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1. INTRODUCTION 

  

 Uncertainty about demand is an important feature of the environment. Yet the 

standard competitive model does not offer an explicit description of its resolution. 

Instead we have a Walrasian auctioneer who resolves the uncertainty and announces 

the market-clearing price before the beginning of actual trade. 

 This gap in the standard model is especially felt when capacity is determined 

prior to the realization of demand. The peak-load-pricing literature initiated by 

Williamson (1966) follows the Walrasian tradition in assuming that trade occurs only 

after the resolution of uncertainty. When capacity is not fully utilized the Williamson  

model predicts that the price will drop to the variable marginal cost. The model does 

not explain why the price of rooms does not drop in hotels that are not filled to 

capacity.  

 To explain the behavior of prices when excess capacity occurs, researchers 

have assumed price rigidity and/or monopoly power. These issues are important for 

industrial policy. They are also central for macro-policy. Roughly speaking, price 

rigidity and monopoly power support new Keynesian models and their policy 

implications. Moreover, the accumulation of large (“undesired”) inventories is often 

interpreted as the result of prices that do not clear markets and in favor of Keynesian 

models. On the other hand there is the neo-classical view of market clearing and 

efficiency.  

 Prescott (1975) is close to the neo-classical view. He uses a model in which 

prices are set in advance and show that the resulting allocation is efficient when 

buyers are homogeneous and demand one unit. In Eden (1990), I proposed an 

explanation that is in the spirit of Prescott (1975) but does not assume price rigidity. 

In the model, buyers are homogeneous and each active buyer has a downward sloping 

demand curve. Active buyers arrive sequentially and sellers must make irreversible 
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selling decisions before they know whether additional buyers will arrive or not. 

Unlike Williamson’s peak load pricing model, here trade occurs before the resolution 

of the uncertainty about demand and there are many prices. Indeed, sellers know the 

realization of demand only at the end of the trading process when the price of the 

unoccupied rooms is no longer relevant (because at this point all active buyers have 

rooms). I refer to this model as the Uncertain and Sequential Trade (UST) model.2 

 The level of abstraction of the UST model is close to that of the Walrasian 

model. Nevertheless, the UST model is useful for understanding observations that are 

inconsistent with the standard formulation of competitive environments. Dana (1998) 

has shown that a price-taking firm may offer advanced-purchase discounts and 

consumers with relatively certain demand will take advantage of this offer. Thus, 

price discrimination may occur in the absence of monopoly power. In Eden (2007) I 

show that this line of reasoning can explain “dumping”: A firm may export at a price 

that is below the price its sells at home if the demand at home is relatively unstable. 

Recent studies of prices in the airline industry have tested the “stochastic demand 

pricing” against the monopoly price discrimination alternative. My reading of this 

literature is that the behavior of prices in the data is consistent with the predictions of 

the UST model.3 The UST model has also been used to address issues of money non-

neutrality, price stickiness and price dispersion.4 In a recent empirical paper (Eden 

[2014]) I estimate the effect of demand uncertainty on the cross sectional price 

                                                
2 For other versions of the Prescott model, see Dana (1999), Bryant (1980) and Deneckere, Marvel, and 
Peck (1996). For other type of models that deals with pricing in the presence of demand uncertainty, 
see Harris and Raviv (1981), Lazear (1986) and Pashigian (1988).  
3 See Escobari and Li (2007), Escobari (2012) and Escobari and Lee (2013) and Cornia, Gerardi and 

Shapiro (CGS, 2012). Escobari et al. focus on within flight correlation between price dispersion and 
capacity utilization: Flights that are relatively empty tend to have less price dispersion. CGS find a 
negative correlation between average capacity utilization and price dispersion: Routes with low 
average capacity utilization tend to have more price dispersion. In Eden (2013) I argue that both 
observations are consistent with the UST model. 

4 The observation of prices that do not change often may arise as a direct consequence of the fact that 
sellers are indifferent about prices in the equilibrium range. See Eden (1994, Figure 4) and Head, 
Liu, Menzio and Wright (2012). 
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dispersion of food items sold by supermarkets. According to my estimation, 

eliminating aggregate demand uncertainty will reduce the cross sectional price 

dispersion by more than 50%.  

 To better understand the literature that followed Prescott (1975), I study here 

the question of efficiency and the role of the cost of delaying trade. I distinguish 

between two versions of the Prescott model: The rigid price version and the flexible 

price (UST) version. The assumption about price rigidity does not matter much for the 

positive implications of the theory but it matters for the policy implications and for 

the related efficiency issues. Dana (1998) uses the rigid price version of the model 

and argues that the allocation is not efficient because of the price rigidity assumption. 

In a recent paper, Deneckere and Peck (DP, 2012) argue that the allocation in a single 

price version of the model is not efficient. They define the feasible set by the resource 

constraint with no additional information constraints. Their result therefore implies 

that a Walrasian auctioneer or a planner that knows the realization of demand can 

improve matters. In Eden (1990) I argue that the allocation is efficient from the point 

of view of a planner that faces the same informational constraints as the sellers in the 

model. Moreover, trade can be described as the execution of Arrow-Debreu contracts 

that justifies the “competitive label”. The approach in Eden (1990) is in line with the 

mechanism design literature and the literature on efficiency in search models.5 

 The cost of delaying trade is central to the problem of capacity utilization that 

is the focus of the Prescott model. The tourist in the Prescott model is not indifferent 

between having a room today to having it in the next day. Similarly, the tourist that is 

already unpacked in his room will see a cost for selling his room to a buyer with a 

higher reservation price or move to a cheaper room that is not occupied. A similar 

                                                
5 See for example, Gale (1987), Mortensen and Wright (2002) and Kircher (2009). The main difference 

between search models and UST models is in the assumption required to get price dispersion. In the 
UST model price dispersion arises as a result of uncertainty about aggregate demand while in search 
models it arises as a result of search frictions. 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00012

        

5 

 

argument is in Eden and Griliches (1993) who consider the example of restaurants 

and explicitly assume that one who had lunch will not buy at the same day an 

additional cheaper lunch. To provide more intuition, I study here the effects of 

changes in the cost of delaying trade. 

 I see the main contribution of the paper in putting various results under the 

same roof and in clarifying the differences between versions of the Prescott model. 

The new results are obtained in the dynamic versions of the model that allow for 

storage and in the single period version that allows for heterogeneous buyers.   

 The dynamic versions of the model analyzed here are related to the models in 

Bental and Eden (BE, 1993) and Deneckere and Peck (DP, 2012). These models 

complement each other. The BE model focus on all year around goods with 

exponential discounting while the DP model focus on seasonal goods with sudden 

(one-hoss-shay) depreciation. The new results are the general equilibrium and welfare 

analysis in a model with exponential discounting and the case in which the cost of 

delaying trade is important in a model with one-hoss-shay depreciation. I use here 

standard competitive analysis (with non-standard definition of markets). This is 

different from DP who use game theory.  

 The main results of the paper are as follows. (a) The efficiency result in Eden 

(1990) survives heterogeneity about the utility function and the introduction of 

storage possibilities. But it does not survive heterogeneity about the probability of 

becoming active. (b) When the costs of delaying trade are important, the equilibrium 

outcome in models that assume price flexibility may be efficient while the 

equilibrium outcome in models that assume price rigidity is not efficient, (c) Price 

rigidity does not impose welfare loss if there is no cost of delays and (d) Price 

dispersion increases with the cost of delays.  

 Section 2 discusses some basic issues in a simple framework. Section 3 allows 

for heterogeneity in the utility function. (Heterogeneity in the probability of becoming 
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active is in Appendix B). Section 4 considers a dynamic version with exponential 

decay and constant marginal cost. Section 5 allows for increasing marginal cost and 

productivity shocks. Section 6 discusses production smoothing. Section 7 analyzes an 

example of the one-hoss-shay depreciation case. Appendix A generalizes this 

example.    
 

2. A SINGLE PERIOD MODEL WITH HOMOGENEOUS BUYERS  

 

 I start with a discrete version of Prescott (1975). This version allows us to 

address some important issues before attempting a more general analysis.  

 The economy lasts for one period.  There are two goods: X  and Y . There are 

two types of agents: Sellers and buyers. All agents want to consume good Y  but only 

buyers may want to consume good X . The number of buyers that want to consume 

good X  (active buyers) is a random variable  N  that can take Z  possible 

realizations: 0 < N1 < N2 < ...< NZ . For notational convenience I use N0 = 0 . In state 

s  there are thus Ns  active buyers and the remaining NZ − Ns  buyers are not active. 

The probability of state s  is  π s = Prob( N = Ns ) . 

 Each active buyer wants to consume one unit of good X  and is willing to pay 

a high price for this unit. The number of sellers is known and is normalized to one. 

Sellers can produce X  at the cost of λ  units of Y  per unit of X .  

 At the beginning of the period sellers choose capacity and price tags. Sellers 

can vary price tags across units and sellers take the probability of selling at each price 

as given. There are Z  cutoff prices: 0 < P1 < P2 < ...< PZ . Sellers expect to sell a unit 

with a price tag Pi−1 < p ≤ Pi  if the number of active buyers is greater than Ni  and the 

state is s ≥ i . Otherwise (if s < i ) they do not sell the unit. The probability of selling 

at a price Pi  is equal to the probability of selling at the price Pi−1 < p ≤ Pi  and is given 

by: qi = π ss=i

Z∑ .   
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 Clearly it is not optimal to post Pi−1 < p < Pi  because at this price the 

probability of making a sale is the same as the probability of making a sale at the 

price Pi  and Pi  promises higher revenues. I therefore assume that the sellers choose 

price tags out of the following Z  alternatives: 0 < P1 < P2 < ...< PZ . 

 After capacity and price tags are chosen, buyers arrive sequentially in batches. 

Buyers see all price offers and choose to buy at the cheapest available offer. The first 

batch of N1  buyers buys at the cheapest price P1 . Then if s = 1  trade ends. Otherwise, 

if s >1 , more buyers arrive. The minimum additional buyers that will arrive if s >1  

is N2 − N1  and this second batch of buyers buys at the price P2 . Then if s = 2  trade 

ends. Otherwise an additional batch of N3 − N2  buyers will arrive and buy at the price 

P3 . The trading process continues until the demand of all active buyers is satisfied.  

 We may describe trade as occurring in a sequence of hypothetical markets. 

The first batch buys in the first market at the price P1 . If a second batch arrives it buys 

in the second market at the price P2  and so on. I use xi  to denote the supply to market 

i  (i.e., the number of units with a price tag Pi ) and define equilibrium as follows.  

 A UST equilibrium is a vector of prices (P1,P2,...,PZ ) and a vector of supplies 

( x1, x2,..., xZ ) such that (a) Pi = λ
qi  and  (b) xi = Ni − Ni−1 . 

