
   

 

 

 

Vanderbilt University Department of Economics Working

Papers 16-00005

 

Voting over Selfishly Optimal Nonlinear Income Tax Schedules with a

Minimum-Utility Constraint

 

Craig Brett 

Mount Allison University

John A Weymark 

Vanderbilt University

Abstract
Pairwise majority voting over alternative nonlinear income tax schedules is considered when there is a continuum of

individuals who differ in their labor productivities, which is private information, but share the same quasilinear-in-

consumption preferences for labor and consumption. Voting is restricted to those schedules that are selfishly optimal

for some individual. The analysis extends that of Brett and Weymark (Games and Economic Behavior, forthcoming)

by adding a minimum-utility constraint to their incentive-compatibility and government budget constraints. It also

extends the analysis of Röell (unpublished manuscript, 2012) and Bohn and Stuart (unpublished manuscript, 2013) by

providing a complete characterization of the selfishly optimal tax schedules. It is shown that individuals have single-

peaked preferences over the set of selfishly optimal tax schedules, and so the schedule proposed by the median skill

type is a Condorcet winner.

Citation: Craig Brett and John A Weymark, (2016) ''Voting over Selfishly Optimal Nonlinear Income Tax Schedules with a Minimum-Utility

Constraint'', Vanderbilt University Department of Economics Working Papers, VUECON-16-00005.

Contact: Craig Brett - cbrett@mta.ca, John A Weymark - john.weymark@vanderbilt.edu.

Submitted: February 11, 2016.   Published: February 12, 2016.

URL:http://www.accessecon.com/Pubs/VUECON/VUECON-16-00005.pdf

 

   

http://www.accessecon.com/Pubs/VUECON/VUECON-16-00005.pdf


Voting over Selfishly Optimal Nonlinear Income Tax Schedules

with a Minimum-Utility Constraint

Craig Bretta, John A. Weymarkb

aDepartment of Economics, Mount Allison University, 144 Main Street, Sackville NB

E4L 1A7, Canada. E-mail: cbrett@mta.ca
bDepartment of Economics, Vanderbilt University, VU Station B #351819, 2301

Vanderbilt Place, Nashville, TN 37235-1819, USA. E-mail:

john.weymark@vanderbilt.edu

February 2016

Abstract. Pairwise majority voting over alternative nonlinear income tax schedules
is considered when there is a continuum of individuals who differ in their labor pro-
ductivities, which is private information, but share the same quasilinear-in-consumption
preferences for labor and consumption. Voting is restricted to those schedules that are
selfishly optimal for some individual. The analysis extends that of Brett and Weymark
(Games and Economic Behavior, forthcoming) by adding a minimum-utility constraint
to their incentive-compatibility and government budget constraints. It also extends the
analysis of Röell (unpublished manuscript, 2012) and Bohn and Stuart (unpublished
manuscript, 2013) by providing a complete characterization of the selfishly optimal tax
schedules. It is shown that individuals have single-peaked preferences over the set of
selfishly optimal tax schedules, and so the schedule proposed by the median skill type is
a Condorcet winner.
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1. Introduction

In democratic societies, tax policies are a prominent feature in political platforms and
public forums. Some debates concern the level of taxation—on whether there should be
tax increases or tax cuts. Others involve the distribution of tax payments. Is there a
need for middle class tax relief? Should low income earners receive additional benefits?
What is the appropriate tax rate for the highest earners? The diversity of issues that can
be raised highlights the complexity of tax policy. Even fairly simple income tax schemes
have several tax brackets, and there is a need to decide upon tax rates for each bracket
and the positions of the brackets themselves. In short, tax policy is multidimensional.
In contrast, economists’ canonical model of the political determination of policies, the
median voter model, works best in unidimensional settings.

In this article, we consider pairwise majority voting over alternative nonlinear income
tax schedules when, as in Mirrlees (1971), there is a continuum of individuals who differ
in their labor productivities, which is private information, but share the same preferences
for labor and consumption.1 A tax schedule is a Condorcet winner if a majority of voters
weakly prefers it to any of the other tax schedules being considered. Given the potential
complexity of a nonlinear income tax schedule, a Condorcet winner will only exist if some
restrictions are placed on the set of permissible tax schedules. Here, we follow the lead
of Röell (2012), Bohn and Stuart (2013), and our previous work, Brett and Weymark
(2016), by restricting attention to selfishly optimal nonlinear income tax schedules. That
is, voting is restricted to those nonlinear tax schedules that some individual would choose
from among the feasible tax schedules if that person were a dictator.2 What these sched-
ules are depends on the feasibility constraints that are considered. In our companion
article, the only constraints on a tax schedule are that it be incentive compatible and
respect the government’s budget constraint; the latter constraint is equivalent to the
economy’s material balance constraint. In this article, we further constrain the selfishly
optimal schedules by requiring that they guarantee some minimum utility level to all in-
dividuals. This requirement prevents the adoption of tax schedules that extract excessive
rents from the very poorest members of society.

Labor productivity is a unidimensional measure of an individual’s skill. A selfishly
optimal tax schedule depends on the skill level of the individual who proposes it. The
set of tax schedules that are voted on consists of all of the schedules that are selfishly

1We do not explicitly model political competition. Bierbrauer and Boyer (2013) and Roemer (2012),
among others, consider political candidates who compete for votes by proposing redistributive tax policies
when labor productivities are privately known.

2Meltzer and Richard (1981) consider majority voting over selfishly optimal linear income tax sched-
ules. Snyder and Kramer (1988) investigate majority voting over selfishly optimal nonlinear income
tax schedules when individuals allocate a fixed amount of labor between the taxable and underground
sectors. De Donder and Hindricks (2003) use simulations to investigate the existence of a Condorcet
winner among the set of selfishly optimal quadratic income tax schedules. There is also an extensive
literature that investigates the existence of a Condorcet winner when tax schedules that are not selfishly
optimal are permitted. See, for example, Gans and Smart (1996) and Roberts (1977).
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optimal for some skill type. Consequently, it is possible to index the set of admissible tax
policies by the skill level. In effect, this index is a single dimension on which the policies
can be ordered.

When preferences are quasilinear in consumption and there is a finite number of skill
levels, Röell (2012) has shown that preferences over the selfishly optimal tax schedules is
single-peaked provided that the minimum-utility constraint does not bind. Thus, the me-
dian voter theorem of Black (1948) applies, and so the median skill-type’s most preferred
tax schedule is a Condorcet winner. Röell (2012) only provides a partial characteriza-
tion of the selfishly optimal tax schedules. In Brett and Weymark (2016), we provide a
complete characterization of these schedules when there is a continuum of skill levels and
the minimum-utility constraint is not imposed. Using this characterization, we were able
to determine the utility that each type of individual obtains from the selfishly optimal
schedule proposed by any other type and thereby identify how each skill type ranks the
permissible tax schedules. This allowed us to provide a simple demonstration of Röell’s
result that these preferences are single-peaked in the proposers’ skill levels, from which
her median voter theorem follows.

