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1 Benefits and Risks of Attending an Elite School

Families often have some choice in where their children attend school, and all else equal, most

families prefer a school of higher academic quality (see, e.g., Hastings, Kane, and Staiger 2009).

Attending a “better” school, as defined by peer ability or school resources, is usually thought

to benefit students academically. For example, a student may benefit from working with high-

achieving and highly motivated peers and a better-funded school is able to afford more and better

educational inputs. But there is also a risk to attending a better school, particularly if doing so

means that the student is closer to the bottom of the school-specific ability distribution. The diffi-

culty level of the coursework may prove too much for the student to handle. Teachers may teach

mostly to the top of the class, leaving behind those who enter the school with a weaker academic

background. Students experiencing such challenges may fail to complete their education at all,

which is probably a much less desirable outcome than graduating from a lower-quality school.

This paper quantifies the trade-off between academic benefit and dropout risk facing students

admitted to a subset of Mexico City’s elite public high schools. Mexico City is ideal for this exer-

cise for three reasons. First, there are large perceived disparities in public high school quality, with

a well-identified group of “elite” schools standing above all others. This gives a natural definition

of what an “elite” (or “better”) school is. Second, nearly all public high schools in the city partic-

ipate in a unified merit-based admissions system called COMIPEMS, using a standardized exam

and students’ stated preferences to allocate all students across schools. This mechanism allows us

to credibly identify the impact of elite school admission on dropout probability and end-of-high

school exam scores. Third, Mexico is characterized both by a high secondary school dropout rate

and a significant estimated economic return to high school education, so the risk of dropping out is

a first-order issue facing students. In our sample, about half of students who are assigned to a high

school do not take the exit exam three years later. At the same time, young men with a high school

diploma have 24% higher wages than those who only completed middle school (Campos-Vazquez

2013). Though this is not a causal relationship, it is suggestive that dropping out has a real cost for

students.
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A regression discontinuity design, made possible by the assignment mechanism, is used to dis-

cover whether students experience a change in dropout probability and in end-of-high school exam

scores as a result of admission to an elite school, using their most-preferred non-elite school that

would admit them as the counterfactual. We find that there is a clear trade-off for most marginally

admitted students. Admission to an elite school raises their probability of high school dropout

by 9.5 percentage points, compared to an average probability of 48%. Along with this substan-

tial increase in dropout probability, elite school admission also results in an average gain of 0.17

standard deviations on the 12th grade standardized exam, which comes mostly from gains in math.

Students with lower middle school grade point averages experience larger increases in dropout

probability, but there is no evidence that they experience a smaller boost in their exam scores from

elite admission.

While a structural treatment of student preferences is not the subject of this paper, we present

reduced-form evidence showing that students with lower performance in middle school choose

elite schools less often, compared to neighboring high-performing students with the same entrance

exam score. The paper’s main findings offer one explanation for this result. Weak students may

understand that elite school admission is a double-edged sword: while the expected academic

benefit for graduates is positive, the increased chance of leaving high school without a diploma

makes applying to an elite school a risky choice.

Beyond the pressure exerted on lower-achieving students, elite admission increases the oppor-

tunity cost of school attendance by inducing longer commutes. Most marginally admitted students

commute a longer distance to elite schools than they would to their most-preferred alternative.

Marginal admission to an elite school increases dropout probability more when admission results

in a longer commute. The problem of travel distance for elite schools is not unique to Mexico City.

For example, Abdulkadiroglu et al. (2014) find that students in New York City and Boston must

travel farther to attend elite “exam high schools” than to their next-best option. We note, how-

ever, that commuting distance is but one factor affecting dropout risk–in our case, elite admission

increases the probability of dropout even for students whose commute decreases due to admission.
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Most previous studies on the effects of elite high school admission have focused on the impact

on exam scores. Such studies typically analyze cases of merit-based admission systems, and use

a sharp or fuzzy regression discontinuity design to estimate the effect of elite school admission

on outcomes. Most have found zero or modest effects: Clark (2010) in the United Kingdom, Ab-

dulkadiroglu et al. (2014) in Boston and New York, Lucas and Mbiti (2013) in Kenya, and Ajayi

(2014) in Ghana all find zero or negligible impacts from elite high schools while Jackson (2010)

and Pop-Eleches and Urquiola (2013) find a modest benefit of admission to high schools with

higher-scoring peers in Trinidad and Tobago and Romania, respectively. Zhang (2012) exploits a

randomized lottery for elite Chinese middle schools to show that elite admission has no significant

impact on academic outcomes. Beyond the zero effect on exam scores, Dobbie and Freyer (2011)

find that the New York elite high schools do not have an appreciable effect on long-run outcomes

such as SAT score or college graduation. Estrada and Gignoux (2014) use a similar empirical

strategy to ours with one year of COMIPEMS data and a separate survey (administered in a sub-

sample of high schools) to estimate the effect of elite school admission on subjective expectations

of the returns to higher education, finding that admission leads to higher expected returns. We will

expand further on the relationship between their work and the present paper.

In a much different study, Duflo et al. (2011) randomly assigned Kenyan schools into a track-

ing regime where they divided their first grade classes by student ability. They find that while

tracking is beneficial, there is no evidence that being in a class with better peers is the mechanism

through which these benefits are manifested. We note that in the case of admission to competitive

elite schools, admission results both in a more able peer group as well as a different schooling en-

vironment with resources, management, and culture that may be quite different from other public

schools. Thus the effect of elite school admission is a reflection of both the peer and institutional

channels, which regression discontinuity designs such as the present one cannot effectively disen-

tangle.1

1Further studies on the impact of specific aspects of school quality on test scores include Dearden, Ferri, and

Meghir (2002), Newhouse and Beegle (2006), Gould, Lavy, and Paserman (2004), Hastings, Kane, and Staiger (2006),

Hastings and Weinstein (2008), Cullen, Jacob, and Levitt (2005 and 2006), and Lai et al. (2010).
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The literature on the relationship between school quality and student dropout is sparser. Recent

studies have mostly focused on the impacts of specific aspects of quality, randomly varying one

aspect to see if it increased school attendance, which differs from the concept of dropout in that

reduced attendance may not result in permanently abandoning schooling while dropout usually

does. For example, Glewwe, Ilias, and Kremer (2010) find no effect of a teacher incentive pay

scheme on student attendance in Kenyan public primary schools. More related to our study, de

Hoop (2011) estimates the impact of admission to competitive, elite public secondary schools on

dropout in Malawi. He finds that admission to such schools decreases dropout. This could be due

to increased expected returns from an elite education inducing students to attend, or because the

elite schools provide a more supportive environment. Our findings provide a stark contrast to these

results, although in a much different economic and social context.

The rest of the paper is organized as follows. Section 2 gives a detailed overview of the Mexico

City high school admissions system. Section 3 sets forth the method for identifying the effects of

admission on outcomes. Section 4 describes the data and Section 5 gives the empirical results

and several validity checks. Section 6 uses the results to rationalize revealed preference for elite

schools. Section 7 concludes.

2 Mexico City public high school system and student enroll-

ment mechanism

We first present the institutional environment in which Mexico City’s students choose high schools,

followed by background information on the elite schools and an explanation of how they differ

from other available schooling options.

2.1 School choice in Mexico City

Beginning in 1996, the nine public high school subsystems in Mexico’s Federal District and various

municipalities in the State of Mexico adopted a competitive admissions process. This consortium
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of schools is known as the Comisión Metropolitana de Instituciones Públicas de Educación Media

Superior (COMIPEMS). COMIPEMS was formed in response to the inefficient high school enroll-

ment process at the time, in which students attempted to enroll in several schools simultaneously

and then withdrew from all but the most-preferred school that had accepted them. The goal of

COMIPEMS was to create a unified high school admissions system for all public high schools in

the Mexico City metropolitan area that addressed such inefficiencies and increased transparency in

student admissions.

Any student wishing to enroll in a public high school in the Mexico City metropolitan area

must participate in the COMIPEMS admissions process. In February of the student’s final year

of middle school (grade nine), informational materials are distributed to students explaining the

rules of the admissions system and registration begins. As part of this process, students turn in a

ranked list of up to twenty high schools that they want to attend.2 In June of that year, after all lists

of preferred schools have been submitted, registered students take a comprehensive achievement

examination. The exam has 128 multiple-choice questions worth one point each, covering a wide

range of subject matters corresponding to the public school curriculum (Spanish, mathematics,

and social and natural sciences) as well as mathematical and verbal aptitude sections that do not

correspond directly to the curriculum.

After the scoring process, assignment of students to schools is carried out in July by the Na-

tional Center of Evaluation for Higher Education (Ceneval), under the observation of representa-

tives from each school subsystem and independent auditors. The assignment process is as follows.