  

 Note that in equilibrium expected revenues qiPi  are the same for all price tags 

and as a result the seller is indifferent between the Z  prices. In equilibrium the 

expected revenue from supplying a unit to market i  is also equal to the cost of 

producing the unit ( qiPi = λ ) and the seller’s supply to market i  is infinitely elastic at 

the price Pi . The condition xi = Ni − Ni−1  is therefore a market clearing condition.  

 I now turn to discuss the following questions.  

1. Can we have equilibrium with a single price? 

2. Are prices rigid or flexible?  

3. Do the sellers choose prices or quantities?  
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4. Can a planner improve matters if: (a) he knows the state before the choice of 

capacity; (b) he knows the state after the choice of capacity but before the arrival of 

buyers; (c) he has the same information as the sellers in the model.  
 

Price dispersion is necessary 

 The definition of UST equilibrium requires price dispersion. To motivate this 

choice I now consider the case in which all sellers post the same price P  and argue 

that sellers can increase expected profits by deviating from the single price strategy if 

buyers’ reservation price, P , is high. I assume that if there is excess supply at the 

price P  then a seller who posts a lower price can sell with probability one and if there 

is excess demand, a seller can sell at the reservation price. Under this assumption I 

show the following claim.  

 

Claim 1: If P > λ
π Z  and all sellers post the single price P , then the individual seller 

can increase expected profits by posting a different price.  

 

To show this Claim note that at a single price P  there are some states in 

which the market does not clear.  We can therefore have one of the following three 

cases:   

(a) In some states there is excess supply. 

(b) In some states there is excess demand. 

(c) There is excess demand in some states and excess supply in some other states. 

 

 In the excess supply case (a), the probability of selling is less than 1. P > λ  is 

not an equilibrium price because the individual seller can do better by reducing his 

price by an arbitrarily small amount and sell with probability 1. P ≤ λ  is not an 

equilibrium price because the individual seller can do better by not producing.  
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 In the excess demand case (b), the probability of selling is 1. P > λ  is not consistent 

with excess demand because at P > λ  supply is infinite. P = λ  is not an equilibrium 

price because the seller can do better by increasing his price to the reservation price. 

To see this point let σ  denote the probability of excess demand. If there is excess 

demand it must be the case that we have excess demand when demand equal to its 

highest possible realization and therefore: σ ≥ π Z . The seller can produce a unit and 

sell it at the price P  with probability σ . This deviation will increase profits because 

σP ≥ π ZP > λ .  

 In case (c) there is excess supply in some states and excess demand in some 

other states. The seller can increase his expected profits either by cutting his price by 

a small amount or by posting the reservation price.  
 

Prices may appear rigid but they are not 

Posted prices may appear rigid because they do not respond to the realization 

of demand (the state). Nevertheless, prices are flexible in the sense that the seller’s 

plan is time consistent and he has no incentive to change prices during trade. To show 

this claim, note that the probability of state s ≥ i  given that market i  open is: 

Prob(N = Ns | N ≥ Ni ) =
Prob(N = Ns ∩ N ≥ Ni )

Prob(N ≥ Ni )
= π s

qi
 

The expected revenue from supplying to market j ≥ i  when market  opens is 

therefore: 

 

(1)  Pj
π s

qis= j

Z

∑ = Pj
qj
qi

= Pi    for all j ≥ i . 

 
The second equality in (1) follows from the equilibrium condition: qjPj = qiPi . It 

implies that after updating of the probabilities all higher index markets have the same 

expected revenues and therefore the seller has no incentive to change the allocation of 

the remaining unsold goods across markets. In this sense, prices are perfectly flexible. 

i
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It is easier to think of sellers as choosing quantities. 

 The standard formulation of competitive equilibrium assumes that agents are 

price-takers. This is not a problem when everyone knows the market-clearing price. 

What many researchers regard as a gap in the standard formulation is the tatonnement 

process in which a Walrasian auctioneer learns about the market clearing price in a 

process that prohibits actual trade.   

 Formally, the UST approach adopts the price taking assumption because it is 

easier to think of sellers as choosing quantities rather than prices. But unlike the 

traditional approach here the set of markets that open depends on the realization of 

demand and as a result selling itself is a random event. The markets are for the same 

good and each market is characterized by the probability that it will open and the 

price in which trade will occur if it opens. We can therefore think of sellers as 

allocating goods across markets by posting prices. Thus the distinction between 

choosing prices and choosing quantities is not important in this model.  

 

A planner that learn the state after the choice of capacity cannot improve welfare. 

 Expected surplus is given by: 

P π s
s=1

Z

∑ Ns − λNZ = P qi (Ni − Ni−1)
i=1

Z

∑ −λ (Ni − Ni−1)
i=1

Z

∑  

Note that the amount sold in state s  is not equal to the amount produced and the 

excess capacity in state s  is NZ − Ns . A planner who learns about the state before 

capacity choices are made will improve matters and achieve the expected surplus: 

(P − λ) π s
s=1

Z

∑ Ns . A planner who learns about the state after capacity choices are made 

will not be able to improve on the UST outcome.  

 The above efficiency result depends critically on the assumption that all 

buyers have the same reservation price. When buyers have different reservation 

prices, a planner that knows the state after the choice of capacity but before the 
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beginning of trade can improve matters by setting a single price equals to the market-

clearing price. At this Walrasian price only the buyers with the relatively high 

reservation price will buy the good. This is better than the UST equilibrium outcome 

because in the UST model, capacity is allocated to buyers that arrive early and some 

of the early arrivals have relatively low reservation prices.  

 A planner that has information about the state before the beginning of actual 

trade has more information than the sellers in the model who make irreversible selling 

decisions before they know the state (they must sell to each batch of buyers before 

they know whether additional batches will arrive). A “weak” planner that has the 

same information as the sellers in the model will not be able to improve on the UST 

outcome.  

 In what follows I consider the case of heterogeneous buyers and assume that 

each buyer has a downward sloping demand curve. We may think of a buyer with a 

downward sloping demand curve as representing many buyers each with a different 

reservation price. I elaborate on this interpretation later.    

 

3. HETEROGENEOUS BUYERS 

 

 As before I assume a single period economy with two goods ( X  and Y ) and 

Z  states. State 

� 

s occurs with probability π s . The number of sellers is known and is 

normalized to 1. Sellers are risk neutral and derive utility from 

� 

Y  only. Sellers can 

produce 

� 

X  at the per-unit cost of 

� 

λ  units of 

� 

Y .  

 Unlike sellers, buyers are heterogeneous. There are 

� 

J  types of buyers. The 

number of type 

� 

j  (potential) buyers is 

� 

n j . All buyers are endowed with a large 

quantity of 

� 

Y . In aggregate state 

� 

s, the utility function that a fraction 

� 

φ js of type 

� 

j  

buyers realize is: 

� 

u js(x,y) =U j (x) + y , where 

� 

U j (x)  is strictly monotone, strictly 

concave and differentiable. To simplify, I assume that U ' j (0) = ∞ . The remaining 
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� 

(1−φ js)n j  buyers realize the utility function 

� 

u js(x,y) = y  and are not active. The 

random utility of a type 

� 

j  buyer in aggregate state 

� 

s is thus: 

 

(2) 

� 

u js(x,y) =U j (x) + y  with probability 

� 

φ js and 

� 

u js(x,y) = y  otherwise.  

  

 An active type 

� 

j  buyer demands 

� 

d j (p)  units of 

� 

X  at the price 

� 

p  where the 

individual demand function is defined by: 

 

(3)  

� 

d j (p) = argmaxx≥0U j (x) − px . 

 

 An interior solution to (3) must satisfy the following first order condition: 

 
(4)  Uj '(x) = p   

 

  Production (capacity choice) occurs at 

� 

t = 0. After production choice is made, buyers 

realize a utility function and active buyers form a line. I treat all active buyers 

symmetrically and assume that any segment taken from this line accurately represents 
the type composition of buyers who want to consume: In state 

� 

s, 

� 

φisi∑ ni  buyers want 

to consume and the fraction of type 

� 

j  buyers in any segment of the line is:  

� 

ϑ js=

� 

φ jsn j

φisi∑ ni
. After the line is formed, active buyers arrive at the market place one by 

one according to their place in the line and buy at the cheapest available offer. The 

sequential trade does not take real time (and occurs in meta time).  

 I start from the following case. 

 

Assumption 1: The probability of becoming active depends only on the aggregate 

state and not on the buyer's type: 

� 

φ js = φ1s = φs for all 

� 

j  and s .  
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I choose indices such that demand is increasing in the state: 

0 = φ0 <φ1 < ...<φZ = 1 . In state 

� 

s, the number of active buyers is 

� 

Ns = φsN  where  

� 

N = n j
j
∑  is the number of potential buyers. Under assumption 1, the fraction of type 

� 

j  buyers in any segment of the line, 

� 

ϑ j =
φsn j

φsi∑ ni
=
n j

N
, is independent of 

� 

s.  

As in the previous section, trade occurs in a sequence of Walrasian markets described 

as follows. The minimum number of buyers that will arrive is 

� 

φ1N =mins{φsN} and 

these buyers buy in the first market. The demand in the first market (at the price 

� 

p) 
is: 

� 

D1(p) = φ1 n jd j (p)j∑  units. If 

� 

s >1, there are 

� 

Ns − N1 buyers who did not buy in 

the first market. The minimum number of unsatisfied buyers if 

� 

s >1, is 

� 

(φ2 −φ1)N =mins>1{(φs −φ1)N} and this is the number of buyers who will buy in the 

second market. The demand of this second batch of buyers is: 

� 

D2(p) = (φ2 −φ1) n jd j (p)j∑  units. In general, if batch 

� 

i  arrives, its demand at the 

price 

� 

p  is: 

� 

Di(p) = (φi −φi−1) n jd j (p)j∑  and this is the potential demand in market i . 

The probability that batch i  arrives and market i  opens is: qi = π ss=i

Z∑ .  

 The seller is a “conditional price-taker” and behaves as if he can sell any 

amount at the price 

� 

Pi   if market 

� 

i  opens. The expected revenue from supplying a unit 

to market 

� 

i  is 

� 

qiPi. In equilibrium expected profits are zero and prices satisfy: 

� 

qiPi = λ . I now modify the definition of equilibrium as follows.  

 

 A UST equilibrium is a vector of prices 

� 

(P1,...,PZ ) and a vector of supplies 

� 

(x1,...,xZ )  

such that: (a) 

� 

Pi = λ
qi  and (b) 

� 

xi = Di(Pi). 
 

A “weak” planner 

 In equilibrium a type 

� 

j  buyer who arrives in batch 

� 

i  consumes 

� 

d j ( λ qi )  units. 