Here, we extend our earlier results by providing a complete characterization for the
continuum model of the selfishly optimal income tax schedules that satisfy the minimum-
utility constraint in addition to the incentive-compatibility and government budget con-
straints when, as in our earlier article, preferences are quasilinear in consumption. More-
over, we show that individual preferences are single-peaked over these selfishly optimal
tax schedules, and so the median skill-type’s preferred schedule is a Condorcet winner.
For a continuum of skill types, Bohn and Stuart (2013) also investigate majority vot-
ing over selfishly optimal tax schedules with the same constraints as are used here, but
without our restriction that preferences are quasilinear. They show the existence of a
Condorcet winner in their model without appealing to single-peakedness or Black’s me-
dian voter theorem. As in Röell (2012), Bohn and Stuart (2013) only provide a partial
characterization of the selfishly optimal tax schedules. The complete characterization of
these schedules plays an important role in establishing our median voter theorem.

A selfishly optimal income tax schedule can be identified from a schedule that shows
how the optimal before-tax income varies with the skill level. A proposer prefers to
redistribute resources from other skill types towards himself. In effect, he uses a maxi-
max social welfare function for types with lower skills and a maxi-min social welfare
function for those with higher skills. In our companion article, we showed that if a
proposer simply allocated the maxi-max incomes to all lower types and the maxi-min
incomes to all higher types, then the second-order incentive constraint would be violated.
In order to satisfy this constraint, the selfishly optimal before-tax income schedules must
instead consist of three regions. In the lower part of the skill distribution, an individual
receives his maxi-max income, whereas in the upper part of the skill distribution, an
individual receives his maxi-min income. For intermediate skill levels, including the
skill level of the proposer, everybody receives the same before-tax income. This region
provides a “bridge” between the maxi-max and maxi-min parts of the schedule. As in the
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utilitarian optimum (Mirrlees, 1971), everybody on the maxi-min part of the schedule
faces a positive marginal tax rate except for the most highly skilled, whose marginal tax
rate is zero. On the maxi-max part of the schedule, everybody faces a negative marginal
tax rate (a marginal wage subsidy) except for the least skilled, whose marginal tax rate
is zero.

We show that with the addition of the minimum-utility constraint, the before-tax in-
come schedules that are selfishly optimal also have three regions. Because the resources
that can be extracted from the lowest skilled are now more limited, the first region no
longer tracks the maxi-max solution. Instead, the before-tax incomes of the lowest types
lie strictly between the maxi-min and maxi-max incomes when the minimum-utility con-
straint binds. In effect, the minimum-utility constraint gives rise to a countervailing
incentive to transfer resources towards the lowest type, which pushes a selfishly optimal
tax schedule in the direction of the maxi-min schedule. Because preferences are quasilin-
ear in consumption, the introduction of the minimum-utility constraint does not affect
the qualitative features of the other two regions of the before-tax income schedule.

In our companion article, we were able to determine the before-tax incomes for each
skill level in a selfishly optimal schedule point-wise, and this facilitated our demonstration
that individuals have single-peaked preferences over the set of selfishly optimal schedules.
The minimum-utility constraint precludes us from characterizing these schedules point-
wise, which adds to the complexity of the analysis. Nevertheless, in spite of this added
complexity, we are able to show that individuals have single-peaked preferences over the
selfishly optimal schedules and, hence, the schedule proposed by the median skill type
is a Condorcet winner. If the minimum-utility constraint does not bind for the median
type’s schedule, then the resulting tax system is as described in Brett and Weymark
(2016).

The remainder of this article is organized as follows. The next section describes the
model economy. Section 3 contains a detailed analysis of the selfishly optimal schedules.
The existence of a Condorcet winner is established in Section 4. Section 5 contains
concluding remarks. The proofs of our results are given in the Appendix.

2. The Model

There is a continuum of individuals that differ in skill w. The skill parameter w is an
individual’s type. It measures an individual’s constant marginal productivity of labor.
The cumulative distribution function F (·) for this parameter is continuous with support
[w, w̄], where 0 < w < w̄. The density f(w) is assumed to be positive for all w in the
support of F . Labor markets are perfectly competitive, so an individual’s before-tax
income is given by

y = wl, (1)

where l ≥ 0 is the amount of labor supplied. Thus, w is this type’s wage rate. Income
can also be thought of as being labor in efficiency units. There is a single consumption
good which serves as the numeraire in this economy. The amount consumed is x ≥ 0.
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All individuals have the same quasilinear-in-consumption preferences over labor and
consumption represented by the utility function

ũ(l, x) = x− h(l) (2)

on R
2
+, where the function h is increasing, strictly convex, and three-times continuously

differentiable on R+. Because the number of hours needed to achieve a given level of
income is decreasing in the skill level, individuals with different skills differ in their
preferences over income and consumption. In light of (1), these preferences can be
represented by the parametrized utility function

u(y, x;w) = x− h
( y

w

)

. (3)

The standard Mirrlees (1971) single-crossing property of preferences is satisfied with
respect to income and consumption because the marginal rate of substitution at any
bundle (y, x) is decreasing in w when y > 0.

Individuals face an anonymous tax schedule T : R+ → R that specifies the tax T (y)
paid, which could be negative, by someone with income y. The choice of this schedule
is determined by majority voting, as described below. The maximum consumption of
any individual is his after-tax income. Thus, an individual’s budget set consists of all
bundles (y, x) ∈ R

2
+ for which x ≤ y − T (y). Because everybody faces the same income

tax schedule, they share a common budget set.
An allocation (y(·), x(·)) specifies the income y(w) and consumption x(w) for each

type w. Admissible allocations are assumed to be integrable. The first requirement
for an allocation (y(·), x(·)) to be feasible—the incentive constraint—is that there is an
anonymous tax schedule for which (y(w), x(w)) is utility maximal for type w in the
budget set corresponding to this tax schedule. The maximized level of utility for type w
with the allocation (y(·), x(·)) is

V (w, y(·), x(·)) = x(w)− h

(
y(w)

w

)

, ∀w ∈ [w, w̄]. (4)

Because everybody faces the same budget set, it follows from (3) that V (w, y(·), x(·)) is
nondecreasing in w.

We assume that taxation is purely redistributive, so in order for a tax schedule to
be feasible, the allocation (y(·), x(·)) that it generates must also satisfy the government
budget constraint

∫ w̄

w

[y(w)− x(w)]f(w) dw ≥ 0. (5)

Because preferences are quasilinear, the qualitative features of our analysis are unaffected
if the government instead requires a fixed positive amount of revenue. By Walras’ Law,
the constraint (5) is equivalent to the economy’s materials balance constraint.

In Brett and Weymark (2016), an income tax schedule is feasible if the allocation
that results from its adoption satisfies the incentive and government budget constraints
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described above. Each type w proposes the feasible tax schedule that is utility maximal
for him. It is these selfishly optimal tax schedules that are voted on.