First, each school subsystem sets the maximum number of students that it will accept at each high

school. Then, students are ordered by their exam scores from highest to lowest. Any student who

scored below 31 points or failed to complete middle school is disqualified from participating.3

Next, a computer program proceeds in descending order through the list of students, assigning

2Students actually rank programs, not schools. For example, one technical high school may offer multiple career

track programs. A student may choose multiple programs at the same school. For simplicity we will use the term

“school” to refer to a program throughout. No elite school has multiple programs at the same school, so this distinction

is unimportant for the empirical analysis.
3This restriction was removed in 2013, after the period studied in this paper.
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each student to his highest-ranked school with seats remaining when her turn arrives.4 If by the

time a student’s turn arrives, all of his selected schools are full, he must wait until after the se-

lection process is complete and choose from the schools with open slots remaining. This stage of

the allocation takes place over several days, as unassigned students with the highest scores choose

from available schools on the first day and the lowest scorers choose on the final days.

At the end of the final year of high school (grade twelve), students who are currently enrolled

take a national examination called the Evaluación Nacional de Logro Académico en Centros Es-

colares (ENLACE), which tests students in Spanish and mathematics. This examination has no

bearing on graduation or university admissions and the results have no fiscal or other consequence

for high schools. It is a benchmark of student and school achievement and progress.

2.2 Elite subsystems

There are two elite high school subsystems in Mexico City, each affiliated with a prestigious na-

tional university. The Instituto Politécnico Nacional (IPN) is a university located in Mexico City

that focuses on the sciences and engineering. It has 16 affiliated high schools in the city, also

known for providing a rigorous education in math and science. The other elite subsystem is affili-

ated with the Universidad Nacional Autónoma de México (UNAM) and consists of 14 high school

campuses. These schools do not stress quantitative coursework like the IPN, but rather offer a

broader curriculum. Another important difference between the UNAM and IPN schools is that

UNAM students who obtain a high enough grade point average are guaranteed admission to the

university, while students from outside of the UNAM high schools must compete for university ad-

mission by way of a standardized entrance exam. There is an overwhelming public belief that the

IPN and UNAM high schools are superior to the rest. For example, following the 2011 assignment

4In some cases, multiple students with the same score have requested the final seats available in a particular school,

so that the number of students outnumbers the number of seats. When this happens, the representatives in attendance

from the respective school subsystem must choose to either admit all of the tied applicants, slightly exceeding the

initial quota, or reject all of them, taking slightly fewer students than the quota. The number of offered seats and

the decisions regarding tied applicants are the only means by which administrators determine student assignment to

schools; otherwise, assignment is entirely a function of the students’ reported preferences and their scores. Neither

seat quotas nor tie-breaking decisions offer a powerful avenue for strategically shaping a school’s student body.
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process, the major newspaper El Universal ran a story headlined “119 thousand students left out

of the UNAM; Only 21 thousand middle school graduates win a spot at the IPN” (2011). 5

The seven non-elite subsystems offer a range of educational options in their 265 campuses.6

Some have traditional academic curricula, while others offer technical and vocational training.

During the period of study, most technical and vocational schools required that students choose a

track offered at the campus, so students actually faced 604 non-elite school-track choices. Figure

1 is a map of the available schools in the COMIPEMS zone, which consists of the Federal District

and surrounding municipalities of the State of Mexico. While all but two of the elite schools are

located in the Federal District, several of the UNAM schools and most of the IPN schools are

located close to the State of Mexico and are within commuting distance of many students residing

there.

While the UNAM schools are public in a sense, this subsystem refuses to administer the EN-

LACE exam and is legally able to do so because of its “autonomous” status.7 The IPN, all other

public subsystems, and many private schools administer the ENLACE, the latter doing so voluntar-

ily. Because the ENLACE data provide the dependent variables for our analysis, only the effects

of admission to IPN schools are examined in this paper. We will show in the data description

how students attending IPN schools differ from those in the UNAM or non-elite schools, while in

the empirical results we will see what bearing IPN admission has on the peer characteristics and

commuting distance that students experience.

3 Regression discontinuity design and sample definition

The goal of this paper is to determine how much (marginal) admission to an IPN school changes

students’ probability of dropout and their end-of-high school exam scores, compared to the alter-

5The original title is “Fuera de la UNAM, 119 mil jóvenes; Sólo 21 mil egresados de la secundaria logran lugar

en IPN.”
6This discussion refers to the number of available schools in 2005. There have been minor changes since then.
7An additional difference between UNAM and other subsystems is that students selecting an UNAM school as

their first choice during the COMIPEMS assignment process must take a version of the entrance exam written by

UNAM, which is advertised to be equivalent to the standard version in content and difficulty.
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native of admission to a non-elite school. Put another way, the econometric challenge is to estimate

the effect on academic outcomes from admission to a school in an IPN subsystem instead of admis-

sion to the student’s most-preferred non-elite choice, holding constant all student characteristics,

observed and unobserved.

The COMIPEMS assignment mechanism permits a straightforward strategy for identifying the

causal effect of IPN school admission on outcomes through a sharp regression discontinuity (RD)

design. Each school that is oversubscribed (i.e., with more demand than available seats) accepts

all applicants at or above some cutoff COMIPEMS exam score, and rejects all applicants scoring

below that cutoff. This cutoff is set implicitly by the score of the student who obtains the final seat

in that school during the sequential assignment process. If a student lists a particular school on his

preference sheet and scores below the cutoff for each of his more-preferred schools, admission to

that school is determined entirely by whether he scored at or above its cutoff score.8 This generates

a sharp discontinuity in the probability of admission (from 0 to 1) when the student’s score reaches

the cutoff.

The desired comparison is between IPN admission and non-elite admission. Thus we need to

construct a sample of students such that assignment to “treatment” (admission to the IPN subsys-

tem) depends solely on whether a student’s COMIPEMS score exceeds a predetermined cutoff.

To achieve this, we first identify, for each student, the minimum COMIPEMS exam score that the

student could obtain and still be assigned to an IPN school. This student-specific IPN admission

cutoff score is known because the student’s stated preferences, combined with the cutoff scores

for each school, fully determine the student’s assignment for any point value of the COMIPEMS

score.9 If the IPN admission cutoff for a student is undefined because no COMIPEMS score would

result in IPN assignment, then he is dropped from the sample.

In the sharp RD design employed here, a score exceeding the IPN admission cutoff implies

treatment with probability of one. To obtain this outcome in the RD sample, we exclude any student

8The elite schools automatically reject all students with a grade point average below 7 out of 10. Very few students

score high enough for admission and fail to meet this requirement.
9For example, assuming the student obtains a score of 70, the student’s assignment would be his highest-ranked

school that has a cutoff score of 70 or below.
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who would be admitted to a non-IPN school for any point value exceeding the IPN admission

cutoff. For example, a student might select an UNAM school with a cutoff score of 80 as his first

choice and an IPN school with a cutoff of 70 as his second choice. In this case, COMIPEMS

scores of 80 and above would lead to UNAM assignment while scores from 70 to 79 would lead to

IPN assignment. Such students are excluded from the RD sample. This restriction implies that all

students in the RD sample chose an IPN school as their most-preferred option, so we might think

of the RD sample as consisting of students with a relatively strong preference for IPN schools.

Finally, we want to ensure that scoring below the IPN admission cutoff score leads to non-elite

assignment. While by construction no score below this cutoff can result in IPN assignment, we

exclude any student whose stated choices are such that he could obtain a score below the IPN ad-

mission cutoff and still be admitted to an UNAM school.10 This could happen if, for example, the

student’s first choice was an IPN school with a cutoff of 80 and his second choice was an UNAM

school with a cutoff of 70. These three sample restrictions–existence of an IPN admission cutoff

score, no non-IPN school assignments possible above this cutoff, and only non-elite school assign-

ments below this cutoff–result in an RD sample where the probability of elite (IPN) assignment

is zero for all COMIPEMS scores below the IPN admission cutoff and one for all COMIPEMS

scores above it.

Note that different scores above the student’s IPN admission cutoff could result in assignment

to different IPN schools–for example, a score of 70 may be enough for one requested IPN school,

while a score of 75 would be sufficient for admission to a more-preferred IPN school. This does

not pose a problem for the RD design because the treatment is defined as assignment to any IPN

school, not only to the school that corresponds to the student’s IPN admission cutoff. It will be

useful at times in this paper to discuss this latter school, however, which we will refer to as the

“cutoff school.” Similarly, different COMIPEMS scores below the cutoff may result in assignment

to various non-elite schools. We will refer to the school directly below the cutoff, i.e. the school

10There are two reasons for this restriction. First, the UNAM system is elite, and we want to estimate the impact

of IPN admission versus the counterfactual of non-elite admission. Second, the UNAM is missing data on graduation

and test scores, so we could not include these students in the sample even if we wanted to make this comparison.
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assignment for a score one point below the IPN admission cutoff, as the “next-best” school. To

summarize, each student is characterized by three things: his cutoff school (the lowest-cutoff IPN

school he could attend, given his choices), his next-best school (the most-preferred non-elite school

he could attend if he scored too low for IPN admission), and the cutoff score such that he would

always be admitted to an IPN school if his COMIPEMS score were equal to or greater than this

cutoff and would never be admitted to an IPN school if his COMIPEMS score were less than the

cutoff.

