Abstract

Empirical evidence suggests that both leisure time and medical care are important for maintaining health. We develop a general equilibrium macroeconomic model in which taxation is a key determinant of the composition of these two inputs in the endogenous accumulation of health capital. In our model, higher taxes lead to using relatively more leisure time and less medical care in maintaining health. We find that difference in taxation between the US and Europe can account for a large fraction of their difference in health expenditure-GDP ratio and almost all of their difference in time input for health production.
1 Introduction

In the past forty years or so, Americans persistently spend much more on medical care than Europeans. In one account, the average medical expenditure to GDP ratio over the period 1970-2007 is about 4 percentage point higher in the US than the average across eight comparably rich European countries, including Belgium, Finland, France, Germany, Italy, Netherlands, Spain, and the UK. Medical expenditure per capita is also much greater in the US than in Europe. As we will document in Section 2, the difference illustrated above, and to be documented in detail below, is beyond the counting of the US-EU difference in expenditure on health-related research and development, and on education and training of health personnel, neither is there any notable cross-country difference in aging or life-cycle dynamics, such as age structure of the population, or age-related medical status and expenditure, to which the cross-country difference in medical expenditure-GDP ratio can be attributed.

Then why do Americans spend so much more on health care than Europeans? In this paper, we highlight a channel that has not received much attention in the literature on health care costs. To this end, we develop a macroeconomic theory of health investment portfolio in a general equilibrium context. We emphasize two forms of health investment: (1) medical goods and services, which are the usual focus in the economics literature and policy debate, and (2) health-enhancing leisure-time activity, which has received much less attention, even though, as we will show below, ample empirical evidence reveals its critical importance in producing and maintaining good health. The thesis of our analysis is that these two inputs for health production must be jointly determined in general equilibrium and that, in the general equilibrium setting, cross-country variations in the determinants of such portfolio composition of health investment may hold a key to understanding the cross-country differences in health care expenditure.

We show that a key determinant of the composition of health investment portfolio is taxation, in particular, labor income and consumption taxes. Higher tax rates on consumption and labor imply lower opportunity costs of leisure. The main prediction of our theory is that higher taxes would lead to using relatively more leisure time and relatively less medical commodity in producing and maintaining good health. The crucial and relevant fact then is that, for the same period that Europeans spend much less on health care than Americans, labor income and consumption tax rates are much higher in the Eurozone countries than in the US, as we will document in Section 2. We find that this amount of difference in taxation as observed from the US and European data can explain nearly fifty percent of the difference in medical expenditure-GDP ratio between the US and Europe.
Our theory's account of the US-EU difference in medical expenditure is accompanied by its prediction on the cross-country difference in leisure time as another component of an optimal health investment portfolio under different tax rates. It is important to emphasize at the outset that this portfolio view of health investment is essential for our theory's success stated above. If we abstract from the time input in health production, as we will show below through a counterfactual experiment, higher taxes in Europe than in the US would predict that Europeans would spend a greater, rather than a smaller, share of their GDP on health care than Americans.

The important question then is whether our theory's prediction on cross-country differences in the time input for health production has any empirical support. The theory predicts that, since labor and consumption tax rates are higher in Europe than in the US, Europeans would rely more on leisure than do Americans when it comes to producing and maintaining good health. As we will show in Section 2, this is exactly what we observe from the US and European data. We find that, in fact, the US-EU difference in taxation can explain more than ninety percent of the difference in time input in health production between Americans and Europeans.

We therefore argue that differences in taxation can provide a coherent account for much of the US-EU difference in the composition of health investment portfolio. Arising also endogenously in our general equilibrium model under different tax rates are cross-country differences in sick time and in paid work time, the patterns of which are also consistent with the US-European comparisons. The intuition for these results are as follows. Higher tax rates in Europe induce lower labor supply by Europeans, leaving them with more leisure time to engage in health-enhancing activities, when compared with Americans. It is then sensible for Europeans to rely more on leisure while spending less on medical goods and services than Americans when it comes to health production. Faced with lower tax rates and thus higher opportunity costs of leisure, Americans choose to work more and spend more on medical goods and services, while having less leisure time, when compared with Europeans.

We have highlighted the role of taxation in shaping the composition of health investment portfolio. As we also show in this paper, another factor that may affect health investment portfolio is the price of health care goods and services relative to the general price level. As we will document below, relative health care price on average is higher in the US than in Europe. As a matter of fact, such cross-country difference in relative health care price is often thought of as contributing significantly to the higher overall health spending by Americans than by Europeans. In this paper, we also examine the relative price effect viewed through the lens of our theory on health investment portfolio.

In the general equilibrium context of the present paper, two countervailing effects
arise from a higher relative price of medical commodity on overall health spending: (1) higher expenditure per unit of medical consumption, and (2) substitution away from medical commodity towards other goods or leisure in generating utility and towards time input in producing and maintaining good health. Which of these two effects may dominate is an empirical question. As we will show below, under our baseline calibration, the effect of (1) dominates that of (2), but it is partially offset by the latter. This is to say that the contribution of a higher relative health care price to higher overall health spending is weakened by the re-balancing of health investment portfolio. More importantly, this re-balancing implies that a higher relative health care price would lead to using relatively more of the time input and relatively less quantity of medical commodity in producing and maintaining good health.

To put this into a quantitative perspective, we fit into our model the cross-country distribution in the relative prices of health care and services as observed from the US and European data, while keeping the cross-country differences in taxation muted. This helps isolate the account of the differences in relative health care prices for the US-EU difference in the composition of health investment portfolio. We find that the relative price difference can explain about 16.8% of the difference in overall health spending-GDP ratio between the US and Europe, but its prediction on time allocation is in a direction that is exactly opposite to the US-EU comparison: It predicts that Europeans would have longer paid work time and shorter leisure time when compared to Americans, whereas as we show the opposite is true in the data.

Finally, when we turn on the cross-country differences in taxation and in relative health care prices at the same time, our model can explain nearly two thirds of the difference in overall medical expenditure-GDP ratio and more than 80% of the difference in time input for health production between the US and Europe. We therefore argue that differences in taxation and in relative health care prices jointly provide a reasonable account for the US-EU difference in the composition of health investment portfolio.

This portfolio view of health investments sheds important light on the question posed at the beginning of this introduction. Our analysis recognizes the necessity of both leisure time and medical commodity in producing and maintaining good health. This permits the study of how cross-country variations in taxation and in relative health care prices may give rise to different compositions of leisure time and medical consumption in health production. To assess the quantitative significance of these effects, we hold constant across countries other institutional and cultural features. We wish to emphasize from the outset that it is not our interpretation what we analyze in this paper encompass all factors for considering cross-country differences in health care spending, or in time allocation, but rather we view our approach as an
effective way to isolate the impact of one particular channel that naturally links the
two seemingly distinct dimensions in decision making within a unified framework. The empirical relevance of this channel is further attested by our dynamic analysis, which shows that significant fractions of the time-series variations in the US-Europe differences in medical spending-GDP ratio and time use could be attributed to the time-series variation in their difference in the tax wedge over the period 1970-2007. In a time period as short as this, the US-Europe differences in preferences and cultures are arguably more stable than their differences in the variables examined in this paper, so are unlikely dominant factors underlying the changes in the latter.

The remaining of the paper is organized as follows. In Section 2, we document the empirical evidence that motivates our study and we review the related literature. In Section 3, we present our structural model, of which endogenous choice of health investment portfolio is a defining feature. The model is a variant of the neoclassical growth model with taxation, augmented to include multiple uses of time, which influence health production and are influenced by health status. In the model, better health reduces sick time and thus makes more of the time endowment available for paid work or leisure, while both leisure and medical care help enhance health status against the depreciation of health capital. Better health also directly increases utility, and so do greater health-neutral consumption and longer leisure time. A government taxes consumption and labor to finance its spending. The model that is presented here is thus intended to capture some of the key incentives affected by taxation and relative prices on multiple uses of time, on consumption of medical and non-medical commodities, and on their interactions with endogenous health accumulation. We characterize the model’s equilibrium, discuss key first order equations, and highlight the roles of taxation and relative health care price in shaping medical expenditure and time allocation. In Section 4, we describe model parametrization and report main quantitative results. In Section 5, we present two extended models and show that the basic conclusions obtained in the baseline model continue to hold in these extended models. We conduct a series of sensitivity analyses in Section 6, and we provide some concluding remarks in Section 7.

2 Empirical Evidence and Related Literature

It is a much publicized fact nowadays that Americans spend considerably more on health care than Europeans. In 2007, for instance, health care expenditure accounts for 15.7% of GDP in the US, compared with 10% in Belgium, 8.2% in Finland, 11% in France, 10.4% in Germany, 8.7% in Italy, 9.7% in Netherlands, 8.4% in Spain, and 8.4% in the UK. To a large extent, such differences have existed for quite some time.
The first column of Table 1 reports the average health spending to GDP ratio over the period 1970-2007 for the US and the eight comparably rich European countries. As is apparent from the table, the US spends a much larger share of its GDP on health care over this period of time, when compared with the other countries. Health care expenditure per capita is also much greater in the US than in Europe.\(^1\)

The differences in health care expenditure between the US and Europe illustrated above are not attributed to the US-EU differences in expenditure on health-related research and development, or on education and training of health personnel.\(^2\) There also do not seem to exist any notable cross-country differences in aging or life-cycle dynamics, such as age structure of the population or age-related health status and expenditure, to which the reported US-EU differences in health care expenditure can be attributed (e.g., Anderson and Hussey 2000; Gerdtham and Jonsson 2000; Peterson and Burton 2007; Pearson 2009). This is consistent with the finding that differences in health care expenditures between the US and many of the European countries are similar in size across different age groups.\(^3\)

The point of departure of our analysis in this paper is to recast the issue of health care costs as a general equilibrium problem regarding the choice of health investment portfolio, of which the two crucial components are medical consumption and health-enhancing leisure-time activity. The idea that not only medical commodity but also leisure time are critical health inputs has been envisioned in several classic writings, such as Grossman (1972), Gronau (1977), and Ruhm (2000), which are accompanied by many supporting empirical studies. One of such empirical investigations is conducted by Sickles and Yazbeck (1998). Using a structural model to control for endogeneity and reverse causality, whereby to also take into account the opportunity

\(^1\)Source: OECD Health Data 2010. Data for France are available for 1970, 1975, 1980, 1985, and at annual frequency since 1990, and we have used linear interpolation to fit in missing annual data for those years between 1970 and 1990. Data for Italy are available only for years after 1988, and the number reported in Table 1 for Italy is an average for the period 1988-2007.

\(^2\)According to the OECD, total health care expenditure is defined as the sum of expenditures on activities that – through application of medical, paramedical, and nursing knowledge and technology – have the goals of: 1) Promoting health and preventing disease; 2) Curing illness and reducing premature mortality; 3) Caring for persons affected by chronic illness who require nursing care; 4) Caring for persons with health-related impairments, disability, and handicaps who require nursing care; 5) Assisting patients to die with dignity; 6) Providing and administering public health; 7) Providing and administering health programmes, health insurance and other funding arrangements. This definition does not include expenses on education and training of health personnel, research and development in health, food, hygiene and drinking water control, and environmental health. See http://stats.oecd.org/index.aspx for detail.