Because each type is only concerned with promoting his own interests and only takes
account of the interests of other types to the extent that is necessary to satisfy the
incentive constraint, each type will propose a tax schedule that redistributes resources
from those less skilled to himself. This redistribution could result in the least skilled
working for little or no reward. To preclude this kind of extreme exploitation, here, as in
Röell (2012) and Bohn and Stuart (2013), we suppose that the feasibility of a tax schedule
also requires that it provide the opportunity for everybody to achieve some minimal level
of utility, say u0. If individuals have the option of emigrating, this constraint can be
thought of as being an individual participation constraint. Alternatively, it may be the
case that there is a social convention forbidding anybody to obtain utility below this
threshold. Because the incentive constraint implies that utility is nondecreasing in w,
it is sufficient to impose the minimum-utility constraint for the lowest type; that is, to
require that

V (w, y(·), x(·)) ≥ u0, (6)

where (y(·), x(·)) is the allocation generated by the tax schedule being considered. To
make matters non-trivial, we assume that this constraint binds for the allocation obtained
with the maxi-max tax schedule proposed by the highest skilled type.

Because this is a static economy, the taxation principle (see Hammond, 1979; Gues-
nerie, 1995) applies. According to this principle, any allocation that can be achieved
by individuals maximizing utility given some anonymous income tax schedule can also
be obtained by directly specifying the consumption bundle (y(w), x(w)) for each type w
provided that this allocation satisfies the incentive-compatibility condition that

V (w, y(·), x(·)) = max
w′∈[w,w̄]

x(w′)− h

(
y(w′)

w

)

, ∀w ∈ [w, w̄]. (7)

Because it is more convenient to work with the consumption and before-tax income sched-
ules, x(·) and y(·), than with the underlying tax schedule T (·), henceforth, we assume
that x(·) and y(·) are chosen directly rather than indirectly through the intermediation
of T (·).

Because the single-crossing property is satisfied, it follows from Mirrlees (1976) that
the first-order (envelope) condition for an allocation (y(·), x(·)) to be incentive compati-
bile is

Vw(w, y(·), x(·)) = h′

(
y(w)

w

)
y(w)

w2
, ∀w ∈ [w, w̄], (8)

and the second-order incentive-compatibility condition is

y′(w) ≥ 0, ∀w ∈ [w, w̄].3 (9)

Because h is increasing, (8) not only implies that utility is nondecreasing in w whenever
the incentive-compatibility constraint is satisfied, it also implies that utility is strictly

3The expressions in (8) and (9) are required to hold at all points for which y(·) is differentiable.
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increasing for all w for which y(w) > 0. Consumption must also be nondecreasing in w.
Indeed, consumption is strictly increasing in w whenever income is also strictly increasing
in w, and any two types that have the same income also have the same consumption, in
which case these types are said to be bunched (see Laffont and Martimort, 2002, sec. 3.1).

In summary, for an allocation (y(·), x(·)) (and the underlying tax schedule) to be
feasible, it must satisfy the first- and second-order incentive-compatibility constraints (8)
and (9), the government budget constraint (5), and the minimum-utility constraint (6),
where the maximized utility V (w, y(·), x(·)) that appears in these constraints is defined
by (4). Type k’s selfishly-optimal tax schedule is implicitly defined by the allocation
(y(·, k), x(·, k)) that maximizes his utility subject to these feasibility constraints, where
now the income and consumption schedules are indexed by the type k that proposes
them. Formally, type k’s problem is

max
x(·,k),y(·,k)

V (k) subject to (4), (5), (6), (8), and (9). (10)

The set of alternatives that are voted on consists of the allocations that solve (10) for
some type k ∈ [w, w̄].

In addition to determining the allocation that solves type k’s problem, we are inter-
ested in determining the marginal tax rates implied by his proposal. For the allocation
(x(·, k), y(·, k)) that solves type k’s problem, the marginal tax rate for an individual of
type w is given by

τ(w, x(·, k), y(·, k)) = 1− h′

(
y(w, k)

w

)
1

w
. (11)

The marginal tax rates do not depend on consumption because utility is quasilinear in
consumption. For this reason, we henceforth omit x(·, k) as a argument of the function
τ . If the tax function is differentiable in y at y(w, k) (or, equivalently, the boundary of
the budget set is differentiable at (y(w, k), x(w, k))), then (11) simply expresses the fact
that an individual of type w chooses his consumption bundle so that the marginal rate
of substitution between income and consumption equals the retention rate, which is one
minus the marginal tax rate. If, however, the tax function is not differentiable at y(w, k),
then there is a tax function that is locally differentiable at y(w, k) that would induce the
same behavior, in which case (11) is the implicit marginal tax rate faced by type w.

3. Selfishly Optimal Tax Schedules

Our analysis of type k’s problem begins by characterizing the solution to what we call
type k’s relaxed problem, which is (10) with the second-order incentive-compatibility
constraint (9) removed.4 While the solution to type k’s problem does not coincide with

Because incentive compatibility implies that income is nondecreasing in w, y(·) is differentiable almost
everywhere.

4Our plan of attack thus makes initial use of the first-order approach commonly used in screen-
ing problems. The second-order incentive-compatibility conditions in optimal tax problems have been
explicitly taken into account by Brito and Oakland (1977) and Ebert (1992).
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the solution to his relaxed problem, the latter is a useful building block in constructing
the former. A useful benchmark is the solution to (10) without either the second-order
incentive-compatibility constraint (9) or the minimum-utility constraint (6). We refer to
this problem as type k’s doubly relaxed problem. In this section, except for the occasional
use of the optimal schedules of types w and w̄ as points of comparison, we hold the
proposer’s type fixed, and so suppress the use of k to index his proposal.

We adapt the procedure of Lollivier and Rochet (1983) to our model in order to derive
a reduced-form problem whose solution is the before-tax income schedule that solves type
k’s relaxed problem. The key steps in this procedure are to use (4), (5), and (8) to derive
an expression for V (w, y(·), x(·)) in which the consumption schedule x(·) does not appear.
In this derivation, we make use of the fact that the government budget constraint binds
at a solution to the relaxed problem.5 Because the optimal marginal tax rates do not
depend on consumption, type k’s optimal consumption schedule can be computed from
the optimal income schedule using the incentive-compatibility and binding government
budget constraints, so we do not consider it explicitly.

Proposition 1. The optimal schedule of before-tax incomes y(·) for type k’s relaxed

problem is obtained by solving

max
y(·)

∫ k

w

GM(w, y(w)) +

∫ w̄

k

GR(w, y(w)) subject to

∫ w̄

w

GR(w, y(w))dw ≥ u0, (12)

where

GM(w, y) =
[

y − h
( y

w

)]

f(w) +
y

w2
h′

( y

w

)

F (w) (13)

and

GR(w, y) =
[

y − h
( y

w

)]

f(w)−
y

w2
h′

( y

w

)

[1− F (w)] . (14)

The optimal schedule of before-tax incomes y(·) for type k’s doubly relaxed problem
is obtained by maximizing the objective function in (12) without the constraint. For
the doubly relaxed case, we let yR(·) and yM(·) denote the optimal income schedules for
types w and w̄, respectively. They are the optimal income schedules that are obtained
using the maxi-min and maxi-max social welfare functions when the only constraints are
those of a doubly relaxed problem.

