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Abstract

This paper proposes a new test for the presence of a nonlinear

deterministic trend approximated by a Fourier expansion in a univariate

time series for which there is no prior knowledge as to whether the noise

component is stationary or contains an autoregressive unit root. Our

approach builds on the work of Perron and Yabu (2009a) and is based on

a Feasible Generalized Least Squares procedure that uses a super-efficient

estimator of the sum of the autoregressive coefficients α when α=1. The

resulting Wald test statistic asymptotically follows a chi-square limit

distribution in both the I(0) and I(1) cases. To improve the finite sample

properties of the test, we use a bias corrected version of the OLS estimator

of α proposed by Roy and Fuller (2001). We show that our procedure is

substantially more powerful than currently available alternatives. We

illustrate the usefulness of our method via an application to modeling the

trend of global and hemispheric temperatures.
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1 Introduction

It is well-known that economic time series often exhibit trends and serial correlation. Since

the functional form of the deterministic trend component is typically unknown, there is a

need to determine statistically whether a simple linear trend or a more general nonlinear

one is appropriate. At the same time, the presence of serial correlation can be a source of

stochastic trend if the noise component is integrated of order one. When the noise component

is stationary, the trending behavior comes solely from a possibly nonlinear deterministic

component. The main issue is that the limiting distribution of statistics to test for the

presence of nonlinearities usually depends on the order of integration which is also unknown.

On the other hand, testing whether the noise component is stationary or has an autoregressive

unit root depends on the exact nature of the deterministic trend (e.g., Perron, 1989, 1990,

for the cases of abrupt structural changes in slope or level). In particular, if the trend is

mispeci…ed unit root tests will loose power and can be outright inconsistent (e.g., Campbell

and Perron, 1991). This loss in power can also be present if the components of the trend

function are over-speci…ed e.g., including an unnecessary trend; Perron, 1988. In other words,

we are faced with a circular problem. Therefore, what is needed is a procedure to test for

nonlinearity that is robust to the possibilities of an integrated, I(1), or a stationary, I(0),

noise component.

In this paper, we propose a feasible generalized least squares (FGLS) method to test for

the presence of a smooth nonlinear deterministic trend function that is robust to the presence

of I(0) or I(1) errors. A similar issue was tackled by Perron and Yabu (2009a) in the context

of testing for the slope parameter in a linear deterministic trend model when the integration

order of the noise component is unknown. The key idea is to make the estimate of the

sum of the autoregressive (SAR) coe¢cients from the regression residual “super-e¢cient”

when the error are I(1). This is achieved by replacing the least squares estimate of the SAR

by unity whenever it reaches an appropriately chosen threshold. When this adjustment is

made, the limiting distribution of the test statistic becomes standard regardless of the order

of integration of the noise component.

As a class of smooth nonlinear trend functions, we consider a Fourier expansion as in

Gallant (1984) and Gallant and Souza (1991), among others. An advantage of the ‡exible

Fourier approximation is that it can capture the main characteristics of a very general class

of nonlinear functions. This speci…cation of the nonlinear trend function has been used

recent in studies. For example, Becker, Enders and Hurn (2004) use a Fourier expansion
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to approximate the time varying coe¢cients in a regression model and propose a test for

parameter constancy when the frequency is unknown. Becker, Enders and Lee (2006) recom-

mend pretesting for the presence of a Fourier-type nonlinear deterministic trend under the

assumption of I(0) errors before employing their test for stationarity allowing a nonlinear

trend. Similarly, Enders and Lee (2012) propose a LM type unit root test allowing for a

‡exible nonlinear trend using a Fourier approximation and use it along with a nonlinearity

test under the assumption of I(1) errors. Rodrigues and Taylor (2012) also consider the same

nonlinear trend in their local GLS detrended test for a unit root.

Our analysis is not the …rst to propose a nonlinear trend test using a ‡exible Fourier

approximation while maintaining robustness to both stationary and nonstationary noise.

At least two previous studies share the same motivation. Harvey, Leybourne and Xiao

(2010, hereafter HLX) extends the robust linear trend test of Vogelsang (1998) to the case

of a ‡exible Fourier-type trend function. Vogelsang’s (1998) approach requires the choice

of an auxiliary statistic so that the multiplicative adjustment term on the Wald statistic

approaches one under I(0) errors and has a non-degenerate distribution under I(1) errors in

the limit under the null hypothesis. By controlling the coe¢cient on the auxiliary statistic,

the modi…ed Wald test can have a critical value common to both I(0) and I(1) cases. HLX

suggest employing unit root test statistics, such as the standard Dickey-Fuller test statistic,

to be used as the required auxiliary statistic. An alternative method has recently been

proposed by Astill, Harvey, Leybourne and Taylor (2014, hereafter AHLT). Instead of making

an adjustment on the Wald test statistic, they suggest making an adjustment on the critical

values using a similar auxiliary statistic. AHLT show that their procedure is also robust to

I(0) and I(1) errors, yet dominates the HLX method in terms of local asymptotic and …nite

sample power. Here, we show that our FGLS approach has many advantages over these two

methods.

The notable advantages of our proposed method can be summarized as follows. First,

the local asymptotic power of our test uniformly dominates that of the other available tests,

and, for almost all range of parameter values, the power is also higher in …nite samples.

Second, unlike the other test statistics that involve nonstandard distribution in the limit,

our test statistic asymptotically follows a standard chi-square distribution for both the I(0)

and I(1) cases. Third, the degrees of freedom of the limiting distribution depends only on the

number of frequencies, but not on the choice of frequencies. This characteristic is practically

convenient since the same critical value can be used for any combination of frequencies as long

as the total number of frequencies remains unchanged. In contrast, the tabulation of critical
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values for the other tests becomes complicated since the number of possible combinations

increases rapidly with the total number of frequencies. Fourth, our test is also useful when

used as a pretest in a unit root testing procedure designed to have power in the presence

of nonlinear trends. In particular, for moderate non-linearities, the magnitude of the power

reduction is lower than when the other tests are used as pretests.

The organization of the paper is as follows. In Section 2, the basic idea of our approach

is explained using a simple model with a single frequency in the Fourier expansion. In

Section 3, the main theoretical results are presented for the general case which allows for

multiple frequencies and serial correlation of unknown form. In Section 4, Monte Carlo

evidence is presented to evaluate the …nite sample performance of our procedure, as well as

its performance as a pretest for a unit root test allowing for a nonlinear trend. It is also

shown that our test has higher power compared to existing alternative tests. In Section 5, we

illustrate the usefulness of our method via an application to modeling the trend of global and

hemispheric temperatures. Some concluding remarks are made in Section 6. All technical

details are relegated to an appendix.

2 The basic model

In order to highlight the main issues involved, we start with the simple case of a Fourier series

expansion with a single frequency where the noise component follows a simple autoregressive

model of order one (AR(1)). The extensions to the general case are presented in Section 3.

In this basic model, a scalar random variable yt is assumed to be generated by:

yt =

pdX

i=0

?it
i + ?1 sin

?
2?kt

T

?
+ ?2 cos

?
2?kt

T

?
+ ut (1)

ut = ?ut?1 + et (2)

for t = 1; :::; T where et is a martingale di¤erence sequence with respect to the sigma-…eld

Ft = ?-…eldfet?s; s ? 0g, i.e., E(etjFt?1) = 0, with E(e2t ) = ?2 and E(e4t ) < 1. Also, the
initial condition is such that u0 = Op(1). For the AR(1) coe¢cient of the noise component

ut, we assume ?1 < ? ? 1, so that both stationary, I(0) with j?j < 1, and integrated, I(1)
with ? = 1, processes are allowed. The single frequency k in the Fourier series expansion

is …xed and assumed to be known. In this paper, we shall concentrate on the cases pd = 0

(non-trending) and pd = 1 (linear trend), though the method is applicable in the presence

of an arbitrary polynomial in time.
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The interest is testing the absence of non-linear components, H0 : ?1 = ?2 = 0, against

the alternative of the presence of a nonlinear component approximated by the Fourier series

expansion, H1 : ?1 6= 0 or ?2 6= 0. If the AR(1) coe¢cient ? were known, the quasi-

di¤erencing transformation 1 ? ?L could be applied to (1) and the testing problem would

then simply amount to using a standard Wald test based on the OLS estimates of the

quasi-di¤erenced regression. Such a GLS procedure, however, is generally infeasible since ?

is unknown. Below, we brie‡y review the integration order-robust feasible GLS procedure

proposed by Perron and Yabu (2009a) and explain the changes needed in the current context.

2.1 The Perron-Yabu procedure for integration order-robust FGLS

There are two main steps in Perron and Yabu’s (2009a) approach to have a Wald test based

on a feasible GLS (FGLS) regression so that the limit distribution is standard chi-square (or

normal) in both the I(0) and I(1) cases. The …rst step involves obtaining an estimate of ?

that is
p
T consistent in the I(0) case but is “super-e¢cient” in the I(1) case. The second step

involves the computation of the Wald test statistic based on the FGLS estimator using an

estimate of ? having the stated properties. For illustration purposes, let us further simplify

(1) and consider a model with a single regressor given by yt = ? sin(2?kt=T ) + ut combined

with (2). Using the residuals ût from a …rst-step OLS regression of yt on sin(2?kt=T ), the

OLS estimator of ? is given by:

?̂ =

TX

t=2

ûtût?1=
TX

t=2

û2t?1: (3)

Applying a Cochrane and Orcutt (1949) transformation, the FGLS estimate can be obtained

from OLS applied to a regression of the form:

yt ? ?̂yt?1 = ?