\(^3\)See, for example, Hagist and Kotlikoff (2009) for the European countries, and Jung and Tran (2010) for the US. See, also, Table 2 in Anderson and Hussey (2000).
cost of leisure explicitly, these authors estimate a trans-log production function of health, with both leisure time and medical commodity as inputs, based on US time series data. They find that both inputs make significantly positive contributions to producing and maintaining health, while the contribution of leisure can be even more than that of medical consumption.4 Our recent econometric estimates based on multi-country data reach a similar conclusion (e.g., He \textit{et al.} 2013).

Empirical evidence on the significant contribution of leisure to good health can also be found in the literatures of biomedical science, public health, psychobiology, and biosociology. While most of such studies in these literatures focus on identifying separately the specific health benefits of individual leisure activities,5 some of these studies also show the evidence that increases in leisure time activities help reduce medical expenditures (e.g., Colditz 1999; Pratt \textit{et al.} 2000; Wang and Brown 2004; Brown \textit{et al.} 2005). The recent study by Pressman \textit{et al.} (2009) establishes a general positive link between a wide variety of leisure activities (e.g., having hobbies, playing sports, socializing, spending time unwinding, spending time in nature, visiting friends or family, going on vacation, going to clubs or religious events) and a broad spectrum of health benefits (e.g., lower blood pressure, waist circumference, body mass index, and cortisol measurements, lower levels of stress and depression, stronger and better social networks, better feelings of satisfaction and engagement in lives, better sleep, better physical function and mood). Caldwell (2005), Russell (2009), and Payne \textit{et al.} (2010) provide a comprehensive review of the empirical evidence on the importance of leisure in achieving and maintaining good health, and an intuitive account of the prevention, coping, and transcendence mechanisms through which leisure enhances physical, mental, social, and cognitive health.6

As is explained in the introduction section, a key determinant of the composition of the two health inputs is taxation and, therefore, cross-country differences in labor income and consumption tax rates may hold a key to understanding cross-country differences in medical consumption, as well as in time input for health production. The linchpin of our analysis in this paper then has to do with the fact that, for the same period that Europeans spend much less on health care than Americans, labor income and consumption tax rates are much higher in Europe than in the US. This can be seen from the fourth to the sixth columns of Table 1, which report the

4Corroborating evidence has also been found by Kenkel (1995), Contoyannis and Jones (2004), Scholz and Seshadri (2010), and Insler (2011), among others.

5For example, leisurely walking or cycling, exercising, vacationing, spending time in nature, engaging in social activities, having hobbies, proper sleep hygiene, and restorative activities have all been independently shown to improve physical, mental, social, or cognitive health. See He and Huang (2013) for a list of references.

6See He and Huang (2013) for a list of references.
average labor and consumption tax rates, along with the corresponding tax wedge, over the period 1970-2007 for the nine selected countries. The tax wedge reported in the sixth column of the table, of which the precise definition will be given in the next section, is a monotonically increasing function of the labor and consumption tax rates. As such, the tax wedge is much higher in Europe than in the US, as is clear from the table. Our model then predicts that Europeans may rely less on medical commodity and more on leisure than Americans when it comes to health production. The first part of this prediction is consistent with the observation from the US and European data, as reported above, whereby the second part of the prediction also conforms to the data, as we document below.

Empirical evidence shows that conventionally defined leisure time, as is measured by the time spent away from paid work, is much shorter, whereas measured hours of paid work are much longer, in the US than in most European countries. This fact is elaborated by Figure 1 in Jones and Klenow (2011). More formally, as can be seen from the second column of Table 1, Europeans on average spend 4.3% less of their time endowment on paid work, and thus 4.3% more of their time endowment is spent on leisure, when compared to Americans. As a standard practice in the literature (e.g., Rogerson 2006; Ohanian et al. 2008; Jones and Klenow 2011), time spent on paid work is here calculated as the product of total civilian employment and annual hours per worker, divided by the size of the population aged 15-64. We then divide the measure so constructed by 365×16 to get a measure of paid work time as a percentage of annual discretionary time. Leisure time is then taken as the residual of paid work time following the conventional definition.

The US-EU differences in time allocation continue to hold even if we tease out unpaid work time (e.g., home production time) from the conventionally measured leisure time (i.e., the residual of paid work time). Based on the multi-country time-use surveys, which record how people allocate their time (typically using a 24-hour diary), OECD (2011) classifies time allocation by working age populations in 29 countries over the period 1998-2009 into paid work or study, unpaid work, personal care, leisure, and other time use, which, when averaged over the 29 countries, take up 19%, 14%, 46%, 20%, and 1% of the total time endowment, and which also

7Source: McDaniel (2007). The author applies the methodology in Mendoza et al. (1994) to calculate a variety of average tax rates over an extended period of time for a number of OECD countries, using national account statistics as a primary source. The average labor and consumption tax rates for Italy reported in the fourth and fifth columns of Table 1 are for the same period 1988-2007 for which the Italian health expenditure data are reported in the first column of the table. The data are downloaded from http://www.caramcdaniel.com/researchpapers.

8The data are taken from Ohanian et al. (2008). They are the average for the period 1970-2004, except for Italy for which it is the average for the period 1988-2004.
show significant variations across the countries. The division between unpaid work and personal care, or leisure for that matter, is determined by the “third-person” criterion: If a third person could be hired to carry out the activity, while the benefits of the activity would still accrue to the hirer, then it is considered to be work. Under this criterion, cooking, cleaning, doing laundry, shopping, walking the dog, gardening, volunteering, and caring for children and other family and non-family members are all examples of unpaid work. In contrast, someone else cannot be paid on another’s behalf to sleep, eat, drink, visit a doctor, watch a game, go to a concert, lay on the beach, jog, swim, play tennis, ride the treadmill, socialize with friends and family, attend a cultural event, read a book silently, or spend time unwinding, as the benefits of the activity would accrue to the doer, but not to the hirer. Thus, these activities are all examples of personal care or leisure, which are arguably important time inputs for the production of health.

The third column in Table 1 reports the sum of these two categories of time use, which we shall refer to as time input in health production, or, with some abuse of terminology, leisure time for short, as a fraction of the time endowment for the nine selected OECD countries. As is apparent from the table, all of the eight European countries are much higher on this time input for health production when compared with the US, and the Eurozone average is about 4% higher than the America’s. This is equivalent to saying that Europeans on average spend one hour more per day on health-enhancing activities than Americans. It is worth recalling that these Eurozone countries on average spend one hour less per day on paid work than the US. Thus, it seems that Europeans shift much of this one-hour time from paid work to personal care or leisure, rather than to unpaid work, when compared with Americans.

It is also much known nowadays that the prices of health care goods and services relative to the general price levels are generally higher in the US than in Europe (e.g., Anderson et al. 2003). This can be seen from the seventh column of Table 1, which reports the purchasing power parities-adjusted price indexes of health care goods and services relative to non-medical commodities for the nine selected countries in 2005. As is shown, for example, the price of health care is 20% higher than that of non-medical consumption in the US, while in Germany the price of health care is only 94% of that of non-medical consumption. This implies that the relative price of health care is about 26% higher in the US than in Germany. It can be inferred from the indexes reported in this column of the table that the relative price of health care in the US is about 15% higher than the European average. These indexes are constructed by He et al. (2013), based on the data from the OECD 2005 PPP.
Benchmark Results, which is a widely used dataset for international comparison of relative prices for health care goods and services (e.g., Pearson 2009).10

Some recent studies suggest various cultural and institutional differences between the US and Europe as potentially relevant for their differences in hours worked.11 These studies typically abstract from health-related issues. On the other hand, there is an emerging class of economic models featuring endogenous health accumulation, which are developed to help understand the rising medical expenditure in the US (e.g., Suen 2006; Hall and Jones 2007; Fonseca \textit{et al.} 2009; Zhao 2014), welfare effects of health care reforms (e.g., Feng 2008; Jung and Tran 2009), implications of health risks for consumption, health expenditure, and allocation of wealth among bonds, stocks, and housing (e.g., Yogo 2009), and implications of employment-based health benefits in the US (e.g., Fang and Gavazza 2011; Huang and Huffman 2014). These studies do not address cross-country difference in health care expenditure and they do not model time input in health production.

\section{Baseline Model}

Our analytical framework integrates endogenous health accumulation into a variant of the neoclassical growth model with taxation, augmented to include multiple uses of time, which influence health production and which are influenced by health status. This argumentation defines the key characteristics of our model, as suggested by the empirical evidence documented above, that is, both leisure and medical consumption are important for enhancing health status against the depreciation of health capital, which in turn affects sick time and thus the time endowment available for paid work or leisure. The linchpin of our analysis lies with taxation and relative health care prices as the key determinants of the composition of these health inputs. The model presented here is thus intended to capture key incentives affected by these determinants on multiple uses of time, on consumption of medical and non-medical commodities, and on their interactions with endogenous health accumulation, which are essential to address the topic at hand.

10Source of original data: http://stats.oecd.org/Index.aspx?DataSetCode=PPP2005. The data obtained here are broadly consistent with those from earlier studies, such as the individual country case studies on the price level of health care conducted by McKinsey Global Institute (1996).

11See He and Huang (2013) for a list of references.
3.1 Setup and Equilibrium Conditions

The economy is populated with a large number of identical households, a large number of perfectly competitive firms, and a government. A representative household has one unit time endowment in each period. The length of time in period t in which the household is sick (s_t) decreases with its stock of health capital at the beginning of the period (h_t), as specified by a twice-differentiable monotone function,

$$s_t = S(h_t), \quad S'(\cdot) < 0. \quad (1)$$

The household can devote its non-sick time in period t to either paid work (n_t) or leisure (l_t), such that,

$$n_t + l_t = 1 - s_t. \quad (2)$$

This time constraint implies that the household can’t work or enjoy leisure when sick. This together with equation (1) capture Grossman’s (1972) notion of investment motive for health care, in that better health reduces sick time and thus makes more of the time endowment available for paid work or leisure.

The household derives utility from consumption of health-neutral goods (c_t), leisure, and health stock in period t according to $U(c_t, l_t, h_t)$, which is a twice-differentiable concave function that increases in all of its arguments. The postulation that better health directly enhances household utility captures Grossman’s (1972) notion of consumption motive for health investment.

Health investment is created using health-related consumption (m_t) and leisure time according to $H(m_t, l_t)$, which is a twice-differentiable, quasi-concave function increasing in both of its arguments. The level of health stock in period $t + 1$ is an update of period-t investment in health plus undepreciated health stock from the previous period, such that,

$$h_{t+1} = (1 - \delta_h)h_t + H(m_t, l_t), \quad (3)$$

where δ_h is a health capital depreciation rate. This specification is along the lines of the models estimated by Sickles and Yazbeck (1998) and by He et al. (2013).

The household’s budget constraint in period t is given by

$$(1 + \tau_c)(c_t + p_m m_t) + k_{t+1} = (1 - \tau_n)w_t n_t + (r_t + 1 - \delta_k)k_t + \Pi_t + T_t, \quad (4)$$

where τ_c, τ_n, and p_m denote respectively the tax rate on consumption, the tax rate on labor income, and the price of health care relative to that of the health-neutral

12Sickles and Yazbeck (1998) allow the stock of health capital at a given point in time to be affected by a distributed lag of past health stocks. Using this more general specification would not change the main results of this paper.
commodity,\(^{13}\) \(w_t\) is the wage rate, \(r_t\) is the rate of return on the household’s rental of physical capital to firms in period \(t\) \((k_t)\), \(\delta_k\) is a depreciation rate of physical capital, and \(\Pi_t\) and \(T_t\) are respectively the profits and lump-sum transfer from firms and the government to the household.