When k = w̄, it is the highest skilled’s utility that is being maximized, so GM(w, y(w))
is the integrand in the reduced-form maxi-max problem. Analogously, when k = w, it is
the lowest skilled’s utility that is being maximized, so GR(w, y(w)) is the integrand in the
reduced-form maxi-min problem. Thus, in (12), the objective function that type k uses to
determine his optimal income schedule employs the maxi-max utility objective for types
that are less skilled than himself and the maxi-min utility objective for types that are more

5If the budget constraint does not bind, because preferences are quasilinear in consumption, each
person’s consumption can be increased by a common small amount without violating incentive compat-
ibility, thereby increasing both the utility of type k individuals (whose utility is being maximized) and
of type w individuals (to whom the minimum-utility constraint applies).

8



skilled. In deriving this objective function, all of the constraints in the relaxed problem
have been accounted for except for the minimum-utility constraint. The constraint in
(12) is the reduced-form version of it. As is shown in the proof of Proposition 1, with
the income schedule y(·) chosen by type k, the lowest skilled obtain utility equal to the
value of the integral in the reduced-form constraint. This integral computes the value
of a maxi-min objective function using the income schedule that is optimal for type k.
When the proposer’s type k differs from w, this utility is not what type w would obtain
with his own proposed income schedule as that schedule differs from the one proposed
by type k.

The functions GM(·) and GR(·) can also be given virtual surplus interpretations.
The term in square brackets on the left-hand sides of both (13) and (14) is a type w
individual’s output less the utility cost of producing that output. The second terms
on the left-hand sides of (13) and (14) measure the information rent afforded to type
w individuals when the minimum-utility constraint is ignored. The exact form of the
information rents is different for types below k than it is for types above k. This is
because the optimal schedule for type k extracts as many resources as possible from all
other types and redistributes them to individuals of type k. When w > k, this is a
typical downward redistribution of income, which is constrained by downward binding
incentive constraints. For this reason, the information rent term in (14) has a conventional
form. The less familiar form of the information rents in (13) arise because of the motive
for upward redistribution of income from types with w < k. We provide a detailed
interpretation of this term in Brett and Weymark (2016).

The optimization problem (12) admits a point-wise solution. After associating a
nonnegative Lagrange multiplier λ (which depends on k) with the minimum-utility con-
straint in type k’s relaxed problem, simple differentiation with respect to y(w) yields the
following first-order conditions:

θM(w, y(w)) + λθR(w, y(w)) = 0, ∀w ∈ [w, k),

θR(w, y(w)) = 0, ∀w ∈ (k, w̄],
(15)

where

θM(w, y) =
∂GM(w, y)

∂y
=

[

1− h′

( y

w

) 1

w

]

f(w) +

[

h′′

( y

w

) y

w3
+ h′

( y

w

) 1

w2

]

F (w)

(16)
and

θR(w, y) =
∂GR(w, y)

∂y
=

[

1− h′

( y

w

) 1

w

]

f(w)−

[

h′′

( y

w

) y

w3
+ h′

( y

w

) 1

w2

]

[1−F (w)].6

(17)
The corresponding first-order conditions for the doubly relaxed problem are obtained by

6We write all first-order conditions for the optimal incomes as equalities, thereby implicitly assuming
that the nonnegativity constraints on incomes are not binding. The qualitative features of our analysis
are unaffected if these constraints are taken into account.
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yR(·)

y0(·)

yM(·)

w k w̄

Figure 1: The optimal income schedule for type k’s relaxed problem

setting λ = 0 in (15). We assume that the Lagrangians for both the relaxed and doubly
relaxed problems are strictly concave in income. That is, we assume that

θMy (w, y) < 0, θRy (w, y) < 0, and θMy (w, y) + λθRy (w, y) < 0, ∀(w, y) ∈ [w, w̄]× R+. (18)

The solution to the first-order conditions (15) is type k’s optimal income schedule for
the relaxed problem. Similarly, the solution to (15) with λ = 0 is type k’s optimal income
schedule for the doubly relaxed problem. The solution y0(·) to type w̄’s relaxed problem
is obtained by solving the first-order condition in the first line of (15) for all w ∈ [w, w̄].
When λ = 0, this solution coincides with the solution yM(·) to the corresponding doubly
relaxed problem, but if λ > 0 (and, therefore, the minimum-utility constraint binds), it
does not. The solution to type w’s relaxed problem is obtained by solving the first-order
condition in the second line of (15) for all w ∈ [w, w̄]. Because λ does not appear in
this expression, the solutions to this type’s relaxed and doubly relaxed problems are the
same, namely, yR(·).7 As we shall see, the yM(·) schedule lies above the yR(·) schedule.
The schedule y0(·) is a weighted combination of these two schedules. Thus, the solution
to type k’s relaxed problem at w is given by y0(w) for types less skilled than himself and
by yR(w) for those who are more skilled, as illustrated in Figure 1.

By the Implicit Function Theorem (Sundaram, 1996, Theorem 1.77), it follows from
(18) that yM(·), yR(·), and y0(·) are continuously differentiable functions. An implication
of (18) is that the second-order condition for the choice of y(w) holds strictly for type

7When the minimum-utility constraint binds, type w takes this into account by adjusting the maxi-
min consumption schedule, not the maxi-min income schedule.
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k’s reduced-form optimization problem:

θMy (w, y(w)) + λθRy (w, y(w)) < 0, ∀w ∈ [w, k),

θRy (w, y(w)) < 0, ∀w ∈ (k, w̄].
(19)

These inequalities also imply that corresponding second-order conditions for the doubly
relaxed problems of types w̄ and w hold strictly:

θMy (w, y(w)) < 0, ∀w ∈ [w, w̄],

θRy (w, y(w)) < 0, ∀w ∈ [w, w̄].
(20)

We now confirm that the yM(·) schedule lies above the yR(·) schedule, with the y0(·)
schedule lying between them when λ > 0. For all points on the graphs of yR(·), yM(·), and
y0(·), we have θR(w, y(w)) = 0, θM(w, y(w)) = 0, and θM(w, y(w)) + λθR(w, y(w)) = 0,
respectively. Thus, by the second line in (20), θR(w, y(w)) is negative (resp. positive)
above (resp. below) the graph of yR(·). Similarly, by the first line in (20), θM(w, y(w)) is
negative (resp. positive) above (resp. below) the graph of yM(·). Thus, the graph of yM(·)
lies above that of yR(·). On or below the graph of yR(·), θM(w, y(w))+λθR(w, y(w)) > 0,
so the graph of y0(·) must lie above yR(·). Moreover, if λ > 0, on or above the graph of
yM(·), θM(w, y(w)) + λθR(w, y(w)) < 0, so the graph of y0(·) must lie below yM(·) when
λ > 0.

For simplicity, we assume that yR(·) and yM(·) are nondecreasing and, hence, satisfy
the second-order incentive-compatibility condition (9). If this assumption is not satisfied,
then in the subsequent analysis, yR(·) and yM(·) are replaced by the maxi-min and maxi-
max solutions to the (unrelaxed) problems of types w and w̄, respectively, ignoring the
minimum-utility constraint. These modified schedules can be obtained from yR(·) and
yM(·) using the ironing technique described in Guesnerie and Laffont (1984).

