 0.28 to 
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4.36. The correlation between the percentage difference measures HLU-1 and HLP-1 

is 0.34 which is lower than the correlation between the log difference measures 

ln(HLU) and ln(HLP).  

 
 

 
A. Percentage difference  

 
 
 

 
B. Log differences 

 
Figure 4: Percentage and log differences. 
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3.4 Unit surprises 

 

I used the combined 04-05 sample with 324 UPCs to run (12)-(12’) and get 

the unit surprise measures HLRU  and SDRU . I then look at the difference between 

the highest and the lowest residuals from this regression and defineHLRUi = ε i
H − ε i

L

as the residual range measure of demand uncertainty. The residual standard deviation 

measure of uncertainty, SDRUi , is the standard deviation of ε i .  

 Figure 5A is a shares in totals graph when using the residuals from the 

regression (12). The two curves are almost on top of each other except for the 

segment in which the normalized ln(HLP) is between 0.3 to 0.6. The correlation 

between the two variables is 0.49. The correlation when looking at UPCs with 

dispersion below the 40th percentile is 0.55.  Figure 5B uses the residuals from the 

regression (12’). The results are almost identical to the results when using (12).  

 

 
A. Using the residuals from (12) 
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B. Using the residuals from (12’) 

 
Figure 5: Cumulative shares in totals. UPCs are ordered from low to 
high price dispersion in 2005 (HLP05). HLRU is the residual range 

measure of unit dispersion  
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   In the model, the value of inventories is βλ  and we may think of β  as the 

fraction of the wholesale price that the manager of the store will pay for a unit that 

will be on the shelf for a week with probability 1. This is lower than the fraction that 

he will pay for a unit that will be delivered in a week because of depreciation and the 

shelf space cost.  

 The ratio of price dispersion to unit dispersion is of interest because it 

provides an unbiased estimate of β . To show this claim, I divide both sides of (10) by 

HLU −1  to get:  

 

(13)  
HLP −1
HLU −1

= 1− β + ε
HLU −1

 

 

Since ε  is independent of HLU −1  and E(ε ) = 0  it follows that  
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(14)  E HLP −1
HLU −1

⎛
⎝⎜

⎞
⎠⎟ = 1− β  

 

We can therefore obtain an unbiased estimate of 1− β  by computing a simple average 

of the ratio 
HLP −1
HLU −1

 over UPCs.  

Figure 6 describes the UPC specific estimates of β . The average β  across all 

UPCs (standard deviation in parentheses) is 0.82 (0.18) for the 2005 sample and 0.85 

(0.12) for both the 2004 sample and for the combined 04-05 samples. There are no 

negative β  in the combined sample, only one negative β  in the 2004 sample. There 

are 9 negative β  in the 2005 sample that are less than 1% of the observations  

(9 out of the 1084 UPCs).  The data thus support the hypothesis that HLU > HLP  and 

that the estimated β  is in the unit interval.   

 

 
A. 2005 sample with 1084 UPCs 
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B. 2004 sample with 665 UPCs 

 

 
C. The combined 04-05 sample with 324 UPCs 

 
 

Figure 6: UPC specific β = 1− [(HLP −1) / (HLU −1)]  
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than the estimates under (10) by about 0.1, possibly because the log transformation 

smoothes measurement errors and reduces the attenuation bias.   

 Figure 7 uses the residual from (12’) to compute β = 1− [ln(HLP05) /HLRU ] . 

As can be seen the estimated β  are smaller with an average of 0.62. There are 9 (out 

of 324) UPCs with negative β : 5 in the milk category and 4 in the yogurt category. 

 

 
Figure 7: UPC specific β = 1− [ln(HLP05) /HLRU ] whereHLRU were 

computed from the residuals in (12’) 
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wholesale price.  The other extreme is facial tissues. The average cost of keeping 

facial tissues on the shelf for a week is between 7% and 18% of the wholesale price.  
 