To evaluate this outcome I assume a planner that can choose the amount x ji  that will 

be delivered to a type j  agent that arrive in batch i . I call this planner “weak” 

because like the sellers in the model (and unlike the “strong” planner that will be 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00012

        

14 

 

introduce shortly) he must make choices before he knows the realization of demand. 

The “weak” planner solves the following problem.  

 

(5)  maxx ji qi
i=1

Z

∑ (φi −φi−1) nj
j=1

J

∑ Uj (x ji )− λ (φi −φi−1)njx ji
j=1

J

∑
i=1

Z

∑  

 

The first order conditions to this problem are:  

 
(6) qiU j '(x ji ) = λ  

 

Since in equilibrium Pi = λ
qi , a type j  agent that arrive in batch i  will choose to 

consume x ji  such that Uj '(x ji ) = Pi = λ
qi  and therefore the equilibrium outcome 

satisfies (6). We have thus shown the following claim.  

. 

Claim 2: The UST equilibrium outcome is a solution to the “weak” planner's problem 

(5).  
 

A “strong” planner  

A planner that knows the state before any decision is made (before t = 0 ) will 

produce exactly the amount that he plans to deliver. In state s , the planner will 

choose to deliver x js  units to type j  by solving the following problem. 

 
(7)  maxx js φsj∑ njU j (x js )− λ φsj∑ njx js  

 

The first order conditions for this problem are: 

 

(8)  Uj '(x js ) = λ  
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Clearly the UST outcome characterized by (6) is not a solution to the “strong” 

planner’s problem.  
 

A “semi-strong” planner  

I now consider the case in which the planner knows the state after the 

capacity, k , is chosen but before trade occurs. Here I use x js  to denote the amount 

allocated to a type j  agent in state s . Under the informational assumption for the 

“semi-strong” planner, the allocation (k;x11,..., x1Z ;...;xJ1,..., xJZ )  is feasible if it 

satisfies the following condition:  

 
(9)  φsj∑ njx js = k   for all s  

 

This is the definition of feasible allocation in Deneckere and Peck (2012, Definition 

1). With this notion of feasible allocations we can write the problem of the “semi-

strong” planner as follows. 

 

(10)  maxk π ss∑ Vs (k)  

 where Vs (k) = maxx js φsj∑ njU(x js )− λk    s.t.  φsj∑ njx js = k   

 

Thus, Vs (k)  is the maximum welfare (sum of utilities) that the planner can achieve in 

state s  when capacity is k . The first order conditions for (10) are: 

 
(11)  Uj '(x js ) =U1 '(x1s )  for all j  and s  

 
(12)  π sU j '(x js ) =s∑ λ  for all j .  

 

Unlike the weak planner, here the allocation does not depend on the order of arrival  
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(the batch) and unlike the strong planner here only the expected marginal utility is 

equal to λ  (and not the marginal utility in each state). Since the “semi-strong” 

planner has better information than the sellers in the model he can improve on the 

UST equilibrium outcome.  

 The benchmark of the “semi-strong” planner is reasonable if prices are set in 

advance (at t = 0 ) and sellers observe the state before actual trade occurs. In this case 

sellers would like to change their prices at the time of trade but cannot do so and a 

semi-strong planner who does not use rigid prices can improve matters. However, in 

the UST model, sellers observe only the amount sold at each stage (or the number of 

the hypothetical markets that were opened) and therefore the weak planner is the 

appropriate benchmark.    

Can the government improve matters? Under Assumption 1, the government 

can improve matters if it has informational advantage over the sellers in the economy. 

Once we relax Assumption 1 the government can improve matters even if it has no 

informational advantage but can discriminate by type. To get the intuition, assume 

that type 1 is active only in states in which aggregate demand is low. In this case the 

fact that a type 1 buyer is active is a signal of low demand and therefore the weak 

planner will assign to a type 1 buyer that arrives in the first batch, more than d1(P1)  

which is the amount he gets under competition. I elaborate in the Appendix. In 

general, when we relax Assumption 1, the definition of batches is endogenous and so 

is the probability that market i  will open. But prices are still given by Pi = λ
qi .  
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4. A DYNAMIC VERSION  

 

 Bental and Eden (BE, 1993) extended the UST model to the case in which the 

economy lasts forever and storage is possible.6 To do welfare analysis, I study here a 

general equilibrium version of the model.  

 As in the single period case there are J +1  types of agents (a seller and J  

types of buyers). Each agent gets a large endowment of Y  each period. The demand 

of each of the active buyer does not change over time and is given by (3). The 

probability of becoming active does not depend on the type. The number of active 

buyers is iid . Sellers can store goods but buyers cannot (and in equilibrium they do 

not have an incentive to do so). The seller uses the discount factor 0 < β <1 to 

evaluate future revenues. The discount may also capture storage costs and 

depreciation.  

 

The “weak” planner’s problem: 
  Each period the “weak” planner chooses the amount x ji  that will be delivered to a 

type j  agent that arrives in batch i . Goods that were allocated to batches that did not 

arrive are not delivered and are carried as inventories to the next period. The planner 

                                                
6 The model is different from the standard formulation of competitive equilibrium. In the standard 

formulation one can always sell the good at the market-clearing price and inventories are held only 
when agents expect that the price will increase by a sufficient amount to cover depreciation, storage 
and interest cost. (See for example, Deaton and Laroque [1992]). Since prices do not always increase 
we should observe periods in which no inventories are held. But in the data such periods are rare. To 
overcome this problem many researchers have assumed that inventories yield “convenience” which 
is not unlike the “money in the utility function” approach to the problem of why money is held. Other 
models assume that inventories enter as an input into the production function (Kydland and Prescott 
[1982]), generate greater sales at a given price (Kahn and Bils [2000]) and avoid frequent payment of 
fixed delivery costs (Khan and Thomas [2007]). In Prescott “hotels” type models, the probability of 
making a sale is typically less than one and sellers may hold inventories simply because their attempt 
to sell the good failed. This resembles the “undesired inventories” in old Keynesian models but here 
markets that open are cleared and prices are flexible. In addition to the “failure to sell” reason for 
holding inventories the BE model allows for purely speculative inventories as in the Deaton-Laroque 
model and show that this leads to a standard “production smoothing” motive for holding inventories. 
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can also choose to hold Γ  units of purely speculative inventories that will be stored 

regardless of the state. Thus, in state i ,Γ + (φs −φs−1) nj
j=1

J

∑ x js
s=i+1

Z

∑  units will be carried 

to the next period as inventories. I use L  to denote current production and I  to 

denote the beginning of period inventories.  

When Γ = 0 , the amount of inventories in state s  is: 

 

(13)  I s = (φi −φi−1
j=1

J

∑
i=s+1

Z

∑ )njx ji  

 

The maximum amount that will be carried as inventories is Imax = I1 . The value of 

inventories is a function, V (I ) , from the beginning of period inventories 0 ≤ I ≤ Imax  

to the real line ( R+ ) defined by the following Bellman equation: 

 

(14)V (I ) = maxL ,x ji ,Γ≥0 qi
i=1

Z

∑ (φi −φi−1) nj
j=1

J

∑ Uj (x ji )− λL +β π iV (φs −φs−1) nj
j=1

J

∑ x js + Γ
s=i+1

Z

∑
⎛

⎝⎜
⎞

⎠⎟i=1

Z

∑  

 s.t.   Γ + (φi −φi−1)njx ji
j=1

J

∑
i=1

Z

∑ = L + I .   

I now show the following Claim. 

 

Claim 3: The solution to the planner’s problem (14) is characterized by L > 0 , Γ = 0  

and the following first order condition:  

 

(15)  Uj '(x ji ) = βλ + λ(1− β )
qi

 

 
Proof: Since Uj '(0) = ∞ , the amounts supplied are strictly positive ( x ji > 0 ). Total 

supply in each period is: k = (φi −φi−1)njx ji
j=1

J

∑
i=1

Z

∑ > Imax  because the supply to the first 
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market φ1 njx j1
j=1

J

∑  is strictly positive. Since I ≤ Imax , production L = k − I  is strictly 

positive.  

Since L > 0  we must have Γ = 0 . To see this claim, note that when Γ > 0  the 

seller can do better by cutting purely speculative inventories and current production 

by a unit and increasing production in the next period by a unit.  

 We can therefore write the first order conditions and the envelope condition as 

follows:  

 

(16)  qiU j '(x ji )+ β π kV ' (φs −φs−1) nj
j=1

J

∑ x js
s=k+1

Z

∑
⎛

⎝⎜
⎞

⎠⎟k=1

i−1

∑ = λ  

(17)  V '(I ) = λ  

 

Substituting (17) in (16) leads to:  

 
(18)  qiU j '(x ji )+ (1− qi )βλ = λ   

 

The first order condition (15) follows from (18).  � 

 

Note that a strictly positive amount of production is required to keep total supply at 

the level k  and that inventories are always in the range [0, Imax ] . Thus (14) is well 

defined. Furthermore, optimal production fluctuates with inventories: the larger the 

amount of beginning of period inventories the lower is the amount produced. Here a 

unit increase in the beginning of period inventories reduces production by a unit.  

 

UST equilibrium 

Prices in a typical period are given by (P1,...,PZ ) . With some abuse of 

notation, I describe the seller’s problem by the following Bellman’s equation: 
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 (19)  V (I ) = maxxi ,Γ ,L≥0 qi
i=1

Z

∑ Pixi − λL +β π iV Γ + xs
s=i+1

Z

∑⎛
⎝⎜

⎞
⎠⎟i=1

Z

∑  

 s.t. Γ + xi
i=1

Z

∑ = L + I  

Here xi  is the amount the seller allocates to market i  and as before the range of V (I )  

is 0 ≤ I ≤ Imax .  A solution to (19) with L, xi > 0  must satisfy Γ = 0  and the following 

first order and envelope conditions:  

 

(20)  qiPi + β(1− qi )V ' xs
s=i+1

Z

∑⎛⎝⎜
⎞
⎠⎟
= λ  

(21)  V '(I ) = λ  

 

Substituting (21) into (20) yields: 

 

 (22)  qiPi + (1− qi )βλ = λ  

 

A UST equilibrium is a vector (P1,...,PZ ;x1,..., xZ )  that satisfies (22) and the following 

market clearing conditions: 

 
(23)  (φij∑ −φi−1)njd j (Pi ) = xi  

 

 Equilibrium prices (22) can be written as:  

 

(24)  Pi = βλ + λ(1− β )
qi

 

 
Let x ji = dj (Pi )  denotes the amount bought by a type j  buyer who arrives in batch i . 

Then (24) and  (4) imply: 
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(25)  Uj '(x ji ) = Pi = βλ + λ(1− β )
qi

 

  

We can now show the following Claim. 

 

Claim 4:  The equilibrium outcome is a solution to the planner’s problem (14). 

 

This claim follows from the observation that (25) is the same as (15). 
 