For a type w below k, the addition of the minimum-utility constraint (6) effectively
turns type k’s problem into one of maximizing a weighted sum of his own utility and that
of the lowest type, where the weight given to the lowest type is the endogenous shadow
value of the minimum-utility constraint. This gives rise to a problem of countervailing
incentives, as in Jullien (2000). On the one hand, type k wants to redistribute resources
upwards toward his own type. In the absence of a minimum-utility constraint, this
would give rise to the maxi-max utility solution yM(w). On the other, he needs to move
resources downward to the very lowest skilled in order to satisfy the minimum-utility
constraint. The before-tax income that reconciles these motives naturally lies between
their maxi-max and maxi-min values.

For a type w above k, as we have seen, the solution is exactly the same as the one
obtained with the relaxed problem in the absence of a minimum-utility constraint; that
is, it is given by the maxi-min utility solution yR(w). A type k individual wants to
redistribute resources downward from types greater than his own, and redistribution
from higher types is limited by downward incentive constraints. Because preferences are
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quasilinear, type k proposes the same income schedule for the upper part of the skill
distribution as would type w. Because these two types propose different incomes for the
rest of the skill distribution, in order to ensure that the minimum-utility constraint is
satisfied, they propose different consumption schedules.

Using (11), (15), (16), and (17), the associated marginal tax rates for the yR(·), yM(·)
and y0(·) income schedules are

τR(y(w, k) =
1− F (w)

f(w)

[

h′′

(
y(w)

w

)
y(w)

w3
+ h′

(
y(w)

w

)
1

w

]

, ∀w ∈ [w, w̄], 8 (21)

τM(y(w), k) = −F (w)
1

f(w)

[

h′′

(
y(w)

w

)
y(w)

w3
+ h′

(
y(w)

w

)
1

w

]

, ∀w ∈ [w, w̄] (22)

and

τ 0(y(w), k) =

[
λ

1 + λ
− F (w)

]
1

f(w)

[

h′′

(
y(w)

w

)
y(w)

w3
+ h′

(
y(w)

w

)
1

w

]

, ∀w ∈ [w, w̄]

(23)
In (21), the term is square brackets is positive, so the marginal tax rate is positive
except for w = w̄, where it is it is zero. This is the familiar pattern of marginal tax
rates for a maxi-min social welfare function. Similarly, τM(y(w)) is negative except at
the very lowest skill level, which is the pattern of marginal tax rates for a maxi-max
social welfare function when the minimum-utility constraint does not bind. The motive
for upward redistribution for a maxi-max social welfare function provides a reason to
provide these marginal wage subsidies. However, a binding minimum utility constraint
produces countervailing incentives that serve to increase optimal marginal tax rates from
the maxi-max levels. Nevertheless, because λ/(1+λ) < 1, even if τ 0(y(w)) is positive for
some w, it is less than the corresponding maxi-min optimal tax rate. Thus, the desire for
upward redistribution is never completely overpowered by the countervailing incentive.

At the solution to type k’s relaxed problem, (23) applies for w ≤ k and (21) for w > k.
Thus, there is a downward jump discontinuity in the marginal tax rate at k as it switches
from negative to positive values. As illustrated in Figure 1, there is a corresponding
downward jump discontinuity in the solution to type k’s relaxed problem at k. Because
the graph of yM(·) lies above that of yR(·) and that of y0(·) lies between these two curves,
this discontinuity is a downward jump.

The negative marginal tax rates associated with yM(·) imply that incomes are dis-
torted upwards relative to the full-information solution. Similarly, the positive marginal
tax rates associated with yR(·) imply that incomes are distorted downwards relative to
this benchmark. It is for this reason that the graph of yM(·) lies above that of yR(·).

We have seen that the before-tax income schedule that solves type k’s relaxed problem
satisfies the second-order incentive compatibility condition everywhere except possibly
at k, where this schedule has a downward jump. Because of this downward discontinuity,

8This equation is equivalent to the condition stated in Boadway and Jacquet (2008, eqn. (21), p. 435)
for optimal tax rates with a maxi-min objective.
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Figure 2: A bridge

the solution to the relaxed problem is not incentive compatible. The standard remedy for
dealing with a single decreasing portion of an otherwise optimal allocation is to replace
this income schedule by a continuous schedule that has a single bunching region which
removes the decreasing segment using the ironing technique of Guesnerie and Laffont
(1984). Here, this involves connecting the lower part of y0(·) to the upper part of yR(·)
using a horizontal segment, as illustrated in Figure 2. In order to avoid some technical
complexities, we assume that the solution to type k’s reduced-form problem has this
form without specifying what further restrictions are sufficient in order to ensure that
this is the case.9 The types who are bunched together consist of a closed interval [wb, wB].
We refer to this interval as a bridge and to wb and wB as the lower and upper bridge
endpoints, respectively. The proposer’s own type lies on the bridge. We assume that it
is not optimal for everybody to be bunched; that is, we assume that the bridge is not all
of [w, w̄].

In Brett and Weymark (2016), we use a relatively simple procedure that was intro-
duced by Vincent and Mason (1968) to identify the bridge endpoints when the minimum
utility constraint does not apply. The procedure consists of two steps. First, the op-

9As shown in Brett and Weymark (2016), in the absence of the minimum-utility constraint, it is
optimal for type k to choose an income schedule of this form without the need for any further restrictions
on the model. Their arguments apply here as well for the part of k’s optimal income schedule that
concerns types with skill levels at least k, but they do not apply for the rest of the skill distribution if
the minimum-utility constraint binds. See Guesnerie and Laffont (1984), Jullien (2000), Nöldeke and
Samuelson (2007), and Hellwig (2010) for analyses of bunching and continuity for quasilinear adverse
selection problems with a minimum-utility (participation) constraint but no analogue of our government
budget constraint.
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timal schedule is selected for each fixed pair of values of the bridge endpoints wb and
wB. Then, among these schedules, the one that maximizes type k’s utility is chosen.
Because the minimum-utility constraint (12) contains an integral involving the entire
before-tax income schedule, including its value along the bridge, it is impossible to use
this two-step procedure to find the bridge endpoints. Instead, here, the bridge endpoints
are determined jointly with the before-tax incomes and the Lagrange multiplier λ. The
value of the Lagrange multiplier helps to determine the value of y0(w) (but not the value
of yR(w)). It is, nevertheless, possible to determine first-order conditions that character-
ize the simultaneous choice of the Lagrange multiplier and the bridge endpoints. These
conditions, and a summary of the preceding discussion, are given in Proposition 2.

Proposition 2. The optimal schedule of before-tax incomes y(·) for type k’s problem is

given by

y(w) =







y0(w), ∀w ∈ [w,wb),

y0(wb), ∀w ∈ [wb, wB] if wb > w,

yR(wB), ∀w ∈ [wb, wB] if wB < w̄,

yR(w), ∀w ∈ (wB, w̄].