The objective of the household is to choose the allocation of time among different uses, consumption of non-medical and medical commodities, and health and physical capitals to maximize the expected, discounted lifetime utility,

\[
E \sum_{t=0}^{\infty} \beta^t U(c_t, l_t, h_t),
\]

(5)

where \(E\) is the expectations operator and \(\beta\) is a subjective discount factor, subject to (1)-(4), taking the wage and capital rental rates, the tax rates and relative health care price, and the initial conditions \(h_0\) and \(k_0\) as given.

A representative firm has a production function that generates \(F(K_t, N_t; z_t)\) units of output from \(K_t\) units of physical capital and \(N_t\) units of labor inputs, under the level of technology \(z_t\). The production function is of constant returns to scale with respect to capital and labor, and is twice-differentiable, quasi-concave, and increasing in both of these two inputs. The firm rents physical capital and hires labor services from the households to produce output. The firm’s profit in period \(t\) is

\[
\Pi_t = F(K_t, N_t; z_t) - r_t K_t - w_t N_t.
\]

(6)

The objective of the firm is to choose physical capital and labor inputs to maximize the profit in each period, taking the wage and capital rental rates as given.

To close the model, we assume, without the loss of generality and insight, that the government runs a balanced budget in every period and rebates all tax revenues to the households in the form of a non-distortionary lump-sum transfer,

\[
\tau_c (c_t + p_m m_t) + \tau_n w_t n_t = T_t.
\]

(7)

While being kept as simple as possible, our baseline model presented above has all the necessary features to build the central mechanism that we aim to investigate. This mechanism has to do with how labor income and consumption taxes and the relative price of medical commodity affect the incentives in the allocation of time among different uses, and of expenditure on medical and non-medical commodities,

\(^{13}\)For the topics addressed in the present paper through our long-run cross-country analysis, it is without loss of generality to consider time-invariant tax rates and relative health care price, which will be calibrated to their long-run averages in the data for each of the countries under consideration.
and their interactions with health production. Our view is that, it is important to understand the effect that taxation and relative health care price can have on the composition of time and goods inputs in the endogenous accumulation of health capital, and that our model described above provides a simple macroeconomic setting for conducting such analysis.

An equilibrium for this economy consists of allocations \(n_t, l_t, s_t, c_t, m_t, h_{t+1}, \) and \(k_{t+1} \) for households, and \(N_t \) and \(K_t \) for firms, together with wage rate \(w_t \) and capital rental rate \(r_t \), for all \(t \geq 0 \), that satisfy the following conditions: (i) given the wage and capital rental rates, the allocations for households solve the utility maximization problem; (ii) given the wage and capital rental rates, the allocations for firms solve the profit maximization problem; (iii) the government budget constraint is satisfied; and (iv) markets for labor, physical capital, and goods clear.

To provide a general characterization of the model’s equilibrium conditions, it is useful to define, in the spirit of Prescott (2004), a tax wedge as the sum of the tax rates on labor income and on consumption in units of the consumption goods, \(\tau = \frac{\tau_n + \tau_c}{1 + \tau_c} \), which is a monotonically increasing function of the labor and consumption tax rates.

The Euler equation for optimal intertemporal allocation of consumption of the health-neutral commodity, along with the condition for optimal accumulation in physical capital, gives rise to the following familiar condition,

\[
U_c(t) = \beta E_t[U_c(t+1)(r_{t+1} + 1 - \delta)].
\] (9)

The left-hand side of this equation is the cost of giving up one unit of consumption of the health-neutral commodity, measured in terms of (marginal) utility, where the right-hand side is the present value of expected future benefit from investing the foregone consumption goods in physical capital.

The Euler equation associated with the optimal composition of leisure time and health-related commodity inputs in health production is given by,

\[
MRS_{l,c}(t) + MRTS_{l,m}(t)p_m = (1 - \tau)w_t, \tag{10}
\]

where \(MRS_{l,c}(t) \equiv U_l(t)/U_c(t) \) denotes the marginal rate of substitution of leisure \(l \) for health-neutral consumption \(c \), which measures the amount of \(c \) that can be saved on with an additional unit of \(l \), while maintaining the same level of utility, and \(MRTS_{l,m}(t) \equiv H_l(t)/H_m(t) \) denotes the marginal rate of technical substitution of leisure \(l \) for health-related consumption \(m \), which measures the amount of \(m \) that
can be saved on with one additional unit of \(l \), while maintaining the same level of health production. The left-hand side of this equation is thus the benefit from having additional leisure, while the right-hand side of the equation is the opportunity cost of the leisure time in terms of the foregone labor income on paid work, all measured in units of the health-neutral commodity.

The Euler equation for optimal health accumulation, when combined with the condition for optimal intratemporal allocation between health-related consumption and health-neutral consumption, gives rise to the following condition,

\[
\beta E_t \left[U_h(t + 1) - (1 - \tau)w_{t+1}S'(h_{t+1})U_c(t + 1) + (1 - \delta_h)\frac{U_c(t + 1)}{H_m(t + 1)}p_m \right] = \frac{U_c(t)}{H_m(t)}p_m. \tag{11}
\]

The right-hand side of this equation is the cost at date \(t \) of producing one additional unit of health capital for date \(t + 1 \) through health-related consumption, measured in terms of (marginal) utility. The left-hand side of this equation is the present value of expected future benefit, measured in terms of expected future (marginal) utilities, from having one additional unit of health capital at date \(t + 1 \). The benefit includes (i) higher utility directly derived from the additional health capital, (ii) reduced sick time due to better health status, allowing more time for paid work and thus greater labor income (which boosts consumption to increase utility), and (iii) saving on future health investment (in terms of expected future marginal utility) from undepreciated health capital. It is worth mentioning that (i) and (ii) generalize Grossman’s (1972) notions of consumption and investment motives for health expenditure, and relate them to the household’s incentives on labor and goods markets in the presence of labor income and consumption taxes, and that the continuation value captured by (iii) indicates that the benefit from current health investment will last for many future periods due to the incomplete depreciation of health capital.

The optimality conditions for profit maximization are standard, given by,

\[
r_t = F_k(k_t, n_t; z_t), \quad w_t = F_n(k_t, n_t; z_t), \tag{12}
\]

which have taken into account the market clearing conditions for physical capital, \(k_t = K_t \), and for paid work time, \(n_t = N_t \).

The household and government budget constraints then imply the market clearing condition for goods (i.e., the resource constraint),

\[
c_t + p_m m_t + k_{t+1} - (1 - \delta_k)k_t = F(k_t, n_t; z_t). \tag{13}
\]

Equations (1)-(3) and (9)-(13) characterize an equilibrium.
3.2 Highlighting the Roles of Taxation and Relative Health Care Price in Shaping Health Investment Portfolio

Equations (10) and (11) hold the key to the model’s central mechanism for how taxation and relative health care price may affect the optimal composition of leisure and health-related consumption, and of the multiple uses of time, as they pertain to health production.

We shall first highlight the role of taxation. As the right-hand side of (10) shows, a higher tax wedge means a lower effective wage rate and thus a lower opportunity cost of leisure. Then, as the left-hand side of (10) shows, more leisure time l will be used (relative to health-neutral consumption c) in deriving utility and (relative to health-related consumption m) in maintaining health. The flip side of the l-c trade-off in deriving utility and its implication for labor supply in the face of taxation are the linchpin of the analysis in Prescott (2002, 2004), Ohanian et al. (2008), and Rogerson (2008). Equation (10) generalizes their theory by adding on top of the l-c trade-off in deriving utility, the l-m trade-off in maintaining health. This extension strengthens the effect of taxation on labor supply, while at the same time it provides a novel theory on how a higher tax wedge may induce the household to use relatively more leisure activity and relatively less medical commodity in health production.

This extension is further enriched by another novel feature of the model, that is, health capital affects sick time and thus time available for leisure or paid work. This can be better seen by rewriting Equation (11) as follows,

$$
\frac{U_c(t)}{H_m(t)} p_m = E_t \sum_{i=1}^{\infty} \beta^i (1 - \delta_h)^{i-1} \left[U_h(t+i) - (1 - \tau) w_{t+i} S'(h_{t+i}) U_c(t+i) \right].
$$

As the second infinite-sum on the right-hand side of (14) illustrates, a higher tax wedge weakens the investment motive for health expenditure, as the benefit from enhanced health status, in terms of reduced sick time and thus increased time for paid work, is reduced by the lowered effective wage rate. Then, as the left-hand side of (14) indicates, the household will consume less of health-related commodity m relative to health-neutral consumption c. This effect of taxation on the c-m trade-off might be quantitatively significant, given that a permanently higher tax wedge will reduce the benefit (in terms of increased time available for paid work) from current health investment for many periods in the future.

To summarize, in the presence of a higher tax wedge, the various optimal trade-offs embedded in conditions (10) and (11) would reinforce to generate a longer leisure time, a shorter time on paid work, and a smaller share of health care expenditure in total consumption spending (and a smaller medical expenditure-GDP ratio).
is to say that, when it comes to the US-Europe comparisons in medical expenditure and time allocation, cross-country difference in taxation would tend to make the model fit all dimensions of the data.

We turn now to highlighting the role of relative health care price. As Equations (10) and (14) reveal, \(p_m \) is indeed another factor that may affect health investment portfolio and time allocation. A higher \(p_m \) implies that more leisure time will be used (relative to medical commodity) in maintaining health and (relative to other goods and services) in deriving utility (and less of the time endowment will be supplied to paid work), as revealed by (10), and that a smaller quantity of medical commodity will be consumed relative to other goods and services, as revealed by (14).

Hence, a higher relative health care price tends to generate a longer leisure time and a shorter time on paid work. Recall that relative health care price is higher in the US than in Europe. The US-EU difference in relative health care price then predicts that Europeans would have longer paid work time and shorter leisure time than Americans, a pattern of cross-country difference in time allocation that is exactly opposite to the US-EU comparison observed from the actual data, while its prediction on cross-country difference in overall health spending to GDP ratio may be in line with data observables, depending on whether the effect on the cost per unit of medical consumption dominates the effect on the composition of health investment portfolio.

4 Parametrization and Main Quantitative Results

As illustrated by the analysis in Section 3, our model predicts that households would use relatively more leisure time and less medical commodity in health production, while working less for pay, when faced with a higher tax wedge. A natural question then is: To what extent can the US-EU differences in taxation account for their differences in health spending-GDP ratio and time allocation? Since this question is quantitative in nature, we need to parameterize our model to provide an answer.

4.1 Parametrization and Measurement

To begin, we follow Grossman (1972) to postulate the following functional form for how the stock of health capital affects sick time,

\[
S(h_t) = Q h_t^{-\gamma},
\]

(15)

where parameter \(\gamma \) measures the sensitivity of sick time with respect to health stock, and \(Q \) is a scaling parameter.
Then, in light of our empirical study presented in a companion paper (e.g., He et al. 2013), we parameterize the health production function using a CES version of the trans-log production function of health estimated by Sickles and Yazbeck (1998),

\[
H(m_t, l_t) = \begin{cases}
B(\theta m_t^{\frac{\omega-1}{\omega}} + (1 - \theta)l_t^{\frac{\omega-1}{\omega}})^{\frac{1}{\omega}} & \text{if } \omega \neq 1, \\
B(m_t^{\theta(1-\theta)}l_t^{1-\theta})^\xi & \text{if } \omega = 1,
\end{cases}
\] (16)

where \(\theta \) and \(1 - \theta \) measure respectively the shares of medical commodity and leisure time inputs in health production in the long-run stationary equilibrium, \(\omega \) measures the elasticity of substitution between these two inputs, \(\xi \) measures the degree of returns to scale in the health production technology, and \(B \) is a scaling parameter that measures the level of technology in health production.