?
sin

?
2?kt

T

?
? ?̂ sin

?
2?k(t? 1)

T

??
+ ut ? ?̂ut?1 (4)

for t = 2; :::; T , together with y1 = ? sin(2?k=T ) + u1. Note that this corresponds to the

FGLS estimator assuming an initial condition u0 = 0. When j?j < 1, this FGLS estimator

of ? is asymptotically e¢cient and its t-statistic is asymptotically standard normal under

the null hypothesis of ? = 0. In contrast, the limit distribution of the FGLS estimator is

di¤erent when ? = 1. From standard results,

T (?̂ ? 1))
Z 1

0

W ?(r)dW (r)=

Z 1

0

W ?(r)2dr ? ? (5)
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where ‘)’ denotes weak convergence under the Skorohod topology, fW ?(r), 0 ? r ? 1g
is the continuous time residual function from a projection of a Wiener process W (r) on

sin(2?kr). The limit distribution of the t-statistic for testing ? = 0 is then given by (see the

appendix for details):

tb? )
?
(2?k)2

Z 1

0

cos2(2?kr)dr + ?2
Z 1

0

sin2(2?kr)dr

??1=2
?

?
2?k

?Z 1

0

cos(2?kr)dW (r)? ?

Z 1

0

cos(2?kr)W (r)dr

?
(6)

??
?Z 1

0

sin(2?kr)dW (r)? ?

Z 1

0

sin(2?kr)W (r)dr

??

which is di¤erent from a standard normal distribution. In order to obtain a standard limit

distribution with I(1) errors, Perron and Yabu (2009a) suggest replacing the OLS estimator

?̂ by a super-e¢cient estimator which converges to unity at a rate faster than T when ? = 1.

In particular, their super-e¢cient estimator of ? is de…ned by:

?̂S =

8
<
:

?̂ if T ?j?̂ ? 1j > d

1 if T ?j?̂ ? 1j ? d
(7)

for ? 2 (0; 1) and d > 0. Thus, whenever ?̂ is in a T?? neighborhood of 1, ?̂S takes value

1. As shown by Perron and Yabu (2009a), T 1=2(?̂S ? ?) !d N(0; 1 ? ?2) when j?j < 1 and
T (?̂S ? 1) !p 0 when ? = 1. Hence, when constructing the FGLS estimator of ? with this

super-e¢cient estimator ?̂S, rather than the OLS estimator ?̂, ? in (6) can be replaced by

the limit of T (?̂S ? 1) which is zero when ? = 1. Hence, under the null hypothesis, the

FGLS t-statistic for testing that ? = 0 is such that:

tb? )
?Z 1

0

cos2(2?kr)dr

??1=2 Z 1

0

cos(2?kr)dW (r) =d N(0; 1) (8)

when ? = 1. We then recover in the unit root case the same limiting distribution as in the

stationary case and no discontinuity.

Consider now another special case with yt = ? cos(2?kt=T )+ut combined with (2). While

the di¤erence between the sine and cosine functions seems minor, the same FGLS estimator

combined with the super-e¢cient estimator ?̂S using the Cochrane-Orcutt transformation,

yt ? ?̂Syt?1 = ?

?
cos

?
2?kt

T

?
? ?̂S cos

?
2?k(t? 1)

T

??
+ ut ? ?̂Sut?1 (9)
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for t = 2; :::; T , together with y1 = ? cos(2?k=T ) + u1 will not yield the same limiting

distribution. Instead, when ? = 1, tb? ) ??1u1 = ??1(u0 + e1) so that the limiting behavior

of the t-statistic is dominated by the initial condition and the …rst value of the innovation

(see the appendix for details). It turns out that the problem can be remedied using the FGLS

estimator proposed by Prais and Winsten (1954), which is obtained using (9) together with

(1? ?̂2S)
1=2y1 = (1? ?̂2S)

1=2? cos

?
2?k

T

?
+ (1? ?̂2S)

1=2u1: (10)

Note that it di¤ers from the Cochrane-Orcutt FGLS estimator only in how the initial ob-

servation is transformed.1 The null limiting distribution of the t-statistic for testing ? = 0

based of this alternative FGLS estimator is given by (see the appendix for details):

tb? ) ?
?Z 1

0

sin2(2?kr)dr

??1=2 Z 1

0

sin(2?kr)dW (r) =d N(0; 1) (11)

when ? = 1, as required. It can easily be shown that using the Prais-Winsten FGLS estimator

also delivers a null limiting distribution of the t-statistic given by (8) with the sine as well as

the cosine functions. Hence, when dealing with tests related to non-linear trends generated

by Fourier expansions, one needs to modify Perron and Yabu’s (2009a) procedure using the

Prais-Winsten FGLS estimator instead of the FGLS estimator derived from the condition

u0 = 0. The limiting distribution of the test statistic is then standard normal in both the

I(0) and I(1) cases. This is in contrast to the cases of a linear trend model considered in

Perron and Yabu (2009a) and the break model considered in Perron and Yabu (2009b) since

the asymptotic results for these models do not depend on the choice of the FGLS estimator.

2.2 The test statistic

We now return to the basic model (1) with one frequency. For notational simplicity, we

express the model as:

yt = x0t? + ut (12)

where xt = (z0t; f
0
t)
0 with zt = (1; t; :::; tpd)0 and ft = (sin(2?kt=T ); cos(2?kt=T ))0, and the

parameters are ? = (? 0; ? 0)0, ? = (?0; :::; ?pd)
0 and ? = (?1; ?2)

0. Since we are interested

in testing whether nonlinear trend components are present, the null hypothesis is given by

H0 : R? = 0 where R = [0 : I2] is a 2? (pd + 3) restriction matrix. Let ?̂ = ( eX 0 eX)? eX 0ey be
the Prais-Winsten FGLS estimator where eX is a T ? (pd + 3) matrix of transformed data

1See Canjels and Watson (1997) for more details on the di¤erence between these two FGLS estimators.
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whose tth-row is given by ex0t = (1? ?̂SL)x
0
t except for ex01 = (1? ?̂2S)

1=2x01. The T ? 1 vector
ey is similarly de…ned as eyt = (1 ? ?̂SL)yt for t = 2; :::; T , and ey1 = (1 ? ?̂2S)

1=2y1. Here,

( eX 0 eX)? is the g-inverse of eX 0 eX . Denote the residuals associated with this regression by êt.

The Wald statistic for testing the null hypothesis is:

Wb? = ?̂
0R0[s2R( eX 0 eX)?R0]?1R?̂ (13)

where s2 = T?1
PT

t=1 ê
2
t . The following theorem, proved in the Appendix, shows that Wb?

has a ?2(2) distribution in both the I(0) and I(1) cases.

Theorem 1 Let yt be generated by (1) with ?1 = ?2 = 0. Then,

Wb? ) [R(

Z 1

0

G(r)G(r)
0
dr)?

Z 1

0

G(r)dW (r)]0[R(

Z 1

0

G(r)G(r)
0
dr)?R0]?1

?[R(
Z 1

0

G(r)G(r)
0
dr)?

Z 1

0

G(r)dW (r)] =d ?2(2)

where G(r) = F (r) = [1; r; :::; rpd ; sin(2?kr); cos(2?kr)]0 if j?j < 1 and G(r) = Q(r) =

[0; 1; 2r; :::; pdr
(pd?1), 2?k cos(2?kr);?2?k sin(2?kr)] if ? = 1.

Therefore, constructing the GLS regression with the super-e¢cient estimator, ?̂S, ef-

fectively bridges the gap between the I(0) and I(1) cases, and the chi-square asymptotic

distribution is obtained in both cases.

2.2.1 Local asymptotic power

Using the local alternatives speci…cation used in AHLT, we can use the result of Theorem

1 to obtain the local asymptotic power function of the test. The alternatives are given

by ?1 = T?1=2?0? and ?2 = T?1=2?0? for the case of I(0) errors and ?1 = T 1=2?0? and

?2 = T 1=2?0? for the case of I(1) errors, where the scaling by ? is to factor out the variance

from the local asymptotic power function. The details about the theoretical results on the

local asymptotic power functions for our test and that of the ASW test are given in the

appendix. It is easy to see that the local asymptotic power function of our test is equivalent

to that of the Wald test based on the infeasible GLS procedure that assumes a known value

?. Hence, it is the most powerful local test (under Gaussian errors) at least pointwise in

?. To quantify the extent of the power gains over using the ASW test, Figure 1 plots the

local asymptotic power functions of our test and that of the ASW test for the constant

case (pd = 0). Clearly, our test permits important power gains, especially in the case of

I(1) errors. These power improvements will be shown to hold as well in …nite samples via

simulations later.
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2.2.2 Power when ? is local to one

Note that the result obtained in Theorem 1 is pointwise in ? for ?1 < ? ? 1 and does not
hold uniformly, in particular in a local neighborhood of 1. Adopting the standard local to

unity approach which is expected to provide a good approximation in …nite samples when

the true value of ? is close to but not equal to one, we have the following result proved in

the Appendix.

Theorem 2 Let yt be generated by (1) with ?1 = ?2 = 0. Suppose that ? = 1 + c=T , then :

Wb? ) [R(

Z 1

0

Q(r)Q(r)0dr)?
Z 1

0

Q(r)dJc(r)]
0[R(

Z 1

0

Q(r)Q(r)0dr)?R0]?1

?[R(
Z 1

0

Q(r)Q(r)0dr)?
Z 1

0

Q(r)dJc(r)]
0

where Q(r) = [0; 1; 2r; :::; pdr(pd?1); 2?k cos(2?kr);?2?k sin(2?kr)] and Jc(r) =
R r
0
exp(c(r ?

s))dW (s) s N(0; (exp(2cr)? 1)=2c).

The result is fairly intuitive. Since the true value of ? is in a T?1 neighborhood of 1,

and ?̂S truncates the values of ?̂ in a T?? neighborhood of 1 for some 0 < ? < 1 (i.e., a

larger neighborhood), in large enough samples ?̂S = 1. Hence, the FGLS estimator of ?

is essentially the same as that based on …rst-di¤erenced data. Note that when c = 0, we

recover the result of Theorem 1 for the I(1) case. However, when c < 0, the variance of

Jc(r) is smaller than that of W (r). Hence, the upper quantiles of the limit distributions are,

accordingly, smaller than those of a ?2(2), so that, without modi…cations, a conservative test

may be expected for values of ? close to 1, relative to the sample size.