(24)

The optimal values of the Lagrange multiplier λ and the bridge endpoints wb and wB are

determined by solving the complementary slackness condition for the minimum-utility

constraint

λ

[∫ w̄

w

GR(w, y(w))dw − u0

]

= 0 (25)

together with either the first-order condition

∫ k

wb

θM(w, y0(wb))dw + λ

∫ k

wb

θR(w, y0(wb))dw + (1 + λ)

∫ wB

k

θR(w, y0(wb))dw = 0 (26)

if wb > w or the first-order condition

∫ k

wb

θM(w, yR(wB))dw+λ

∫ k

wb

θR(w, yR(wB))dw+(1+λ)

∫ wB

k

θR(w, yR(wB))dw = 0 (27)

if wB < w̄.

In light of (24), conditions (26) and (27) are equivalent when both bridge endpoints
are in the interior of the type space. These bridging first-order conditions have the
standard interpretation that the average of the marginal virtual surpluses on a bunching
region must be zero (see, for example, Nöldeke and Samuelson, 2007, p. 416). Whenever
(26) or (27) are satisfied, a marginal change in the level of income on the bridge has no
effect on the objective function in (12). The income level on the bridge pertains to all
types in [wb, wB], so the marginal effects that the incomes of all these types have on the
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objective and constraint in type k’s reduced-form problem must be accounted for. This
explains why integrals appear in the first-order conditions (26) and (27).

When λ = 0, y0(w) = yM(w). Thus, when the minimum-utility constraint does not
bind, type k’s optimal income schedule has the form shown in Figure 2 with y0(·) replaced
by the maxi-max income schedule yM(·). That is, y(·) is obtained by inserting a bridge
between the maxi-max and maxi-min schedules. The solution for this special case was
identified in Brett and Weymark (2016).

4. The Voting Equilibrium

We now turn to the voting over the selfishly optimal income tax schedules. We show
that preferences over the selfishly optimal tax policies are single-peaked with respect to
the skill level of the types for whom these schedules are optimal. As a consequence, with
pairwise majority voting, the selfishly optimal income tax schedule that maximizes the
utility of the median type is chosen; it is a Condorcet winner.

Because we are now considering comparisons across tax schedules that are optimal
for different types, henceforth, we index allocations by the proposer’s type k. Recall that
(x(w, k), y(w, k)) denotes the optimal allocation assigned to an individual of type w in
the solution to type k’s problem. Let

V 0(w, k) = x(w, k)− h

(
y(w, k)

w

)

(28)

denote type w’s optimized utility if type k’s proposal is accepted. An individual of
type w evaluates the schedules chosen by each of the types according to the function
V 0(w, ·). Let λ(k), wb(k), and wB(k) respectively denote the values of the Lagrange
multiplier associated with minimum-utility constraint and the two bridge endpoints at
the solution to type k’s problem. By the Implicit Function Theorem, λ(·), wb(·), and
wB(·) are continuously differentiable functions. Identifying the structure of V 0(w, ·) is
necessary in order to establish single-peakedness. This structure, in turn, is determined
by the comparative statics of the functions λ(·), wb(·), and wB(·) with respect to k. These
comparative statics are presented in Proposition 3.

Proposition 3. For all k ∈ [w, w̄), a marginal increase in k results in

1. an increase in λ(k) if λ(k) > 0;

2. an increase in both wb(k) and wB(k) if w < wb(k) < wB(k) < w̄;

3. an increase in wb(k) and no change in wB(k) if w < wb(k) < wB(k) = w̄;

4. an increase in wB(k) if w = wb(k) < wB(k) < w̄ if λ(k) = 0;

5. no change in wB(k) if w = wb(k) < wB(k) < w̄ if λ(k) > 0;
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An implication of Part 1 of this proposition is that the set of types who propose a
selfishly-optimal tax schedule for which the minimum-utility constraint does not bind
consists of an interval at the bottom of the skill distribution.

In Brett and Weymark (2016), we show that the endpoints of this bridge are non-
decreasing in the type of proposer when the minimum-utility constraint is not binding.
Parts (2)–(4) of Proposition 3 provide a somewhat sharper statement of our earlier find-
ings. Specifically, the upper endpoint of the bridge is increasing in k unless it cannot
be increased at all because it is already at w̄. The lower endpoint is also increasing in
k, except possibly when the bridge starts at w. Intuitively, when the proposer’s type
increases, there are more types below him. He wants to distort their incomes upwards,
so he applies the maxi-max schedule to more (or at least, no fewer) types. Similarly,
there are fewer types above him and he wants to distort their incomes downwards, so he
applies the maxi-min schedule to fewer (or at least, no more) types.

Part 1 of Proposition 3 shows that the shadow value of the minimum-utility constraint
is increasing in the type of proposer whenever this constraint is binding. When the type
of proposer increases, it becomes relatively more attractive to extract information rents
from types less skilled than the proposer than from those types who are more skilled
because there are now more of the former and less of the latter. However, the minimum-
utility constraint acts to limit the upward transfers from the first of these groups. As a
consequence, a relaxation of the minimum-utility constraint has a greater value for higher
type proposers.

The reasoning about the placement of the upper bridge endpoint that was used for
the case in which the minimum-utility constraint does not bind also applies when it does.
Thus, if the initial upper bridge endpoint is not at w̄, it is increased when the proposer’s
type increases, which necessitates increasing the income of the types on the bridge to
preserve the form of income schedule shown in Figure 2 .

Provided that the income schedule does not start on the bridge, increasing the pro-
poser’s type increases the lower bridge endpoint when the minimum-utility constraint
binds, just as it does when it does not. Because λ(k) is increasing in k when the
minimum-utility constraint binds, as can be seen from the first-order conditions (26)
and (27), the y0(·) income schedule that is used to determine incomes below the bridge
shifts down closer to the maxi-min schedule yR(·) when the proposer’s type increases.10

This change in y0(·) necessitates increasing the lower endpoint of the bridge so that the
lower part of the new y0(·) income schedule connects to the bridge. Figure 3 illustrates
how the selfishly optimal income schedule changes when the proposer’s type increases in
the presence of a binding minimum-utility constraint.

Type k’s selfishly optimal income schedule y(·, k) starts on the bridge when y0(·, k)
lies everywhere above y(·, k). In this case, it is not optimal to change the lower bridge
endpoint when the proposer’s type increases if the minimum-utility constraint binds. If
the proposer’s type is increased marginally, as we have seen, the y0(·) schedule shifts

10Because the minimum-utility constraint continues to bind, both the the consumption and income of
the lowest skilled type are decreased so that this type’s utility remains at u0.
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Figure 3: Selfishly optimal income schedules for k1 < k2

down and the graph of the bridge shifts up, but the former remains above the latter. It is
only possible to increase the lower bridge endpoint, but if this is done, the types who are
removed from the bridge will then have their incomes determined by the y0(·) schedule.
This would result in a downward discontinuity in the selfishly optimal income schedule,
thereby violating the second-order optimality condition.