For each student i in the RD sample in exam year t, we index the cutoff school by j. Follow-

ing Abdulkadiroglu et al. (2014), we use a stacked nonparametric RD design that estimates, for

students with a score close to the relevant cutoff, a single average admission effect over all cutoff

schools while controlling for separate linear terms in the COMIPEMS score for each cutoff school.

The estimating equation is:

Yi jt = δadmiti+ γ1 j

?

ci− c jt
?

+ γ2 j

?

ci− c jt
?

admiti+µ j+ εi jt (1)

where Yi jt is the outcome of interest (dropout or ENLACE exam score), ci− c jt (the “centered”

COMIPEMS score) is the difference between i’s COMIPEMS score and j’s cutoff score in year t,

and admiti = 1 if ci− c jt ≥ 0. The parameter of interest is δ , the local average treatment effect of

being admitted to an IPN school instead of a non-elite school (Imbens and Lemieux 2008). This

is an intention-to-treat effect since students do not necessarily attend a school in the subsystem

to which they were admitted. But in practice, compliance is almost perfect. Of those in the RD

sample who take the ENLACE exam, 99.8% of the students rejected from the IPN subsystem take

the exam in a non-elite school, while 96.1% of ENLACE exam-takers who were admitted to an

IPN school take the exam in an IPN school.

We use the bandwidth selection procedure suggested by Imbens and Kalyanaraman (2012) and,

following the same authors, use the edge kernel in estimating the local linear regressions.11 The

11The edge kernel is Kh
?

ci− c jt
?

= �
?

|ci− c jt | ≤ h
?

?

1−
ci−c jt
h

?

, where h is the bandwidth. We select the optimal

bandwidth while omitting the cutoff fixed effects and using a single set of piecewise-linear terms instead of separate
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running variable, centered COMIPEMS score, is discrete since the COMIPEMS exam is scored

in one-point increments from 0 to 128. Per Lee and Card (2008), we cluster our standard errors

at the level of the centered score in order to account for specification error in the local polyno-

mials. Because there are relatively few clusters and analytic clustered standard errors may be

downward-biased in this case, wild-cluster bootstrapped p-values are presented in addition to ro-

bust, unclustered standard errors (Cameron et al. 2008).

An advantage of the RD design is that it does not require any assumptions about the decision-

making process by which students choose schools and whether their rankings of schools truly

represent revealed preferences. Conditional on COMIPEMS score, the admitted and rejected stu-

dents near a school’s cutoff have the same expected characteristics, including preferences over

schools. Even if students are trying to choose strategically or making mistakes in their selections,

this behavior will not differ by admissions outcome near the cutoff. We can thus remain agnostic

on the issue of the distribution of student preferences and the factors that influence them.

4 Data description

The data used in this paper come from two sources, both obtained from the Subsecretariat of Sec-

ondary Education of Mexico: the registration, scoring, and assignment data for the 2005 and 2006

COMIPEMS entrance examination processes, and the scores from the 2008, 2009, and 2010 12th

grade ENLACE exams.12 The COMIPEMS dataset includes all students who registered for the

exam, with their complete ranked listing of up to twenty high school preferences, basic back-

ground information such as middle school grade point average and gender, exam score out of 128

points, and the school to which the student was assigned as a result of the assignment process. It

also includes student responses to a multiple choice demographic survey turned in at the time of

sets for each cutoff school. Because the fixed effects and additional linear terms have very little explanatory power in

most of these regressions, omitting them has little effect on the selected bandwidth. Having selected the bandwidth,

we estimate equation 1 including the fixed effects and cutoff school-specific linear terms.
12The 2010 data is used in order to match students from the 2006 COMIPEMS cohort who took four years to

complete high school instead of three.
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registration for the exam.

The ENLACE dataset consists of exam scores for all students who took the test in Spring

2008 (the first year that the 12th grade ENLACE was given), 2009, or 2010. The scores for both

the math and Spanish sections are reported as a continuous variable, reflecting the weighting of

raw scores by question difficulty and other factors. We normalize the scores by subtracting off

the year-specific mean score for all examinees in public high schools within the COMIPEMS

geographic area and dividing by the year-specific standard deviation from this same sample. The

ENLACE scores are matched with the 2005 and 2006 COMIPEMS-takers by using the Clave Única

de Registro de Población (CURP), a unique identifier assigned to all Mexican citizens. Matching

is performed by name and date of birth if no CURP match is found and, following that, further

matching is performed on name and assigned school. The matching rate of ENLACE takers to

their COMIPEMS scores is nearly 100% and will be discussed further in section 5.5.

We limit the sample to applicants who graduated from a public middle school in Mexico City in

the year that they took the COMIPEMS exam. The IPN schools are highly-demanded among these

students. For every seat available in an IPN school, 1.9 students list an IPN school as their first

choice. Every IPN school is oversubscribed. Figure 2 shows the distribution of cutoff scores for all

oversubscribed schools. Panel (a) shows that, along with the UNAM schools, the IPN schools have

far higher cutoff scores than the vast majority of non-elite schools. Panel (b) weights the cutoff

schools by the number of students in attendance, showing that nearly all students in a high-cutoff

school are in the IPN or UNAM subsystems.

Table 1 presents summary statistics for the sample of all students, the subsamples of students

who attended the IPN, UNAM, and non-elite systems, and students meeting the criteria for inclu-

sion in the RD sample. Students attending IPN schools are quite different from those at non-elite

schools. IPN’s student body has higher average COMIPEMS exam scores (88.0 points vs. 57.7),

grade point (8.54/10 vs. 7.96/10), parental education (11.4 years vs. 9.8), family income (5,210

pesos/month vs. 3,850), and ENLACE exam scores (1.12 normalized score vs. -0.18).13 Students

13There is no binding test score ceiling for either exam. Score ceilings present a problem for academic gains be-

cause there is no way for students with the highest score to demonstrate progress. The COMIPEMS exam intentionally
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commute an average 4.33 kilometers farther to IPN schools than non-elite options.14 Another no-

table contrast is that while 2/3 of IPN students are male, fewer than half of students in the non-elite

systems are. This is due to higher preference for the IPN schools among males, perhaps because

of the polytechnic focus of the curriculum. On the other hand, IPN students are similar to students

from the UNAM schools on most dimensions, including COMIPEMS score, middle school GPA,

and family background. Again, though, the IPN student body is more male-dominated than the

UNAM.

The RD sample is described in column 5. There are 41,075 students who meet these criteria.

As expected, the mean characteristics for this group fall between the IPN and non-elite samples.

How much did each restriction on the RD sample affect the sample size? We start by discard-

ing students who could not be assigned to an IPN school for any possible COMIPEMS score;

76,738 students remain. Dropping students who would be assigned to a non-IPN school for some

COMIPEMS scores above the IPN admission cutoff eliminates 26,348 students. Of these, 26,161

were dropped because some COMIPEMS scores above the cutoff would result in UNAM assign-

ment. Finally, 9,315 students are dropped because they would be assigned to an UNAM school for

some COMIPEMS scores below the IPN cutoff.

It is clear from Table 1 that many COMIPEMS exam takers do not take the ENLACE. We

will present evidence in section 5.3 that this is almost entirely due to student dropout rather than

some other feature of the data. For the moment, we treat non-taking as dropout and show in Table

2 that dropout is predicted both by academic ability and IPN admission. Column 1 shows that,

in the cross-section, COMIPEMS exam score and middle school grade point average (GPA) are

negatively correlated with dropout. Particularly striking is the GPA coefficient, showing that a

one standard deviation (0.82) increase in GPA predicts a 14 percentage point decrease in dropout

probability. Parental education is negatively correlated with dropout as well, but the magnitude

of the coefficient is very small compared to those of COMIPEMS and GPA. Column 2 adds high

avoids a ceiling in order to sort students during assignment.
14Distance is computed as the straight-line distance from the centroid of the student’s postal code to the location of

the assigned school.
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school fixed effects and shows that these relationships are similar within a high school. Column 3

adds a control for commuting distance, which is missing in about 14% of cases due to an inability to

match students’ reported postal codes with geographical coordinates. Here we see that commuting

distance positively predicts dropout: a 10 km increase in commute predicts a 2.7 percentage point

increase in dropout probability. Column 4 shows that, conditional on listing an IPN school as

one’s first choice, dropout is much higher for students admitted to IPN schools than for those

admitted to non-elite schools. This correlation does not have a causal interpretation, however,

because unobservable student attributes could affect both selection into an IPN school and dropout

probability. The next section uses the RD design to establish the causal IPN admission-dropout

relationship.

5 Effects of elite school admission

This section uses the RD design outlined in Section 3 to estimate the effect of marginal admission

to an IPN school on the probability of dropping out of high school and, conditional on taking the

ENLACE exam, on the exam score obtained. Because we lack individual-level data on graduation,

taking the ENLACE exam is used as a proxy for graduation. Only students on track to graduate at

the end of the school year are registered to take the exam. We present evidence in section 5.5 that

this is a good proxy, in particular that schools do not strategically administer this exam. Thus the

only sample used from this point forward is the RD sample as defined in section 3.