2.2.3 The choice of ?

Theorem 1 is valid for the super-e¢cient estimator (7) for any choice of ? 2 (0; 1) and

d > 0. It is of practical importance to know if there is any guidance on the choice of these

parameters. Regarding the choice of ?, Perron and Yabu (2009a) recommend to set ? = 1=2

based on local to unity arguments. We can apply the same arguments here. Note that the

limits of the variances of the component
R 1
0
Q(r)dJc(r) is 0 as c ! ?1, and we do not

recover the same result that applies to the I(0) case. As noted by Phillips and Lee (1996),

the local to unity asymptotic framework with c! ?1 involves a doubly in…nite triangular

array such that the limit of the statistic depends on the relative approach to in…nity of c

and T . For the case of tests on the coe¢cients of a linear trend function, Perron and Yabu
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(2009a) showed that indeed, the t-statistic has a N(0; 1) limit distribution as c ! ?1.
What is especially interesting is that to obtain this result, a condition on ? needs to be

imposed, namely that ? ? 1=2. Their result extends in a straightforward way to the present
setup, which is important for the following reason. In order to bridge the gap between

the I(0) and I(1) cases and ensure that for values of the autoregressive parameter local to

one the tests have the least possible size distortions, we need ? ? 1=2. Otherwise, from

Theorem 2, a conservative test is to be expected. This in fact restricts the neighborhood

where truncation applies. On the other hand, increasing ? beyond 1/2 would imply that

in moderate samples the truncation applies less and less and that ?̂S would basically be

equivalent to the OLS estimate ?̂. These considerations suggest that ? = 1=2 should be the

preferred choice. Indeed, simulations reported in Perron and Yabu (2009a) show that this

value leads to a procedure which works best in small samples. We also veri…ed by simulations

that ? = 1=2 is the best choice for the tests and models considered here. Hence, we shall

continue to use this value and will calibrate the appropriate value of d using simulations.

2.3 Bias correction for improved …nite sample properties

The test statisticWb? is constructed from the super-e¢cient estimator (7) that is based on the

OLS estimator (3), which is known to be biased downward in …nite samples especially when ?

is near one. Hence, in many cases, the truncation described by (7) may not be used even when

it would be desirable. To circumvent this problem, Perron and Yabu (2009a) recommend

using Roy and Fuller’s (2001) bias corrected estimator instead of the OLS estimator in the

context of a linear trend model and show that such a correction improves the …nite sample

performance of their test without changing its asymptotic properties. The aim of this section

is to suggest a similar bias correction to improve the …nite sample properties of the test Wb? .

Roy and Fuller (2001) proposed a class of bias corrected estimators and we consider here

the one based on the OLS estimator2. It is a function of a unit root test, namely the t-ratio

?̂ = (?̂?1)=?̂?, where ?̂ is the OLS estimator and ?̂? is its standard error. The bias-corrected
2Roy et al. (2004) and Perron and Yabu (2009a) use a similar bias correction based on a weighted

symmetric least-squares estimator of ? instead of the OLS estimator employed here. Both lead to tests with
similar properties. However, note that the test proposed by Roy et. al (2004) has very di¤erent sizes in the
I(0) and I(1) cases; see Perron and Yabu (2012) for details.
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estimator is given by

?̂M = ?̂ + C(?̂ )?̂?; (14)

C(?̂ ) =

8
>>>>>><
>>>>>>:

??̂ if ?̂ > ? pct

T?1?̂ ? (1 + r)[?̂ + c2(?̂ + a)]?1 if ?a < ?̂ ? ? pct

T?1?̂ ? (1 + r)?̂?1 if ?c1=21 < ?̂ ? ?a

0 if ?̂ ? ?c1=21

where ? pct is some percentile of the limiting distribution of ?̂ when ? = 1, c1 = (1 + r)T , r

is the number estimated parameters, c2 = [(1 + r)T ? ? 2pct(1 + T )][? pct(a + ? pct)(1 + T )]?1

and a is some constant. The parameters for which speci…c values need to be selected are

? pct and a. Based on extensive simulation experiments, we selected a = 10 since it leads to

tests with better properties. Also, for ? pct we shall consider ? :50 or ? :85. When using ? :50

the version of the test is labelled as “median-unbiased” and when using ? :85, it is labelled

as “upper-biased”. The values of ? :50 and ? :85 depend on pd and the type of frequencies

included. Table 1 presents values for pd = 0; 1 for cases with a single frequency k taking

value between 1 and 5 and for cases with multiple frequencies k = 1; :::; n for n between 1

and 5.

It should be noted that, to obtain the super-e¢cient estimator (7), ?̂ can be replaced

by ?̂M since all that is needed is that T (?̂M ? 1) = Op(1) when ? = 1, and T 1=2(?̂M ? ?)

!d N(0; 1 ? ?2) when ? < 1. These conditions are satis…ed and thus all the large sample

results, Theorems 1 and 2, continue to hold. Based on extensive simulations, we found that

the value d = 1 in (7) combined with ?̂M leads to the best results in …nite samples. Hence,

our suggested AR(1) coe¢cient estimator to be used in the Prais-Winsten FGLS estimator

is ?̂MS, which takes value ?̂M when j?̂M ? 1j > T?1=2 and 1 otherwise.

Figure 2.a presents results about the size of the Wb? test with only a constant (pd = 0)

when constructed using: a) the OLS estimator, b) the median unbiased estimator (?̂MS with

? pct = ? :50) and the upper biased estimator (?̂MS with ? pct = ? :85). Figure 2.b shows the

corresponding results for the linear trend case (pd = 1). The data are generated by a AR(1)

process of the form yt = ?yt?1 + et with et ? i:i:d: N(0; 1) and y0 = 0 (setting the constant

and trend parameters to zero is without loss of generality due to the fact that the tests are

invariant to them). The nominal size of the tests is 5% throughout the paper and the exact

size is evaluated using 10,000 replications. The sample sizes are set to T = 150; 300, and 600.

The results clearly show that when using the biased OLS estimator ?̂ the size distortions
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are important when ? is close to 1 and remain even with T as large as 600. In contrast, the

exact size of the test constructed using either the median unbiased or, espcially, the upper

biased estimator is very close to the nominal size regardless of the value of ? for all sample

sizes T . These results are encouraging and points to the usefulness of the bias correction

step in our testing procedure.

3 The general model

Having laid out the foundation for the basic model (1), it is relatively straightforward to

extend the test procedure to cover the general model which involves the possibility of more

than one frequency in the Fourier expansion and a general serial correlation structure in the

noise component. The general model is given by:

yt =

pdX

i=0

?it
i +

nX

j=1

?1j sin

?
2?kjt

T

?
+

nX

j=1

?2j cos

?
2?kjt

T

?
+ ut (15)

for t = 1; :::; T . The kj’s are nonnegative integers for j = 1; :::; n, and n is the total number

of frequencies used in the Fourier approximation. Note that the set of kj’s can be a proper

subset of all the integers between 1 and the maximum frequency kn so that kn need not

correspond to the nth frequency. For example, when n = 2 and k2 = 3, (k1; k2) can be either

(1; 3) or (2; 3). This will turn out to be useful when designing a strategy to estimate the

number of frequencies to include. In vector form, (15) can also be written as (12) using

xt = (z
0
t; f

0
t)
0 where zt = (1; :::; tpd)0,

ft = (sin(2?k1t=T ); cos(2?k1t=T ); :::; sin(2?knt=T ); cos(2?knt=T ))
0

and ? = (? 0; ? 0)0 where ? = (?0; :::; ?pd)
0 and ? = (?11; ?21; :::; ?1n; ?2n)

0. For the noise

component, we assume that ut is generated by one of the following two structures:

? Assumption I(0): ut = C(L)et, where C(L) =
P1

i=0 ciL
i,
P1

i=0 ijcij < 1 and 0 <

jC(1)j <1;

? Assumption I(1): ?ut = D(L)et, where D(L) =
P1

i=0 diL
i,
P1

i=0 ijdij < 1 and

0 < jD(1)j <1.

As in the basic model, we assume et s (0; ?2) and is a martingale di¤erence sequence

as de…ned previously. Also, u0 = Op(1). These conditions ensures that we can apply a

functional central limit theorem to the partial sums of ut in the I(0) case and the partial

11



sums of ?ut in the I(1) case. In both cases, ut has an autoregressive representation of the

form ut =
P1

i=1 aiut?i + et, or equivalently

ut = ?ut?1 + A?(L)?ut?1 + et (16)

where the parameter ? now represents the sum of the autoregressive coe¢cients. In par-

ticular, when ut is I(0), ? =
P1

i=1 ai and A?(L) =
P1

i=1 a
?
iL

i where a?i = ?
P1

j=i+1 aj and

A(L) =
P1

i=1 aiL
i = C(L)?1. When ut is I(1), ? = 1 and A?(L) = L?1(1 ? D(L)?1).

The sum of the autoregressive coe¢cients ? in (16) can be consistently estimated from the

following regression estimated by OLS:

ût = ?ût?1 +

pTX

i=1

a?i?ût?i + ept (17)

where ût are the residuals from a regression of yt on xt and pT is the truncation lag order which

satis…es pT !1 and p3T=T ! 0 as T !1. Under this condition on the rate of pT , the OLS
estimator ?̂ is consistent and T 1=2(?̂ ? ?) = Op(1) when ut is I(0) (see Berk, 1974, Ng and

Perron, 1995). On the other hand, if ? = 1, T (?̂? 1)) D(1)
R 1
0
W ?(r)dW (r)=

R 1
0
W ?(r)2dr

where W ?(r) is the residual function from a regression of W (r) on

F (r) = [1; r; :::rpd ; sin(2?k1r); cos(2?k1r); :::; sin(2?knr); cos(2?knr)]
0:

However, if we replace the OLS estimator ?̂ with a super-e¢cient estimator similar to ?̂S in

(7) or its bias-corrected version ?̂MS, we have T (?̂S ? 1)!p 0 and T (?̂MS ? 1)!p 0 when

? = 1 so that the limiting distribution of the Prais-Winsten FGLS estimator is the same

chi-square regardless of the integration order of the noise.