Table 5*: Average β  by category 

 β = 1− [(HLP −1) / (HLU −1)]  β = 1− [ln(HLP) / ln(HLU )]  Using 
HLRU  

 2005 2004 04-05 2005 2004 04-05 04-05 
beer	
   0.86	
   0.84	
   0.91	
   0.79	
   0.78	
   0.85	
         0.77 
carbbev	
   0.83	
   0.82	
   0.87	
   0.72	
   0.71	
   0.75	
          0.65 
coldcer	
   0.89	
   0.90	
   0.92	
   0.77	
   0.77	
   0.80	
          0.76 
factiss	
   0.92	
   0.93	
   	
   0.84	
   0.82	
   	
    
fzdinent	
   0.90	
   0.90	
   	
   0.79	
   0.77	
   	
    
fzpizza	
   0.84	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.87	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.85	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.74	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.75	
   	
  	
  	
  0.73	
          0.63 
hotdog	
   0.93	
   0.91	
   	
   0.81	
   0.78	
   	
    
margbutr	
   0.69	
   0.79	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.78	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.57	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.66	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.63	
          0.52 
mayo	
   0.76	
   0.75	
   	
   0.65	
   0.64	
   	
    
milk	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.50	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.65	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.63	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.46	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.56	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  0.55	
          0.28 
mustketc	
   0.86	
   0.88	
   	
   0.76	
   0.77	
   	
    
paptowl	
   0.89	
   	
   	
   0.84	
   	
   	
    
peanbutr	
   0.78	
   0.81	
   0.81	
   0.69	
   0.70	
   0.71	
          0.60 
saltsnck	
   0.84	
   0.86	
   0.88	
   0.75	
   0.77	
   	
  	
  	
  	
  	
  	
  	
  0.79	
          0.70 
soup	
   0.90	
   0.88	
   0.89	
   0.78	
   0.76	
   0.78	
          0.62 
spagsauc	
   0.81	
   0.86	
   	
   0.70	
   0.73	
   	
    
toitisu	
   0.84	
   0.83	
   	
   0.75	
   0.71	
   	
    
yogurt	
   0.80	
   0.83	
   0.83	
   0.71	
   0.73	
   0.71	
          0.51 
All 	
  	
  	
  	
  	
  	
  	
  	
  0.82 	
  	
  	
  	
  	
  	
  	
  	
  	
  0.85 	
  	
  	
  	
  	
  	
  	
  	
  	
  0.85 	
  	
  	
  	
  	
  	
  	
  	
  	
  0.73	
   0.74	
   0.74	
          0.62 
* The first 3 columns (after the category name) use (10). The following 3 columns use the log 
approximation (10’). The last column use β = 1− [ln(HLP05) /HLRU ]  where HLRU  are the 
residuals of (12’). There are 18 categories in the 2005 sample, 17 in the 2004 sample and 10 in the 
combined sample.  
 

 

4. FORECASTING PRICE DISPERSION 

 

In search models price dispersion may arise even in the absence of uncertainty 

about aggregate demand. I therefore ran (10’) with an intercept. Table 6 reports the 

results for categories with more than 50 UPCs and for the samples as a whole.   

Consistent with search models, all the intercepts are positive and significant. 

In the 2005 sample there are 9 categories with more than 50 observations.  8 out of 
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the 9 coefficients of ln(HLU) are positive and 6 out of the 8 are significant. In the 

2004 sample there are 4 such categories. 3 out of the 4 coefficients are significant and 

positive. In the 04-05 sample there are 3 categories all the coefficients are positive 

and 2 are significant. The estimates do not change much when we replace ln(HLU) in 

the 04-05 sample with HLRU. When using all the observations in the samples, the 

coefficients of ln(HLU) are around 0.1. It is no longer clear that we can interpret the 

coefficient of ln(HLU) as an estimate of 1− β . But the elasticity itself is of interest. 
 
Table 6*: Running ln(HLP) on ln(HLU) with intercept. 
2005 sample Intercept	
   ln(HLU)	
   #UPC	
   Adj	
   R2 	
  