5.1 School characteristics and commute

Before presenting the effects of IPN admission on dropout and test scores, we show that admis-

sion results in students attending a school with drastically more able peers while also commuting

a longer distance to reach school. Table 3 and corresponding Figure 3 show the results from esti-

mating the local linear version of Equation 1 with peer characteristics and commute distance as the
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dependent variables.15 On average, marginal IPN admission implies assignment to a school where

peers scored 20.3 COMIPEMS points (more than one standard deviation) higher than the next-best

school. Peers also have, on average, middle school GPAs 0.52 points (0.62 standard deviations)

higher than the next-best school and have parents with 1.2 additional years of education. Students

also experience longer commutes due to IPN admission, traveling 4.5 km farther in each direction,

nearly 50% more than the RD sample average. Thus IPN admission, on average, exposes students

to much “better” peers while requiring a longer commute.

5.2 Probability of dropout

Marginal admission to an IPN school significantly increases the probability of dropout. Figure 4

illustrates this graphically, plotting the dropout rate in a 20 point window around the IPN admis-

sion cutoff. Table 4 confirms this finding, reporting the average effect of admission on dropout

estimated using Equation 1 for the optimal bandwidth (column 1). The estimated dropout effect is

large, 9.5 percentage points compared to a dropout rate of about 44 percentage points in the RD

sample.16 This result is robust across different bandwidth selections: estimates using half (column

2) and double (column 3) the optimal bandwidth are 9.2 and 11.0 percentage points, respectively.

We note that the optimal bandwidth is 15.3 COMIPEMS points, somewhat less than one standard

deviation of this score in the RD sample over which this bandwidth is computed (18.49 points).

Use of the edge kernel puts more weight on data near the cutoff, so 55% of the summed weights

come from observations within 5 points of the cutoff score.

The increase in dropout is accompanied by a higher rate of delayed high school completion,

as shown in column 4. The dependent variable in this regression is a dummy equal to one if

the student either dropped out (did not take the ENLACE) or took the ENLACE more than three

years after participating in the admissions process, indicating a delay of one or more years. The

15Results from local quadratic regressions are similar for these and all other regressions in the paper. Appendix C

contains tables reproducing all results using local quadratic specifications.
16Our estimates for the effect of admission on dropout are larger than those found in Estrada and Gignoux (2014).

Appendix Table A1 and its accompanying text give insight into these differences, but in brief, we view the difference

in results as coming from differences in the samples used rather than from a difference in methods.
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estimated effect of IPN admission on dropout or delay is 12.5 percentage points, three percentage

points higher than the estimated impact on dropout alone.

There is important heterogeneity behind the average effect of IPN admission on dropout. Fig-

ure 5 and corresponding Table 5 present these results, which are estimated using the following

equation:

Yi jt = δadmiti+ γ1 j

?

ci− c jt
?

+ γ2 j

?

ci− c jt
?

admiti+µ j+

zi jt

?

δ̃admiti+ γ̃1 j

?

ci− c jt
?

+ γ̃2 j

?

ci− c jt
?

admiti+ µ̃ j

?

+ εi jt

(2)

where zi jt is a dummy variable representing some dimension of heterogeneity in the admission ef-

fect. The point estimate of δ̃ is identical to the difference between admission coefficients obtained

from estimating equation 1 separately for each value of zi jt .

Students with a low middle school GPA (below the sample mean among IPN students) experi-

ence a 6.9 percentage point higher increase in dropout probability than those students with a high

GPA (column 1). This suggests that an important driver of dropout for (marginal) IPN students is

the academic difficulties that accompany being a relatively weak student in a demanding school.

Column 2 fails to find any heterogeneity with respect to parental education level, although the

confidence interval contains both large positive and negative values.

Column 3 gives results for the differential effects with respect to changes in commuting dis-

tance.17 The “change in commute” variable is constructed by subtracting the commuting distance

to the next-best school from the commuting distance to the IPN cutoff school. We then partition

the sample based on whether the student’s commute would become longer or shorter as a result of

IPN admission. About 71% of students in the RD sample have a longer commute as a result of

IPN admission. For both cases, the probability of dropout increases, but students induced into a

longer commute experience a larger increase (0.128 vs. 0.058). We note that the robust standard

errors are unexpectedly more conservative than the wild-cluster bootstrapped p-values in this case,

17For this regression, students who would go unassigned during the computerized assignment process and would

have to choose later from schools that had not filled yet are excluded.
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although even robust standard errors indicate statistical significance of each coefficient at the 10%

level.

Column 4 repeats the commute distance differential construction exercise, except that now the

differential is with respect to the mean COMIPEMS scores of the incoming high school cohort. We

do not find evidence that results are driven by admission for students who experience an above-

average increase in peer quality as a result of admission, although again the confidence interval

permits substantial heterogeneity on this dimension.

These results make clear that dropout is systematically related to IPN admission and its inter-

action with academic ability as proxied by middle school GPA. Students admitted to an IPN school

are on average more likely to drop out and thus less likely to take the ENLACE, such that even after

conditioning on COMIPEMS score, IPN admittees taking the ENLACE have higher middle school

GPAs. To show this, we estimate the following equation for each of the student characteristics xi jtk:

xi jtk = φkadmiti+β1k

?

ci− c jt
?

+β2k

?

ci− c jt
?

admiti+µ j+ εi jtk (3)

If xk is balanced across the cutoff, then φ̂k should be close to zero. Table 6, Panel (a) and ac-

companying Figure 6 give estimates at the time of assignment (prior to dropout), where we expect

balance. Of the seven covariates tested, none are found to change discontinuously at the cutoff.

When estimating the equations jointly using seemingly unrelated regression and performing a joint

test for discontinuities, we fail to reject the null hypothesis of no discontinuity (p = 0.58). Panel

(b), however, shows that within the sample of ENLACE takers middle school GPA is unbalanced

(about 1/10 standard deviations higher for admitted students) as well as parental education and

hours studied. The p-value for the joint test of discontinuities is 0.01. Hence dropout among

marginally admitted students is not only higher than among the rejected, but it is also heteroge-

neous with respect to student characteristics. This differential dropout may bias upward estimates

of the IPN admission effect on ENLACE exam scores if the additional dropout is among the stu-

dents who would have the lowest ENLACE scores. We will need to bound the estimated ENLACE
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effects to account for this possibility.

5.3 ENLACE exam performance

We now turn to the effect of IPN admission on the standardized ENLACE exam score. We first

ignore the differential dropout issue raised in the previous section and then bound the effects while

accounting for dropout. Using all observed scores, Figure 7, Panel (a) suggests that there is a

significant, positive effect of IPN admission on ENLACE score. Panels (b) and (c) show that this

effect comes almost entirely from improved math scores. This result may be unsurprising given

that IPN schools focus heavily on mathematics, engineering, and the sciences in their curriculum.

Table 7 reports the RD estimates of these relationships for the optimal bandwidth (column 1) and

both half and double this bandwidth (columns 2 and 3, respectively). Again, the results are robust

to the choice of bandwidth: the local linear results range from an effect of 0.16 to 0.17 standard

deviations of the composite (math and Spanish) score. The estimated effects on math scores range

from 0.22 to 0.25 standard deviations, while the Spanish estimates are positive but statistically

insignificant.

We address the potential for bias due to differential dropout in two ways.18 First, we apply the

sharp bounds approach proposed by Lee (2009) to the RD design. In the context of a randomized

controlled trial, the Lee bounds process begins by estimating the degree of differential attrition

between treatment and control groups, trimming observations from the group (treatment or control)

with lower attrition in order to balance the attrition rates. Trimming is accomplished either by

dropping observations with the highest values of the outcome variable (to obtain a lower bound

on the treatment effect) or with the lowest values (to obtain an upper bound). Estimation of the

original relationship of interest is then carried out using the trimmed sample in order to obtain

upper and lower bounds on the treatment effect. In order to apply this procedure to an RD design,

we assume that the dropout effect is constant within the selected bandwidth. This allows us to

trim the same proportion of rejected students for each value of the centered COMIPEMS score,

18The high rate of dropout in the sample makes Horowitz and Manski (2000) nonparametric bounds uninformative.
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since excess dropout was among the admitted students. Because we are interested in a lower

bound for the treatment effects given the apparent positive selection into ENLACE-taking, we trim

the worst-performing students for each value of centered COMIPEMS score. We then carry out

the RD estimation procedure with the trimmed sample. Standard errors are bootstrapped, where

each repetition includes the dropout effect stage, the subsequent trimming based on the estimated

differential dropout, and the final estimation of the lower bound.

Despite the extreme approach of trimming the worst-performing students, the point estimates

for the admission effect on the composite and math scores are both positive. The estimated lower

bound for the composite score is modest, 0.044 (SE = 0.032) with a p-value of 0.16, while for

math it is larger and strongly significant: 0.12 (SE = 0.035). The Spanish bound is negative: -

0.11 (SE = 0.038), as expected since the original point estimate was small. We take this as strong

evidence of a positive math score effect and weaker evidence for a positive effect on the composite

score.