3.1 The test statistic

The null hypothesis for the absence of nonlinear components for the general case is now

given by R? = 0 where R = [0 : I2n] is a 2n ? (pd + 1 + 2n) restriction matrix. We again
use the Prais-Winsten FGLS estimator ?̂ by running the the transformed regression:

(1? ?̂MSL)yt = (1? ?̂MSL)x
0
t? + (1? ?̂MSL)ut (18)

for t = 2; :::; T , together with

(1? ?̂2MS)
1=2y1 = (1? ?̂2MS)

1=2x01? + (1? ?̂2MS)
1=2u1: (19)
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Since the residuals from this regression are now approximations to vt ? (1 ? ?L)ut instead

of et, we denote the residual by v̂t instead of êt. The resulting Wald statistic, robust to serial

correlation in vt, is:

Wb? = ?̂
0R0[!̂2R( eX 0 eX)?R0]?1R?̂ (20)

where eX is a T ? (pd + 1 + 2n) matrix of transformed data whose tth-row is given by

ex0t = (1??̂MSL)x
0
t except for ex01 = (1??̂2MS)

1=2x01. Here, !̂
2 is a long-run variance estimator of

vt = (1??L)ut which replaces s2 in (13). More speci…cally, !̂
2 is a consistent estimator of (2?

times) the spectral density function at frequency zero of vt, given by !2 = (1??)2A(1)?2?2 =

?2 when ut follows an I(0) process, and !2 = D(1)2?2 when ut follows an I(1) process.

Accordingly, we use the following long-run variance estimator:

!̂2 =

8
>>>><
>>>>:

(T ? pT )
?1

TX

t=pT+1

ê2pt if T 1=2j?̂M ? 1j > 1

T?1
TX

t=1

v̂2t + T?1
T?1X

j=1

w(j;mT )
TX

t=j+1

v̂tv̂t?j if T 1=2j?̂M ? 1j ? 1
(21)

where êpt are the residuals from (17) and w(j;mT ) is a weight function with bandwidth mT .

We use the Andrews’ (1991) automatic selection procedure for mT along with the quadratic

spectral window. Note that this long-run variance estimator can be viewed as a combination

of parametric and nonparametric estimators depending on the threshold used to construct

the super-e¢cient estimator (7). The following theorem, whose proof is similar to that of

Theorem 1, and hence omitted, shows that the test based on the FGLS procedure using ?̂MS

has a ?2(2n) distribution in both the I(0) and I(1) cases.

Theorem 3 Let yt be generated by (15). Then,

Wb? ) [R(

Z 1

0

G(r)G(r)
0
dr)?

Z 1

0

G(r)dW (r)]0[R(

Z 1

0

G(r)G(r)
0
dr)?R0]?1

?[R(
Z 1

0

G(r)G(r)
0
dr)?

Z 1

0

G(r)dW (r)] =d ?2(2n)

where G(r) = F (r) = [1; r; :::; rpd ; sin(2?k1r); cos(2?k1r); :::; sin(2?knr); cos(2?knr)]
0 if j?j <

1 and if ? = 1, G(r) = Q(r) = [0; 1; 2r; :::; pdr
(pd?1); 2?k1 cos(2?k1r);?2?k1 sin(2?k1r); :::,

2?kn cos(2?knr);?2?kn sin(2?knr)].

Remark 1 It remains in the general case that constructing the GLS regression with the
super-e¢cient estimator, ?̂MS, e¤ectively bridges the gap between the I(0) and I(1) cases,

and the chi-square asymptotic distribution is common to both.
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Remark 2 The degrees of freedom of the limiting chi-square distribution is 2n so that it

depends only on the number of frequencies, but not on the choice of the frequencies itself.

This is particularly convenient since the same critical values can be used for any combination

of frequencies as long as the total number of frequencies remains unchanged. In contrast, the

limiting distribution of the MW test statistic proposed by HLX, and that of the ASW test

statistic proposed by AHLT is non-standard and depends on the choice of the frequencies,

which makes inference di¢cult, especially as the number of frequencies increases.

Remark 3 While we are mainly interested in testing the restriction that all the coe¢cients
of the nonlinear trend components are zero, the test statistic can easily be modi…ed to test

zero restrictions on a subset of the coe¢cients. If m(< n) denotes the number of frequencies

of interest, we can use a 2m ? (pd + 1 + 2n) restriction matrix R = [0 : S] where S is a

2m? 2n selection matrix constructed by excluding unrelated row vectors from I2n. Under the

null hypothesis, the Wald test statistic now asymptotically follows a chi-square distribution

with 2m degrees of freedom. This variant of our test statistic is convenient for model selection

purposes when the form of the Fourier expansion is unknown.

4 Monte Carlo experiments

In this section, we conduct Monte Carlo experiments with two objectives in mind. The …rst is

to evaluate the power of our test, both the median-unbiased and upper-biased versions, and

compare it with that of previously proposed procedures to test for the presence of nonlinear

trends robust to having either I(0) and I(1) errors. Such tests include the MW test statistic

proposed by HLX, and the ASW test statistic proposed by AHLT. Since AHLT have already

shown that the power performance of the ASW test statistic dominates that of MW test,

we only report comparisons with the former (the test is described in the appendix). The

second objective is to evaluate the performance of our test when it is used as a pretest for

a unit root test. We combine our procedure and the LM unit root test of Enders and Lee

(2012) that allow for a ‡exible nonlinear trend using a Fourier series approximation.

Before describing the simulation design, we review each step of our recommended testing

procedure for the general case.

1. Run the OLS regression (15) and obtain residuals ût;

2. Run the regression (17) and obtain ?̂ with pT selected using an information criterion.

We use the MAIC proposed by Ng and Perron (2001), with pT allowed to be in the

range [0; 12(T=100)1=4].
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3. Construct the bias corrected estimator given by ?̂M = ?̂ + C(?̂ )?̂?, where

C(?̂ ) =

8
>>>>>><
>>>>>>:

??̂ if ?̂ > ? pct

[(pT + 2)=2]T
?1?̂ ? (1 + r)[?̂ + c2(?̂ + a)]?1 if ?a < ?̂ ? ? pct

[(pT + 2)=2]T
?1?̂ ? (1 + r)?̂?1 if ?c1=21 < ?̂ ? ?a

0 if ?̂ ? ?c1=21

with c1 = (1 + r)T with r = 2 + 2n, c2 = [(1 + r)T ? ? 2pct([(pT + 2)=2] + T )][? pct(a +

? pct)([(pT + 2)=2] + T )]?1 and a = 10. For the median-unbiased version use ? 0:5 and

for the upper-biased version use ? 0:85.

4. Construct the super-e¢cient estimator given by

?̂MS =

8
<
:

?̂M if j?̂M ? 1j > T?1=2

1 if j?̂M ? 1j ? T?1=2

5. Construct the Prais-Winsten FGLS estimate ?̂ and residuals v̂t from the regression

(18) with (19) using ?̂MS and construct the Wald test statistic (20) using !̂2 = (T ?
pT )

?1PT
t=pT+1

ê2pt if j?̂M?1j > T?1=2 and !̂2 = T?1
PT

t=1 v̂
2
t+T

?1PT?1
j=1 w(j;mT )

PT
t=j+1 v̂tv̂t?j

otherwise.

4.1 The size and power of the tests

We …rst report the empirical size of our test and that of the ASW test when the data are

generated from

yt = ut; (1? ?L)ut = (1 + ?L)et (22)

with et ? i:i:d: N(0; 1) and u0 = 0. We set ? = 1; 0:95; 0:9; 0:8 and ? = ?0:8;?0:4; 0:0; 0:4; 0:8.
The exact size is computed as the frequency of rejecting the null from 10; 000 replications

when using a 5% nominal size. The sample sizes considered are T = 150, 300 and 600. Note

that, when ? = 1, the error term follows an I(1) process with the sum of the AR coe¢cients

? = 1. For the other choice of ?, the error term follows an I(0) process with the sum of AR

coe¢cients given by ? = 1 ? (1 ? ?)(1 + ?)?1.3 We only consider positive AR coe¢cients

since this is the most relevant case in practice.

3Note that the combinations of ? and ? requires some attention. For example, when ? = 0:8 and ? = ?0:8,
the process is not ARMA(1,1) but rather a simple i.i.d. process with the true sum of the AR coe¢cients
being 0.
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The size of our test using a single frequency k = 1 is reported in Table 2.a (with a constant

only; pd = 0) and Table 2.b (with a linear trend; pd = 1). The results show that our test

has reasonable size properties for both the I(0) and I(1) cases. This is especially the case for

the upper-biased version of the test. The size of the ASW test is also adequate though some

liberal size distortions are present in the case of a large negative moving-average coe¢cient,

unlike our test which maintains nearly the correct size when using the upper-biased version.

To evaluate the power of the tests, the data are now generated from the following non-

linear process:

yt = ?(sin(2?t=T ) + cos(2?t=T )) + ut (23)

where ? > 0. The error term is generated from ut = ?ut?1 + et with et ? i:i:d: N(0; 1) and

u0 = 0 for ? = 1:0; 0:95; 0:9 and 0:8. Here, we consider the case with the frequency k = 1

known. However, we continue to use the test which allows for general serial correlation and

does not rely on the knowledge of the AR(1) error structure. We consider the case with an

unknown frequency structure below. The results are presented in Figures 3.a to 3.c for the

case with a constant only (pd = 0) and Figures 4.a to 4.c for the case with a linear trend

(pd = 1). The …rst thing to note it that the power of both versions of our test is close to

that achievable using the infeasible GLS estimate that assumes a known value of ? (the

upper bound with Gaussian errors) when ? = 1. In that case, the power of the ASW test is

substantially lower. The same features hold approximately when ? is far from one (relative

to the sample size, i.e., not local to one) as shown in the case with T = 600 and ? = 0:8.