beer	
   0.165***	
   0.023	
   56	
   0.005	
  
carbbev	
   0.308***	
   0.040**	
   144	
   0.049	
  
coldcer	
   0.190***	
   0.127***	
   133	
   0.321	
  
fzdinent	
   0.217***	
   0.063*	
   75	
   0.044	
  
fzpizza	
   0.247***	
   0.074**	
   53	
   0.141	
  
milk	
   0.343***	
   -­‐0.024	
   64	
   -­‐0.012	
  
saltsnck	
   0.059*	
   0.194***	
   120	
   0.454	
  
soup	
   0.311***	
   0.040*	
   74	
   0.059	
  
yogurt	
   0.283***	
   0.027	
   152	
   0.001	
  
All	
   0.209***	
   0.095***	
   1084	
   0.185	
  
2004 sample Intercept	
   ln(HLU)	
   #UPC	
   Adj	
   R2 	
  
carbbev	
   0.411***	
   -­‐0.005	
   86	
   -­‐0.011	
  
coldcer	
   0.151***	
   0.149***	
   93	
   0.561	
  
saltsnck	
   0.107***	
   0.138***	
   94	
   0.457	
  
yogurt	
   0.229***	
   0.068*	
   92	
   0.060	
  
All	
   0.207***	
   0.106***	
   665	
   0.318	
  
04-05 sample Intercept	
   ln(HLU)	
   #UPC	
   Adj	
   R2 	
  
carbbev	
   0.346***	
   0.022	
   58	
   0.031	
  
coldcer	
   0.154**	
   0.130***	
   53	
   0.490	
  
yogurt	
   0.287***	
   0.052**	
   65	
   0.091	
  
All	
   0.244***	
   0.080***	
   324	
   0.219	
  
04-05 sample Intercept	
   HLRU	
   #UPC	
   Adj	
   R2 	
  
carbbev	
   0.348***	
   0.030*	
   58	
   0.058	
  
coldcer	
   0.164***	
   0.147***	
   53	
   0.601	
  
yogurt	
   0.385***	
   0.002	
   65	
   -­‐0.016	
  
All	
   0.276***	
   0.088***	
   324	
   0.230	
  
* One star (*) denotes p-value of 5%, two stars (**) denote p-value of 1% and three stars (***) denote 
p-value of 0.1%. The first 10 rows are the results when using the 2005 sample. The following 5 rows 
are the results when using the 2004 sample and the last 4 rows are the results when using the 04-05 
sample.  
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Motivated by the finding of a positive intercept, I adopt the more eclectic 

approach in (11) that uses variables suggested by search theories. I use two measures 

of dispersion: the range dispersion measures (HLP, HLU and HLRU) and the standard 

deviation dispersion measures (SDP, SDU and SDRU). The qualitative results are the 

same for both measures. The regressions that use the standard deviation dispersion 

measures are reported in the Appendix.  

Table 7 reports the results of running the price dispersion measure ln(HLP) on 

category dummies, “size dummies” and various combinations of the following main 

variables: The unit range dispersion measure ln(HLU), revenues, the number of stores 

and the average price. Only the coefficients of the main variables are reported.   

The first 5 rows in the Table describe the regression results when using the 

1084 observations in the 2005 sample. The regression reported in Column 1 uses only 

the unit dispersion measures ln(HLU), intercept, category dummies and size variables. 

As can be seen the coefficient 0.082 is highly significant. This coefficient does not 

change much when we add other explanatory variables in columns 2-6 and it is in the 

range 0.078 - 0.094. The coefficient when running (10’) with intercept reported in 

Table 6 is 0.095 suggesting that the estimated elasticity is not sensitive to the addition 

of the other variables.  

The coefficient of the average price is also consistently significant and it is in 

the range of -0.089 to -0.55. The coefficients of revenues are positive but not always 

significant. The coefficients of the number of stores are positive and significant.  

 The next 5 rows describe the regression results when using the 665 

observations in the 2004 sample. Also here the coefficients of the unit dispersion 

measure are highly significant and stable. The range of the estimated elasticity is 

0.097-0.105 and is slightly higher than the range in the 2005 sample. The elasticity 

reported in Table 6 is 0.106 suggesting that adding the variables does not change the 

estimated elasticity by much.  
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The coefficients of the average price in the 2004 sample are significantly 

negative and are in the range (-0.062 to -0.055). The coefficients of revenues and the 

number of stores are positive but not always significant.  

 The last five rows reports the regression results when using the combined  

04-05 sample with 104 weeks and 324 UPCs. The coefficients of the unit dispersion 

measure are in the range (0.078 - 0.089) that is similar to the range in the 2005 sample 

and slightly less than the range in the 2004 sample. The coefficients of the average 

price are in the range (-0.142 to -0.103) that is lower than the range in the previous 

two samples. The coefficients of revenues and the number of stores are positive but 

not always significant.  