We now turn our attention to how voters rank the selfishly optimal income schedules
that are proposed. These schedules are indexed by the type of proposer, so a preference
over them can be regarded as being a preference on the set of skill types. All proposers
face the same constraints on the choice of an income schedule. Hence, because each type
proposes a feasible income schedule that is selfishly optimal for him, he must weakly
prefer what he obtains with his own schedule to what anybody else proposes for him.
That is,

V (w,w) ≥ V (w, k), ∀w, k ∈ [w, w̄]. (29)

An individual of type w has a (weakly) single-peaked preference on the set of types if

V (w,w) ≥ V (w, k1) ≥ V (w, k2) if w < k1 < k2 (30)

and
V (w,w) ≥ V (w, k1) ≥ V (w, k2) if w > k1 > k2. (31)

This definition of a single-peaked preference does not require an individual’s preference to
be strictly monotonic on each side of his peak. In particular, an individual’s own proposal
need not be uniquely best for himself, so the “peak” may in fact be a “plateau”. We
show in Proposition 4 that everybody’s preferences on the set of types are single-peaked.

Proposition 4. Individual preferences are single-peaked on the set of skill types.
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In Brett and Weymark (2016), we show that the same result holds in the absence of a
minimum-utility constraint. In that case, each proposer chooses where to bridge between
the maxi-max and maxi-min income schedules. The situation is more complex when the
minimum-utility constraint binds because the schedule used to determine incomes for
types below the lower endpoint of the bridge depends on the proposer’s type. This type
dependence greatly complicates the proof of the single-peakedness result.

Proposition 4 is established by showing that ∂V 0(w, k)/∂k is nonnegative when k < w
and nonpositive when k > w. When the minimum-utility constraint does not bind (which,
as we have shown, can only occur for an interval of types at the bottom of the skill
distribution), these conclusions follow from Brett and Weymark (2016, Proposition 8).
So, we only need to consider the case in which the minimum-utility constraint binds when
type k is the proposer. In this case, some insight about Proposition 4 can be gained from
noting that (8) implies that

V 0(w, k) = u0 +

∫ w

w

h′

(
y(t, k)

t

)
y(t, k)

t2
dt, ∀(w, k) ∈ [w, w̄]. (32)

The partial derivative of this function with respect to k is

∂V 0(w, k)

∂k
=

∫ w

w

[

h′′

(
y(t, k)

t

)
y(t, k)

t3
+ h′

(
y(t, k)

t

)
1

t2

]
∂y(t, k)

∂k
dt, ∀(w, k) ∈ [w, w̄].

(33)
The term in the square bracket in (33) is always positive. How type t’s income responds
to a marginal increase in the type k of the proposer depends on whether the bridge starts
or ends at one of the endpoints of the skill distribution.

Consider a marginal increase in the proposer’s type from k1 to k2. First, suppose that
type k1’s bridge does not include either of the endpoints of the skill distribution. In this
case, the type space is partitioned into three intervals. As illustrated in Figure 3, except
at a boundary between two regions, in the lowest (resp. middle, highest) skilled of these
regions, incomes are decreased (resp. increased, unchanged) when type k2 replaces type
k1 as the proposer. The increase in incomes in the middle region is due to the rising
bridge. The boundary between the first two regions occurs at a type on k1’s bridge who
is lower skilled than k2. Thus, the income partial derivatives in the integrand in (33) are
negative in the first region, positive in the second, and zero on the third. If w < k, all the
terms in the integral in (33) are negative if w is in the first region. If w is in the second
region, some of the terms in this integral are positive, but there is a preponderance of
negative terms, so they dominate. Thus, ∂V 0(w, k)/∂k < 0 if w < k. Once k is large
enough so that the positive terms in (33) dominate for some type ŵ, ∂V 0(w, k)/∂k > 0
for any larger value of w because only positive or zero terms are added to the integral
for ŵ. In the case we are considering, type k2’s proposed schedule is uniquely optimal
for him, so his utility is increased when he replaces type k1 as the proposer. Type k2
can be chosen to be arbitrarily close to type k1, so by setting k = k1 and w = k2, we
have ∂V 0(w, k)/∂k > 0 for w arbitrarily close to k from above. But then, as we have
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seen, this implies that ∂V 0(w, k)/∂k > 0 if w > k. The same reasoning applies if the
upper end of the bridge is at w̄ in type k’s proposal. In this case, the third of the regions
described above does not exist. If, however, type k’s bridge starts at w (so there is no
first region), marginally increasing k has no effect on the schedule being proposed, so for
all w, ∂V 0(w, k)/∂k = 0.

The median voter theorem (Black, 1948) applies even if some of the inequalities in the
definition of a single-peaked preference are not strict. Hence, an immediate consequence
of Proposition 4 is that the median skill type’s proposed tax schedule does at least as
well in a pairwise majority vote as the tax schedule proposed by any other type.

Proposition 5. The selfishly optimal income tax schedule for the median skill type is a

Condorcet winner when majority voting is restricted to the income tax schedules that are

selfishly optimal for some skill type.

The qualitative features of the income tax schedule chosen by pairwise majority rule
depend on whether the minimum-utility constraint binds for the median skill type or not.
If it does not bind, then the Condorcet-winning tax schedule is as described in Brett and
Weymark (2016). Specifically, when the bridge does not include either of the endpoints of
the skill distribution, this schedule features marginal wage subsidies for individuals with
incomes below the bridge except for the least skilled who are undistorted, a bunching
region that includes the median skill type, and positive marginal tax rates for individuals
with incomes above the bridge except for the most highly skilled who are undistorted.
In particular, there must be a kink in the tax schedule at the income of an individual
with the median skill. If the schedule starts or ends on the bridge, the same qualitative
features are exhibited on the two regions that do exist. This is the pattern of marginal
tax rates for the Condorcet-winning income tax schedule found by Röell (2012) for a
discrete population.

When the minimum-utility constraint binds, the Condorcet-winning tax schedule ex-
hibits the same pattern of marginal tax rates for skill types on or above the bridge as
when this constraint does not bind because the maxi-min income schedule is used for
types above the bridge in both of these situations. However, except in neighborhoods of
w and wb(k

∗), the sign of the marginal tax rate is now ambiguous below the bunching
region because it depends on the exact value of the multiplier λ(k∗) for the minimum-
utility constraint for the type k∗ whose proposal is the Condorcet winner. From (23), it
follows that there is an interval of types that includes w that face a positive marginal
tax rate. If λ(k∗) is close to zero, then the y0(·, k∗) schedule lies near the maxi-max
schedule yM(·), and so the marginal tax rate is negative for some types below the bridge.
In this case, there also exists a undistorted type in the interior of the interval below the
bridge. If λ(k∗) is relatively large, then y0(·, k∗) lies near the maxi-min schedule yR(·),
and marginal tax rates are everywhere positive below the bridge. Bohn and Stuart (2013)
show that a similar pattern of marginal tax rates is exhibited by the Condorcet-winning
tax schedule when preferences are not restricted to be quasilinear in consumption and
the minimum-utility constraint binds.
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5. Conclusion

We have extended the analysis of Brett and Weymark (2016) to allow for a minimum-
utility constraint. Many of the qualitative features of the Condorcet-winning income
tax schedule are invariant to the introduction of this constraint. However, the maxi-max
segment of the schedule that applies below the bunching region when the minimum-utility
constraint does not bind is replaced by one that is less extractive towards the low skilled
when this constraint binds. A binding minimum-utility constraint moves the marginal
wage subsidies below the bridge identified in our companion article closer to the positive
marginal tax rates found with the maxi-min schedule. For those individuals near the
bottom of the skill distribution, this countervailing force is sufficiently strong that they
now face positive marginal taxes.