Next, similarly as in Huang and Huffman (2014), we parameterize the period utility function in the following form,

\[
U(c_t, l_t, h_t) = \log\left[\frac{\lambda c_t^{1-\eta} + (1 - \lambda)h_t^{1-\eta}}{1 - \eta}\right] + \rho \log l_t,
\] (17)

where \(\lambda \) measures the importance of health-neutral consumption relative to the stock of health capital in the household’s preferences and the inverse of \(\eta \) is the elasticity of substitution between these two entries, and \(\rho \) measures the importance of leisure relative to the consumption-health bundle in the household’s preferences.

Finally, we postulate the standard Cobb-Douglas form for the production function of goods,

\[
F(K_t, N_t; z_t) = z_t K_t^\alpha N_t^{1-\alpha},
\] (18)

where \(\alpha \) and \(1 - \alpha \) measure respectively the cost shares of physical capital and labor services in the value-added productive inputs in the long-run stationary equilibrium.

In the rest of this section, we calibrate the model to the US data and compute the steady-state values of the key variables of interest (we compute the steady state by setting the technology level \(z_t \) to its unconditional mean of 1). We then recompute the model’s equilibrium while replacing the labor income and consumption tax rates with those observed for each of the eight European countries, but keeping the other baseline parameter values unchanged. This will allow us to see what would happen to the US economy if it adopts the tax rates of these Eurozone countries. This will then give us a sense about the extent to which the observed difference in taxation may account for the observed difference in medical expenditure-GDP ratio, time input in health production, and time spent on paid work between the US and Europe.

To proceed, we set the share of payment to physical capital in the value-added productive factors, \(\alpha \), to 0.36, and the annual physical capital depreciation rate, \(\delta_k \),
to 0.076. These are standard values used in the literature (e.g., Cooley and Prescott 1995; Nadiri and Prucha 1996; Chen et al. 2009).

Recent estimates suggest that the annual depreciation rate of health capital for the US working-age population is on average about 5.6 percent (e.g., Scholz and Seshadri 2010), so we set $\delta_h = 0.056$, to be consistent with these studies. In terms of selecting a value for η, we note that its inverse measures the elasticity of substitution between health stock and health-neutral consumption in the utility function, and we set $\eta = 8.7$, to be consistent with the studies by Viscusi and Evans (1990), Murphy and Topel (2006), Finkelstein et al. (2010), Scholz and Seshadri (2010), and Halliday et al. (2014). Given this value, health is highly complementary to health-neutral consumption: being healthy helps enhance the marginal utility of consumption. We set the parameter governing the elasticity of sick time with respect to health stock, γ, and the parameter governing the degree of returns to scale in health production, ξ, to 1, following Grossman (1972). We set $\omega = 1$, corresponding to a unitary elasticity of substitution between health care and leisure time in health production, in light of the empirical estimates by Sickles and Yazbeck (1998) and He et al. (2013).

As discussed in Section 2 and summarized in Table 1, the effective labor income and consumption tax rates are calibrated from the data constructed by McDaniel (2007). For example, for the US economy in the period 1970-2007, the average labor income and consumption tax rates are 21 percent and 8.3 percent, respectively, so we set $\tau_n = 0.21$ and $\tau_c = 0.083$ for the US accordingly. The tax rates for the other countries are calibrated in a similar fashion, except for Italy where they are for the period 1988-2007 for which the Italian health expenditure data are available. The relative price of health care to non-medical consumption, on the other hand, is taken from He et al. (2013), who construct the purchasing power parities-adjusted price indexes of health care goods and services relative to non-medical commodities for various OECD countries based on the data from the OECD 2005 PPP Benchmark Results, which is a widely used dataset for international comparison of relative prices for health care goods and services.

There are six remaining parameters in the model that need to be calibrated. They are the subjective discount factor, β, the parameter measuring the importance of non-medical consumption relative to the stock of health capital in the utility function, λ, the parameter measuring the importance of leisure relative to the consumption-health bundle in the utility function, ρ, the share of medical goods input in health production, θ, and the two scaling parameters, Q in (15) and B in (16), respectively. The values for these six parameters are jointly determined by matching six relevant steady-state conditions in the model with the corresponding moment conditions for the US economy for the 1970-2007 or similar periods. These moment conditions either
have already been calculated in the existing literature, or can readily be derived from available data sources. These include an annual capital-output ratio of 3.32 (e.g., Cooley and Prescott 1995; Chen et al. 2009), a medical expenditure-output ratio of 0.114 (computed from the National Health Accounts for the period 1970-2007), a non-medical consumption-output ratio of 0.634, a ratio of working hours to total discretionary time of 0.218 (e.g., Ohanian et al. 2008), a medical expenditure-total consumption ratio of 0.14 (computed from National Income and Product Account for the period 1970-2007), and a frequency of sick time of 0.021 (computed based on the data reported by Lovell 2004). These benchmark values of parameters are summarized in Table 2.

4.2 Quantify the Effect of Taxation

We have computed the steady-state equilibrium of the baseline model where all of the parameters take on the values prescribed in Table 2, which are calibrated to the US economy. What we will do in this section is to recompute the model’s equilibrium by replacing the labor income and consumption tax rates for the US with the tax rates for each of the eight European countries reported in the fourth to the sixth columns of Table 1, while keeping all of the other parameters at their benchmark values reported in Table 2. The equilibrium values of the variables of interest in each of the eight cases can be compared with their values in the benchmark economy. These differences predicted by our model can then be contrasted with the differences observed in the data between each of the eight European countries and the US. These contrasts reveal how important a role that the differences in taxation between these European countries and the US may play in explaining their observed differences in the underlying variables of interest. The results so obtained concerning health care expenditure to GDP ratio, time spent on paid work, and time spent on health-enhancing leisure activity are reported in Table 3.

14 The ratio of total consumption to real GDP is about 0.748 for the post-war US economy (e.g., Cooley and Prescott 1995). Subtracting the medical expenditure-GDP ratio of 0.114 from this number, we arrive at a non-medical consumption-GDP ratio of 0.634.

15 Based on data from the National Health Interview Survey, Lovell (2004) reports that employed adults in the US miss, on average, 4.6 days of work per year due to illness or other health-related factors. Notice that this number is very close to the one reported by Ramey and Francis (2009) based on micro-level data. This translates into 2.1% of total available working days. We view this as a proxy for the share of sick time in total discretionary time.

16 The comparisons between the Italian and the US data reported in Table 3 are for the period 1988-2007. Accordingly, for the purpose of comparison with Italy using our model, the benchmark parameter values for the US economy are calibrated for the same period.
The first three columns of Table 3 record respectively the differences between each of the eight European countries (as well as the Euro Mean) and the US in these three measures of their data. These numbers are derived by subtracting the last row from each of the first nine rows in the first three columns of Table 1. Thus, the three numbers on the first row in the first three columns of Table 3 tell us that, the health expenditure-GDP ratio is 4% lower, the fraction of time endowment spent on paid work is 5.2% lower, and the fraction of time endowment spent on health-enhancing leisure activity is 7% higher, in Belgium than in the US.

The middle three columns of Table 3 report respectively the variations of these three variables in our model when the labor income and consumption tax rates for the US are replaced by the tax rates in each of the eight European countries and by the average tax rates over these European countries. Thus, the three numbers on the first row in the middle three columns of Table 3 show our model’s prediction that, the health expenditure-GDP ratio would be 2.34% lower, the fraction of time endowment spent on paid work would be 4.85% lower, and the fraction of time endowment spent on health-enhancing leisure activity would be 4.45% higher, under the tax rates in Belgium than under the tax rates in the US.

The contrast between the middle three columns and the first three columns of Table 3 conforms to our earlier conclusion based on analytical results. That is, our model’s predicted US-Europe differences in the various variables of interest, which we recall are driven solely by their differences in taxation, are broadly consistent with their differences in these variables observed in the data. Generally speaking, the lower tax rates faced by Americans than by Europeans lead our model to predict a higher health care expenditure to GDP ratio, more time spent on paid work, and less time spent on health-enhancing leisure activity in the US than in Europe, which are exactly what we observe from the comparison of the US to the European data.

The last three columns of Table 3 give us a more quantitative feel about the extent to which the differences in taxation between the US and Europe may help explain their observed differences in those variables of interest. The numbers in these last three columns of the table are obtained by dividing the numbers in the middle three columns, which we recall are generated from our model, by the corresponding numbers in the first three columns, which we recall are recorded from the data. As we scroll down from the first row to the eighth row in these columns to go over the results for each of the eight European countries in comparison with the US, we can see that cross-country differences in taxation provide a rather coherent account for the observed cross-country differences in the underlying variables of interest – sometimes to a great degree, and other times more modestly. As is illustrated by the last row in the last three columns of the table, on average, the US-EU difference
in labor income and consumption tax rates accounts for 47.5% of their difference in health expenditure-GDP ratio, 91% of their difference in time spent on paid work, and 93% of their difference in time spent on health-enhancing leisure activity.

4.2.1 Decompose the effects of consumption and labor income taxes

We have seen that the US-EU difference in the tax wedge is an important determinant of their differences in health spending-GDP ratio and in time allocation. Recall that the tax wedge is a function of consumption and labor income tax rates. It is therefore of natural interest to decompose the effect of the US-EU difference in labor income tax from the effect of their difference in consumption tax on their differences in the various variables of interest.

To identify the effect of labor income tax, we recompute the model’s equilibrium by replacing the labor income tax rate for the US with that for each of the eight European countries, while keeping all of the other parameters (including consumption tax rate) to their benchmark values. The equilibrium values of those variables of interest in each of the eight cases are compared with their values in the benchmark economy. These differences predicted by our model can then be contrasted with the differences observed in the data between each of the eight European countries and the US. These contrasts reveal the importance of the differences in labor income tax rate between these European countries and the US in accounting for their differences in the relevant variables. By conducting this experiment, we find that, on average, the US-Europe difference in labor income tax rate accounts for 35.3% of their difference in health spending-GDP ratio, 68% of their difference in time spent on paid work, and 70% of their difference in time spent on health-enhancing leisure activity.

A parallel exercise allows us to identify the effect of consumption tax, through recomputing the model’s equilibrium by replacing the consumption tax rate for the US with that for each of the eight European countries, while keeping all of the other parameters (including labor income tax rate) to their benchmark values. Through this exercise, we find that, on average, the US-Europe difference in consumption tax rate accounts for 13.37% of their difference in health expenditure-GDP ratio, 25.5% of their difference in time spent on paid work, and 26.5% of their difference in time spent on health-enhancing leisure activity.

These two analyses together suggest that the US-EU differences in labor income tax rate play a much more important role than their differences in consumption tax rate in shaping their differences in the underlying variables of interest.
4.2.2 The effect of capital income tax

Our baseline model is abstracted from capital income tax. In actuality, capital income tax is quite common among the OECD countries. As a matter of fact, in contrast to the cases with consumption and labor income taxes, capital income tax rate is generally higher in the US than in Europe, as is documented by McDaniel (2007). For the eight European countries under consideration, for instance, the average capital income tax rate for the period 1970-2007 is 22.3% (Belgium), 22.8% (Finland), 15.5% (France), 16.0% (Germany), 20.2% (Italy, which is for the period 1988-2007), 17.8% (Netherlands), 13.2% (Spain), and 29.7% (UK), compared to 28.5% in the US.