 On the whole, the estimated elasticity of the range dispersion measure with 

respect to the unit dispersion measure is close to 0.1 and is not sensitive to adding 

variables to the regression.  
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Table 7*: The Main Explanatory Variables; Dependent variable = ln(HLP) 
2005 1 2 3 4 5 6 
ln(HLU) 0.082*** 

(0.007) 
0.082*** 
(0.007) 

 0.078*** 
(0.006) 

 0.094*** 
(0.007) 

ln(Revenues)   0.077*** 
(0.005) 

0.074*** 
(0.004) 

0.043*** 
(0.01) 

0.005 
(0.009) 

#Stores     0.004*** 
(0.001) 

0.009*** 
(0.000) 

ln(Av. Price)  -.059*** 
(0.013) 

-.089*** 
(0.012) 

-.089*** 
(0.012) 

-.072*** 
(0.013) 

-.055*** 
(0.012) 

Adj. R2  0.3306 0.3432 0.415 0.4851 0.4228 0.5171 
2004 1 2 3 4 5 6 
ln(HLU) 0.104*** 

(0.007) 
0.105*** 
(0.007) 

 0.097*** 
(0.007) 

 0.102*** 
(0.007) 

ln(Revenues)   0.052*** 
(0.007) 

0.036*** 
(0.006) 

0.049*** 
(0.011) 

0.008 
(0.010) 

#Stores     0.001 
(0.002) 

0.009*** 
(0.000) 

ln(Av. Price)  -.055*** 
(0.014) 

-.061*** 
(0.015) 

-.062*** 
(0.013) 

-.060*** 
(0.015) 

-.056*** 
(0.013) 

Adj. R2  0.4905 0.5028 0.3746 0.5312 0.3737 0.5393 
04-05 1 2 3 4 5 6 
ln(HLU) 0.089*** 

(0.009) 
0.083*** 
(0.009) 

 0.078*** 
(0.009) 

 0.083*** 
(0.009) 

ln(Revenues)   0.040*** 
(0.007) 

0.031*** 
(0.007) 

0.034** 
(0.013) 

0.007 
(0.012) 

#Stores     0.002 
(0.003) 

0.008* 
(0.003) 

ln(Av. Price)  -.111*** 
(0.021) 

-.142*** 
(0.023) 

-.119*** 
(0.021) 

-.139*** 
(0.024) 

-.103*** 
(0.022) 

Adj. R2  0.5351 0.5721 0.4874 0.594 0.4863 0.6015 
* This Table reports the results of 6 regressions in 3 different samples. The samples are 2005, 2004 
and the combined sample of 04-05. The first column is the name of the explanatory variables. The 6 
regressions include different combinations of the explanatory variables. Each column reports the 
coefficients of a different regression. Standard errors are in parentheses. The dependent variable in all 
6 regressions is the average log difference between the highest and the lowest price. All 6 regressions 
have category dummies (17 + intercept) and 18 size variables. One star (*) denotes p-value of 5%, two 
stars (**) denote p-value of 1% and three stars (***) denote p-value of 0.1%. The main explanatory 
variable in regression 1 is the log difference between the aggregate number of units sold in the week of 
highest sales and the week of lowest sales (HLU). Regression 2 adds the average log of the price. 
Regression 3 replaces HLU with the log of total revenues. Regression 4 has both HLU and revenues. 
Regression 5 replaces HLU with the number of stores and regression 6 uses all the variables.  
 

 Table 8 reports the regression results when running (11) for each category 

with more than 50 UPCs. As in Table 6, there were 9 such categories in the 2005 
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sample, 4 in the 2004 sample and 3 in the combined 04-05 sample. The first row in 

the Table reports the regression result when using the sample of 56 UPCs in the 2005 

beer category. The coefficient of ln(HLU) is positive for all the 9 categories in the 

2005 sample, all the 4 categories in the 2004 sample and for 2 out of the 3 categories 

in the combined sample. The coefficient of ln(HLU) is significant and positive in 12 

out of the 16 regressions and the single negative coefficient is not significant. On the 

whole, the category regressions in Table 8 provide strong support for a positive 

ln(HLU) coefficient, a somewhat weaker support for a negative average price 

coefficient and even weaker support for a positive revenues and number of stores 

coefficients. The results with respect to the size variables are mixed.  
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Table 8*: Separate regressions for selected categories; dependent variable = ln(HLP) 
2005  ln(HLU) ln(Rev) # stores ln(Av.P) Size #UPC Ad. R2  
beer 0.046* 0.025 -0.001 -.105*** 0.068 56 0.34 
carbbev 0.073*** -.076*** 0.015*** 0.025 0.060 144 0.29 
coldcer 0.121*** 0.097** 0.006 -.244*** 0.059 133 0.678 
fzdinent 0.056* 0.165*** -0.008 -0.009 -0.038 75 0.4116 
fzpizza 0.064** 0.037 0.003 -0.155* 0.044 53 0.3854 
milk 0.076* 0.040 0.013*** -0.134* 0.259 64 0.563 
saltsnck 0.186*** 0.004 0.006 -0.068 0.014 120 0.509 
soup 0.026 0.001 0.008 -0.001 0.328*** 74 0.2425 
yogurt 0.092*** 0.034 0.009*** 0.021 -0.035 152 0.647 
        