Things are di¤erent when ? can be viewed as being local to 1. In such cases, the power

of the median-unbiased version is higher than that of the upper-biased version. Some of the

di¤erences, though not all, can be explained by the fact that the median-unbiased version

tends to have higher size than the upper-biased version, which tends to be conservative.

In general, the power of the ASW is lower than either version of our test, especially the

median-unbiased version. There are cases, however, for which the ASW is more powerful

though never uniformly in the value of the alternative. This is mainly due to the fact that

both versions of our test can exhibit a “kinked” power curve when ? is local to 1. When

comparing to the median-unbiased version, the power of the ASW test is higher in the

following cases when considering a constant only (pd = 0): T = 150, ? = :8 and T = 300,

? = 0:9 for large alternatives (though the di¤erences are minor), T = 300, ? = 0:9 for

medium alternatives, T = 600, ? = 0:95 for large alternatives. When considering a …tted

linear trend (pd = 1), the ASW test has lower power in all cases, with very minor exceptions.

In summary, in terms of power the median-unbiased version of our test is clearly preferable.
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This may be counter-balanced by the fact that it is also the test most prone to having liberal

size distortions, though they are relatively minor, occur mostly when ? is close to or equal to

1 in the presence of a large moving-average coe¢cient, and reduce noticeably as the sample

size increases.

4.2 The relative performance in choosing the number of frequencies

We now turn to the issue of choosing the number of frequencies. To simplify, we let kn = n

and the data are generated from

yt = ?

2X

k=1

(sin(2?kt=T ) + cos(2?kt=T )) + ut (24)

with the same AR(1) error term as before, whose structure is, for simplicity, assumed to be

known. Therefore, the true number of frequencies is given by n = 2, whenever ? 6= 0. We
consider experiments with ? = 0; 1; 2; 3; 4;and 5

We use a general-to-speci…c procedure based on the sequential application of the variant

of our test for subsets of coe¢cients as explained in Remark 3. We …rst set the total number

of frequencies at n = 3 and test the null hypothesis that the coe¢cients related to the

maximum frequency k = 3 are zero. If the null hypothesis is rejected, we select n = 3.

If not, we set n = 2, and test whether the coe¢cients related to k = 2 are zero. We

continue the procedure until we reject the null or reach n = 0. Note that the number of

restrictions in each step is 2 (= 2m) so that all the tests share the same critical value from

the chi-square distribution with 2 degrees of freedom. We compare the selection frequencies

of this procedure with the one based on the ASW test combined with the frequency selection

algorithm proposed in HLX (p. 388), as advocated by AHLT. For the ASW test, results

using tests at the 5% signi…cance level are reported. For our test, results with both 1% and

5% signi…cance levels are reported. Table 3 reports the relative frequency of choosing each

of n = 0; 1; 2; and 3, when a trend term is included (pd = 1). Compared to the procedure

based on the ASW test, our procedure is substantially better at selecting the true number

of frequencies n = 2 when ? 6= 0. Note, in particular, that the procedure based on the ASW

test has very little power so that n = 0 is the value most often selected even when ? is large.

With respect to the size of the test for our procedure, using a 1% signi…cance level leads to

better selection when ? = 0 or when ? is very large, otherwise using a 5% signi…cance level

is preferred.
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4.3 The performance as pre-tests for a unit root test

Finally, we investigate the performance of our test when it is used as a pretest before applying

the unit root test of Enders and Lee (2012). The simulation design follows that of Enders

and Lee (2012). The exact size and power of their unit root test are evaluated when the

number of frequencies in the nonlinear trend function is unknown. To evaluate the size of

the test, the data are generated from (24) with I(1) errors generated by a random walk with

i:i:d: N(0; 1) errors. We set T = 150, 300 and 600 and ? = 0; 1; 2; 3; 4; 5 and the nominal

size of the unit root test is 5%. Table 4 shows the empirical size of the unit root tests when

(i) the number of frequencies is incorrectly speci…ed at n = 0 (unless ? = 0), (ii) when the

number of frequencies is correctly speci…ed at n = 2 (unless ? = 0), (iii) when the number

of frequencies is selected based on the sequential application of the ASW test, and (iv)

when the number of frequencies is selected based on the sequential application of our test.

As before, results using a 5% signi…cance level are reported for the ASW -based procedure

and using both 1% and 5% signi…cance levels for ours. When the number of frequencies is

incorrectly speci…ed at n = 0, the unit root test is clearly undersized. The exact sizes of the

unit root test with n selected by the ASW -based procedure and our test are comparable to

that of the correctly speci…ed case.

The advantage of employing our procedure becomes evident when considering the power

of the unit root test. Figures 5.a and 5.b present the power of the unit root test when the data

are generated from (24) with the I(0) error generated as AR(1) processes with coe¢cients

? = 0:9 and 0:8 (and innovations that are i.i.d. N(0; 1)). For all cases, a U-shaped non-

monotonic power function is observed when plotted as a function of ?. However, using our

test, the reduction in power is less pronounced, especially with ? = 0:8. This feature can be

understood by comparing these …gures with those presented in Figures 6.a and 6.b, which

plot the power of the unit root test for the cases of …xed total number of frequencies at n = 0

and n = 2. When the unit root test is applied with an incorrect total number of frequencies

of n = 0 its power monotonically decreases with ?. In contrast, if n is correctly speci…ed,

the power of the unit root test becomes invariant to ?. The results in Table 3 show that the

ASW -based procedure tends to select n = 0 much more frequently than our test when ? is

not very large. Hence, this lack of power in rejecting the null of the absence of non-linear

components directly translates into a lack of power for the unit root test. Our test being

more powerful also ensures a unit root test with higher power.
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5 Empirical applications

To illustrate the usefulness of our test procedure and method, we consider the trend function

of global and hemispheric temperature series. The data series used are from the HadCRUT3

database (http://www.meto¢ce.gov.uk/hadobs/hadcrut3/) and cover the period 1850-2010

with annual observations. Three series are considered: global, Northern Hemisphere (NH)

and Southern Hemisphere (SH). This is the same data used by Estrada, Perron and Martínez-

López (2013), which is the motivation for the analysis to be presented. Based on various

statistical methods, they documented that anthropogenic factors were responsible for the

following features in temperature series: a marked increase in the growth rates of both tem-

peratures and radiative forcing occurring near 1960, marking the start of sustained global

warming; the impact of the Montreal Protocol (in reducing the emission of chloro‡uorocar-

bons, CFC) and a reduction in methane emissions contributed to the recent so-called hiatus

in the growth of temperatures since the mid-90s; the two World Wars and the Great Crash

contributed to the mid-20th century cooling via important reductions in CO2 emissions.

While the presence of the break in the slope of the trend in temperatures is well established

using the test of Perron and Yabu (2009b), the statistical evidence about the two slowdowns

or hiatus periods has not been statistically documented even though they are both well

recognized in the climate change literature; see Maher et al. (2014). Our goal is to see

whether our method can detect the main features documented, namely the change in growth

following 1960 and the two non-linearities taking the form of a slowdown in growth during

the 40s-mid-50s and the post mid-90s.

It is well known in the climate change literature that the Atlantic Multidecadal Oscillation

(AMO) represents ocean-atmosphere processes naturally occurring in the North Atlantic with

a large in‡uence over NH and global climates. It produces 60- to 90-years natural oscillations

that distort the warming trend suggesting it should be …ltered before attempting to model

the trend. Consequently, following Estrada et al. (2013), we remove the low frequency

natural component of the AMO from the NH and global temperature series in order to

obtain a better measure of the low frequency trend, i.e., to isolate the trend in climate.

The AMO series (1856-2010) was obtained from NOAA (National Oceanic and Atmospheric

Administration; http://www.esrl.noaa.gov/).

As discussed in Estrada et al. (2013), applying standard unit root tests lead to a non-

rejection of the unit root null hypothesis. This could be due to a genuine non-linear trend,

which biases the unit root tests towards non-rejections, or to a genuine I(1) noise component.
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Hence, it is important to allow for both I(0) and I(1) noise when testing for the presence

of non-linear components in the trend. We applied both the ASW-based and our testing

procedures. We …rst used the sequential procedure described in Section 4.2 to determine the

number of frequencies. The results are presented in Table 5. Our method selects the …rst

three frequencies as being signi…cant, while the ASW-based method fails to …nd any non-

linearities. The parameter estimates are presented in Table 6. Using the …tted non-linear

trend function from our procedure, we applied Enders and Lee (2012) unit root test. The

results presented in Table 5, show that the remaining noise is deemed stationary at the 1%

signi…cance level.

The …tted non-linear trend functions are presented in Figure 7. The slowdown in the

40s-mid-50s and the marked increase in the rate of growth after 1960 are clearly present in

all series. However, the hiatus post mid-90s is present only in the global and SH series. This

is consistent with the argument advanced in Estrada et al. (2013) that the reduction in CFC

was a major driver behind the slowdown in global temperatures. As argued by Previdi and

Polvani (2014), the ozone recovery (due to the reduction in the emissions of CFC) has been

instrumental in driving SH climate by altering the tropospheric midlatitude jet. Hence, our

…tted non-linear trends are consistent with the main features of the climate trend since the

early 20th century.