A second approach is to estimate the effect of admission on the probability of taking the EN-

LACE exam and obtaining at least a pre-specified score on the exam. This is equivalent to imputing

an arbitrarily negative score for non-takers and estimating the effect of admission on the probabil-

ity of exceeding a particular ENLACE score. Figure 8 shows the estimated admission coefficients

from local linear regressions, plotted over the range of possible ENLACE scores. Panel (a) plots

the composite (math and Spanish) score and shows the admission effect becoming positive at a

score of 0.3, although this difference remains statistically insignificant for all but scores of 1.4-1.5.

The math score effects in Panel (b), on the other hand, are positive beginning at a score of 0 and

are significant for scores of the range 0.7-2.1. As expected, the Spanish effects are negative for

most scores, although the point estimates do become positive at a score of 1.3. Hence, particularly

for math, the results are consistent with elite admission increasing the probability of graduating

with a high ENLACE score while simultaneously increasing dropout and therefore decreasing the

probability of graduating with a low score.

The dropout results showed striking heterogeneity, in particular with respect to middle school
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GPA and changes in commuting distance. We repeat this exercise for ENLACE score in Table 8,

interpreting with caution because these estimates may be biased due to the differential dropout that

has been documented thus far.19 The only significant source of heterogeneity here is with respect

to changes in commuting distance: the effect of admission is estimated to be 0.285 for students

whose commutes decrease and 0.285− 0.170 = 0.115 for students whose commutes increase. If

longer commutes were simply leading to dropout among the worst students, then we would expect

to see larger ENLACE effects among those induced to commute farther. Instead, the evidence

suggests that the longer commute mitigates some of the academic benefits from attending an IPN

school. It is also possible that students facing different changes in commutes due to admission are

different in other ways so that IPN admission has differential effects for some reason other than

travel distance.

5.4 Effects of admission to a higher-cutoff IPN school

In order to gain further insight into why IPN admission affects dropout and test scores, we briefly

investigate the effects of being admitted to a higher-cutoff IPN school, compared to the counterfac-

tual of admission to a lower-cutoff IPN school. We begin with the already-described RD sample

and identify, separately for each IPN school, the corresponding school-specific sample. The sam-

ple for IPN school A consists of students whose counterfactual assignment is to A for COMIPEMS

score equal to A’s cutoff score and whose counterfactual assignment is to another IPN school for

the COMIPEMS score one below A’s cutoff. These are students who, very near the cutoff score,

are either barely admitted to A or barely rejected and sent to a different IPN school. Having con-

structed such a sample for each IPN school, we stack the school-specific samples and estimate

Equation 1. Because students may belong to more than one school’s sample, we cluster standard

errors at the student level.

Table 9 begins by showing that admission to a higher-cutoff IPN school results in a somewhat

different peer group: the mean peer COMIPEMS score is 4.7 points higher (compared to the 20

19Results for the math and Spanish scores are in Appendix Figure B1.

21



point jump from non-IPN to IPN schools), while mean peer middle school GPA is 0.12 points

greater and peers’ parents have on average 0.31 years more of education. On average, students

commute 2.3 km less due to admission, in contrast with the increased commute due to admission

at the IPN/non-IPN boundary. The point estimate for the effect of admission on dropout is 2

percentage points, but the 95% confidence interval ranges from -1.8 to 5.8 percentage points. Thus

it is unclear how admission to a “better” IPN school affects dropout probability, except that we can

rule out effects as large as those from the non-IPN to IPN jump. On the other hand, the estimated

admission effect on ENLACE scores is 0.075 standard deviations and is significantly different from

zero. It seems that students do benefit marginally from attending a higher-cutoff IPN school, at

least in terms of ENLACE performance.

5.5 Validity checks

Here we present two sets of validity checks to address potential concerns with the results. First,

support for the validity of the RD design is given. Second, support is given for the assertion that

the dropout-related results in this paper are indeed due to IPN students leaving school at a higher

rate, rather than a data issue.

There is no a priori reason to think that the RD design might be invalid. Because the school-

specific cutoff scores are determined in the process of the computerized assignment process, mon-

itored by school subsystem representatives and independent auditors, there is no opportunity for

student scores to be manipulated in order to push particular students from marginal rejection to

marginal admission. Nevertheless, Figure 9 provides graphical evidence of the design’s validity,

showing the distribution of centered COMIPEMS scores for students in the RD sample. Panel (a)

shows the entire density, while Panel (b) zooms in on a smaller window around the cutoff. There

is no visual evidence for a jump in the density of COMIPEMS score to one side of the cutoff or

the other. We test formally for bunching in the density, following McCrary (2008). The p-value

for this test is 0.90, in agreement with the visual evidence presented.

As further support for the RD design, we recall the balance of baseline covariates across the
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admission cutoff shown in Figure 6 and Table 6, Panel (a). The lack of a discontinuity in these

covariates suggests that students were unable to sort into or out of IPN admission, as we would

expect given the computerized assignment process.

There is substantial evidence that the difference in ENLACE taking rate between students ad-

mitted to and rejected from the IPN is due to students dropping out of school, rather than a data

problem or the rate at which 12th graders in IPN schools take the ENLACE exam. The difference

cannot be due to a lower rate of success in matching ENLACE takers from IPN schools to their

COMIPEMS score. Of all ENLACE takers in IPN schools in 2010, 99% are matched successfully

to their COMIPEMS scores in 2005, 2006, or 2007. Another possibility that we can dismiss is

that the IPN is selectively administering the exam to its best 12th graders. Although the ENLACE

is taken at the end of the school year, schools must report the full roster of students in their final

academic year to the Secretariat of Education so that all of those students can be programmed to

take the exam. The ratio of actual exam takers to those programmed in the fall is nearly identical

between the IPN and non-IPN schools (81%). Thus differential exam taking would have to be

sufficiently premeditated to 1) fail to register low-ability students in the Fall and 2) systematically

prevent the unregistered students from showing up at the exam. The exam is given by proctors from

outside of the school. Administrators who run the ENLACE express doubt that a school subsys-

tem would go through this trouble, especially when considering that ENLACE scores are not used

to allocate resources or to incentivize or punish educators. Finally, because the ENLACE dataset

used in this paper includes years 2008 through 2010, it captures COMIPEMS takers from 2005

who took four or five years to graduate, and COMIPEMS takers from 2006 who took four years

to graduate, instead of the standard three years. The differential exam taking rate, then, cannot be

explained by students taking longer to graduate in the IPN schools but not dropping out.

As with any study using a RD approach, there may be some skepticism in extrapolating the

effects for marginal students to the rest of the sample. This would be a particular concern if there

were few students near the margin compared to the total population of IPN students. The nature of

the assignment mechanism, however, tends to bunch students near the cutoff of the school to which
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they are admitted, since a modestly higher score would often lead to admission to a more-preferred

school. Similarly, many of the students admitted to the IPN subsystem are only a few points away

from rejection to a non-IPN school. In fact, 34% of students admitted to an IPN school are within 7

COMIPEMS points of falling out of the IPN subsystem, while more than half are within 12 points

of the boundary. The standard deviation of COMIPEMS score in the full sample is 17.95 and the

within-school standard deviation for IPN students is 7.19, implying that a significant portion of

IPN students are not far from the margin of the IPN subsystem.

6 Preference for elite schools

Students with lower GPAs are less likely to apply to elite schools. The findings in this paper offer

one way of rationalizing this empirical regularity. Students with a weak academic background face

a less desirable dropout risk-academic reward trade-off and may respond rationally by choosing to

avoid it altogether. This should be particularly true for students who are likely to gain admission

to an elite school only at the margin.

To show that conditional on COMIPEMS score, high-achieving students are more likely to

list an elite school as their first choice, the following local linear regressions are estimated for all

observations within a 2-point bandwidth of each COMIPEMS point value c:

eliteimtc = αmtc+βcCOMIPEMSi+θcGPAi+ εimtc, (4)

where eliteimt is a dummy variable equal to 1 if student i in year t from municipality/delegation

m chose an elite school as her first choice, and GPAi is middle school GPA. The municipal-

ity/delegation of residence of the student is added to control for the possible unequal geographic

access to elite schools. The parameters of interest are the θc’s, which measure the marginal

effect (though not a causal relationship) of GPA on elite school preference only for students

with COMIPEMSi near c. Figure 10 graphs these coefficients and shows that for all values of

COMIPEMS score above 65 points, i.e., that are high enough to gain admission to the least-
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competitive elite school, a higher GPA is correlated with higher rates of elite school preference.

At a COMIPEMS score of 80, students with a 9.0 GPA are 15 percentage points more likely to

select an elite school than those with a 7.0 GPA. This is a large difference, indicating that among

students living in the same municipality or delegation and with the same possibility of admission

to elite schools as a result of their COMIPEMS score, those with a lower GPA are much less likely

to list an elite school as a first choice. The less favorable risk-reward tradeoff facing these students

offers one way to explain this result.