2004   ln(HLU) ln(Rev) # stores ln(Av.P) Size #UPC Ad. R2  
carbbev 0.048 -0.001 -0.002 -0.073 -0.030 86 0.074 
coldcer 0.102*** 0.158*** -0.003 -.258*** 0.142* 93 0.7857 
saltsnck 0.128*** -0.004 0.016* 0.008 0.006 94 0.5487 
yogurt 0.006 0.063*** -0.003* -.058*** -.145*** 92 0.8483 
        
04-05  ln(HLU) ln(Rev) # stores ln(Av.P) Size #UPC Ad. R2  
carbbev 0.069*** -0.058* 0.017* -0.034 0.094 58 0.2754 
coldcer 0.111*** 0.118** 0.009 -0.180* 0.027 53 0.7437 
yogurt -0.011 0.035*** 0.001 -.110*** 0.081 65 0.8142 
*This Table reports the results of a regression that was run for each category separately in 3 different 
samples. The selected categories have more than 50 UPCs. The first column is the coefficient of the 
unit dispersion measure HLU, and the following 5 columns are the coefficients of the other explanatory 
variables.    

 

5. ROBUSTNESS CHECKS 

 

 Stores may make mistakes in setting prices. These price-setting errors may 

affect price dispersion and the right hand side variables of the regression. The 

problem may not be severe because the dependent variable is the average price 

dispersion over weeks and in large samples price setting mistakes are zero on average. 

But here the average is over 52 (104 in the combined sample) weeks and there may 

still be an endogeneity problem. To address this issue I use the combined sample with 

104 weeks and compute the independent variables on the basis of the first 52 weeks 

and the dependent variable on the basis of the last 52 weeks. The results in Table 9 
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are similar to the results in Table 7 for the combined sample suggesting that 

endogeneity is not important.  

 

Table 9*: Dependent variable = ln(HLP.05) 
 1 2 3 4 5 6 
ln(HLU.04) 0.102***	
  

(0.011)	
  
0.095***	
  
(0.011)	
  

 0.088***	
  
(0.011)	
  

 0.091*** 
(0.011) 

ln(Rev. 04)   0.040***	
  
(0.009)	
  

0.027***	
  
(0.008)	
  

0.035*	
  
(0.014) 

0.011 
(0.013) 

#Stores     0.001	
  
(0.004)	
  

0.005 
(0.003) 

ln(Av. P. 04)  -­‐0.130***	
  
(0.023)	
  

-­‐0.161***	
  
(0.025)	
  

-­‐0.137***	
  
(0.023)	
  

-­‐0.158***	
  
(0.026) 

-.127*** 
(0.024) 

Adj. R2  0.5112 0.557 0.4795 0.5712 0.478 0.5738 
* This Table uses the combined 04-05 sample. The dependent variable is based on the last 52 weeks in 
the sample (in 2005) while the explanatory variables are based on the first 52 weeks (in 2004).    

 

Using the residual unit dispersion measure:  

 Table 10 replaces the unit dispersion measure in Table 9 with the residual 

range measure of demand uncertainty that is obtained from running the regressions in 

(12’). The coefficients of HLRU are very similar to the coefficients of HLU in Table 

9 and are in the range of 0.103 to 0.114. The coefficients of the variables suggested by 

search theory are also in line with the previous estimates.  

 

Table 10*: Dependent variable = ln(HLP.05) 
HLRU 0.114*** 

(0.010) 
0.107*** 
(0.010) 

0.103*** 
(0.010) 

0.105*** 
(0.010) 

Ln (Rev. 04)   0.031*** 
(0.008) 

0.012 
(0.012) 

#Stores 
   0.006* 

(0.003) 
Ln (Av. P. 04)  -.121*** 

(0.022) 
-.128*** 
(0.022) 

-.117*** 
(0.022) 

Adj.  0.5631 0.6016 0.6207 0.6245 
* This Table reports the results of 4 regressions using the combined 04-05 sample. The dependent 
variable is the range price dispersion measure that is computed on the basis of the last 52 weeks of the 
sample. The explanatory variable HLRU is the residual unit dispersion measure obtained from (12’). 