Price dispersion  

 Prices in (24) are a weighted average between λ  and λ
qi . A higher β  reduces 

the mean and the dispersion measures of the price distribution because all prices get 

closer to the lowest price λ . When β →1 , (24) implies that all prices are 

approximately equal to λ  and price dispersion vanishes. Thus discounting is required 

to get price dispersion in equilibrium.  

 In general, price dispersion requires some costs for delaying trade. This cost 

maybe due to discounting of future profits, storage costs or depreciation. 
 

The “strong” planner’s problem  

A planner who knows the state will produce exactly the amount that he plans 

to deliver and will not carry inventories. In state s , the planner will choose to deliver 

x js  units to type j  by solving the problem (7). Clearly the UST outcome 

characterized by (25) is not a solution to the “strong” planner’s problem. But when 

β →1 , the “strong” planner cannot improve matters by much. To see this claim note 

that when β →1 , the UST allocation of X  is close to the “strong” planner’s choice 

and the benefits from economizing on inventories are small because the maximum 

amount of inventories held is finite.  
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5. INCREASING MARGINAL COST AND PRODUCTIVITY SHOCKS 
 

 Under the constant returns to scale assumption there is no production-

smoothing role for inventories: Inventories are held only because of a failure to make 

a sale. To get the production-smoothing role and to generalize the efficiency result of 

the previous section, I now relax the assumption of constant unit cost and allows for 

productivity shocks.  

 The utility cost of labor is now a strictly increasing and strictly convex 

function v(L)  where v '(0) = 0 . A unit of labor produces A = ε −1  units of goods 

where ε  is an iid  random variable with realizations in the range εmin ≤ ε ≤ εmax .  The 

realization of ε  is known when production takes place (and before the realization of 

demand).   

 I start with the “weak” planner’s problem and generalize the Bellman equation 

(14) as follows.  

 

(26)  V (I ,ε ) = maxL ,x ji ,Γ≥0 qi (φi −φi−1) njU j (x ji )
j=1

J

∑
i=1

Z

∑ − v(L)   

 +βEε ' π i
i=1

Z

∑ V (φs −φs−1) njx js + Γ
j=1

J

∑
s=i+1

Z

∑ ,ε '
⎛

⎝⎜
⎞

⎠⎟
 

 

 s.t.   (φi −φi−1) njx ji + Γ
j=1

J

∑
i=1

Z

∑ = AL + I  

 

 The range of the function V (I ,ε )  is 0 ≤ I < Imax < ∞  and the support of the 

distribution of ε  (εmin ≤ ε ≤ εmax ) .  I assume that Imax  is large and finite.  Since Imax  

is large, when I = Imax  the marginal utilities are low and production is less than the 

amount allocated to the first batch and next period’s inventories are less than Imax . 

The assumption v '(0) = 0  insures that optimal production is always positive and the 
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assumption that Uj
' (0) = ∞  insures a strictly positive amount to each of the active 

buyers.    

I use x ji (I ,ε ),Γ(I ,ε ),L(I ,ε )( )  to denote a solution to (26);  

I s (I ,ε ) = (φi −φi−1) nj
j=1

J

∑
i=s+1

Z

∑ x ji (I ,ε )+ Γ(I ,ε )  

to denote next period’s inventories when the current period’s state is s  and   

MC(I ,ε ) = εv ' L(I ,ε )( )  

to denote the marginal cost. Using this notation I now show the following Claim.  

  
Claim 5: A solution x ji (I ,ε ) > 0,Γ(I ,ε ) ≥ 0,L(I ,ε ) > 0( )  to the planner’s problem 

(26) must satisfy the following first order conditions:  

 

(27)  β π s
s=1

Z

∑ Eε 'MC(I
s ,ε ') ≤ MC(I ,ε )    with equality if Γ > 0 . 

 

(28)  qiU j '(x ji )+ β π s
s=1

i−1

∑ Eε 'MC(I
s ,ε ')  = MC(I ,ε )  

where Eε '  denotes expectations with respect to next period’s productivity shock.  

 

 The left hand side of (27) is the expected-discounted-next-period marginal 

cost. This must be less than the current marginal cost because otherwise, the planner 

can reduce the expected-present-value of cost by producing more today and storing 

the additional units. The left hand side of (28) is the expected benefit from allocating 

a unit to a type j  agent in batch i . If the batch arrives (with probability qi ) the 

planner gets the marginal utility. If it does not arrive the planner gets the expected-

discounted-next-period marginal cost. Condition (28) thus says that the expected 

benefit from producing an additional unit must equal the marginal cost.  
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Proof: Using V ' = ∂V
∂I

 for the partial derivative, we can write the first order 

conditions and the envelope condiiton as follows.  

 

(29)  βEε ' π s
s=1

Z

∑ V ' (φk −φk−1) njx jk + Γ
j=1

J

∑
k=s+1

Z

∑ ,ε '
⎛

⎝⎜
⎞

⎠⎟
 ≤ εv '(L)      with equality if Γ > 0    

 

(30)  qiU j '(x ji )+ βEε ' π s
s=1

i−1

∑ V ' (φk −φk−1) njx jk + Γ
j=1

J

∑
k=s+1

Z

∑ ,ε '
⎛

⎝⎜
⎞

⎠⎟
 = εv '(L)  

 

(31)  V '(I ,ε ) = εv '(L)  

 

Using the update of (31) and substituting it in (29) and (30) leads to (27) and (28). � 

 

UST equilibrium 

The seller’s problem is a generalization of (19): 

 

(32)  V (I ,ε ) = maxxi ,Γ qiPixi
i=1

Z

∑ − v(L)+ β π i
i=1

Z

∑ Eε 'V Γ + xs
s=i+1

Z

∑ ,ε '⎛
⎝⎜

⎞
⎠⎟

 

 s.t. Γ + xi
i=1

Z

∑ = ε −1L + I  

 

Claim 6: A solution xi (I ,ε ) > 0,Γ(I ,ε ) ≥ 0,L(I ,ε ) > 0( )  to (32) must satisfy the 

following first order conditions: 

 

(33)  β π i
i=1

Z

∑ Eε 'MC(I
i ,ε ') ≤ MC(I ,ε )  with equality if Γ > 0  

(34)  qiPi + β π s
s=1

i−1

∑ Eε 'MC(I
s ,ε ') = MC(I ,ε )  

 

Proof: The first order and the envelope conditions are: 
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(35)  β π i
i=1

Z

∑ Eε 'V ' Γ + xs
s=i+1

Z

∑ ,ε '⎛
⎝⎜

⎞
⎠⎟

 ≤ εv '(L)    with equality if Γ > 0  

 

(36)  qiPi + β π s
s=1

i−1

∑ Eε 'V ' Γ + xk
k=i+1

Z

∑ ,ε '⎛
⎝⎜

⎞
⎠⎟

 = εv '(L)  

 

(37)  V '(I ,ε ) = εv '(L)  

 

Substituting an updated version of (37) in (35) and (36) leads to (33) and (34). � 

 

A UST equilibrium is a vector of functions 

P1(I ,ε ),...,PZ (I ,ε );x1(I ,ε ),..., xZ (I ,ε );Γ(I ,ε ),L(I ,ε )( )  that satisfies the first order 

conditions (33), (34), the resource constraint 
Γ(I ,ε )+ xi (I ,ε )i∑ = ε −1L(I ,ε )+ I  and the market clearing conditions  

(φij∑ −φi−1)njd j Pi (I ,ε )( ) = xi (I ,ε )  

for all (I ,ε ) . 

  

Using the solution to the planner’s problem to solve for equilibrium 

  The first order conditions to the planner’s problem (27)-(28) and the first 

order conditions to the seller’s problem (33)-(34) are the same if prices are given by7: 

 

(38)  Pi (I ,ε ) =Uj '(x ji )    for all (I ,ε )  and for all j . 

 

Since an interior solution to the consumer’s problem (3) must satisfy the first order 

condition (4), if prices are given by (38), x ji (I ,ε ) = dj Pi (I ,ε )( )  and the equilibrium 

                                                
7 Note that (28) implies that the marginal utility of buyers in batch i  is the same for all types: 
Uj '(x ji ) =U1 '(x1i )  for all j . 
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outcome is identical to the planner’s choice. Furthermore, since the planner’s problem 

satisfies the constraint in (26), the supplies xi (I ,ε ) = (φi −φi−1) njx ji (I ,ε )
j=1

J

∑  satisfy the 

market clearing conditions.   

 It follows that if we have a solution to the planner’s problem, we can easily 

construct a UST equilibrium. This implies the following Claim.  

 

Claim 7: The UST equilibrium outcome is a solution to the “weak” planner’s problem 

(26). 

 

6. PRODUCTION SMOOTHING AND UNDESIRED INVENTORIES  

 

 As in the “old” Keynesian description of “undesired inventories”, inventories 

in this model may be held because of a failure to sell. But inventories may also be 

held to smooth marginal cost which is the motive stressed by the neo-classical 

approach.  

 To describe the production-smoothing role of inventories I define, 

 

(39)  α (I ) = EεP1(I ,ε )    

 

The analysis in Bental and Eden (1993) can be used to show that Pi (I ,ε )  is 

decreasing in I  and therefore α (I )  is a decreasing function. It can also be shown that 

Pi (I ,ε )  is increasing in ε . This leads to the following claim.  

 

Claim 8: Γ(I ,ε )  is weakly decreasing in ε . 

 

The Claim says that when productivity is low, a larger part of the stock of inventories 

will be offered for sale. This is the production-smoothing role of inventories.  
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 To show this Claim I use the following arbitrage condition: 

 

(40)  PZ (I ,ε ) ≥ βα Γ(I ,ε )( )  with equality if Γ(I ,ε ) > 0  

 

This arbitrage condition can be derived from the first order conditions under the 

assumption that the supply to all the Z  markets is strictly positive. It must hold in 

equilibrium because under the assumptions made (U '(0) = ∞ ) the supply to all 

markets must be strictly positive. The condition must hold because the optimal 

program of the seller is time consistent. When the last market opens the seller can sell 

a unit at the price PZ  or he can store it. If he stores it he will get βα (Γ)  because the 

beginning of next period’s inventories are: . Condition (40) says that selling 

the unit in the last market must yield more revenues in terms of present value than 

storage. 

 Figure 1 solves (40) graphically under the assumption: ε1 > ε2 . When 

productivity is high and ε = ε2 , the price in the last market is low and as a result 

purely speculative inventories are high.  