A natural question then is: How much an effect could the US-EU difference in capital income tax rate have on their difference in health investment portfolio or in labor supply? The answer is, “not much”.

This may not be surprising, given that the presence of capital income tax does not directly affect the two equations, (10) and (11), that govern the optimal composition of health investment portfolio and time allocation. Although a higher capital income tax rate tends to make investment in health capital more attractive than in physical capital, when it comes to the US-Europe comparison, the degree of their difference in capital income tax rate does not make much material difference in the composition of health investment portfolio or time allocation.

To put this into a quantitative perspective, we re-configure the benchmark model, taking into account the capital income tax rate in the US economy. This requires to re-calibrate the six parameters, namely, the discount factor, β, the share of health-neutral consumption in utility, λ, the share of leisure in utility, ρ, the share of goods input in health production, θ, and the two scaling parameters, Q and B, so that the benchmark model remains consistent with the US economy. The model predicted cross-country differences in health expenditure-GDP ratio and time allocation due to their differences in consumption, labor and capital income tax rates are obtained by replacing these tax rates in the US with those in each of the eight European countries. The results are very close to those obtained when only cross-country differences in consumption and labor income tax rates are taken into account, while taxation on capital income is abstracted from: On average, the US-EU differences in consumption, labor and capital income tax rates account for 48.4% of their difference in health expenditure-GDP ratio, 86.6% of their difference in time spent on paid work, and 89.3% of their difference in time spent on health-enhancing leisure activity. These explanatory powers are close to those, namely, 47.5%, 91%, and 93%, when only the US-EU differences in consumption and labor income tax rates are taken into account.

Summarizing the results in this and the previous subsections, we conclude that the US-EU difference in labor income tax rate is much more important than their
differences in other tax rates in accounting for their differences in health spending-GDP ratio and in time allocation. Whereas their difference in consumption tax rate also plays some role, the role played by their difference in capital income tax rate is negligible, when it comes to understanding the US-EU differences in the underlying variables of interest.

4.3 Quantify the Effect of Relative Health Care Price

A parallel exercise can be used to help isolate the effect of relative health care price. This is done in this section by recomputing the model’s equilibrium while replacing the relative health care price in the US with that in each of the eight European countries reported in the seventh column of Table 1, but keeping all of the other parameters at their benchmark values reported in Table 2. The equilibrium values of the variables of interest in each of the eight cases are compared with their values in the benchmark economy. The resultant differences in health spending-GDP ratio, time spent on paid work, and time spent on health-enhancing leisure activity, which are reported in the middle three columns of Table 4, can then be contrasted with the differences in these variables observed in the data between each of the eight European countries and the US, which are presented in the first three columns of Table 4.

These numerical contrasts between our model’s predictions and the data conform to our earlier conclusion from analytical scrutiny concerning the double-edged role of the US-EU difference in relative health care price in shaping their differences in those variables of interest. More specifically, while cross-country difference in relative health care price does generate cross-country difference in medical expenditure-GDP ratio in the observed direction (except for Italy) – implying that under our baseline calibration the effect of relative health care price difference on the cost per unit of medical consumption dominates its effect on the composition of health investment portfolio – it generates cross-country difference in time allocation in a direction that is exactly opposite to the observed data (except for Italy). Quantitatively, as can be seen from the last row of Table 4, on average, the US-EU difference in relative health care price accounts for 16.8% of their observed difference in medical expenditure-GDP ratio; however, this relative price difference predicts that paid work time would be 0.38% higher and time spent on health-enhancing leisure activity would be 0.3% lower in Europe than in the US, while, in actuality, Europeans spend 4.4% less of their time endowment on paid work and 4% more of their time endowment on health-enhancing leisure activity when compared with Americans.
4.4 Joint Effects of Taxation and Relative Health Care Price

We assess in this section the joint effects of taxation and relative health care price. To do so, we recompute the model’s equilibrium by replacing both the labor income and consumption tax rates and the relative health care price for the US with those for each of the eight European countries reported in the fourth to the seventh columns of Table 1, while keeping all of the other parameters at their benchmark values reported in Table 2. The equilibrium values of the variables of interest in each of the eight cases are compared with their values in the benchmark economy. The resultant differences in health spending-GDP ratio, time spent on paid work, and time spent on health-enhancing leisure activity, which are reported in the middle three columns of Table 5, can then be contrasted with the differences in these variables observed in the data between each of the eight European countries and the US, which are presented in the first three columns of Table 5.

As is illustrated by these numerical contrasts between our model’s predictions and the actual data, the US-EU differences in taxation and in relative health care price jointly provide a fairly successful account for their differences in all of the underlying variables of interest. As can be seen from the last row in the last three columns of Table 5, on average, the US-EU differences in taxation and in relative health care price together account for 62% of their difference in health expenditure-GDP ratio, 84.3% of their difference in time spent on paid work, and 87.5% of their difference in time spent on health-enhancing leisure activity.

4.5 Variation in US-Europe Differences Over Time

As we emphasized from the outset, one should not take the results obtained above as suggesting that taxation is the only key factor for considering the US-EU differences in health care expenditure and time allocation. For example, preferences and social norms may also play an important role in time allocation.\(^{17}\) That said, we view our focus on taxation as an effective way to isolate the impact of one particular channel that naturally links the two apparently distinct dimensions in decision making, that is, health care spending and time use, in a unified framework.

To put our theory to a test from this perspective, we note that, in a time period as short as our sample, the US-Europe differences in preferences and cultures are arguably more stable than their differences in the variables examined in this paper, so are unlikely the factors underlying the changes in the latter – from 1970 to 2007, the US-EU differences in medical expenditure-GDP ratio and time spent on paid work

\(^{17}\)See He and Huang (2013) for a list of references that argue along this line.
widened by 4.5% and 4.6% respectively – while these changes can be rationalized by our theory given that the EU-US difference in the tax wedge widened by 5.4% from 1970 to 2007. To what extent these widening gaps in health spending-GDP ratio and labor supply between the US and Europe could be attributed to the widening gap in the tax wedge between Europe and the US is a quantitative question.

To get such a quantitative feel, we compute the transition dynamics for the US and the eight European countries associated with their changing tax rates over time, assuming that these economies were in their initial steady states in 1970. To fix the initial steady state for the US, we calibrate the baseline model by using US tax rates in 1970 and choosing the six parameters β, λ, ρ, B, θ, and Q to match the six moment conditions described in Section 4.1 but for US data in 1970, while keeping all of the other parameters to their benchmark values reported in Table 2.\(^{18}\) We then compute the initial steady state for each of the European countries by replacing the US tax rates with that country’s tax rates in 1970. The model-implied initial gaps in health spending-GDP ratio and labor supply between the US and the European countries so computed are due solely to their differences in the tax wedge in 1970.

Taking these initial conditions as given, we feed the time series of actual (for the period 1970-2007) and projected (for years beyond 2007) tax rates for each country into the baseline model and solve the transition dynamics. We next compute the US-EU gaps in health care expenditure-GDP ratio and labor supply in 2007 based on the simulation results.\(^{19}\) The changes in these gaps from their initial values in 1970 as predicted by the model can then be contrasted with their empirical counterparts observed in the data. These contrasts can give us a glimpse into the extent to which the widening US-EU gaps in health spending-GDP ratio and labor supply could be attributed to the widening EU-US gap in the tax wedge over the period 1970-2007.

The results are quantitatively quite significant. Take for example the case where tax rates are projected to increase at their average growth rates over the 1970-2007 period for years thereafter before leveling off in 2020.\(^{20}\) The simulation of our model in this case shows that the widening gap in the tax wedge between an European country and the US from 1970 to 2007 can explain more than 18% of the widening gap in health care expenditure-GDP ratio, while at the same time more than 44%...

\(^{18}\)US data in 1970 imply, among other things, a tax wedge of 0.252, a medical expenditure-output ratio of 0.071, a non-medical consumption-output ratio of 0.677, and a ratio of working hours to total discretionary time of 0.211. Due to data availability, the frequency of sick time is kept at its benchmark value of 0.021.

\(^{19}\)Due to lack of time series data, we set relative health care price to unity across all countries at all time in all simulations in this section.

\(^{20}\)We have also simulated the model under alternative assumptions about projected tax rates for years beyond 2007 but do not find quantitatively significant changes in results.
of the widening gap in time spent on paid work, between the US and that country over this period, for six out of the eight Eurozone countries in our sample – 29.4% and 74% for Belgium, 20.3% and 72% for Finland, 34.1% and 42% for France, 17.7% and 25.1% for Germany, 22.4% and 90% for Italy, and 25.1% and 43% for Spain.\footnote{Our analysis for Italy is for the period starting with 1988. See Footnotes 1, 7, 8, and 16.}

4.6 Essentiality of Leisure for Maintaining Health

Before closing this section, we wish to remind the reader of one defining feature of our baseline model that captures the fact that both leisure time and medical care are important for maintaining health. This feature, which is incorporated in the model in a way that is consistent with the empirical evidence, serves as a foundation for our analysis in this paper. Indeed, as is exemplified through the analyses above, the key to the model’s central mechanism lies with the manner in which taxation (and, for that matter, relative health care price) affects the composition of leisure and medical care as they pertain to health production.

This portfolio view of health investment is essential for our model’s success in accounting for cross-country difference in medical expenditure. If, instead, we follow a more conventional approach and abstract from the time input in health production, then cross-country difference in taxation would generate cross-country difference in medical expenditure-GDP ratio in a direction that is exactly opposite to what is observed in the data: In light of the US-Europe comparison, the mis-specified model predicts that higher consumption and labor income tax rates in Europe than in the US would lead Europeans to spend a greater, rather than a smaller, share of their GDP on medical care than Americans.

A counterfactual experiment helps put this into a more quantitative perspective. The mis-specified model as described above is configured by setting the share of time input in health production to zero, that is, by setting $\theta = 1$. The benchmark version of the model is then obtained by choosing the values for β, λ, ρ, Q, and B to match the relevant steady-state conditions in the model with the corresponding moment conditions for the US economy for the 1970-2007 or similar periods, as described in Section 4.1, excluding medical expenditure-total consumption ratio from the targeted moment conditions, while keeping all of the other parameters at the values reported in Table 2. The mis-specified model configured in this way is then used to re-conduct the exercise described in Section 4.2. The mis-specified model predicts that, on average, the EU-US difference in the tax wedge would lead Europeans to spend 0.08% more of their GDP on medical care than Americans, while, in actuality, Europeans on average spend 4.1% less of their GDP on medical care when compared with Americans.
5 Extended Models

We now extend the baseline model studied above along two dimensions. In the first extension, we introduce a survival motive on top of the consumption and investment motives for health care. In the second extension, we differentiate leisure time activity that is health-enhancing from those that are not. We show that the basic conclusions obtained in our baseline model continue to hold in these extended models.

5.1 Endogenous Survival Probability

A recent macro-health literature captures a survival motive for health investment by allowing health capital to affect survival prospect (e.g., Hall and Jones 2007, Zhao 2014, Halliday et al. 2014). Following this approach, we augment our baseline model to include endogenous survival probability as a function of health capital,

\[\psi_t = \Psi(h_t) , \]

where \(\psi_t \) denotes the probability of surviving through period \(t \) conditional on having survived through period \(t-1 \). We assume that \(\Psi(h_t) \) is an increasing function of \(h_t \) in order to capture the idea that greater health capital improves survival prospect.