R2
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The computation of Ln (Av. Price) and Ln (Revenues) are computed on the basis of the first 52 weeks 
in the sample. 

 

Specification search 

 The specification (11) says that price dispersion is increasing in the ratio of the 

amount sold in the highest sale week to the amount sold in the lowest sale week. A 

more general specification may assume that price dispersion is increasing in the 

amount sold in highest sale week and decreasing in the amount sold in the lowest sale 

week. We can thus generalize (11) as follows.  

 

(13)   ln(HLPi ) = b0i + b1i
H ln(Hi )− b1i

L ln(Li )+ ...+   

 = b0i + b1i
H ln(HLUi )+ (b1i

H − b1i
L )ln(Li )+ ...+  

 

The specification (11) is a special case of (13) that assumes: b1i
H = b1i

L . Table 11 

provides the results when running (13). The coefficient of ln(Li )  is not significantly 

different from zero, thus supporting the specification (11).  
 

Table 11*: Dependent variable = ln(HLP) 
 ln(HLU) ln(L) ln(Rev) #Stores ln(Av.Price) Ad R2  
2005 .110*** .042 -.035 .008*** -.010 .5159 
2004 .085*** -.054 .06 .008*** -.109*** .5409 
04-05 .072*** -.032 .037 .008** -.134** .6011 
* These are the regression results when adding the variable ln(L) to the regression (11), where L is the 
amount sold in the lowest sale week. The first row is the regression results for the 2005 sample, the 
second row uses the 2004 sample and the third uses the combined 04-05 sample.   

  

6. CONCLUDING REMARKS 

 

 Price dispersion is increasing in proxies of aggregate demand uncertainty. 

When running price dispersion measures on unit dispersion measures and other 

variables, the coefficients of the unit dispersion measures are positive and highly 

significant. This finding supports Prescott type models. But the finding of a 
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significant positive intercept suggests that the model does not capture all the relevant 

aspects. I therefore include in the regressions three variables suggested by search 

theory: The number of stores that sell the good, total revenues from selling the good 

and the average price of the good.  

The inclusion of the search variables does not change the estimated elasticity 

of price dispersion with respect to unit dispersion by much. The estimated elasticity is 

about 0.1 when using the range measures of dispersion, and about 0.15 when using 

the standard deviation measures of dispersion.  

Out of the variables suggested by search theory the average price is the only 

one with a stable and significant effect. This is in line with the findings of Pratt et. al. 

(1979). A possible explanation for the significant negative effect of the average price 

may rely on the distinction between informed and uninformed buyers as in Salop and 

Stiglitz (1977), Shilony (1977) and Varian (1980). Roughly speaking, this literature 

assumes that there are some buyers who pay attention to prices and some who do not. 

Maybe there are some buyers who in the spirit of Mankiw and Reis (2007) pay 

attention to high prices but do not pay attention to low prices. This interpretation is 

not without problems. If this was true than we should find a negative relationship 

between the size variables and price dispersion. But the coefficients of the size 

variables are not negative (see Table 8).   

 

REFERENCES 
  
Baharad Eyal  and Benjamin Eden (2004). "Price Rigidity and Price Dispersion: 

Evidence from Micro Data," Review of Economic Dynamics, Elsevier for 
the Society for Economic Dynamics, vol. 7(3), pages 613-641, July. 

Bental, Benjamin and Benjamin Eden (1993). "Inventories in a Competitive 
Environment," Journal of Political Economy, University of Chicago Press, 
vol. 101(5), pages 863-86, October. 



Vanderbilt University Department of Economics Working Papers, VUECON-13-00015

        

42 

 
Burdett, Kenneth and Kenneth Judd (1983). “Equilibrium Price Dispersion.” 

Econometrica, 51, 955–70. 
Dana James D. Jr. "Advance-Purchase Discounts and Price Discrimination in 

Competitive Markets" Journal of Political Economy, Vol.106, Number 2, 
April 1998, 395-422.  

_______ “Equilibrium Price Dispersion under Demand Uncertainty: The Roles of 
Costly Capacity and Market Structure” The RAND Journal of Economics, 
Vol. 30, No. 4 (Winter, 1999), pp. 632-660. 