7 Discussion

This paper used Mexico City’s high school allocation mechanism to identify the effects of admis-

sion to a subset of its elite public schools, relative to their non-elite counterparts. At least for

marginally admitted students, elite schools present an important trade-off. Elite admission appears

to positively affect student test scores, increasing end-of-high school exam scores by 0.17 stan-

dard deviations under the assumption that dropout does not bias the estimated effect. However,

admission is found to significantly increase the probability of dropping out of school. Students

with relatively low middle school GPAs and who are induced to commute farther are especially

affected, suggesting that elite schools are too challenging or far away for some students and they

either fail out or elect to leave school. Allowing for bias due to differential dropout lowers this

estimate, but the results are quite robust when examining the potential effects of this bias. In par-

ticular, students’ math scores seem to improve significantly with attending an IPN school. The fact

that this trade-off is, in expectation, worse for those from weaker academic backgrounds offers one

possible explanation for the lower rate at which qualified students with low GPAs apply to elite

high schools.

The existence of this trade-off between academic benefit and dropout probability highlights an

important educational policy issue in Mexico. The current configuration of the high school educa-

tion system does not facilitate lateral transfers of students between school subsystems, which are
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run by numerous entities at the local, state, and national level. Students who find that their current

school is a bad fit cannot easily switch to a school that balances academic rigor, curriculum, and

other characteristics to their taste, unless they drop out of school entirely and attempt to begin anew

elsewhere. The Comprehensive High School Education Reform (RIEMS) represents somewhat of

an attempt to rectify this by imposing a (partial) common curriculum, but this reform has faced de-

lays and political opposition and its future remains in question. Such rigidity in the current system

may explain why the academic benefit-dropout trade-off is so strong in this paper in comparison to

studies in other countries. Our result highlights the value of flexibility in choice-based admissions

systems so that the consequences of a “bad” choice can be mitigated, provided that lateral transfers

to more competitive schools are not allowed as a means of gaming the current system.
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Figures

Figure 1: Map of COMIPEMS-participating high schools in the metropolitan Mexico City area
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Figure 2: Distribution of admission cutoff scores for oversubscribed schools, 2005 exam year

(a) Unweighted
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(b) Weighted by number of assigned students
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Note. Elite schools are those belonging to the IPN and UNAM subsystems. Panel (b) weights oversubscribed schools

by the number of students assigned, so that the mass represents the number of students attending schools with the

indicated cutoff score.
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Figure 3: Effect of IPN admission on school characteristics experienced by student
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Note. Plots are for students belonging to the regression discontinuity sample defined in the text.
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Figure 4: Effect of IPN admission on dropout probability
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Note. Dropout is defined as not taking the ENLACE exam. Plot is for students belonging to the regression discontinuity

sample defined in the text.

Figure 5: Differential effect of IPN admission on dropout
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(b) Parental education

.3
5

.4
.4

5
.5

.5
5

-20 -10 0 10 20 -20 -10 0 10 20

Parent has HS education No parent with HS education

D
ro

p
o

u
t

Centered score

(c) Change in commuting distance vs. next-best school
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(d) Change in peer quality (mean COMIPEMS score) vs. next-best school
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Note. Dropout is defined as not taking the ENLACE exam. Plot is for students belonging to the regression discontinuity

sample defined in the text. Low middle school GPA is defined as a GPA below the median among IPN students. Change

in commuting distance is the difference in the distance between home and the IPN cutoff school and the school that

would be assigned if the student scored one point below the cutoff. This quantity is defined only for students with a

such a school on their preference lists. Change in mean COMIPEMS score is the difference in the IPN cutoff school’s

mean COMIPEMS exam score for that year’s assigned students and those of the school that would be assigned if the

student scored one point below the cutoff. This quantity is defined only for students with a such a school on their

preference lists. A large increase in peer quality is defined as being above the median change in peer quality in the

regression discontinuity sample.
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Figure 6: Balance of baseline covariates with respect to IPN admission
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Note. Dependent variables indicated on the vertical axes. Plots are for students belonging to the regression disconti-

nuity sample defined in the text.
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Figure 7: Effect of IPN admission on end-of-high school ENLACE exam scores
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Note. Plot is for students belonging to the regression discontinuity sample defined in the text.
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Figure 8: Effect of IPN admission on probability of taking ENLACE and scoring above thresholds

(a) Composite score (math & Spanish)
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Note. Solid line represents RD estimates of the effect of admission on taking the ENLACE exam and scoring above

the score given on the x-axis. Dashed lines give the 95% confidence interval for these estimates.
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Figure 9: Density of centered COMIPEMS scores for students in the regression discontinuity

sample
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Note. Panel (b) is a closer view of the centered score values near the cutoff, presented in order to see more clearly the

density of scores close to the cutoff.

Figure 10: Partial correlation of middle school GPA with elite school first-choice preference
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Note. Solid line is a smoothed line through the θ̂c coefficients from estimating eliteimt = αmts+ βcCOMIPEMSi+
θcXi+ εimtc, where eliteimt is a dummy variable equal to 1 if student i in year t from municipality/delegation m chose

an elite school as his first choice, and Xi is middle school GPA. The lines represent the partial correlation between Xi
and elite school preference for different COMIPEMS score values. Dashed lines are the 95% confidence intervals for

the estimated θ̂c’s.
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Tables

Table 1: Characteristics of students eligible for assignment

All students IPN students UNAM students
Non-elite 
students RD sample

(1) (2) (3) (4) (5)
Male 0.46 0.65 0.47 0.44 0.62

(0.50) (0.48) (0.50) (0.50) (0.49)
10.18 11.38 11.76 9.77 10.71
(3.35) (3.23) (3.40) (3.23) (3.25)

Family income (thousand pesos/month)a 4.22 5.21 5.75 3.85 4.62
(3.35) (3.64) (4.08) (3.07) (3.38)

Hours studied per week 5.19 6.22 6.58 4.83 5.56
(3.26) (3.33) (3.34) (3.14) (3.31)

Index of parental effortb -0.03 0.12 0.18 -0.08 0.04
(1.00) (0.95) (0.97) (1.00) (0.97)

Student is employed 0.04 0.03 0.02 0.04 0.04
(0.19) (0.18) (0.15) (0.20) (0.20)
8.10 8.54 8.65 7.96 8.29

(0.82) (0.79) (0.79) (0.77) (0.79)
Distance from assigned school (km)c 7.14 10.66 9.40 6.33 9.22

(6.14) (7.36) (6.73) (5.60) (7.13)
Number of schools ranked 9.31 9.82 9.45 9.23 9.72

(3.59) (3.75) (3.70) (3.55) (3.70)
IPN school as first choice 0.15 0.90 0.03 0.10 1.00

(0.36) (0.30) (0.18) (0.30) (0.00)
Number of IPN schools chosen 1.18 4.39 1.24 0.84 3.95

(1.89) (2.58) (1.64) (1.49) (2.64)
UNAM school as first choice 0.49 0.10 0.97 0.45 0.00

(0.50) (0.30) (0.18) (0.50) (0.00)
Number of UNAM schools chosen 2.53 1.96 4.88 2.20 1.24

(2.60) (2.17) (2.52) (2.44) (1.74)
COMIPEMS examination score 63.74 87.96 85.57 57.66 74.63

(17.95) (11.06) (9.90) (14.29) (18.49)
0.48 0.38 0.49 0.42

(0.50) (0.49) (0.50) (0.49)
-0.03 1.12 -0.18 0.50
(0.98) (0.86) (0.90) (1.11)

Observations 354581 28551 46265 279765 41075
Note. Standard deviations in parentheses.
a Average 2005-2006 exchange rate was 10.9 pesos/dollar.
b The parental effort index is constructed by averaging the scores (1-4 ordinal scale) for 13 questions about parental effort and 
involvement from the survey filled out at the time of COMIPEMS registration. The survey asked “How often do your parents or 
adults with whom you live do the following activities?” for  activities such as “help you with schoolwork” and “attend school 
events.” The measure is normalized to have mean zero and standard deviation of 1 in the sample of all students.

d The normalized ENLACE examination score is constructed by subtracting off the year-specific mean score for all examinees in 
public high schools within the COMIPEMS geographic area and dividing by the year-specific standard deviation from this same 
sample.

c Distance is calculated as the straight-line distance between the centroid of the student's postal code and the assigned school.