 

I Z = !
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Figure 1: Purely speculative inventories are higher when productivity 

is higher ( ε2 < ε1 ) 
 

7. ONE-HOSS-SHAY DEPRECIATION  
 

 The exponential decay assumption in the previous section (embodied in the 

parameter β ) is convenient for analytical purposes but does not capture important 

aspects of the goods that are the subject of empirical studies like food items with 

expiration dates and seasonal goods. Here I relax this assumption and allows for one-

hoss-shay depreciation.8  

                                                
8 The analysis here has some common elements with the analysis of seasonal goods in Deneckere and 

Peck (DP, 2012). But there are some important differences. DP use a game theoretic approach while I 
employ the Walrasian price-taking assumption in non-standard markets. They assume that during the 
selling period there is no depreciation and that the cost of delay to buyers is small while I allow for 
delay costs. There are other differences. DP assume that the “sale season” lasts for many periods and 
allow for new active buyers to enter the market and for information about aggregate demand to be 
revealed sequentially. I assume that the “sale period” lasts for only 2 periods and all active buyers are 

!" (#)

#

PZ (I ,$1)

PZ (I ,$ 2 )

#(I ,$1) #(I ,$ 2 )

PZ
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 I assume that the economy lasts for 3 periods. Production decisions are made 

at t = 0 . Trade occurs at t = 1  and t = 2 . I start with the case in which the number of 

active buyers  N  can take 2 possible realizations: 1= N1 < N2 . As before the 

probability of state s  ( 
N = Ns ) is π s .  

In the first trading period ( t = 1 ) there are 2 hypothetical UST markets. Market 

1 opens with probability 1 at the price P1 . Market 2 opens with probability π 2  and if 

it opens trade in this market occurs at the price P2 . If market 2 does not open (with 

probability π1 = 1−π 2 ) the seller can sell the unsold goods in a Walrasian market that 

will open in the second trading period (t = 2)  at the price p < P1 .9  

The utility of an active buyer is given by: 

 

(41)  U(C +δc)+ y  

 

where C  is the amount bought in the first period ( t = 1 ), c  is the amount bought in 

the second period and 0 < δ ≤1  is a parameter that reflects the cost of delay. The 

function U  is strictly monotone, strictly concave and differentiable with U '(0) = ∞ . 

The delay cost may result from the shortening of the length of time that the buyer uses 

the good: A consumer who buys a short sleeve shirt at the beginning of the summer 

gets more use out of it than a consumer who buys it towards the end of the summer. In 

the case of food items with expiration date it may reflect the tightening of the 

constraint on the length of period in which the item can be consumed.  

                                                
present in the first period. As a result the information about aggregate demand is fully revealed in the 
first period. DP assume that consumers have unit demand. I assume that they maximize a quazi linear 
utility function and have a downward sloping demand function. As a result in my model buyers 
typically buy in both periods while in the DP model they buy only once. 

9 There is no real distinction between the UST and the Walrasian markets. In both cases a market 
opens only if there is both supply and demand. The UST second market may not open if there is no 
demand. The second period Walrasian market may not open if there is no supply. And each market that 
open is cleared. But in the first period there is a sequence of Walrasian markets and price dispersion. In 
the second period there is at most one market and one price. So I hope this language will help in 
keeping the two trading periods separated without creating confusion.   
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 A buyer who buys at t = 1  in the first market will take into account the 

possibility that a Walrasian market will open at t = 2  at a cheaper price. He solves the 

following problem.  

  

(42)  maxC1 π1 maxcU(C1 +δc)− P1C1 − pc( ) +π 2 U(C1)− P1C1( )  

 

Here C1  is the amount he buys at t = 1  in the first UST market (at the price P1 ) and c  

is the amount he buys at t = 2  in the Walrasian market (at the price p ) if the state of 

demand is low (state 1).   

A buyer who buys at t = 1  in market 2 knows that the state of demand is high 

and the Walrasian market will not open in the next period because inventories will not 

be carried to the next period. He therefore solves the following problem.  

 
(43)  maxC2U(C2 )− P2C2  

 

The first order conditions that an interior solution to (42) must satisfy are: 

 

(44)  δU '(C1 +δc) = p   

(45)  π1U '(C1 +δc)+π 2U '(C1) = P1   

 

The first order condition for an interior solution to (43) is: 

 

(46)  U '(C2 ) = P2  
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  The seller chooses the amount allocated to each of the hypothetical markets at 

t = 1  ( xi ) by solving the following problem10.   

 

(47)  maxxi π1(P1x1 + px2 )+π 2 (P1x1 + P2x2 )− λ(x1 + x2 )  

 

Note that the revenue per unit allocated to the first market is P1 . The revenue per unit 

allocated to the second market is random: It is equal to p  in the low demand state and 

P2  in the high demand state.  

The first order conditions for the seller’s problem are: 

 

(48) P1 = λ  

(49)  π 2P2 +π1p = λ  

 

 Condition (49) is similar to (22). The revenues are the quoted price in case the 

market opens and the value of inventories in case it does not open. The left hand side 

of (49) is therefore the expected revenues that must equal the cost.  

 

Equilibrium is a vector (C1,C2,c, x1, x2,P1,P2, p)  that satisfies the buyers’ first order 

conditions (44)-(46), the seller first order conditions (48),(49), the inequalities 

p ≤ P1 < P2 , and the following market clearing conditions:  
(50) C1 = x1   

(51) (N2 −1)C2 = x2  

(52) c = x2  

                                                
10 A more general formulation may allow for pure speculations. Let x3  denote the amount that the 
seller does not plan to sell in the first period regardless of the number of markets open. Then we can 
write the seller’s problem as:  
maxxi π1(P1x1 + px2 )+π 2 P1x1 + P2x2( ) + px3 − λ(x1 + x2 + x3)  

It will be shown that in equilibrium p < P1 , and therefore the seller chooses x3 = 0 . 
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Note that also here markets that open are cleared.  

 

Solving for the equilibrium vector:  

 Substituting the market clearing conditions in the buyers’ first order conditions (44)-

(46) and using Δ = N2 −1 , leads to: 

  

(53)  δU '(x1 +δ x2 ) = p  

(54)  π1U '(x1 +δ x2 )+π 2U '(x1) = P1  

(55) U '(Δ−1x2 ) = P2  

 

Substituting (53) and (55) in (49) leads to:  

 

(56)  π 2U '(Δ
−1x2 )+π1δU '(x1 +δ x2 ) = λ  

 

Substituting (54) in (48) leads to: 

 

(57)  π1U '(x1 +δ x2 )+π 2U '(x1) = λ  

 

We now have 2 equations (56)-(57) with 2 unknowns (x1, x2 ) .  

 

Claim 9: There exists a unique equilibrium.  

 

Proof: I start by showing that there exists a unique solution (x̂1, x̂2 )  to (41) and (57). 

For this purpose note that the slope of the locus of points that solve (56) is: 

 

(58)  dx2
dx1

= π1δU ''(x1 +δ x2 )
π 2Δ

−1U ''(Δ−1x2 )+π1δ
2U ''(x1 +δ x2 )

> − 1
δ
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The slope of the locus of points that solve (57) is: 

 

(59)  dx2
dx1

= π 2U ''(x1)+π1U ''(x1 +δ x2 )
π1δU ''(x1 +δ x2 )

< − 1
δ

 

 

In Figure 2 the locus labeled AA is the solutions to (56) and the locus labeled BB is 

the solutions to (57).  When x1 = 0 , the amount x2  that solves (56) is finite and 

therefore the locus AA intersects the vertical axis. When x2 = 0 , the amount x1  that 

solves (57) is finite and therefore BB intersects the horizontal axis. But since 

U '(0) = ∞ , the locus BB does not intersect the vertical axis. Therefore there exists a 

unique solution to  (56) and (57) illustrated by Figure 2.  

 

 

 Figure 2: The solution to (56) and (57) 

 

B

B

A

A

x̂1

x̂2

x2

x1
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We still need to show that p ≤ P1 < P2 . To show this note that since 

U '(x1) >U '(x1 +δ x2 ) , (57) implies: U '(x1) > λ  and U '(x1 +δ x2 ) < λ . It follows that 

δU '(x1 +δ x2 ) = p < λ . Since p < λ , (49) implies P2 > λ = P1 . � 
 

The case of no cost of delay:  

The special case in which δ = 1  provides useful intuition. In this case, (56) and (57) 

imply: 

 

(60)  U '(x1) =U '(Δ
−1x2 )  

(61)  π1U '(x1 + x2 )+π 2U '(x1) = λ  

 

Since (60) implies x2 = Δx1  we can write (61) as:  

 

(62)  π1U ' x1(1+ Δ)( ) +π 2U '(x1) = λ  

 

Since U '(0) = ∞ , there exists a unique solution x̂1  to (62). Since 

U ' x1(1+ Δ)( ) <U '(x1) , (47) implies U '(x̂1) > λ . This, (50) and (55) imply that 

P2 =U '(x̂1) =U '(Δ
−1x̂2 ) > λ .  

 The equilibrium with δ = 1  can be described as follows. The first batch of 

buyers buys at the price P1 = λ  a quantity that is equal to their demand at the higher 

price P2 . They buy less than their demand at the price P1  because there is a chance 

that they will be able to buy more next period at the price p < λ . In state 2 the second 

batch arrives and buy the quantity allocated to the second market ( x2 ) at t = 1 . In 

state 1, this quantity is bought by the first batch at t = 2 .   
 

Comparative statics:  

 To do comparative statics, I assume that the absolute risk aversion measure is 

not too high and satisfies the following condition.   
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(63)   −U ''(x1 +δ x2 )
U '(x1 +δ x2 )

< δ −2    

 

Claim 10: Under (63) an increase in δ  leads to: (a) an increase in x2  and a decrease 

in x1 , (b) a decrease in P2  and (c) an increase in p .  

 

To show (a), note that under (63), an increase in δ  will shift the AA curve in 

Figure 2 up and to the right and the BB curve to the left and down. Part (b) follows 

from (55) and the increase in x2 . Part (c) follows from (34) and the fact that P2  went 

down.  

Note that since a reduction in δ  increases P2 , an increase in the cost of delay 

increases price dispersion at t = 1 .  

 

The Weak planner’s problem: 

 The weak planner has to choose production and the allocation to the first batch 

before he knows whether the second batch will arrive. He therefore solves the 

following problem. 

 
(64)  maxx1,x2 π1U(x1 +δ x2 )+π 2 U(x1)+ ΔU(Δ−1x2 )( )− λ(x1 + x2 )  

 

The first order conditions for this problem are (56) and (57). Thus,  

 

Claim 11: The equilibrium outcome solves the weak planner’s problem (64).  

 

The Semi-strong planner’s problem: 

 The semi-strong planner has to choose capacity (x1 + x2 )  before he knows the state 

but he chooses the amount that he gives to the first batch of buyers at t = 1  after he 
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knows the state. Since the semi-strong planner will give the entire capacity to the first 

batch in state 1, we can write his problem as follows.   