6 Conclusions

This paper proposes a new test for the presence of nonlinear deterministic trends approx-

imated by Fourier expansions in a univariate time series without any prior knowledge as

to whether the noise component is stationary or contains an autoregressive unit root. Our

approach builds on the work of Perron and Yabu (2009a) and is based on a Feasible GLS

procedure that uses a super-e¢cient estimator of the sum of the autoregressive coe¢cients

? when ? = 1. The resulting Wald test statistic asymptotically follows a chi-square limit

distribution in both the I(0) and I(1) cases. To improve the …nite sample properties of the

tests, we use a bias corrected version of the OLS estimator of ? proposed by Roy and Fuller

(2001). We show that our procedure is substantially more powerful than currently available

alternatives. An empirical application to global and hemispheric temperatures series shows

the usefulness of our proposed method and o¤ers additional insights into the di¤erences in

climate change in the Northern and Southern hemispheres.
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Appendix: Technical Derivations

Proof of equation (6): The t-statistic for testing ? = 0 is:

tb? =
T 1=2

PT
t=1(sin(2?kt=T )? ?̂ sin(2?k(t? 1)=T ))(ut ? ?̂ut?1)n

s2T
PT

t=1(sin(2?kt=T )? ?̂ sin(2?k(t? 1)=T ))2
o1=2 + op(1)

=

(
T 1=2

TX

t=1

?sin(2?kt=T )et ? T (?̂ ? 1)T?1=2
TX

t=1

?sin(2?kt=T )ut?1

?T (?̂ ? 1)
"
T?1=2

TX

t=1

sin(2?k(t? 1)=T )et ? T (?̂ ? 1)T?3=2
TX

t=1

sin(2?k(t? 1)=T )ut?1

#)

=

(
s2

"
T

TX

t=1

?sin2(2?kt=T ) + T 2(?̂ ? 1)2T?1
TX

t=1

sin2(2?k(t? 1)=T )
#)1=2

+ op(1).

The result follows using the facts that:

1. T 1=2
PT

t=1?sin(2?kt=T )et ) ?(2?k)
R 1
0
cos(2?kr)dW (r),

2. T?1=2
PT

t=1?sin(2?kt=T )ut?1 ) ?(2?k)
R 1
0
cos(2?kr)W (r)dr,

3. T?1=2
PT

t=1 sin(2?k(t? 1)=T )et ) ?
R 1
0
sin(2?kr)dW (r),

4. T?3=2
PT

t=1 sin(2?k(t? 1)=T )ut?1 ) ?
R 1
0
sin(2?kr)W (r)dr,

5. T
PT

t=1?sin
2(2?kt=T )) (2?k)2

R 1
0
cos2(2?kr)dr,

6. T?1
PT

t=1 sin
2(2?k(t? 1)=T ))

R 1
0
sin2(2?kr)dr,

7. s2 = ?2 + op(1).

Proof of equation (11): The t-statistic for testing ? = 0 is:

tb? =
(1? b?2S) cos(2?k=T )u1 +

PT
t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))(ut ? ?̂ut?1)n

s2
h
(1? b?2S) cos2(2?k=T ) +

PT
t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))2

io1=2

=
T 1=2

PT
t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))(ut ? ?̂ut?1)n

s2T
PT

t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))2
o1=2 + op(1)

The result follows using the facts that:

1. T
PT

t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))2 ) (2?k)
R 1
0
sin2(2?kr)dr,
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2. T 1=2
PT

t=1(cos(2?kt=T )?b?S cos(2?k(t?1)=T ))(ut??̂ut?1)) ??(2?k)
R 1
0
sin(2?kr)dW (r),

3. s2 = ?2 + op(1).

Here, the …rst observation of the innovation does not have any e¤ect on the limiting
distribution. However, when we using the FGLS estimator assuming u0 = 0, the initial
observation dominates the limiting distribution. The t-statistic for testing ? = 0 is:

tb? =
cos(2?k=T )u1 +

PT
t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))(ut ? ?̂ut?1)n

s2
h
cos2(2?k=T ) +

PT
t=1(cos(2?kt=T )? b?S cos(2?k(t? 1)=T ))2

io1=2

=
cos(2?k=T )u1

fs2 cos2(2?k=T )g1=2
+ op(1)

using the facts that cos(0) = 1 and s2 = ?2 + op(1), tb? ) u1=?.

Proof of Theorem 1: The model is yt = x0t? + ut where the regressors are xt = (z
0
t; f

0
t)
0

with zt = (1; t; :::; tpd)0 and ft = (sin(2?kt=T ); cos(2?kt=T ))0; the parameters are ? = (?
0; ? 0)0

with ? = (?0; :::; ?pd)
0 and ? = (?1; ?2)

0. We have

?̂? ? =

2
4 q11 q12

q012 q22

3
5
? 2
4 r1

r2

3
5

where

q11 = (1? ?̂2S)z1z
0
1 +

TX

t=2

(zt ? ?̂Szt?1)(zt ? ?̂Szt?1)
0

q22 = (1? ?̂2S)f1f
0
1 +

TX

t=2

(ft ? ?̂Sft?1)(ft ? ?̂Sft?1)
0

q12 = (1? ?̂2S)z1f
0
1 +

TX

t=2

(zt ? ?̂Szt?1)(ft ? ?̂Sft?1)
0

r1 = (1? ?̂2S)
1=2z1u1 +

TX

t=2

(zt ? ?̂Szt?1)e
?
t

r2 = (1? ?̂2S)
1=2f1u1 +

TX

t=2

(ft ? ?̂Sft?1)e
?
t ;

with e?t = ut ? ?̂Sut?1. Let the diagonal matrix
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?T =

2
4 ?1;T 0

0 ?2;T

3
5

where ?1;T and ?2;T are de…ned later.

Stationary Case (j?j < 1). Let?1;T = diag(T 1=2; T 3=2; :::; T pd+1=2) and?2;T = diag(T 1=2; T 1=2).
Let F (r) = [F1(r)

0; F2(r)
0]0 with F1(r) = [1; r; :::; rpd ]0 and F2(r) = [sin(2?kr); cos(2?kr)]0.

The convergence results for each components are as follows:

T?1=2
[Tr]X

t=1

e?t = T?1=2
[Tr]X

1

(et ? (?̂S ? ?)ut?1)

= T?1=2
[Tr]X

t=1

et ? T?1=2(T 1=2(?̂S ? ?))(T?1=2
[Tr]X

t=1

ut?1)

= T?1=2
[Tr]X

t=1

et + op(1)) ?W (r);

??11;T q11?
?1
1;T = ??11;T

"
TX

t=2

(zt ? ?̂Szt?1)(zt ? ?̂Szt?1)
0

#
??11;T + op(1)

) (1? ?)2
Z 1

0

F1(r)F1(r)
0dr;

??12;T q22?
?1
2;T = ??12;T

"
TX

t=2

(ft ? ?̂Sft?1)(ft ? ?̂Sft?1)
0

#
??12;T + op(1)

) (1? ?)2
Z 1

0

F2(r)F2(r)
0dr;

??11;T q12?
?1
2;T = ??11;T

"
TX

t=2

(zt ? ?̂Szt?1)(ft ? ?̂Sft?1)
0

#
??12;T + op(1)

) (1? ?)2
Z 1

0

F1(r)F2(r)
0dr;

??11;T r1 = ?
?1
1;T

TX

t=2

(zt ? ?̂Szt?1)e
?
t + op(1)) ?(1? ?)

Z 1

0

F1(r)dW (r);
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??12;T r2 = ?
?1
2;T

TX

t=2

(ft ? ?̂Sft?1)e
?
t + op(1)) ?(1? ?)

Z 1

0

F2(r)dW (r):

Then, we have

??1T (
eX 0 eX)??1T =

2
4 ?

?1
1;T q11?

?1
1;T ??11;T q12?

?1
2;T

??12;T q
0
12?

?1
1;T ??12;T q22?

?1
2;T

3
5) (1? ?)2

Z 1

0

F (r)F (r)0dr;

??1T X 0U =

2
4 ?

?1
1;T r1

??12;T r2

3
5) ?(1? ?)

Z 1

0

F (r)dW (r);

?T (?̂? ?) = (??1T
eX 0 eX??1T )?1(??1T eX 0 eU)

) ?

1? ?
(

Z 1

0

F (r)F (r)0dr)?1
Z 1

0

F (r)dW (r):

The result stated in Theorem 1 follows using the convergence results stated above noting
that we can express the Wald tests as:

Wb? = ?̂
0R0[s2R( eX 0 eX)?R0]?1R?̂: (A.1)

Unit Root Case (? = 1). Let Q(r) = [Q1(r)
0; Q2(r)

0]0 with Q1(r) = [0; 1; :::; pdr
(pd?1)]0

and Q2(r) = [2?k cos(2?kr);?2?k sin(2?kr)]0, ?1;T = diag(1; T 1=2; :::; T pd?1=2) and ?2;T =
diag(T?1=2; T?1=2). Using the fact that T (?̂S ? 1) !p 0, the convergence results for each
elements are:

T?1=2
[Tr]X

t=1

e?t = T?1=2
[Tr]X

t=1

(et ? (?̂S ? 1)ut?1)

= T?1=2
[Tr]X

t=1

et ? T (?̂S ? 1)(T?1
[Tr]X

t=1

T?1=2ut?1)) ?W (r);

??11;T q11?
?1
1;T = ?

?1
1;T

"
TX

t=2

(zt ? zt?1)(zt ? zt?1)
0

#
??11;T + op(1))

Z 1

0

Q1(r)Q1(r)
0dr;

??12;T q22?
?1
2;T = ?

?1
2;T

"
TX

t=2

(ft ? ft?1)(ft ? ft?1)
0

#
??12;T + op(1))

Z 1

0

Q2(r)Q2(r)
0dr;

??11;T q12?
?1
2;T = ?

?1
1;T

"
TX

t=2

(zt ? zt?1)(ft ? ft?1)
0

#
??12;T + op(1))

Z 1

0

Q1(r)Q2(r)
0dr;
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??11;T r1 = ?
?1
1;T

TX

t=2

(zt ? zt?1)e
?
t + op(1)) ?

Z 1

0

Q1(r)dW (r);

??12;T r2 = ?
?1
2;T

TX

t=2

(ft ? ft?1)e
?
t + op(1)) ?

Z 1

0

Q2(r)dW (r);

Then, we have

??1T (
eX 0 eX)??1T =

2
4 ?

?1
1;T q11?

?1
1;T ??11;T q12?