The expected, discounted lifetime utility is now given by

\[
E \sum_{t=0}^{\infty} \beta^t \left[\prod_{s=0}^{t} \Psi(h_s) \right] \left[U(c_t, l_t, h_t) + b \right],
\]

where the inclusion of a constant term \(b \) into the period utility function here is crucial in order to guarantee that the value of period utility is always positive so that it is worth enhancing life expectancy (i.e., Hall and Jones 2007).

The Euler equation associated with the optimal composition of leisure time and health-related commodity inputs in health production is the same as in the baseline model, as captured by Equation (10). The incorporation of the endogenous survival probability leads to the following straightforward modification to the Euler equation for optimal intertemporal allocation of consumption of the health-neutral commodity (combined with the condition for optimal accumulation in physical capital),

\[
U_c(t) = \beta E_t \Psi(h_{t+1}) \left[U_c(t + 1)(r_{t+1} + 1 - \delta) \right]. \tag{19}
\]

A more dramatic modification occurs to the Euler equation for optimal health accumulation (combined with the condition for optimal intratemporal allocation between
health-related consumption and health-neutral consumption) as follows,

\[\beta E_t \Psi(h_{t+1}) [U_h(t + 1) + \frac{\Psi'(h_{t+1})}{\Psi(h_{t+1})} U(t + 1) - (1 - \tau) w_{t+1} S'(h_{t+1}) U_c(t + 1) + (1 - \delta_h) \frac{U_c(t + 1)}{H_m(t + 1)} p_m] = \frac{U_c(t)}{H_m(t)} p_m, \]

where \(U(t + 1) \equiv U(c_{t+1}, l_{t+1}, h_{t+1}) + b \). In addition to augmentation of the discount factor with the conditional survival probability \(\Psi(h_{t+1}) \) in getting the present value of expected future benefit from having one additional unit of health capital at date \(t+1 \), the future benefit itself also includes a new component \([\Psi'(h_{t+1})/\Psi(h_{t+1})] U(t + 1) \), representing an extra utility gain from the extended life expectancy brought about by the additional unit of health capital.

For the quantitative exercise conducted below, we parameterize the conditional survival probability function following Zhao (2014):

\[\Psi(h_t) = 1 - \frac{1}{e^{\kappa h_t}}. \]

This extended model has all parameters of the baseline model plus two additional parameters, \(\kappa \) and \(b \). All of the baseline parameters take their benchmark values reported in Table 2, except for \(\beta, \lambda, \rho, \theta, Q, \) and \(B \), which are determined jointly with \(\kappa \) and \(b \), by matching six steady-state conditions in this extended model with the corresponding moment conditions for the US economy described in Section 4.1, plus using two additional matches between the extended model and US data.

First, in the steady state of this extended model, \(1 - \Psi(h) = 1/e^{\kappa h} \) corresponds to population’s death rate in the steady state. Setting \(1/e^{\kappa h} \) to the long-run average death rate over the period 1970-2007 in the US, which is 0.87%, gives rise to one additional match between the extended model and US data.

Second, the term \(b \) in the period utility function has a direct bearing on the value of statistical life (VSL) studied in the literature (e.g., Viscusi and Aldy 2003). In our model, as in Hall and Jones (2007) and Zhao (2014), VSL corresponds to the marginal cost of saving a life. In terms of our model’s notations, this is measured by taking inverse of the marginal effect of health care spending on survival probability, or, \(VSL = p_m/[(\partial \Psi(h)/\partial m)] = p_m/[(\partial \Psi/\partial h') \times (\partial h'/\partial m)] \). Substituting the steady-state versions of (10) and (19) into the steady-state version of (20) then yields the following relation between \(b \) and mean VSL,

\[\frac{\beta(U + b)}{U_c} = \frac{VSL}{r + 1 - \delta_k} \left[r + \delta_h - \delta_k + \left(H_l + \frac{H_m}{p_m} \frac{U_l}{U_c} \right) S'(h) - \frac{H_m U_h}{p_m U_c} \right]. \]
In calibrating b we set the mean VSL in our model to the mean VSL for working-age Americans in 2000, which is about 3.5 million (constant 2000 $). We verify that b so calibrated is indeed big enough to guarantee that the flow utility is always positive under all circumstances in our simulations.

Using the calibrated model we can conduct the exercise described in Section 4.2. We find that this extended model with survival motive marginally improves upon the baseline model’s success in explaining the cross-country differences in medical expenditure-GDP ratio and time allocation: On average, the US-Europe difference in labor income and consumption tax rates accounts for 51.1% of their difference in health spending-GDP ratio, 95.1% of their difference in time spent on paid work, and 96.3% of their difference in time spent on health-enhancing leisure activity.

5.2 Differentiate Different Types of Leisure Time

In the baseline model, leisure time is defined as non-sick time spent away from paid work, which not only directly generates utility, but in its entirety is health enhancing. In actuality, however, part of this broadly defined leisure time, such as time spent on “couch potato”, may not be health enhancing. Yet, as explained in Section 2, available empirical evidence reveals that the US-EU difference in the broadly defined leisure time is about the same as their difference in the health-enhancing leisure time (e.g., time spent in exercising, socializing, relaxing, etc.), narrowly defined to be the sum of the two categories of time use, personal care and leisure, in the OECD’s multi-country time-use survey. This suggests that the mechanism described in this paper shall indeed account for the US-EU difference in the health-enhancing leisure time. Nevertheless, it would be reassuring to verify this in an extended model that formally divides the broadly defined leisure time into health-enhancing leisure time and health-neutral leisure time.

We now present such a model and its prediction. Denote by v health-enhancing leisure time and l health-neutral leisure time. All the other variables are denoted by the same notations as in the baseline model. The time constraint becomes

$$n_t + v_t + l_t = 1 - s_t.$$

Since it is v but not l that enters into health production function, we have

$$h_{t+1} = (1 - \delta_h)h_t + B(m_t^\theta v_t^{1-\theta})^\xi.$$

22This number is calculated following Hall and Jones (2007). See Table 1 in their paper. The US Food and Nutrition Service (USDA) and Environmental Protection Agency (EPA) use $3.5-3.9$ million (constant 2000 $) as their benchmark VSL (see, also, Viscusi and Aldy 2003).
On the other side, both l and v enter into utility function, such that

$$U(c_t, v_t, l_t, h_t) = \log[\lambda c_t^{1-\eta} + (1 - \lambda) h_t^{1-\eta}] + \rho \log l_t + \phi \log v_t.$$

The utility-maximization problem for a representative agent is then given by

$$\max \; \mathbb{E} \sum_{t=0}^{\infty} \beta^t U(c_t, v_t, l_t, h_t)$$

s.t. \[
(1 + \tau_c)[c_t + p_m m_t] + k_{t+1} = (1 - \tau_n) w_t n_t + (r_t + 1 - \delta_k) k_t + \Pi_t + T_t \\
h_{t+1} = (1 - \delta_h) h_t + B(m_t^0 v_t^{1-\theta})^{\xi} \\
n_t + v_t + l_t + s_t = 1, \; s_t = Q h_t^{-\gamma} \\
c_t, k_{t+1} \geq 0, \; k_0, h_0 \text{ given.}
\]

This extended model embeds a mechanism similar to the one described by the intratemporal condition (10) for the baseline model. This is the Euler equation associated with the optimal composition of the narrowly defined health-enhancing leisure time and health-related consumption in health investment,

$$MRS_{v,c}(t) + MRTS_{v,m}(t)p_m = (1 - \tau)w_t,$$ \hspace{1cm} (21)

where $MRS_{v,c}(t) \equiv U_v(t)/U_c(t)$ denotes the marginal rate of substitution of health-enhancing leisure time v for health-neutral consumption c, which measures the amount of c that can be saved on with an additional unit of v, while maintaining the same level of utility, and $MRTS_{v,m}(t) \equiv H_v(t)/H_m(t)$ denotes the marginal rate of technical substitution of v for health-related consumption m, which measures the amount of m that can be saved on with one additional unit of v, while maintaining the same level of health production. The left-hand side of equation (21) is thus the benefit from having additional health-enhancing leisure time, while the right-hand side of the equation is the opportunity cost of the health-enhancing leisure time in terms of the foregone labor income on paid work, i.e., the effective wage rate that is monotonically decreasing in the tax wedge.

The extended model also embeds a mechanism as described by the intertemporal condition (11), which combines the Euler equation for optimal health accumulation,

\footnote{The two types of leisure time have different weights in preferences. Were the weights the same, an agent would strictly prefer v to l and always choose $l = 0$, and the model here would collapse into the baseline model presented in Section 3.}
with the condition for optimal allocation between health-related consumption and health-neutral consumption.

These, together with an intratemporal Euler equation for health-neutral leisure time l and health-neutral consumption c, $MRS_{l,c}(t) = \frac{U_l(t)}{U_c(t)} = (1-\tau)w_t$, that is specific to the extended model, govern various optimal trade-offs among multiple uses of time and of goods, in generating utility and in producing health. The intuition for how taxation and relative health care price may affect these optimal trade-offs is as similarly described in Section 3.2, with the broadly defined leisure time there divided into here the health-enhancing leisure time and the health-neutral leisure time. This suggests that difference in taxation should continue to explain the US-EU differences in time allocation and health expenditure in this extended model.

To put this into a quantitative perspective, we conduct in this extended model a similar exercise as described in Section 4.2. We begin by noting that the extension above introduces an additional parameter ϕ, which measures the weight of health-enhancing leisure time in utility. We choose the value of ϕ to match the fraction of time endowment that Americans devote to health-enhancing leisure activities. We also recalibrate the six parameters $\beta, \lambda, \rho, B, \theta, \text{and } Q$, to match the six moment conditions as described in Section 4.1. Values of other parameters are kept the same as in the baseline model. We then replace the tax rates in the US with those in the European countries to generate our model’s predictions about the cross-country differences in the key variables of interest. Our finding is that, in this extended model, the EU-US difference in the tax wedge can explain about 35% of their difference in health expenditure-GDP ratio, about 45% of their difference in health-enhancing leisure time, and almost the entirety of their difference in paid work time.

6 Additional Analyses

Before concluding we conduct a series of additional analyses to further check the robustness of the main results. In order to conserve space, we here focus on taxation as the main determinant of the composition of health investment portfolio and labor supply, and the implications of the US-EU differences in tax rates for their differences in health expenditure-GDP ratio and time allocation. Hence, in all sensitivity

24This is the sum of the two categories of time use in the OECD’s multi-country time-use survey, namely, \textit{personal care} and \textit{leisure}, which is about 20% (averaged over 1998-2009) for the US. We get an almost identical figure from the American Time Use Survey (ATUS): The two categories of time use in ATUS, namely, \textit{socializing, relaxing, and leisure}, and, \textit{exercise through sports or recreation}, fit our definition of health-enhancing leisure time, which account for 19% and 1.2% of time endowment of Americans for the time period 2003-2007.
analyses to be conducted below, results for the benchmark economy will be derived keeping all parameters to their values reported in Table 2, except for the discount factor, β, the share of health-neutral consumption in utility, λ, the share of leisure in utility, ρ, the share of goods input in health production, θ, and the two scaling parameters, Q and B, which may need to be re-calibrated accordingly when we vary certain features of the model, as is to be noted whenever this is the case, so that the benchmark economy remains consistent with the US economy. The model predicted cross-country differences in health expenditure-GDP ratio and time allocation due to their differences in taxation are then obtained by replacing the various tax rates in the US with those in each of the eight European countries.