 
(65)  maxx1,x2 π1U(x1 + x2 )+π 2 U(x1)+ ΔU(Δ−1x2 )( )− λ(x1 + x2 )  
 

This problem is the same as the “weak” planner’s problem (64) only if δ = 1 . Since 

the semi-strong planner has an informational advantage over the weak planner and the 

weak planner mimics the equilibrium outcome, this observation leads to the following 

Claim.   

 

Claim 12: When δ <1 , the semi-strong planner can improve on the equilibrium 

outcome but when δ = 1  he cannot.  

 

 Claim 12 reiterates the importance of the cost of delay. The intuition is in the 

value of the informational advantage that the semi-strong planner has over the weak 

planner (and the sellers in the model). When there is no cost of delay the value of the 

information about the state is zero because the weak planner can distribute a limited 

amount at t = 1  and once he learns about the state, at t = 2  he can deliver the rest 

making sure that each buyer gets an equal amount (or more generally an amount that 

will equate the marginal utility across active buyers) regardless of the order of arrival.  

 Note that unlike the inventories model in the previous section, here there is 

price dispersion (at t = 1 ) even when δ = 1  and there is no cost of delay.  

 Note also that at t = 1  buyers in the first batch buy less than their demand at 

the first market price because they know that there is the possibility of buying at a 
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bargain prices next period. This speculative behavior is similar to the endogenous 

rationing in DP.11  

 In Appendix A I extend the model to the case of many possible demand 

realizations and many periods.  
 

8. CONCLUDING REMARKS 

 

This paper studies efficiency, storage, the cost of trade delays and price 

dispersion in flexible price (UST) versions of the Prescott (1975) model. I use three 

different benchmarks or planner’s problems to judge the equilibrium outcome. The 

“weak” planner has the same information as the sellers in the model. The “strong” 

planner knows the state before making any decisions and the “semi-strong” planner 

knows the state only after capacity decisions are made but before the arrival of 

buyers. The UST outcome is a solution to the “weak” planner’s problem when the 

probability of becoming active is the same for all buyers. In general, the “semi-

strong” and the “strong” planners can improve matters. An exception is the case in 

which there are no costs for delaying trade. In this case even the “strong” planner 

cannot improve matters, by much.  

The formulation of equilibrium is the same whether we assume rigid or 

flexible prices. But the formulation of the relevant planner’s problem or the definition 

of feasible allocation is different. The “semi-strong” planner cannot distribute more 

                                                
11 To make the connection between the two models let us think of the utility function (26) as 

describing the preferences of a household that consists of many infinitesimal buyers. The head of the 
household assigns a reservation price to each member and instructs him to maximize the expected 
surplus from buying at most one (infinitesimal) unit. The highest reservation price U '(0)  is assigned 
to the member indexed 0  and in general the reservation price U '(x)  is assigned to the member 
indexed x . With this in mind we can get endogenous rationing in the sense described by DP. The 
members with indices less than x̂1  buy in the first market while those with higher indices are 
“endogenously rationed”.  
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than the output produced. The “weak” planner faces an additional constraint that he 

must choose the allocation to each batch of buyers before he knows whether more 

batches will arrive or not. The “semi-strong” planner is relevant for the rigid price 

versions in which at the time of trade sellers know the realization of demand, while 

the “weak” planner is relevant for the flexible price versions in which the realization 

of demand is fully revealed only at the end of the trading process.   

It is not surprising that a “semi-strong” planner can improve matters in rigid 

price versions of the model. In these models sellers would like to change prices at the 

time of trade but cannot do so. Therefore, a “semi-strong” planner who has the same 

information as the sellers but does not use rigid prices can improve matters. It is also 

not surprising that in the UST versions a planner that has the same information as the 

sellers cannot improve matters. What maybe surprising are the exceptions to the rules. 

An exception to “weak” efficiency occurs when the probability of becoming 

active is not the same across types. In this case that is discussed in Appendix B, the 

type composition of buyers is a signal about the state. This does not pose a problem 

for the rigid price formulation. But it is a problem for the flexible price formulation. 

To keep the flexible price assumption and the same equilibrium concept I assume that 

sellers observe only the aggregate amount sold and not the type composition of buyers 

at each stage of the trading process.   

A planner who does not observe the type composition of buyers may be able 

to improve matters if he can price discriminate in a way that sellers cannot. To see 

this possibility assume that buyers place orders on the internet and receive the goods 

by mail. Sellers may not be able to discriminate by zip codes. But a planner (or a 

policymaker) may be able to do so by varying sales tax (or tariffs in an international 

setting). For example, if buyers from a specific location want to consume only in high 

demand states, they should pay a high sale tax because in high demand states there is 

a higher chance of hitting the capacity constraint.  
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The efficiency results are extended to the multi-periods case that allows for 

storage. In the model with exponential decay (ED) inventories are held for two 

reasons: (a) a failure to make a sale and (b) to smooth the marginal cost. The first 

resembles the “old” Keynesian description of “undesired” inventories. The second is 

the neo-classical approach. We get both under the same roof. 

The importance of the cost of delay is illustrated by the relatively simple case 

of constant unit cost. In this case, rigid prices may not reduce welfare if there is no 

significant discounting. When discounting is not important, sellers will set a single 

price equal to the marginal cost and will not “regret” this choice even if information 

about the state becomes available before the beginning of trade. Similarly, when 

discounting is not important, the optimal policy of a “weak” planner is to keep 

inventories at some target level and distribute to each active buyer a quantity that does 

not depend on the state (and equates the marginal utility with the marginal cost of 

production). Information about the state can be used to eliminate inventories but since 

discounting is not important the value of doing it is small. 

 The efficiency results are robust to changes in the assumption about 

depreciation. I consider the case of one-hoss-shay (OHS) depreciation and found that 

the resulting allocation is “weakly” efficient when there are costs of delaying trade. It 

is “strongly” efficient when there are no costs for delaying trade. In this case, a 

planner will not value information about the state because he can distribute relatively 

small amounts in the first period, learn about the state and then distribute the rest 

making sure that the marginal utility of all buyers is the same regardless of the order 

of arrival. Buyers in the model do what the planner wants them to do. They engage in 

speculative behavior and buy a relatively small amount in the first period. Then once 

the state is revealed in the second period they buy the amount that was not sold in the 

first period at the market-clearing price. It follows that in the absence of delay costs 

even a “strong” planner cannot improve matters. 
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 On the whole, the results in this paper suggest that observations that have been 

interpreted as indications of market-failures may actually indicate an efficient way of 

coping with aggregate demand uncertainty. Among these observations are price 

discrimination, price dispersion and the accumulation of “undesired” inventories. 

   
 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00012

        

41 

 
 

APPENDIX A: ONE-HOSS-SHAY DEPRECIATION WITH MANY STATES AND 

MANY PERIODS  
 

 I now extend the analysis of the one-hoss-shay depreciation to the case in 

which there are many states and many periods. I start with the extension to the many 

states of demand in a two periods framework.  

 I assume that the number of active buyers  N  may take Z ≥ 2  possible 

realizations. To simplify notation I assume Ns − Ns−1 = 1  so there is one buyer per 

batch. As before, the probability that exactly s  markets will open in the first period is 

π s  and the probability that market i  will open is qi = π ss≥i∑ .  

 The price in the first period hypothetical UST market i  is Pi . A single 

Walrasian market will open in the second period at the price ps  if the number of 

markets open in the first period is s < Z . A buyer who arrives in the first period 

market i  will buy Ci  units and will make plans to buy in the next period cs
i  units if 

i ≤ s < Z . He will choose these quantities by solving the following problem.  

  

(A1)  maxCi≥0− PiCi + ( 1qi)π ZU(Ci )+ ( 1qi) π s maxcsi ≥0U(Ci +δcs
i )− pscs

i( )
s=i

Z−1

∑  

 

For notational purposes I use cZ
i = 0  and write the first order conditions for (A1) as: 

 

(A2) δU '(Ci +δcs
i ) = ps   for  

(A3)  π sU '(Ci +δcs
i

s=i

Z

∑ ) = qiPi  

 

 Condition (A2) says that the buyer will choose cs
i  in the second period to 

equate the marginal utility with the second period price. To interpret (A3) note that 

( 1qi)π s  is the probability that state s  will occur given that s ≥ i . Since the buyer in 

i ! s < Z
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market i  uses these conditional probabilities, (A3) says that the expected marginal 

utility for a buyer in market i  must equal the price in market i  (after dividing both 

sides of [A3] by qi ). 

Sellers will sell in market i , if the price in market i  is greater than the value 

of inventories:  

 

(A4) Pi ≥ ( 1qi) π s ps
s=i+1

Z−1

∑   for all  

 

Under (A4) the seller chooses the supply to market i  by solving the following 

problem.  

 

(A5) maxxi − λxi + qiPixi + xi π s ps
s=1

i−1

∑  

 

To interpret (A5) note, that the seller pays the cost λ  regardless of whether he sells 

the good or not. With probability qi  he sells the good and gets Pi  per unit. If s < i , he 

does not sell the good in the first period but will sell it next period at the price ps . 

The first order condition for an interior solution to the seller’s problem (A5) is:  

  

(A6) qiPi + π s ps
s=1

i−1

∑ = λ  

 

This condition says that the expected revenue equal the cost. The expected revenue 

calculations take into account the value of inventories in case market i  does not open. 

In this respect it is similar to (22). But in (22) the value of inventories is the value 

from reducing production next period. Here there is no production in the second 

period and it will be shown that the value is less than the cost of production.   
 

i
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 To define equilibrium I use ci = (ci
i ,...,cZ−1

i )  to denote the plan (second 

period’s purchases) of a buyer who arrives in market i .  

Equilibrium is a vector (C1,...,CZ ;c
1,...,cZ−1;x1,..., xZ ;P1,...,PZ ; p1,..., pZ−1)  that 

satisfies (A4), P1 < P2 < ...< PZ , the first order conditions (A2), (A3), (A6) and the 

following market clearing conditions: 

 

(A7)  Ci = xi   

 

(A8) cs
j

j=1

s

∑ = x j
j=s+1

Z

∑  

 

Condition (A7) says that the first period market i  must clear if it opens. Condition 

(A8) says that the second period market must clear if it opens (that is if s < Z ). 
 
 
The Weak planner’s problem 

I use xi  to denote the amount that the weak planner distributes to batch i  in the first 

period (if it arrives and carry as inventories if batch i  does not arrive) and cs
i  to 

denote the amount that he will distribute in the second period in state s  to buyers that 

arrive in batch i ≤ s . The weak planner chooses these quantities by solving the 

following problem.   

 

(A9)  max
x j ,cs

j − λ x j
j=1

Z

∑ + π s U(x j +δcs
j

j=1

s

∑
s=1

Z

∑ )     s.t. (A8). 