?1
2;T

??12;T q
0
12?

?1
1;T ??12;T q22?

?1
2;T

3
5)

Z 1

0

Q(r)Q(r)0dr

??1T
eX 0U =

2
4 ?

?1
1;T r1

??12;T r2

3
5) ?

Z 1

0

Q(r)dW (r)

and

?T (?̂? ?) = (??1T
eX 0 eX??1T )?(??1T eX 0U)

) ?

?Z 1

0

Q(r)Q(r)0dr

?? ?Z 1

0

Q(r)dW (r)

?

The result stated in Theorem 1 follows using the convergence results stated above and the
representation (A.1) of the Wald test.

Local Asymptotic Power. We derive the local asymptotic power of our test. The alter-
natives are given by R? = ?T = ?0?T

?1=2? for I(0) errors and R? = ?T = ?0?T
1=2? for I(1)

errors with ? = [1; 1]0. Under the alternative, we can express the Wald test as:

Wb? = [R(?̂? ?) + ?T ]0[s2R( eX 0 eX)?R0]?1[R(?̂? ?) + ?T ]:

Let ?T = diag(T 1=2; T 3=2; :::; T pd+1=2; T 1=2; T 1=2) for I(0) errors and ?T = diag(1; T 1=2; :::;
T pd?1=2; T?1=2; T?1=2) for I(1) errors. Then,

Wb? = [R?T (?̂? ?) + ?0??]
0[s2R?T ( eX 0 eX)??TR0]?1[R?T (?̂? ?) + ?0??]:

Using the convergence results stated in Theorem 1, we have

Wb? ) [R(

Z 1

0

G(r)G(r)
0
dr)?1

Z 1

0

G(r)dW (r) + ?0?]
0[R(

Z 1

0

G(r)G(r)
0
dr)?1R0]?1

?[R(
Z 1

0

G(r)G(r)
0
dr)?1

Z 1

0

G(r)dW (r) + ?0?]

where G(r) = F (r) = [1; r; :::; rpd ; sin(2?kr); cos(2?kr)]0 if j?j < 1 and G(r) = Q(r) =
[0; 1; :::; pdr

(pd?1); 2?k cos(2?kr);?2?k sin(2?kr)]0 if ? = 1.
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Description of the ASW test. The procedure of Astill et al. (2014) uses a function of
an auxiliary unit root test (denoted by J) to select between the I(0) and I(1) critical values
for a Wald test. Here we brie‡y describe the test for the model with only a constant and a
frequency of k = 1. The ASW test is based on the following partial sums regression:

Zt = ?0t+ ?1

tX

s=1

sin

?
2?s

T

?
+ ?2

tX

s=1

cos

?
2?s

T

?
+ St

where Zt =
Pt

s=1 ys and St =
Pt

s=1 us. Then, a scaled Wald statistic for H0 : ?1 = ?2 = 0 is
SW = (RSSR?RSSU )=RSSU where RSSR is the residual sum of squares from a regression
of Zt on t, and RSSU is the residual sum of squares from the unrestricted regression. The
limiting distribution still depends on whether ut is I(0) or I(1). The critical value of the test
is cv0 for I(0) errors while it is cv1 for I(1) errors. In the ASW test, an adaptive critical value
is de…ned as

cv? = ?Jcv0 + (1? ?J)cv1

where ?J = exp(??T ?J) with ? and ? positive constants. They recommend for J a Breitung
(2002)-type variance ratio unit root test statistic so that, as T !1, ?J !p 1 and cv? !p cv0
for I(0) errors and ?J !p 0 and cv? !p cv1 for I(1) errors. For the stationary case, consider
the local alternatives [?1;?2] = [?0!0T

?1=2;?0!0T
?1=2] where !20 is the long-run variance of

ut. Then, as T !1,

SW )
R 1
0
LR(r; ?0)

2dr
R 1
0
LU (r)2dr

? 1

where LR(r; ?0) is the continuous time residuals from the projection of ?0(1?cos(2?r))=2?+
?0 sin(2?r)=2? + W (r) onto the space spanned by r, and LU (r) denotes the continuous
time residuals from the projection of W (r) onto the space spanned by [r; (1? cos(2?r))=2?,
sin(2?r)=2?]. For the unit root case, consider the local alternatives [?1;?2] = [?0!0T

1=2;?0!0T
1=2]

where !20 is the long-run variance of ?ut. Then, as T !1,

SW )
R 1
0
NR(r; ?0)

2dr
R 1
0
NU (r)2dr

? 1

where NR(r; ?0) is the continuous time residuals from the projection of ?0(1?cos(2?r))=2?+
?0 sin(2?r)=2? +

R r
0
W (s)ds onto the space spanned by r, and NU (r) denotes the continu-

ous time residuals from the projection of
R r
0
W (s)ds onto the space spanned by [r; (1 ?

cos(2?r))=2?; sin(2?r)=2?].

Near Unit Root Case (?T = 1+c=T , Proof of Theorem 2). Let?1;T = diag(1; T 1=2; :::,
T pd?1=2) and?2;T = diag(T?1=2; T?1=2). As shown in Perron and Yabu (2009a), T (?̂S?1)!p

0. Now, the true value of ? is in a T?1 neighborhood of 1 so that in large sample ?̂ is always
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truncated to take value one. Then, we have the following limit results:

T?1=2
[Tr]X

t=1

e?t = T?1=2
[Tr]X

t=1

(et +
c

T
ut?1 ? (?̂S ? 1)ut?1)

= T?1=2
[Tr]X

t=1

et + cT?3=2
[Tr]X

t=1

ut?1 ? T (?̂S ? 1)(T?1
[Tr]X

t=1

T?1=2ut?1)

) ?[W (r) + c

Z 1

0

Jc(r)dr] = ?Jc(r),

??1T (
eX 0 eX)??1T =

2
4 ?

?1
1;T q11?

?1
1;T ??11;T q12?

?1
2;T

??12;T q
0
12?

?1
1;T ??12;T q22?

?1
2;T

3
5)

Z 1

0

Q(r)Q(r)0dr;

??1T X 0U =

2
4 ?

?1
1;T r1

??12;T r2

3
5) ?

Z 1

0

Q(r)dJc(r):

Using the convergence results stated above and the representation of the Wald test, the
limiting distribution of the Wald statistics is:

Wb? ) [R(

Z 1

0

Q(r)Q(r)0dr)?
Z 1

0

Q(r)dJc(r)]
0[R(

Z 1

0

Q(r)Q(r)0dr)?R0]?1

?[R(
Z 1

0

Q(r)Q(r)0dr)?
Z 1

0

Q(r)dJc(r)]
0:
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Table 1: Values of ? :50 and ? :85.

pd = 0 pd = 1

? :50 ? :85 ? :50 ? :85

Single Frequency

k = 1 -2.39 -3.26 -3.09 -3.83

2 -1.71 -2.67 -2.56 -3.45

3 -1.63 -2.51 -2.33 -3.21

4 -1.60 -2.45 -2.27 -3.09

5 -1.59 -2.43 -2.23 -3.05

Multiple Frequencies

n = 1 -2.39 -3.26 -3.09 -3.83

2 -2.99 -3.93 -3.79 -4.50

3 -3.51 -4.49 -4.40 -5.10

4 -3.98 -4.99 -4.92 -5.64

5 -4.36 -5.44 -5.41 -6.11



Table 2.a: Finite Sample Null Rejection Probabilities of the ASW and FGLS
Tests; pd = 0; 5% Nominal Size.

ASW FGLS

Median Unbiased Upper Biased

? ? T = 150 300 600 T = 150 300 600 T = 150 300 600

1.00 -0.80 0.139 0.104 0.074 0.197 0.197 0.186 0.079 0.071 0.068

-0.40 0.067 0.054 0.048 0.149 0.111 0.083 0.066 0.051 0.049

0.00 0.062 0.051 0.048 0.121 0.082 0.060 0.080 0.065 0.056

0.40 0.057 0.048 0.045 0.124 0.080 0.065 0.103 0.076 0.064

0.80 0.055 0.054 0.048 0.120 0.087 0.065 0.111 0.085 0.065

0.95 -0.80 0.139 0.073 0.036 0.165 0.110 0.076 0.080 0.059 0.053

-0.40 0.063 0.022 0.008 0.139 0.087 0.058 0.057 0.042 0.037

0.00 0.045 0.016 0.007 0.107 0.072 0.060 0.041 0.036 0.040

0.40 0.042 0.016 0.007 0.073 0.048 0.039 0.024 0.023 0.021

0.80 0.041 0.016 0.006 0.037 0.022 0.022 0.013 0.009 0.012

0.90 -0.80 0.082 0.059 0.042 0.095 0.075 0.061 0.053 0.050 0.052

-0.40 0.036 0.015 0.009 0.091 0.062 0.041 0.043 0.038 0.033

0.00 0.025 0.010 0.005 0.080 0.050 0.043 0.038 0.033 0.035

0.40 0.024 0.009 0.005 0.066 0.056 0.040 0.022 0.033 0.032

0.80 0.021 0.009 0.005 0.048 0.048 0.045 0.012 0.021 0.032

0.80 -0.80 0.054 0.052 0.054 0.056 0.059 0.056 0.032 0.044 0.050

-0.40 0.029 0.021 0.018 0.062 0.044 0.047 0.037 0.031 0.041

0.00 0.017 0.012 0.009 0.054 0.037 0.036 0.033 0.028 0.031

0.40 0.013 0.009 0.008 0.031 0.030 0.034 0.010 0.020 0.030

0.80 0.015 0.009 0.007 0.044 0.033 0.032 0.014 0.020 0.028

Note: ASW denotes the test of Astill et al. (2014); FGLS (Median Unbiased) is the Wb?
test with ? 0:5; FGLS (Upper Biased) is the Wb? test with ? 0:85. The data are generated by:
yt = ut = ?ut?1 + et + ?et?1.