6.1 Health-Leisure Complementarity in Preferences

In the literature, it is not unusual to consider a period utility function under which leisure is non-separable from consumption. A specification of period utility function alternative to the form in (17) is, similarly as in Scholz and Seshadri (2010),

$$U(c_t, l_t, h_t) = \frac{\log[\lambda(c_t^\rho l_t^{1-\rho})^{1-\eta} + (1 - \lambda)h_t^{1-\eta}]}{1-\eta}.$$ \hspace{1cm} (22)

The benchmark values of the six model parameters, β, λ, ρ, θ, Q, and B, under this alternative specification of the period utility function are jointly determined, once again by matching the six relevant steady-state conditions in the model with the corresponding moment conditions for the US economy for the 1970-2007 or similar periods, as described in Section 4.1, while all of the other parameters are maintained at their values reported in Table 2. Given the value of η equal to 8.7, the period utility function as specified in (22) also implies that, health is complementary to not only consumption, but leisure. This is to say that, being healthy helps enjoy both consumption and leisure. This seems to be consistent with both causal observations and existing studies (e.g., Murphy and Topel 2006; Scholz and Seshadri 2010).

It is thus fitting to undertake some exploration to see what the results will be when the period utility function is specified by (22). This is done by repeating the exercise in Section 4.2 under this alternative specification of utility function and the correspondingly calibrated values of parameters. The results so obtained are similar to those with the original form of utility function in that cross-country difference in taxation continues to help the model fit all dimensions of the data: On average, the US-EU differences in consumption and labor income tax rates account for 55.7% of their difference in health spending-GDP ratio, 77% of their difference in paid work time, and 85% of their difference in time spent on health-enhancing leisure activity.
Even from a quantitative perspective, these explanatory powers are comparable to those reported in Section 4.2 when the period utility function is specified by (17), which are, respectively, 47.5%, 91%, and 93%. It is true that cross-country difference in taxation may explain more of their difference in medical expenditure-GDP ratio and less of their difference in time allocation, if the period utility function in (17) is replaced by that in (22). But, as illustrated by the above comparisons, the changes in our model’s explanatory power are fairly modest, and our general conclusions hold to quantitatively similar extents, when the specification of the period utility function is varied, from one form into the other.

6.2 Consumption-Leisure Trade-Off in Deriving Utility

We showed in Section 3.2 that the consumption-leisure trade-off in deriving utility as embedded in the first term of Equation (10) is one component of our model’s mechanism. To see how robust our results are to the strength of this trade-off, we consider a generalized form of the period utility function in (17) given by

\[U(c_t, l_t, h_t) = \frac{\log[\lambda c_t^{1-\eta} + (1-\lambda) h_t^{1-\eta}]}{1-\eta} + \rho \frac{l_t^{1-\frac{1}{\mu}}}{1-\frac{1}{\mu}}. \]

(23)

Clearly, (17) is a special case of (23) with \(\mu \) set to 1. We can show that this parameter directly determines the Frisch labor supply elasticity so it affects the strength of the aforementioned consumption-leisure trade-off in deriving utility. When we lower \(\mu \) from its benchmark value of 1, we lower the labor supply elasticity and weaken the strength of the said trade-off. It would be interesting to see how much our results will be weakened when we reduce \(\mu \) to some extremely low values.

As a reference point, recall in the baseline model with \(\mu = 1 \), the US-EU difference in the tax wedge explain 47.5% of their difference in health expenditure-GDP ratio, 91% of their difference in time spent on paid work, and 93% of their difference in time spent on health-enhancing leisure activity. When we reduce \(\mu \) significantly, how much will our results be weakened when we reduce \(\mu \) to some extremely low values.

25To understand the intuition for this, recall that higher taxes result in less medical expenditure, more time spent on leisure and less time spent on paid work, and that this is the case with either specification of the period utility function. If health and leisure are complementary to each other, as is the case with the period utility function (22), leisure helps enhance the marginal utility of health, and vice versa; thus, everything else equal, a given level of marginal utility of health (leisure) can be achieved with relatively less medical expenditure and less leisure time (and more paid work time), when compared to the case with the period utility function (17).

26Such demonstration is not presented here in order to conserve space, but it is available upon request from the authors.
to 0.5, the model’s accounts of the respective differences are lowered modestly, to 41.1%, 82%, and 83.5%. When we lower μ further, to 0.3, the model’s explanatory powers edge down moderately, to 34.3%, 72.1%, and 73.5%, respectively. Finally, even when we set μ to an extremely low value, 0.1, the US-EU difference in the tax wedge still accounts for 16.8% of their difference in health expenditure-GDP ratio, 43.4% of their difference in time spent on paid work, and 44% of their difference in time spent on health-enhancing leisure activity.

6.3 Health Production Technology

As also shown in Section 3.2, the medical care-leisure trade-off in maintaining health as embedded in the second term of Equation (10) and the trade-off between medical and non-medical consumption in maintaining health and in delivering utility as prescribed by Equation (11) are two other components of the model’s mechanism. The strengths of these trade-offs are affected by the health production function (16), in particular, the elasticity of substitution between medical commodity and leisure time inputs in health production, ω, and the degree of returns to scale in the health production technology, ξ. We here check the robustness of our results with respect to variations in the values of these two parameters.

The empirical estimates of ω by He et al. (2013) range from 0.74 to 1.36. The value 1 adopted in the benchmark calibration lies in the middle of this range. While variations of ω within this range do not significantly affect the model’s account of the US-EU difference in time allocation, they do have some quantitatively more significant influence on the model’s power in explaining the US-EU difference in medical expenditure-GDP ratio. As we lower ω, such power wanes, and vice versa. But, even when we reduce ω to the lower bound of the empirically reasonable range reported by He et al. (2013), the US-EU difference in the tax wedge still accounts for 22% of their difference in health spending-GDP ratio.

The value 1 adopted in the benchmark calibration for ξ is consistent with much of the macro-health literature, which goes back to Grossman (1972). Nevertheless, Ehrlich and Chuma (1990) argue that some degree of decreasing returns to scale may be more appropriate for health production technology in this type of models. When we lower ξ to 0.5, a value suggested by Ehrlich and Chuma (1990), the US-EU difference in the tax wedge accounts for 54% of their difference in health spending-GDP ratio, 83% of their difference in paid work time, and 86% of their difference in health-enhancing leisure time.
6.4 Tax Treatment of Health Care Expenditure

In the baseline model, all types of goods and services are subject to a homogenous consumption tax rate. Yet, some features of the health care systems in the US (e.g., employment-based tax subsidy) and Europe (e.g., universal health care) may lead one to argue that there are heavy government subsidizations on health care expenditures. That said, if we assume in the model a tax shelter on medical commodity for both the US and Europe, the results obtained above will not change much. What seems more interesting is how much the results will be strengthened or weakened if we impose a tax shelter on medical commodity for the US but not Europe, or vice versa.

When we assume a tax shelter on medical goods and services for the US but not Europe, the US-Europe difference in the tax wedge accounts for 54% of their difference in health expenditure-GDP ratio and almost all of their differences in time allocation. Conversely, when we assume a tax shelter on medical commodity for Europe but not the US, the US-Europe difference in the tax wedge accounts for 33% of their difference in health spending-GDP ratio, 76% of their difference in paid work time, and 76% of their difference in health-enhancing leisure time.

6.5 Target on Working Age Population

Our model works most properly for a typical working age person, who naturally faces the time allocation and health investment portfolio choice problems described in the model. The difference in health care expenditure-GDP ratio between US and European data, against which our model’s prediction is compared above, is, however, measured on the basis of total population. Yet, as highlighted in the Introduction, and explained with more detail in Section 2, cross-country difference (between the US and many of the European nations) in the health expenditure measure seems fairly similar across different age groups, as revealed by available empirical studies, although the health expenditure measure may differ significantly across different age groups within each country (e.g., with some steep increase for the elderly, especially towards the end of their life).²⁷ This implies that our model shall indeed account for the US-EU difference in health expenditure-GDP ratio for their working age populations. Nevertheless, it would be reassuring to verify this directly from available data on the working-age-population’s health expenditure-GDP ratio.

For this purpose, we appeal to Anderson and Hussey (2000). Table 2 in their paper reports, for eight countries, the fraction of national health expenditure that goes

²⁷See, for example, Anderson and Hussey (2000), Gerdtham and Jonsson (2000), Peterson and Burton (2007), Pearson (2009), Hagist and Kotlikoff (2009), and Jung and Tran (2010).
to the elderly (people aged 65 and older), as well as the fraction of GDP that is spent on health care for the elderly. Four of the eight countries in their sample, namely, the US, France, Germany, and the UK, are also in ours. Based on this information, we construct the working-age-population’s health expenditure-GDP ratio for each of these four countries. The numbers are 8.6% for the US (for the year of 1995), 6.2% for France (for the year of 1993), 6.9% for Germany (for the year of 1994), and 3.9% for the UK (for the year of 1993).

To see to what extent these numbers can be explained by our theory, we calibrate our baseline model to the US economy in 1995, and then repeat the exercise described in Section 4.2 by replacing the US tax rates in 1995 with those in the other three countries in those corresponding years. We find that the difference in the tax wedge explains 58% of the difference in health spending-GDP ratio, 69% of the difference in paid work time, and virtually the entire difference in time spent on health-enhancing leisure activity, all for the working age population, between the US and the other three European countries. Thus, an even greater fraction of the US-EU difference in health expenditure-GDP ratio can be explained by the difference in their tax rates when attention is restricted to the working age population.

We have done many more sensitivity analyses. We do not discuss these results here in order to conserve space, but in all of these additional experiments our basic conclusions hold broadly. This is typically the case when we vary other model features or parameter values within their empirically plausible specifications. In general, these variations in model features or parameter values have some quantitative influence on the results – sometimes very modestly, and other times to a greater degree – but in no case they alter the basic conclusions of the paper.

7 Conclusion

We have documented two sets of empirical observations of the past many years. First, the US has spent a larger fraction of its GDP on health care and devoted more time to paid work and less time to leisure, when compared to most comparably rich European countries. Second, labor income and consumption tax rates are considerably lower, while relative health care price is generally higher, in the US than in these Eurozone countries. We have shown that these two sets of facts may be related to each other, and a key to such relationship may have to do with another empirically relevant fact that we have also documented in this paper, that is, both leisure and medical care

\[28\] Labor income and consumption tax rates were 22.2% and 8% in the US (1995), 43% and 23.7% in France (1993), 44.3% and 15.8% in Germany (1994), and 27.1% and 16.4% in the UK (1993).
are important for maintaining health.

To this end, we have developed a general equilibrium macroeconomic model which features an endogenous choice of health investment portfolio that is influenced by taxation and relative health care price. We have used the model to establish three sets of main results. First, to a large extent the US-EU differences in health spending-GDP ratio and in time allocation could have been attributed to their differences in taxation, especially in labor income and (to a smaller extent) consumption tax rates, though their difference in capital income tax rate could have played a negligible role. Second, the US-EU difference in relative health care price could have attributed to some of their difference in overall health spending-GDP ratio, but its prediction on cross-country difference in time allocation is in a direction that is exactly opposite to the US-EU comparison: It predicts that Europeans would have spent more time on paid work and less time on leisure when compared with Americans, whereas as we have documented in the paper the opposite is true in the data. Third, the US-EU differences in taxation and in relative health care price jointly provide a fairly successful account of their differences in all of the underlying variables of interest, explaining 62% of their difference in health expenditure-GDP ratio, 84.3% of their difference in time spent on paid work, and 87.5% of their difference in time spent on health-enhancing leisure activity.