 

The first term in (A9) is the cost of production. The second term is the expected sum 

of the utilities from the consumption of X . The first order conditions for an interior 

solution to this problem are: 

 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00012

        

44 

 

(A10)  U '(x j +δcs
j ) =U '(x1 +δcs

1)   for all j ≤ s  

 

(A11) π sU '(xi +δcs
i

s=i

Z

∑ )+ π sδU '(x1 +δcs
1

s=1

i−1

∑ ) = λ   

 

Condition (A10) says that the marginal utility after distributing cs
j  in the second 

period, must be the same across all active buyers. Condition (A11) says that the 

expected marginal utility from consuming xi  must equal the cost of production. The 

first term in the left hand side is the weighted sum of the marginal utilities when batch 

i  arrives. The second term on the left hand side is the weighted sum of the marginal 

utilities when batch i  does not arrive. In this case the marginal utility is 

δU '(x1 +δcs
1)  because the good will be distributed in the second period and will 

“depreciate” by that time. The first order condition (A11) can also be described as a 

no arbitrage condition. If the left hand side of (A11) is greater than the right hand 

side, a planner could do better by increasing production by a unit and allocating the 

unit to batch i  if it arrives and to batch 1 if batch i  does not arrive.  

 We can now show the following Claim.  

 

Claim A: (a) There exists a unique equilibrium, (b) the equilibrium outcome is a 

solution to the “weak” planner’s problem, (c) prices in the second period’s Walrasian 

market are increasing with the state ( p1 < ...< pZ−1 ), (d) the first UST market price is 

λ  (and therefore λ = P1 < ...< PZ ) and (e) pi < Pi .  

 

 The intuition for (c) is straightforward: In higher states, more stuff is sold and 

less inventories are carried to the second period. The intuition for (d) is in the 

arbitrage condition: Market 1 opens with certainty and therefore if P1 > λ  the supply 

will be infinite which is not consistent with market clearing (and if P1 < λ , the supply 

is zero which is also not consistent with market clearing). The intuition for (e) is that 
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when Pi ≥ pi  a seller who observes that market i  opens will refuse to sell because he 

can sell it to batch i +1  at a higher price if it arrives and sell it in the second period at 

no loss if batch i +1 does not arrive. Since pi < Pi , the price in the second period 

must be less than the highest transaction price in the first period.  

 

Proof: The first order conditions (A10) and (A11) must hold in equilibrium. To show 

this claim, note that substituting (A2) and (A3) in (A4) leads to (A11). And (A2) 

insures that (A10) holds.  

 I now compute the equilibrium vector from the solution to the planner’s 

problem. Using the planner’s allocation to the first batch (x1;c1
1,...,cZ−1

1 ) , we can 

compute the second period prices: 

 

(A12)  ps = δU '(x1 +δcs
1)   

 

When more batches arrive there is less to distribute in the second period and therefore 

the marginal utility δU '(x1 +δcs
1)  is increasing in s  and therefore: p1 < ...< pZ−1 .  

 We can use the planner’s allocation to batch i , (xi;c1
i ,...,cZ−1

i ) , to compute the 

price in market i : 

 

(A13)  Pi = ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑  

 

To show that Pi < Pi+1  note that the solution to the planner’s problem must satisfy the 

following condition.   

 

(A14)   ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑ = ( 1qi) π sU '(xi+1 +δcs
i+1)

s=i+1

Z

∑ + ( 1qi)π iδU '(xi +δci
i )  
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To interpret (A14) consider the point of view of a planner who observes that batch i  

arrives but does not know yet if batch i +1 will arrive. The left hand side of (A14) is 

the expected loss from reducing the amount given to batch i  in the first period by a 

unit. The right hand side is the expected gain from supplying a unit to batch i +1  if it 

arrives and supplying the unit to batch i  if batch i +1  does not arrive. Condition 

(A14) thus says that at the optimum the expected loss from transferring a unit from xi  

to xi+1  must equal the expected gain so that a small deviation from the optimal plan 

does not reduce welfare. From (A14) we get:  

 

(A15)  ( 1qi) π sU '(xi +δcs
i )

s=i+1

Z

∑ ≤ ( 1qi) π sU '(xi+1 +δcs
i+1)

s=i+1

Z

∑  

 

Since qi+1 < qi , (A15) implies:  

 

(A16) ( 1qi) π sU '(xi +δcs
i

s=i

Z

∑ ) < ( 1qi+1) π sU '(xi+1 +δcs
i+1

s=i+1

Z

∑ )  

 

The inequality Pi < Pi+1  follows from substituting (A13) in (A16).  

Note that (A11) and (A13) imply: 

 

(A17)  P1 = π sU '(x1 +δcs
1)

s=1

Z

∑ = λ  

 

To show that (A4) is satisfied note that (A12) and (A13) imply: 

 

(A18) Pi = ( 1qi) π sU '(xi +δcs
i )

s=i

Z

∑ ≥ ( 1qi) π sU '(xi +δcs
i )

s=i+1

Z−1

∑ = ( 1qi) π s ps
s=i+1

Z−1

∑   
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To show (e) note that a seller who observe that market i  opens must be indifferent 

between selling a unit in market i  to transferring it to xi+1 . This leads to the following 

arbitrage condition.  

 
(A19) Pi = pi ( 1qi)π i + Pi+1( 1qi) π ss>i∑   

 

Part (e) follows from the observation that Pi  is a weighted average of pi  and Pi+1  and 

Pi+1 > Pi . This completes the proof.  

 

A unified multi-periods framework 

 Many goods have both a seasonal and all year round aspects. For example, 

short sleeve shirt is typically used in the summer that it was bought but can also be 

stored and used in the next summer. We may capture both aspects by combining the 

two models: The exponential discounting (ED) model and the one-hoss-shay 

depreciation (OHS) model.  

For this purpose, I assume an economy that lasts for infinitely many periods, 

and each period is divided into two sub-periods. In the first sub period demand is not 

known and trade is done in the UST hypothetical markets. The trade in the first sub-

period reveals the state and in the second sub-period there is a single Walrasian 

market with a single price. As in the previous models prices do not change over time 

and I therefore drop the time index.  

As in the OHS model the buyer’s problem is described by (A1).  

The value of a unit carried as inventories to the next period is βλ  (because the 

seller can cut next period’s production by a unit and save the unit’s cost). Therefore, 

the seller will supply to the second sub-period market only if:  

 

(A20)  ps ≥ βλ  



Vanderbilt University Department of Economics Working Papers, VUECON-14-00012

        

48 

 

 

Assuming that (A20) holds, the seller will choose the amount supplied to the first sub-

period UST market i  ( xi ) by solving the problem (A5). If market i  opens he will sell 

at the price Pi . If market i  does not open in the first sub-period, he will sell in the 

second sub-period xi − Is
i  units at the price ps  and carry Is

i  units as inventories to the 

next period. In the second sub-period the seller chooses the amount of inventories by 

solving the following problem.    
  
  
(A21)  max0≤Isi≤xi ps (xi − Is

i )+ βλIs
i    

 
The first order conditions to this problem requires: 
 

 (A22) Is
i = 0  if ps > βλ   and  0 ≤ Is

i ≤ xi  if ps = βλ   

 
The amount of inventories carried to the next period in state s  is Is = Is

i
i>s∑ . Given 

(A22) the aggregate amount of inventories must satisfy the following condition.  

 

(A23)  Is = 0  if ps > βλ  and 0 ≤ Is
i ≤ xi

i=s+1

Z

∑  if ps = βλ  

To allow for inventories I modify the equilibrium definition in the previous section as 

follows.  
 

Equilibrium is a vector (P1,...,PZ ; p1,..., pZ−1;x1,..., xZ ;C1,...,CZ ; I1,..., IZ )  that satisfies 

(a) the incentive to supply conditions (A4), (A20) and P1 < P2...< PZ ; (b) the first 

order conditions (A2), (A3), (A6), (A23); and (c) the market clearing conditions (A7) 

and  

(A8’) Is + cs
i

i=1

s

∑ = xi
i=s+1

Z

∑   

 



Vanderbilt University Department of Economics Working Papers, VUECON-14-00012

        

49 

 

 Note that the exponential discounting (ED) model is a special case that 

assumes δ = 0 , while the OHS is a special case that assumes β = 0 .  
 

The weak planner’s problem for the unified model 

 The planner’s problem for the unified model environment is: 
 

(A24) max
x j ,cs

j ,Is≥0
− λ x j

j=1

Z

∑ + π s βλIs + U(x j +δcs
j )

j=1

s

∑
⎛

⎝⎜
⎞

⎠⎟s=1

Z

∑      s.t. (A8’) 

 

The first order conditions for this problem are (A11) and  

 
(A25) δU '(x j +δcs

j ) = δU '(x1 +δcs
1) ≥ βλ   with equality if Is > 0  

 

We can now modify Claim A as follows.  

 

Claim A’: (a) There exists a unique equilibrium, (b) the equilibrium outcome is a 

solution to the “weak” planner’s problem, (c) prices in the second period’s Walrasian 

market are increasing with the state (βλ ≤ p1 ≤ p2 ≤ ...≤ pZ−1) , (d) the first UST 

market price is λ  and (e) pi < Pi .  

 
The proof is similar to the proof of Claim A. 
 
 

APPENDIX B: RELAXING ASSUMPTION 1 

 

 I relax Assumption 1 for the single period case. I use Ns = φ jsn jj∑  for the 

number of active buyers and start with the following special case.  

 

Assumption 2:  

� 

U j (x) =U(x), 

� 

d j (p) = d(p)  for all 

� 

j  and N1 < N2 < ...< NS .  
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Here the type composition of the buyers who arrive in each batch (

� 

ϑ js) depends on 

the state. Because all types have the same demand function, the value of 

� 

ϑ js is not 

relevant for computing the demand of each batch and for defining equilibrium. But as 

we shall see it is relevant for the social planner. 

 The algorithm for computing the number of buyers in each batch is similar to 

what we had in the previous case. The minimum number of (active) buyers is: 

� 

Δ1 = N1

. The first batch of 

� 

Δ1 buyers arrives with certainty. After buyers in this first batch 

complete trade and go away there are two possibilities. If 

� 

s =1 trade ends. If 

� 

s >1, 

there are 

� 

Ns − N1 unsatisfied buyers. The minimum number of unsatisfied buyers if 

� 

s >1 is: 

� 

Δ 2 =mins{Ns − N1} = N2 − N1 and this is the number of buyers in batch 2. The 

probability that 

� 

s >1 is q2 = 1−π1  and this is the probability that batch 2 will arrive. 

Proceeding in this way we define 

� 

qs  and 

� 

Δ s for all 

� 

s =1,...,Z . As before, it is 

convenient to think of a sequence of Walrasian markets, where batch 

� 

i  buys in market 

� 

i  and the seller supplies 

� 

xi units to market 

� 

i .   