Table 2.b: Finite Sample Null Rejection Probabilities of the ASW and FGLS
Tests; pd = 1; 5% Nominal Size.

ASW FGLS

Median Unbiased Upper Biased

? ? T = 150 300 600 T = 150 300 600 T = 150 300 600

1.00 -0.80 0.173 0.137 0.097 0.191 0.162 0.168 0.115 0.063 0.061

-0.40 0.073 0.054 0.051 0.161 0.137 0.107 0.074 0.058 0.052

0.00 0.061 0.049 0.044 0.145 0.106 0.071 0.087 0.077 0.062

0.40 0.055 0.041 0.040 0.130 0.082 0.064 0.100 0.073 0.063

0.80 0.060 0.051 0.042 0.122 0.089 0.065 0.112 0.085 0.065

0.95 -0.80 0.078 0.038 0.015 0.117 0.072 0.051 0.078 0.039 0.030

-0.40 0.025 0.006 0.001 0.095 0.064 0.042 0.041 0.030 0.025

0.00 0.015 0.003 0.001 0.078 0.051 0.044 0.027 0.022 0.027

0.40 0.015 0.003 0.001 0.051 0.039 0.029 0.016 0.015 0.017

0.80 0.014 0.002 0.001 0.025 0.012 0.018 0.008 0.004 0.010

0.90 -0.80 0.050 0.032 0.019 0.078 0.049 0.050 0.064 0.034 0.037

-0.40 0.011 0.005 0.002 0.066 0.041 0.035 0.036 0.026 0.027

0.00 0.007 0.002 0.002 0.066 0.048 0.031 0.031 0.031 0.026

0.40 0.004 0.001 0.000 0.033 0.045 0.035 0.008 0.023 0.027

0.80 0.005 0.002 0.000 0.029 0.029 0.033 0.006 0.010 0.020

0.80 -0.80 0.026 0.031 0.031 0.036 0.040 0.042 0.024 0.030 0.038

-0.40 0.009 0.004 0.006 0.053 0.031 0.035 0.036 0.024 0.030

0.00 0.003 0.002 0.000 0.049 0.033 0.036 0.034 0.027 0.033

0.40 0.002 0.000 0.001 0.014 0.024 0.028 0.005 0.017 0.025

0.80 0.003 0.001 0.001 0.026 0.024 0.025 0.009 0.014 0.022

Note: ASW denotes the test of Astill et al. (2014); FGLS (Median Unbiased) is the Wb?
test with ? 0:5; FGLS (Upper Biased) is the Wb? test with ? 0:85. The data are generated by:
yt = ut = ?ut?1 + et + ?et?1.



Table 3: Number of Frequencies Selected by the ASW and FGLS tests; pd = 1;
T=150.

ASW FGLS (UB)

sig5 sig1

? ? n=0 n=1 n=2 n=3 n=0 n=1 n=2 n=3 n=0 n=1 n=2 n=3

1.00 0 0.864 0.058 0.042 0.036 0.722 0.082 0.093 0.103 0.869 0.045 0.042 0.044

1 0.870 0.043 0.050 0.037 0.630 0.076 0.181 0.113 0.826 0.034 0.092 0.048

2 0.841 0.016 0.091 0.052 0.371 0.067 0.459 0.103 0.626 0.037 0.293 0.044

3 0.780 0.006 0.141 0.074 0.118 0.039 0.742 0.102 0.302 0.033 0.620 0.045

4 0.677 0.000 0.215 0.108 0.016 0.009 0.873 0.103 0.072 0.017 0.866 0.045

5 0.555 0.000 0.313 0.132 0.000 0.001 0.895 0.103 0.005 0.004 0.948 0.044

0.95 0 0.970 0.015 0.008 0.006 0.837 0.029 0.054 0.081 0.918 0.020 0.028 0.035

1 0.957 0.017 0.017 0.009 0.765 0.025 0.134 0.076 0.885 0.018 0.064 0.033

2 0.936 0.008 0.037 0.020 0.485 0.018 0.419 0.079 0.726 0.007 0.236 0.031

3 0.858 0.001 0.093 0.048 0.134 0.016 0.771 0.079 0.345 0.005 0.618 0.032

4 0.745 0.000 0.175 0.081 0.012 0.006 0.901 0.082 0.071 0.004 0.893 0.032

5 0.588 0.000 0.283 0.129 0.000 0.000 0.919 0.080 0.005 0.001 0.962 0.032

0.90 0 0.991 0.007 0.002 0.000 0.885 0.030 0.038 0.048 0.942 0.017 0.020 0.021

1 0.984 0.008 0.006 0.003 0.811 0.024 0.109 0.056 0.899 0.016 0.060 0.025

2 0.957 0.002 0.031 0.010 0.532 0.004 0.415 0.049 0.753 0.003 0.221 0.023

3 0.864 0.000 0.097 0.039 0.113 0.001 0.832 0.054 0.342 0.000 0.634 0.024

4 0.703 0.000 0.221 0.077 0.005 0.000 0.941 0.054 0.042 0.000 0.934 0.023

5 0.512 0.000 0.368 0.120 0.000 0.000 0.944 0.056 0.001 0.000 0.973 0.026

0.80 0 0.994 0.006 0.000 0.000 0.890 0.030 0.035 0.044 0.952 0.011 0.016 0.021

1 0.992 0.002 0.006 0.000 0.662 0.031 0.257 0.050 0.793 0.014 0.172 0.020

2 0.928 0.000 0.061 0.011 0.350 0.001 0.602 0.047 0.502 0.001 0.478 0.021

3 0.713 0.000 0.243 0.044 0.036 0.000 0.918 0.046 0.192 0.000 0.788 0.020

4 0.424 0.000 0.490 0.087 0.000 0.000 0.955 0.045 0.004 0.000 0.977 0.019

5 0.193 0.000 0.710 0.098 0.000 0.000 0.957 0.044 0.000 0.000 0.980 0.020

Note: ASW denotes the test of Astill et al. (2014); FGLS (UB) (sig5), resp. FGLS

(UB) (sig1), are the Wb? test with ? 0:85 and a 5%, resp. 1%, test for the sequential procedure
to select the number of frequencies.The data are generated by: yt = ?(

P2
k=1 sin(2?kt=T ) +P2

k=1 cos(2?kt=T )) + ut, ut = ?ut?1 + et.



Table 4: Exact Size of the Enders and Lee (2012) Unit Root Test with
Sequential Frequency Selections; 5% Nominal Size.

Fixed n ASW FGLS (UB)

? n=0 n=2 sig5 sig1

T=150 0 0.048 0.049 0.093 0.118 0.103

1 0.029 0.048 0.065 0.095 0.083

2 0.006 0.048 0.044 0.071 0.061

3 0.001 0.048 0.045 0.069 0.063

4 0.000 0.052 0.058 0.073 0.068

5 0.000 0.052 0.066 0.072 0.068

T=300 0 0.047 0.047 0.080 0.094 0.083

1 0.041 0.048 0.071 0.089 0.077

2 0.021 0.047 0.051 0.076 0.064

3 0.004 0.042 0.033 0.058 0.047

4 0.001 0.052 0.043 0.067 0.059

5 0.000 0.051 0.048 0.068 0.061

T=600 0 0.048 0.053 0.078 0.082 0.072

1 0.046 0.053 0.074 0.079 0.070

2 0.026 0.049 0.052 0.061 0.049

3 0.017 0.053 0.042 0.055 0.043

4 0.007 0.055 0.036 0.052 0.039

5 0.002 0.053 0.032 0.055 0.040

Note: ASW denotes the test of Astill et al. (2014); FGLS (UB) (sig5), resp. FGLS
(UB) (sig1), are the Wb? test with ? 0:85 and a 5%, resp. 1%, test for the sequential procedure
to select the number of frequencies. The data are generated by: yt = ?(

P2
k=1 sin(2?kt=T )+P2

k=1 cos(2?kt=T )) + ut, ut = ut?1 + et.



Table 5: Empirical Applications to Temperature Series.
ASW FGLS

sig5 sig1

bn LM bn LM bn LM

Global 0 -2.039 3 -8.485*** 3 -8.485***

Nothern Hemisphere 0 -2.271 3 -9.715*** 3 -9.715***

Southern Hemisphere 0 -2.904* 3 -6.073*** 3 -6.073***

Note: ***, **, and * denote a statistic signi…cant at the 1%, 5%, and 10% level, respec-
tively. LM is the unit root test of Enders and Lee (2012). bn is the number of frequency
estimated.

Table 6: Estimates of the Nonlinear Trend Functions.
Global Northern Hemisphere Southern Hemisphere

1856-2010 1856-2010 1850-2010

Constant -0.436*** -0.509*** -0.577***

(0.042) (0.042) (0.054)

Trend 0.006*** 0.007*** 0.005***

(0.001) (0.001) (0.001)

sin(2?t=T ) 0.082*** 0.101*** 0.075**

(0.030) (0.029) (0.038)

cos(2?t=T ) 0.105*** 0.081*** 0.138***

(0.015) (0.014) (0.019)

sin(4?t=T ) 0.006 0.016 0.029

(0.020) (0.019) (0.025)

cos(4?t=T ) 0.006 0.030*** -0.001

(0.015) (0.014) (0.019)

sin(6?t=T ) 0.013 0.022 -0.055***

(0.017) (0.017) (0.022)

cos(6?t=T ) -0.056*** -0.042*** -0.046

(0.015) (0.014) (0.019)

Note: ***, **, and * denote a statistic signi…cant at the 1%, 5%, and 10% level, respec-
tively.





















Figure 5a. Sequential Enders-Lee Unit Root Tests, α = 0.9 

 

 
 

Figure 5b. Sequential Enders-Lee Unit Root Tests, α= 0.8 
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Figure 6a. Sequential Enders-Lee Unit Root Tests, α= 0.9; Fixed n 

 

 
Figure 6b. Sequential Enders-Lee Unit Root Tests, α= 0.8; Fixed n 
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Figure 7. Temperature Series 
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