Maximum of mother's and father's 
education

Middle school grade point average             
(of 10)

Dropped out (did not take ENLACE 
exam; only for non-UNAM students)
ENLACE examination score (for those 
who took the exam)d
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Table 2: Correlates of high school dropout (not taking ENLACE exam)

Dependent variable: dropout (not taking 

ENLACE exam)*100 (1) (2) (3) (4) (5)

COMIPEMS score -0.27*** -0.26*** -0.29*** -0.34*** -0.28***

(0.056) (0.040) (0.015) (0.047) (0.020)

Middle school GPA -17.44*** -17.00*** -17.54*** -17.61*** -18.29***

(0.588) (0.509) (0.260) (0.609) (0.248)

Parental education (years) -0.30*** -0.49*** -0.51*** -0.32*** -0.41***

(0.072) (0.034) (0.037) (0.075) (0.043)

Family income (thousand pesos/mo) 0.05 -0.12*** -0.14*** 0.04 -0.06

(0.072) (0.033) (0.038) (0.075) (0.043)

Male -0.47 -0.39 -0.27 -0.85** -0.38

(0.502) (0.251) (0.270) (0.429) (0.323)

Hours studied per week -0.19*** -0.28*** -0.32*** -0.21*** -0.27***

(0.050) (0.039) (0.034) (0.051) (0.035)

Parental effort index -1.11*** -1.01*** -1.00*** -1.10*** -1.16***

(0.117) (0.094) (0.106) (0.117) (0.111)

Employed 7.57*** 7.49*** 7.45*** 7.57*** 7.58***

(0.570) (0.520) (0.522) (0.565) (0.530)

Exam year 2006 3.74*** 3.55*** 3.63*** 3.90*** 3.80***

(0.494) (0.461) (0.500) (0.502) (0.559)

Distance from home to school (km) 0.27*** 0.42***

(0.023) (0.033)

IPN school as first choice -1.38*** -1.62***

(0.489) (0.446)

Admitted to IPN school 9.94*** 8.26***

(1.571) (1.623)

Admitted high school fixed effects NO YES YES NO NO

Observations 253506 253506 218870 253506 218870

Adjusted R
2

0.111 0.149 0.148 0.113 0.118

Mean of dependent variable 48.7 48.7 46.9 48.7 46.9

Note. Sample excludes students admitted to an UNAM high school, since these schools do not proctor the ENLACE exam used as 

the proxy for graduation.

Standard errors, clustered at high school level, in parentheses.

* p<0.10, ** p<0.05, *** p<0.01
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Table 6: Tests for balance of baseline covariates with respect to IPN assignment

Dependent variable
Middle 

school GPA
Parental 

education

Family 
income 

(thousand 
pesos/mo) Male

Hours 
studied per 

week
Parental 

effort index Employed
(1) (2) (3) (4) (5) (6) (7)

Score ≥ cutoff -0.019 0.099 0.106 -0.001 0.097 -0.034 -0.000
(0.0188) (0.1025) (0.1006) (0.0127) (0.1015) (0.0322) (0.0061)

[0.10] [0.27] [0.25] [0.90] [0.29] [0.24] [0.92]

Observations 27136 18414 18188 25007 19519 17351 21007
Adjusted R-squared 0.068 0.016 0.010 0.096 0.012 0.003 0.001
Mean of dependent variable 8.26 10.70 4.57 0.63 5.48 0.05 0.04
S.D. of dependent variable 0.76 3.17 3.26 0.48 3.27 0.97 0.20
Bandwidth 21.2 15.2 15.2 18.8 15.9 13.7 17.6
p-value, joint significance of all 
admission coefficients 0.58

Dependent variable
Middle 

school GPA
Parental 

education

Family 
income 

(thousand 
pesos/mo) Male

Hours 
studied per 

week
Parental 

effort index Employed
(1) (2) (3) (4) (5) (6) (7)

Score ≥ cutoff 0.072*** 0.192* 0.123 -0.010 0.272** 0.045 -0.001
(0.0228) (0.1103) (0.1206) (0.0149) (0.1115) (0.0392) (0.0064)

[0.00] [0.16] [0.38] [0.44] [0.04] [0.19] [0.82]

Observations 17752 15782 12815 18289 16242 11160 16253
Adjusted R-squared 0.103 0.027 0.014 0.102 0.022 0.004 -0.000
Mean of dependent variable 8.48 10.84 4.62 0.59 5.74 0.11 0.03
S.D. of dependent variable 0.75 3.19 3.27 0.49 3.32 0.96 0.18
Bandwidth 25.1 23.6 18.9 26.2 24.7 16.4 26.1
p-value, joint significance of all 
admission coefficients 0.01

Panel (b) After dropout

Panel (a) At time of assignment

Note. Estimates are from local linear regressions of the specified order, including separate linear terms for each of the 16 IPN 
cutoff schools and cutoff school fixed effects. The edge kernel is used in each regression and in computation of the corresponding 
optimal Imbens-Kalyanaraman bandwidths. The p-values for joint significance are from chi-square tests that the admission 
coefficients are all equal to zero, estimated using seemingly unrelated regression. “At time of assignment" refers to all students in 
the RD sample, while “after dropout" is restricted to students who took the ENLACE exam. Huber-White robust standard errors 
are in parentheses. Wild-cluster bootstrapped p-values, clustered on the discrete COMIPEMS score values, are in brackets.

* p<0.10, ** p<0.05, *** p<0.01
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Table 7: Regression discontinuity estimates of effect of IPN admission on ENLACE score

Panel (a) Composite score (math & Spanish)
(1) (2) (3)

Score ≥ cutoff 0.168*** 0.160*** 0.171***
(0.0290) (0.0409) (0.0210)

[0.00] [0.00] [0.00]

Observations 10685 5413 19141
Adjusted R-squared 0.269 0.209 0.402
Mean of dependent variable 0.322 0.292 0.409
Bandwidth 13.9 6.9 27.8

Panel (b) Math score
(1) (2) (3)

Score ≥ cutoff 0.245*** 0.223*** 0.251***
(0.0297) (0.0420) (0.0217)

[0.00] [0.00] [0.00]

Observations 12115 6183 20386
Adjusted R-squared 0.250 0.183 0.397
Mean of dependent variable 0.409 0.378 0.516
Bandwidth 15.6 7.8 31.3

Panel (c) Spanish score
(1) (2) (3)

Score ≥ cutoff 0.049 0.052 0.039
(0.0339) (0.0480) (0.0245)

[0.03] [0.27] [0.00]

Observations 10693 5417 19155
Adjusted R-squared 0.154 0.129 0.237
Mean of dependent variable 0.158 0.131 0.217
Bandwidth 14.1 7.1 28.2

* p<0.10, ** p<0.05, *** p<0.01

Note. Estimates are from local linear regressions of the specified order, 
including separate linear terms for each of the 16 IPN cutoff schools and 
cutoff school fixed effects. The edge kernel is used in each regression and in 
computation of the corresponding optimal Imbens-Kalyanaraman 
bandwidth. Huber-White robust standard errors are in parentheses. Wild-
cluster bootstrapped p-values, clustered on the discrete COMIPEMS score 
values, are in brackets.
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Appendix A. Comparison of dropout and ENLACE score results

with Estrada and Gignoux (2014)

In their paper estimating the effect of IPN admission on the expected returns to higher education,

Estrada and Gignoux (2014) also present basic results on dropout and ENLACE scores. They

estimate smaller effects of admission on dropout than us, as well as larger effects on ENLACE

math scores. We show in Table A1 that most of the difference between our results is due to the

different samples used. Panel (a), column 1 reproduces EG’s dropout result using their sample

description, a five-point bandwidth, and rectangular kernel, as in their paper. The sample size

(3,184 vs. 3,206) and estimated effect on dropout (0.031 vs. 0.036) are nearly identical between

their results and our replication. Dropping private middle schools from their sample increases the

point estimate to 5.6 percentage points. Adding State of Mexico students (column 3) increases the

point estimate on admission further. Adding the 2006 COMIPEMS exam and the 2010 ENLACE

results to the sample (column 4), the estimated effect declines to 7.6 percentage points. Excluding

students who, given their stated preferences, could be assigned to an UNAM school for some point

values higher than the IPN admission cutoff score (column 5), the point estimate increases slightly

to 8.5 percentage points, which is close to the result we obtain from using nonparametric regression

in the body of this paper.