We have conducted many sensitivity and counterfactual analyses, and found that our results hold quite generally, as long as the empirically motivated, portfolio view of health investment is taken into account, which is essential for fitting our model to the data. While our focus in the present paper is on cross-country differences in health expenditure-GDP ratio and in time allocation, this portfolio feature of health investment could also be pertinent to other issues of potential interest. For instance, He et al. (2015) find that this portfolio view of health investment is important for understanding the joint cyclical behaviors of medical expenditure and health capital in modern industrialized economies. In light of this finding, and ours in the current paper, a systematic investigation of a broad set of macro-health issues for which this empirical motivated feature of health production may be relevant should be elevated to the top of the research agenda.

8 Acknowledgement

For comments and suggestions, we thank Dave Backus, Toni Braun, Tom Cooley, Hanming Fang, Lei Fang, Gerhard Glomm, Greg Huffman, Ayse Imrohoroglu, Chad Jones, Jurgen Jung, Pat Kehoe, Lee Ohanian, Ed Prescott, Valerie Ramey, Victor Rios-Rull, Motohiro Yogo, Tao Zha, audiences at the 2011 Midwest Macroeconomics
Meetings, the 2011 North American Summer Meeting of the Econometric Society, the 2011 Shanghai Macroeconomics Workshop, the 2011 World Congress of the International Economic Association, the 2013 Tsinghua Workshop in Macroeconomics, and the 2015 Annual Meeting of the American Economic Association, and seminar participants at the Cheung Kong Graduate School of Business, the Federal Reserve Banks of Atlanta, Dallas, Minneapolis, and San Francisco, the Huazhong University of Science and Technology, Fudan University, Peking University, the University of California at Riverside, the University of California at San Diego, the University of California at Santa Barbara, the University of Cologne, and the University of Southern California. We are grateful to Luca Lorenzoni for assistance with the OECD PPP data. He acknowledges financial support from the Shanghai Pujiang Program and Eastern Scholar Program. Huang acknowledges financial support from the Grey Fund at Vanderbilt University. The views expressed herein are those of the authors and do not necessarily reflect the views of the IMF or IMF policy.

References

[40] Pearson, M. (2009): “Disparities in Health Expenditure Across OECD Countries: Why Does the United States Spend So Much More Than Other Countries?” Written Statement to Senate Special Committee on Aging, OECD.

Table 1: US and European Data: Long Run Averages

<table>
<thead>
<tr>
<th>Country</th>
<th>\tilde{m}/y (%)</th>
<th>n (%)</th>
<th>l (%)</th>
<th>τ_n (%)</th>
<th>τ_c (%)</th>
<th>τ_f (%)</th>
<th>p_m (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>7.4</td>
<td>16.6</td>
<td>71</td>
<td>42.0</td>
<td>17.6</td>
<td>50.7</td>
<td>1.02</td>
</tr>
<tr>
<td>Finland</td>
<td>7.2</td>
<td>20.3</td>
<td>68</td>
<td>38.0</td>
<td>22.1</td>
<td>49.1</td>
<td>1.14</td>
</tr>
<tr>
<td>France</td>
<td>8.5</td>
<td>16.9</td>
<td>68</td>
<td>38.3</td>
<td>23.9</td>
<td>50.2</td>
<td>1.11</td>
</tr>
<tr>
<td>Germany</td>
<td>9.1</td>
<td>18.0</td>
<td>69</td>
<td>40.8</td>
<td>14.8</td>
<td>48.4</td>
<td>0.94</td>
</tr>
<tr>
<td>Italy</td>
<td>8.0</td>
<td>15.0</td>
<td>67</td>
<td>39.7</td>
<td>18.9</td>
<td>49.3</td>
<td>1.24</td>
</tr>
<tr>
<td>Netherlands</td>
<td>8.0</td>
<td>15.8</td>
<td>68</td>
<td>43.5</td>
<td>16.6</td>
<td>51.6</td>
<td>0.94</td>
</tr>
<tr>
<td>Spain</td>
<td>6.2</td>
<td>17.0</td>
<td>67</td>
<td>28.6</td>
<td>13.3</td>
<td>36.9</td>
<td>0.92</td>
</tr>
<tr>
<td>UK</td>
<td>6.3</td>
<td>20.5</td>
<td>66</td>
<td>28.3</td>
<td>16.1</td>
<td>38.3</td>
<td>1.05</td>
</tr>
<tr>
<td>Euro Mean</td>
<td>7.6</td>
<td>17.5</td>
<td>68</td>
<td>37.5</td>
<td>18.0</td>
<td>47.0</td>
<td>1.04</td>
</tr>
<tr>
<td>US</td>
<td>11.4</td>
<td>21.8</td>
<td>64</td>
<td>21.0</td>
<td>8.3</td>
<td>27.1</td>
<td>1.20</td>
</tr>
</tbody>
</table>

Definitions and sources of data:

a. Health expenditure to GDP ratio–OECD Health Data 2010. Here $\tilde{m} \equiv p_m m$ and $y \equiv F(k,n;z)$.
f. Tax wedge–Authors’ calculation based on d and e.
g. Relative price of health care–He, Huang, and Hung (2013).
Table 2: Benchmark Values of Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Preferences</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>subjective discount factor in the consumption-health bundle</td>
<td>0.9686</td>
</tr>
<tr>
<td>λ</td>
<td>share of consumption in the consumption-health bundle</td>
<td>0.2601</td>
</tr>
<tr>
<td>η</td>
<td>elasticity of substitution between consumption and health</td>
<td>8.70</td>
</tr>
<tr>
<td>ρ</td>
<td>share of leisure relative to the consumption-health bundle</td>
<td>1.4728</td>
</tr>
<tr>
<td>α</td>
<td>share of physical capital in value-added inputs</td>
<td>0.36</td>
</tr>
<tr>
<td>δ_k</td>
<td>depreciation rate of physical capital</td>
<td>0.076</td>
</tr>
<tr>
<td>θ</td>
<td>share of medical commodity in health investment</td>
<td>0.4207</td>
</tr>
<tr>
<td>ω</td>
<td>elasticity of substitution between health care and leisure</td>
<td>1.0</td>
</tr>
<tr>
<td>ξ</td>
<td>returns to scale of health investment</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>level of technology in health production</td>
<td>0.0863</td>
</tr>
<tr>
<td>δ_h</td>
<td>depreciation rate of health capital</td>
<td>0.056</td>
</tr>
<tr>
<td>γ</td>
<td>elasticity of sick time with respect to health capital</td>
<td>1.0</td>
</tr>
<tr>
<td>Q</td>
<td>scaling factor</td>
<td>0.0071</td>
</tr>
<tr>
<td>τ_n</td>
<td>labor income tax rate</td>
<td>0.21</td>
</tr>
<tr>
<td>τ_c</td>
<td>consumption tax rate</td>
<td>0.083</td>
</tr>
<tr>
<td>τ</td>
<td>tax wedge</td>
<td>0.271</td>
</tr>
<tr>
<td>p_m</td>
<td>price of health care relative to health-neutral commodity</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Table 3: EU-US Differences in Health Spending-GDP Ratio and in Allocation of Time among Multiple Uses: Data vs. Model’s Predictions based on Cross-Country Variations in Taxation

<table>
<thead>
<tr>
<th>Country</th>
<th>Data</th>
<th>Model</th>
<th>Data Explained by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta(m/y)$</td>
<td>Δn</td>
<td>Δl</td>
</tr>
<tr>
<td>Belgium</td>
<td>-0.040</td>
<td>-0.052</td>
<td>0.07</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.042</td>
<td>-0.015</td>
<td>0.04</td>
</tr>
<tr>
<td>France</td>
<td>-0.029</td>
<td>-0.049</td>
<td>0.04</td>
</tr>
<tr>
<td>Germany</td>
<td>-0.023</td>
<td>-0.038</td>
<td>0.05</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.058</td>
<td>-0.079</td>
<td>0.03</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.034</td>
<td>-0.060</td>
<td>0.04</td>
</tr>
<tr>
<td>Spain</td>
<td>-0.052</td>
<td>-0.048</td>
<td>0.03</td>
</tr>
<tr>
<td>UK</td>
<td>-0.051</td>
<td>-0.013</td>
<td>0.02</td>
</tr>
<tr>
<td>Euro Mean</td>
<td>-0.041</td>
<td>-0.044</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Table 4: EU-US Differences in Health Spending-GDP Ratio and in Allocation of Time among Multiple Uses: Data vs. Model’s Predictions based on Cross-Country Variations in Relative Health Care Price

<table>
<thead>
<tr>
<th>Country</th>
<th>Data</th>
<th>Model</th>
<th>Data Explained by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>∆((\bar{m}/y))</td>
<td>∆n</td>
<td>∆l</td>
</tr>
<tr>
<td>Belgium</td>
<td>-0.040</td>
<td>-0.052</td>
<td>0.07</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.042</td>
<td>-0.015</td>
<td>0.04</td>
</tr>
<tr>
<td>France</td>
<td>-0.029</td>
<td>-0.049</td>
<td>0.04</td>
</tr>
<tr>
<td>Germany</td>
<td>-0.023</td>
<td>-0.038</td>
<td>0.05</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.058</td>
<td>-0.079</td>
<td>0.03</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.034</td>
<td>-0.060</td>
<td>0.04</td>
</tr>
<tr>
<td>Spain</td>
<td>-0.052</td>
<td>-0.048</td>
<td>0.03</td>
</tr>
<tr>
<td>UK</td>
<td>-0.051</td>
<td>-0.013</td>
<td>0.02</td>
</tr>
<tr>
<td>Euro Mean</td>
<td>-0.041</td>
<td>-0.044</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Table 5: EU-US Differences in Health Spending-GDP Ratio and in Allocation of Time among Multiple Uses: Data vs. Model’s Predictions based on Cross-Country Variations in Taxation and Relative Health Care Price

<table>
<thead>
<tr>
<th>Country</th>
<th>Data</th>
<th>Model</th>
<th>Data Explained by Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\Delta(\bar{m}/y)$</td>
<td>Δn</td>
<td>Δl</td>
</tr>
<tr>
<td>Belgium</td>
<td>-0.040</td>
<td>-0.052</td>
<td>0.07</td>
</tr>
<tr>
<td>Finland</td>
<td>-0.042</td>
<td>-0.015</td>
<td>0.04</td>
</tr>
<tr>
<td>France</td>
<td>-0.029</td>
<td>-0.049</td>
<td>0.04</td>
</tr>
<tr>
<td>Germany</td>
<td>-0.023</td>
<td>-0.038</td>
<td>0.05</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.058</td>
<td>-0.079</td>
<td>0.03</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-0.034</td>
<td>-0.060</td>
<td>0.04</td>
</tr>
<tr>
<td>Spain</td>
<td>-0.052</td>
<td>-0.048</td>
<td>0.03</td>
</tr>
<tr>
<td>UK</td>
<td>-0.051</td>
<td>-0.013</td>
<td>0.02</td>
</tr>
<tr>
<td>Euro Mean</td>
<td>-0.041</td>
<td>-0.044</td>
<td>0.04</td>
</tr>
</tbody>
</table>