A UST equilibrium is a vector of prices 

� 

(P1,...,PZ ) and a vector of supplies 

� 

(x1,...,xZ )  such that: (a) 

� 

Pi = λ
qi  and (b) 

� 

xi = (Ni − Ni−1)d(Pi) = Δ id(Pi).   

 

The “weak” planner’s problem:  
I assume that the “weak” planner can choose the amount x ji  that he will give to a type 

j  buyer who arrives in batch i  but does not observe the fraction of type j  buyers 

that arrive in each batch (ϑ js ) and like the sellers in the model, must therefore make 

allocation decisions before he observes the state. The planner’s problem is:       

 

(B1)  maxx ji π s
s=1

Z

∑ ϑ js (Ni − Ni−1)
i=1

s

∑ U(x ji )
j=1

J

∑ −λmaxs ϑ js (Ni − Ni−1)x ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
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To understand the first term in the objective function, note that ϑ js (Ni − Ni−1)
i=1

s

∑ U(x ji )  

is the total utility that the planner gets from type j  buyers in state s . The second 

term is the production cost of implementing the plan. To simplify, I assume that the 

maximum amount distributed occurs in state Z : 

Z = argmaxs ϑ js (Ni − Ni−1)x ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
.  

Note that x ji  matters only when 

� 

s ≥ i and market 

� 

i  opens. We can therefore find the 

first order condition to the problem in (A1) by taking the derivative of  

(Ni − Ni−1)U(x ji ) π sϑ js
s=i

Z

∑ −λϑ jZ (Ni − Ni−1)x ji . The first order condition is:  

 

(B2)  U '(x ji ) =
λϑ jZ

π sϑ js
s=i

Z

∑
 

This is different from (6), implying that the UST outcome is not a solution to the 

“weak” planner’s problem.  
Note that under assumption 1, ϑ js =ϑ j  for all j  and (B2) is the same as (5). The 

difference between (B2) and (5) arises when ϑ jZ ≠ ϑ js . In this case, the planner will 

give type j  more relative to the UST outcome, when ϑ jZ <ϑ js  for all s . In the 

extreme case when ϑ jZ = 0  he will satiate type j  agents because this type arrives 

only in state in which there is excess capacity.  

 

The general case  

 I now relax assumption 2. As before buyers arrive in batches but here the size 

of each batch is endogenous and depends on the prices: P1 ≤ P2 ≤ ...≤ PZ . Roughly 

speaking, the size of the first batch is the minimum demand at the price 

� 

P1. Market 2 

opens if there are some buyers who wanted to buy in the first market but could not. In 
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general, market 

� 

i  opens if there is residual demand after transactions in market 

� 

i −1 

are complete. The size of batch 

� 

i  is the minimum residual demand.  

 The definition of equilibrium is essentially a choice of indices: (y1,..., yZ ) . 

Demand in state 

� 

s at the price 

� 

P1 is:  
φ jsn j

j
∑ dj (P1) .  I choose indices such that state y1  is the state of minimum demand at 

the price P1 : y1 = argmins φ jsn j
j
∑ dj (P1)

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
. State 2 is the minimum demand at the 

price P2  out of the states s ≠ y1 : y2 = argmins φ jsn j
j
∑ dj (Pi )  s.t. s ≠ y1 . And in 

general: yi = argmins φ jsn j
j
∑ dj (Pi )   s.t. s ≠ yk  for all k < i .   

With the above choice of indices, we may describe equilibrium in the 

following way. The seller puts a price tag of 

� 

Pi on 

� 

xi units and then remains passive. 

He knows that the lowest priced 

� 

x1 units will be sold first with certainty. Then if there 

is additional demand the 

� 

x2  units with the price tag 

� 

P2  will be sold and so on. I 

assume that the seller does not use the type composition of batch 

� 

i  to update the 

probabilities of the states. We may therefore think of the seller as having many outlets 

and since trade does not take real time he cannot get aggregate statistics on the type 

composition during trade. 

 Since the definition of equilibrium describes this choice of indices it is simpler to 

write some subscripts in parenthesis. I use π (s)  instead of π s  for the probability that 

state s  occurs and φ j (s)  instead of φ js  for the fraction of type j  buyers that are 

active in state s .  

 

A UST equilibrium is a vector of distinct Z  integers (y1,..., yZ )  and a vector of real 

numbers (P1,...,PZ ;x1,..., xZ ;Π1,...,ΠZ ;q1,...,qZ ;Φ11,...,ΦJ1;Φ12,...,ΦJ 2;...;Φ1Z ,...,ΦJZ )  

such that: 

(a) 1≤ yi ≤ Z  for all i ,  
(b) φ j (yi )nj

j
∑ dj (Pi ) < φ j (yk )nj

j
∑ dj (Pi )   for all i < k ≤ Z ,  
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(c) Φ ji = φ j (yi ) ,  

(d) Πi = π (yi ) ,  

(e) qi = Πss≥i∑ ,  

(f) xi = Φ jin j
j
∑ dj (Pi )− xs

s=1

i−1

∑  and  

(g) Pi =
λ
qi

. 

 

Part (a) implies that y  is a one to one mapping from (1,...,Z )  to (1,...,Z ) .   

Part (b) requires that at the price Pi  demand in state yi  is less than demand in state yk  

for all k > i . Suppose for example that y1 = 6  and y2 = 3 . Then demand at the price 

P1  is lowest in state 6 and demand at the price P2  is lower in state 3 then in all states 

s ≠ 6 . The fraction of type j  buyers who are active in state 6 is denoted by 

Φ j1 = φ j (y1)  and the fraction of type j  buyers who are active in state 3 is denoted by: 

Φ j2 = φ j (y2 ) . The probability that state 6 occurs is denoted by Π1 = π (y1)  and the 

probability that state 3 occurs is denoted by Π2 = π (y2 ) . Thus Π1  is the probability 

that exactly one batch will arrive and Π2  is the probability that exactly two batches 

will arrive. The probability qi = Πss≥i∑  is the probability that more than i  batches 

will arrive or the probability that market i  opens. Part (f) is a market clearing 

condition: After transactions in market i −1  are complete, the minimum residual 

demand at the price Pi  is Φ jin j
j
∑ dj (Pi )− xs

s=1

i−1

∑  and this must equal the supply to 

market i . Part (g) requires that the expected revenue per unit is the same across 

markets. 

 

The “weak” planner’s problem: 

I assume that the “weak” planner can observe the aggregate amount distributed and 

the type of each buyer but not the type composition of the buyers. The “weak” 

planner chooses Z  quantities (x1,..., xZ )  and Z  allocation rules. The first allocation 
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rule is applied to the distribution of the first batch of x1  units. The second allocation 

rule is applied to the distribution of the second batch of x2  units and so on. In detail,  

the planner distributes x j1  units  to type j  buyers that arrive until the first x1  units are 

distributed. He then use the second allocation rule and distributes x j2  units to type j  

buyers that arrive until the second batch of x2  units are distributed and in general he 

uses the allocation rule x ji  after xs
s=1

i−1

∑  units were already distributed to distribute the 

next xi  units.  

We may say that buyers who arrive after xs
s=1

i−1

∑  units were distributed and before 

xs
s=1

i

∑  units were distributed, arrive in batch i  and x ji  is the amount allocated to a 

type j  agent who arrives in batch i .  

 The choice of xi  and x ji  determine the probability that xi  will satisfy the 

additional demand. If for example x1  is large and x ji  are small, the probability that 

more buyers will arrive after the distribution of x1  units is small. Therefore the 

probabilities of delivery depends on the choice of xi  and x ji .  

We may therefore write the “weak” planner’s problem in the following way.  
 

Choose Z  distinct integers (y1,..., yZ )  and a vector of real numbers 
(x1,..., xZ ;Π1,...,ΠZ ;q1,...,qZ ;
Φ11,...,ΦJ1;Φ12,...,ΦJ 2;...;Φ1Z ,...,ΦJZ ;x11,..., xJ1;x12,..., xJ 2;...;x1Z ,..., xJZ )

  

such that: 

(a) 1≤ yi ≤ Z  for all i ,  
(b) φ j (yi )nj

j
∑ x ji < φ j (yk )nj

j
∑ x ji  for all i < k ≤ Z   

(c) Φ ji = φ j (yi ) ,  

(d) Πi = π (yi ) ,  

(e) xi = nj
j=1

J

∑ Φ jsx ji − nj
j=1

J

∑ Φ ji−1x ji−1 > 0  And  

(f) x ji  solve the following problem: 
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maxx js Πs
s=1

Z

∑ Φ jsn jU j (x ji )
i=1

s

∑
j=1

J

∑ −λmaxs njΦ jsx ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
 

 

To solve for the planner’s first order condition I assume as before, that the planner 

wants to distribute the maximum amount in state Z : Z = argmaxs njΦ jsx ji
i=1

Z

∑
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟
. 

Since the planner knows ϑ js  he can compute for each state s , the number of buyers 

served in batch i , (Nis − Ni−1s )  and the number of type j  buyers served in batch i , 

ϑ js (Nis − Ni−1s ) . In detail, the equations:  

N1s ϑ jsx j1
j=1

J

∑ = x1  and (Nis − Ni−1s ) ϑ jsx ji
j=1

J

∑ = xi  lead to:N1s = x1 ϑ jsx j1
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟

−1

 and  

Nis − Ni−1s = xi ϑ jsx ji
j=1

J

∑
⎛

⎝⎜
⎞

⎠⎟

−1

. 

 The planner will choose the amount allocated to a type j  buyers who arrive in batch 

i  by maximizing:  

 

(B3)  maxx ji U j (x ji ) Πsϑ js (Nis − Ni−1s )
s=i

Z

∑ −λϑ jZ (NiZ − Ni−1Z )x ji   

 

The first order condition for this problem is: 

 
(B4)  Uj '(x ji )Δ ji = λϑ jZ (NiZ − Ni−1Z ) , 

 

where Δ ji = Πsϑ js (Nis − Ni−1s )
s=i

Z

∑  is the expected number of buyers served in market i

. The interpretation of this first order condition is as follows. The expected marginal 
utility from increasing the allocation to type j  in market i  by one unit: Uj '(x ji )Δ ji . 

The cost of doing it is: λϑ jZ (NiZ − Ni−1Z ) , because only in state Z  we hit the capacity 

constraint. Therefore, (B4) says that the marginal benefits equal the marginal cost.  
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Rearranging (B4) leads to: 

 

(B5)  Uj '(x ji ) =
λϑ jZ (NiZ − Ni−1Z )

Πsϑ js (Nis − Ni−1s )
s=i

Z

∑
 

This is different from the UST allocation rule (5) implying that in general, the UST 

outcome is not a solution to the “weak” planner’s problem (and of course not to the 

“strong” planner’s problem). 
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