Our replication of Estrada and Gignoux’s (2014) ENLACE math score effects are in column 1

of Panel (b). The sample size in our replication is larger than theirs (1,570 vs. 1,115) because they

limit the sample to students who were included in the random sample for a supplementary survey

given to ENLACE-takers. The point estimates are almost identical to each other (0.34 standard

deviations), but they are significantly higher than the result found in this paper. This estimate

declines to 0.33 when we exclude private school students, falls further to 0.29 when adding State

of Mexico students, and decreases to 0.22 when adding the 2006 COMIPEMS and 2010 ENLACE

data. The Spanish score effects in Panel (c) are statistically insignificant for all samples.
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Table A1: Dropout and ENLACE regression discontinuity results for different sample selection

criteria

Estrada & 
Gignoux sample

Delete private 
middle schools

Add State of 
Mexico middle 

schools

Add 2006 
COMIPEMS, 

2010 ENLACE

Selection method 
used in this 

paper
(1) (2) (3) (4) (5)

Score ≥ cutoff 0.031 0.056* 0.090*** 0.076*** 0.085***
(0.0316) (0.0327) (0.0280) (0.0215) (0.0236)

Observations 3184 2928 5125 10990 6914
Adjusted R-squared 0.003 0.004 0.012 0.015 0.018
Mean of dependent variable 0.506 0.508 0.476 0.455 0.452

Estrada & 
Gignoux sample

Delete private 
middle schools

Add State of 
Mexico middle 

schools

Add 2006 
COMIPEMS, 

2010 ENLACE

Selection method 
used in this 

paper
Dependent variable: Math score (1) (2) (3) (4) (5)
Score ≥ cutoff 0.340*** 0.331*** 0.289*** 0.215*** 0.205***

(0.0822) (0.0853) (0.0524) (0.0414) (0.0502)

Observations 1570 1439 2678 5978 3781
Adjusted R-squared 0.097 0.101 0.140 0.132 0.180
Mean of dependent variable 0.341 0.338 0.401 0.387 0.365

Estrada & 
Gignoux sample

Delete private 
middle schools

Add State of 
Mexico middle 

schools

Add 2006 
COMIPEMS, 

2010 ENLACE

Selection method 
used in this 

paper
Dependent variable: Spanish score (1) (2) (3) (4) (5)
Score ≥ cutoff 0.072 0.048 -0.017 -0.016 0.043

(0.0742) (0.0775) (0.0616) (0.0432) (0.0484)

Observations 1570 1439 2681 5981 3784
Adjusted R-squared 0.044 0.042 0.070 0.075 0.124
Mean of dependent variable 0.138 0.133 0.188 0.182 0.131
Note. Estimates are from local linear regressions of the specified order, including separate linear terms for each of the 16 IPN cutoff 
schools and cutoff school fixed effects. The rectangular kernel is used in each regression and the bandwidth is fixed to 5 in order to 
compare to the sample selection in Estrada and Gignoux (2014). The header in columns 2-4 explain the changes made to the sample from 
the previous column. Standard errors clustered at the assigned school level are in parentheses.
* p<0.10, ** p<0.05, *** p<0.01

Panel (a) Dropout (not taking ENLACE exam)

Panel (b) Math ENLACE score

Panel (c) Spanish ENLACE score
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Appendix B. Additional figure and table

Figure B1: Balance of covariates with respect to IPN admission, after dropout
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nuity sample defined in the text.
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Table B1: Regression discontinuity estimates of heterogeneous effects of IPN admission on EN-

LACE subscores

(1) (2) (3) (4)
Score ≥ cutoff 0.222*** 0.206*** 0.356*** 0.223***

(0.0378) (0.0396) (0.0687) (0.0346)
[0.00] [0.00] [0.00] [0.00]

(Score ≥ cutoff) * (Low middle school GPA) 0.033
(0.0505)

[0.36]
(Score ≥ cutoff) * (No parent w/HS degree) 0.096

(0.0604)
[0.24]

-0.170**
(0.0818)

[0.23]
0.045

(0.0553)
[0.45]

Observations 16566 11779 7553 14037
Adjusted R-squared 0.322 0.266 0.235 0.291
Mean of dependent variable 0.442 0.429 0.403 0.427

(1) (2) (3) (4)
Score ≥ cutoff -0.005 0.077* 0.124** 0.010

(0.0415) (0.0432) (0.0627) (0.0329)
[0.86] [0.02] [0.02] [0.62]

(Score ≥ cutoff) * (Low middle school GPA) 0.109*
(0.0626)

[0.09]
(Score ≥ cutoff) * (No parent w/HS degree) -0.055

(0.0655)
[0.51]

-0.105
(0.0791)

[0.26]
0.068

(0.0546)
[0.18]

Observations 12680 11789 8396 16798
Adjusted R-squared 0.180 0.167 0.163 0.224
Mean of dependent variable 0.209 0.176 0.163 0.194

(Score ≥ cutoff) * (¢ mean HS peer COMIPEMS 
exam score  > median)

Panel (a) Math score

* p<0.10, ** p<0.05, *** p<0.01

(Score ≥ cutoff) * (¢ mean HS peer COMIPEMS 
exam score  > median)

Note. Estimates are from local linear regressions of the specified order, including separate linear terms 
for each of the 16 IPN cutoff schools and cutoff school fixed effects. Linear terms and fixed effects are 
interacted with the corresponding covariate in each column, so that point estimates are equivalent to 
separately estimating the regression for each value of the covariate. The edge kernel is used in each 
regression and in computation of the corresponding optimal Imbens-Kalyanaraman bandwidths, which 
are computed separately for each value of the covariate. Huber-White robust standard errors are in 
parentheses. Wild-cluster bootstrapped p-values, clustered on the discrete COMIPEMS score values, are 
in brackets.

Panel (b) Spanish score

(Score ≥ cutoff) * (Admission increases 
commute)

(Score ≥ cutoff) * (Admission increases 
commute)
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Appendix C. Local quadratic regression results
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Table C4: Regression discontinuity estimates of effect of IPN admission on ENLACE score

Panel (a) Composite score (math & Spanish)
(1) (2) (3)

Score ≥ cutoff 0.153*** 0.153*** 0.181***
(0.0396) (0.0590) (0.0287)

[0.00] [0.05] [0.00]

Observations 12823 6183 21110
Adjusted R-squared 0.291 0.219 0.450
Mean of dependent variable 0.333 0.297 0.449
Bandwidth 16.6 8.3 33.2

Panel (b) Math score
(1) (2) (3)

Score ≥ cutoff 0.221*** 0.200*** 0.242***
(0.0420) (0.0625) (0.0304)

[0.00] [0.03] [0.00]

Observations 12823 6951 21679
Adjusted R-squared 0.266 0.192 0.426
Mean of dependent variable 0.414 0.380 0.540
Bandwidth 17.4 8.7 34.8

Panel (c) Spanish score
(1) (2) (3)

Score ≥ cutoff 0.050 0.057 0.069**
(0.0447) (0.0658) (0.0326)

[0.20] [0.29] [0.00]

Observations 13483 6955 21937
Adjusted R-squared 0.172 0.134 0.290
Mean of dependent variable 0.165 0.139 0.260
Bandwidth 18.1 9.0 36.2

* p<0.10, ** p<0.05, *** p<0.01

Note. Estimates are from local quadratic regressions of the specified order, 
including separate quadratic terms for each of the 16 IPN cutoff schools and 
cutoff school fixed effects. The edge kernel is used in each regression and in 
computation of the corresponding optimal Imbens-Kalyanaraman 
bandwidth. Huber-White robust standard errors are in parentheses. Wild-
cluster bootstrapped p-values, clustered on the discrete COMIPEMS score 
values, are in brackets.
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Table C7: Regression discontinuity estimates of heterogeneous effects of IPN admission on EN-

LACE subscores

(1) (2) (3) (4)
Score ≥ cutoff 0.135* 0.189*** 0.363*** 0.179***

(0.0698) (0.0527) (0.0745) (0.0577)
[0.11] [0.00] [0.00] [0.01]
0.130

(0.0874)
[0.01]

(Score ≥ cutoff) * (No parent w/HS degree) 0.092
(0.0811)

[0.51]
-0.181**
(0.0874)

[0.20]
0.075

(0.0824)
[0.14]

Observations 13136 13909 13932 13470
Adjusted R-squared 0.272 0.305 0.357 0.274
Mean of dependent variable 0.382 0.457 0.442 0.422

(1) (2) (3) (4)
Score ≥ cutoff -0.076 0.089* 0.149 0.045

(0.0705) (0.0535) (0.0973) (0.0640)
[0.04] [0.03] [0.03] [0.31]

0.195**
(0.0906)

[0.02]
(Score ≥ cutoff) * (No parent w/HS degree) -0.120

(0.0912)
[0.38]

-0.130
(0.1114)

[0.38]
0.030

(0.0853)
[0.65]

Observations 14123 13950 11309 15034
Adjusted R-squared 0.180 0.204 0.187 0.189
Mean of dependent variable 0.146 0.235 0.175 0.187
Note. Estimates are from local quadratic regressions of the specified order, including separate quadratic 
terms for each of the 16 IPN cutoff schools and cutoff school fixed effects. Quadratic terms and fixed 
effects are interacted with the corresponding covariate in each column, so that point estimates are 
equivalent to separately estimating the regression for each value of the covariate. The edge kernel is 
used in each regression and in computation of the corresponding optimal Imbens-Kalyanaraman 
bandwidths, which are computed separately for each value of the covariate. Huber-White robust 
standard errors are in parentheses. Wild-cluster bootstrapped p-values, clustered on the discrete 
COMIPEMS score values, are in brackets.

* p<0.10, ** p<0.05, *** p<0.01

Panel (a) Math score

(Score ≥ cutoff) * (Admission increases 
commute)

(Score ≥ cutoff) * (¢ mean HS peer COMIPEMS 
exam score  > median)

Panel (b) Spanish score

(Score ≥ cutoff) * (¢ mean HS peer COMIPEMS 
exam score  > median)

(Score ≥ cutoff) * (Low middle school GPA)

(Score ≥ cutoff) * (Low middle school GPA)

(Score ≥ cutoff) * (Admission increases 
commute)
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