Deneckere Raymond and James Peck., "Dynamic Competition with Random Demand 
and Costless Search: A Theory of Price Posting". Econometrica, Vol. 80, 
No. 3 (May, 2012), 1185–1247. 

Diamond, Peter A., 1971. "A model of price adjustment," Journal of Economic 
Theory, Elsevier, vol. 3(2), pages 156-168, June.   

Eden, Benjamin. "Marginal Cost Pricing When Spot Markets are Complete" Journal 
of Political Economy, Dec. 1990. Vol. 98, No.6,1293-1306. 

_______  "Inflation and Price Adjustment: An Analysis of Microdata," Review of 
Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 
4(3), pages 607-636, July, 2001. 

________''Price dispersion and efficiency'', Vanderbilt University Department of 
Economics Working Papers, VUECON-13-00012, July 2013. 

Kaplan Greg and Guido Menzio. “Five Facts About Price Dispersion” mimeo, Very 
Preliminary, Feb. 18, 2013.  

Lach Saul., “Existence and Persistence of Price Dispersion: An Empirical Analysis” 
  The Review of Economics and Statistics, August 2002, 84(3): 433–444. 
Mankiw N. Gregory & Ricardo Reis, 2007. "Sticky Information in General 

Equilibrium," Journal of the European Economic Association, MIT Press, 
vol. 5(2-3), pages 603-613, 04-05.  

Pratt, John W.; Wise, David A.; and Zeckhauser, Richard J. “Price Differences in 
Almost Competitive Markets.” Q.J.E. 93 (May 1979): 189–211. 

Prescott, Edward. C., "Efficiency of the Natural Rate" Journal of Political Economy, 
83 (Dec. 1975): 1229-1236. 

Salop S., and J. Stiglitz, "Bargains and Ripoffs: A Model of Monopolistically 
Competitive Price Dispersion," Rev. Econ. Stud., Oct. 1977, 44, 493-510. 

Shilony, Yuval., "Mixed Pricing in Oligopoly," J. Econ. Theory, Apr. 1977, 14, 373-
88. 



Vanderbilt University Department of Economics Working Papers, VUECON-13-00015

        

43 

 
Sorensen,	
  Alan	
  T.	
  “Equilibrium	
  Price	
  Dispersion	
  in	
  Retail	
  Markets	
  for	
  

Prescription	
  Drugs”	
  Journal	
  of	
  Political	
  Economy,	
  Vol.	
  108,	
  No.	
  4	
  
(August	
  2000),	
  pp.	
  833-­‐850.	
  

Varian, H., “A Model of Sales,” American Economic Review 70:4 (1980), 
651–659. 

Yitzhaki Shlomo “Gini’s Mean difference: a superior measure of variability for non-
normal distributions” Metron - International Journal of Statistics, 2003, vol. 
LXI, n. 2, pp. 285-316. 

 
 



Vanderbilt University Department of Economics Working Papers, VUECON-13-00015

        

44 

 
 

APPENDIX: USING THE STANDARD DEVIATION AS A MEASURE OF 

DISPERSION 

 

 This Appendix replaces the range dispersion measures (HLP,HLU ) in Tables 

7 - 10 with the standard deviation dispersion measures ( SDP,SDU ).  

 

Table A1*: The Main Explanatory Variables; Dependent variable = SDP 
2005 1 2 3 4 5 6 
SDU 0.136*** 

(0.009) 
0.136*** 
(0.009) 

 0.129*** 
(0.008) 

 0.147*** 
(0.008) 

ln(Revenues)   0.018*** 
(0.002) 

0.016*** 
(0.001) 

0.014*** 
(0.01) 

-0.002 
(0.003) 

#Stores     0.000 
(0.000) 

0.002*** 
(0.000) 

ln(Av. Price)  -.016*** 
(0.004) 

-.022*** 
(0.004) 

-.022*** 
(0.004) 

-.021*** 
(0.004) 

-.013*** 
(0.004) 

Adj. R2  0.4203 0.429 0.3751 0.4963 0.3754 0.5179 
       
2004 1 2 3 4 5 6 
SDU 0.159*** 

(0.009) 
0.160*** 
(0.009) 

 0.151*** 
(0.009) 

 0.152*** 
(0.009) 

ln(Revenues)   0.016*** 
(0.002) 

0.008*** 
(0.002) 

0.024*** 
(0.004) 

0.007* 
(0.003) 

#Stores     -0.002** 
(0.001) 

0.000 
(0.001) 

ln(Av. Price)  -.018*** 
(0.004) 

-.018*** 
(0.005) 

-.019*** 
(0.004) 

-.020*** 
(0.005) 

-.019*** 
(0.004) 

Adj. R2  0.57 0.5807 0.3964 0.5912 0.402 0.5907 
       
04-05 1 2 3 4 5 6 
SDU 0.154*** 

(0.012) 
0.147*** 
(0.011) 

 0.143*** 
(0.012) 

 0.145*** 
(0.012) 

ln(Revenues)   0.010*** 
(0.003) 

0.004 
(0.002) 

0.015*** 
(0.004) 

0.001 
(0.004) 

#Stores     -0.002 
(0.001) 

0.001 
(0.001) 

ln(Av. Price)  -.030*** 
(0.006) 

-.043*** 
(0.008) 

-.031*** 
(0.006) 

-.046*** 
(0.008) 

-.029*** 
(0.007) 

Adj. R2  0.6402 0.6631 0.5002 0.6654 0.5019 0.6651 
* See notes to Table 7. 
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Table A2*: Separate regressions for selected categories; dependent variable = SDP 
2005  SDU ln(Rev) # stores ln(Av. P) Size Adj. R2  
beer 0.061* 0.012 -0.001 -0.044*** 0.023 0.4571 
carbbev 0.075** -0.017* 0.003*** 0.012 -0.009 0.1205 
coldcer 0.152*** 0.029* 0.001 -0.083*** 0.020 0.6525 
fzdinent 0.135** 0.028 -0.002 0.007 -0.028 0.3403 
fzpizza 0.135** 0.004 0.001 -0.037 0.002 0.3608 
milk 0.124* 0.003 0.004*** -0.035 0.085 0.3851 
saltsnck 0.251*** 0.000 0.001 -0.003 -0.015 0.607 
soup 0.147*** -0.022 0.002 -0.012 0.092* 0.3697 
yogurt 0.084** 0.015 0.002*** 0.012* -0.044** 0.6344 
       
2004  SDU ln(Rev) # stores ln(Av. P) Size Adj. R2  
carbbev 0.044 0.011 -0.005 -0.013 -0.069 0.071 
coldcer 0.142*** 0.054*** -0.003 -0.096*** 0.039 0.8089 
saltsnck 0.168*** 0.008 0.002 -0.002 0.025 0.6056 
yogurt 0.016 0.025*** -0.003*** -0.021*** -0.056*** 0.8471 
       
04-05  SDU ln(Rev) # stores ln(Av. P) Size Adj. R2  
carbbev 0.094*** -0.017* 0.004 -0.004 0.003 0.2116 
coldcer 0.186*** 0.028* 0.002 -0.049* -0.004 0.8177 
yogurt -0.016 0.010*** -0.001* -0.041*** 0.028 0.8227 
* See notes to Table 8. 

 

Table A3: Dependent variable = SDP.05  
05y-04x 1 2 3 4 5 6 
SDU. 04 0.147*** 

(0.013) 
0.140*** 
(0.012) 

 0.137*** 
(0.013) 

 0.138*** 
(0.013) 

ln(Rev. 04)   0.009** 
(0.003) 

0.003 
(0.003) 

0.013** 
(0.005) 

0.002 
(0.004) 

#Stores     -0.002 
(0.001) 

0.000 
(0.001) 

ln(Av. P. 04)  -.035*** 
(0.007) 

-.046*** 
(0.008) 

-.035*** 
(0.007) 

-.048*** 
(0.009) 

-.035*** 
(0.007) 

Adj. R2  0.5839 0.6122 0.4654 0.6125 0.4665 0.6114 
* See notes to Table 9. 
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Table A4*: Dependent variable = SDP.05 
SDRU 0.170*** 

(0.013) 
0.162*** 
(0.009) 

0.159*** 
(0.013) 

0.161*** 
(0.013) 

Ln (Av. P. 04)  -.033*** 
(0.007) 

-.035*** 
(0.007) 

-.033*** 
(0.007) 

Ln(Rev. 04)   0.005* 
(0.002) 

0.003 
(0.004) 

#Stores 
   0.001 

(0.001) 
Adj. R2  0.6178 0.6441 0.6476 0.6471 
* See notes to Table 10. 