Our model differs from that of Bohn and Stuart (2013) by supposing that preferences
are quasilinear in consumption. This preference restriction is what permits us to provide
a complete characterization of the selfishly optimal income schedules and to show that
individuals have single-peaked preferences over them. Bohn and Stuart only provide
partial characterizations of their selfishly optimal schedules and do not appeal to single-
peakedness to show that there is a Condorcet winner.

While imposing a minimum-utility constraint is a reasonable way to introduce a con-
cern for the low skilled, and thereby to limit the extent to which they are disadvantaged
through income taxation, it is not the only way. One could instead imagine that individ-
uals care not just for their own utility, but also for the utility of the least fortunate. Our
analysis can be easily extended to model the possibility that individuals have objective
functions of the form

V (k) + λV (w) (34)

but do not face a minimum-utility constraint. Indeed, the first-order conditions for the
problem faced by such an individual are exactly (15). However, λ is fixed in this variant
of our model and so the analysis of our companion paper, Brett and Weymark (2016), is
needed to characterize the voting equilibrium, even though the outcome is qualitatively
similar to the voting equilibrium described here.11

In general, without some restrictions on the set of feasible tax instruments, no voting
equilibrium exists. While we restrict voting to the set of selfishly optimal income tax
schedules, we place no a priori restrictions on the form of the tax functions themselves.
In so doing, we have uncovered the features of a Condorcet-winning tax system that
would carry out redistribution toward the middle of the income distribution. Actual tax
systems might deviate from this benchmark due to other restrictions on the set of feasible
policies or because of the details of political institutions from which we have abstracted.

11Boadway, Brett, and Jacquet (2015) provide a detailed description of optimal marginal tax rates for
an objective function similar to (34) that arises in a normative tax model in which individuals differ in
both skills and preferences for leisure.
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Appendix

Proof of Proposition 1. By (8),

V (w, y(·), x(·)) = V (w, y(·), x(·)) +

∫ w

w

y(t)

t2
h′

(
y(t)

t

)

dt. (A.1)

Integrating (A.1) over the support of the distribution of types yields

∫ w̄

w

V (w, y(·), x(·))f(w)dw =

∫ w̄

w

V (w, y(·), x(·))f(w)dw

+

∫ w̄

w

∫ w

w

y(t)

t2
h′

(
y(t)

t

)

f(w)dtdw.

(A.2)

Reversing the order of integration in (A.2), we obtain

∫ w̄

w

V (w, y(·), x(·))f(w)dw = V (w, y(·), x(·)) +

∫ w̄

w

y(t)

t2
h′

(
y(t)

t

)[∫ w̄

t

f(w)dw

]

dt

= V (w) +

∫ w̄

w

y(t)

t2
h′

(
y(t)

t

)

[1− F (t)] dt.

(A.3)
On the other hand, by (4),

∫ w̄

w

V (w, y(·), x(·))f(w)dw =

∫ w̄

w

x(w)f(w)dw −

∫ w̄

w

h

(
y(w)

w

)

f(w)dw. (A.4)

As we have shown, it is optimal for the government budget constraint (5) to bind. Sub-
stituting the equality form of this constraint into (A.4) yields

∫ w̄

w

V (w, y(·), x(·))f(w)dw =

∫ w̄

w

y(w)f(w)dw −

∫ w̄

w

h

(
y(w)

w

)

f(w)dw. (A.5)

Combining (A.3) and (A.5) implies that

V (w, y(·), x(·)) =

∫ w̄

w

y(w)f(w)dw −

∫ w̄

w

h

(
y(w)

w

)

f(w)dw

−

∫ w̄

w

y(w)

w2
h′

(
y(w)

w

)

[1− F (w)] dw.

(A.6)

The maximand in (12) is obtained by substituting (A.6) into (A.1) and setting w = k.
The preceding calculations have accounted for all the constraints in type k’s relaxed
problem except for the minimum-utility constraint. Substituting (A.6) into the minimum-
utility constraint (6) yields the constraint in (12).
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Proof of Proposition 2. It is convenient to solve type k’s reduced-form problem in two
steps. In the first step, optimal incomes are chosen for fixed values of the multiplier λ as-
sociated with the minimum-utility constraint and the bridge endpoints wb and wB. In the
second step, the optimal values of wb, wB, and λ are determined using the parameterized
schedules obtained in the first step.

Fix λ, wb, and wB. Outside of the bridge, the before-tax income schedule satisfies
the first-order conditions (15) and, therefore, the optimal income for any type not on the
bridge does not depend on wb or wB. Let ỹ(w, λ) denote the solution to these first-order
conditions for a fixed value of λ. For w > wB, ỹ(w, λ) = yR(w), which does not depend
on λ. Let ȳ denote the before-tax income allocated to everyone on the bridge.

The Lagrangian associated with the second step is

∫ wb

w

GM(w, ỹ(w,λ))dw +

∫ k

wb

GM(w, ȳ)dw +

∫ wB

k

GR(w, ȳ)dw +

∫ w̄

wB

GR(w, yR(w))dw

+ λ

(∫ wb

w

GR(w, ỹ(w, λ))dw +

∫ k

wb

GR(w, ȳ)dw

+

∫ wB

k

GR(w, ȳ)dw +

∫ w̄

wB

GR(w, yR(w))dw − u0

)

.

(A.7)

There are three cases.
Case 1: w < wb < wB < w̄. The assumed continuity of the optimal income schedule

implies that
ȳ = ỹ(wb, λ) = yR(wB). (A.8)

Hence, the choice of wb, wB, and λ is determined by simultaneously solving

ỹ(wb, λ)− yR(wB) = 0, (A.9)

λ

[∫ wb

w

GR(w, ỹ(w, λ))dw +

∫ wB

wb

GR(w, yR(wB))dw +

∫ w̄

wB

GR(w, yR(w))dw − u0

]

= 0,

(A.10)
and

∫ k

wb

θM(w, yR(wB))dw + λ

∫ k

wb

θR(w, yR(wB))dw + (1 + λ)

∫ wB

k

θR(w, yR(wB))dw = 0.

(A.11)
Equation (A.9) is the requirement that the before-tax income function be continuous at
the two endpoints of the bridge. Equation (A.10) is the complementary slackness condi-
tion for the minimum-utility constraint with the value of the before-tax income function
substituted therein. Equation (A.11) is the first-order condition for the placement of the
bridge endpoints. Its left-hand side is the derivative of the Lagrangian (A.7) with respect
to the level of before-tax income on the bridge evaluated at yR(wB).
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When λ is chosen optimally, by definition, ỹ(w, λ) = y0(w) for w < wb. We have thus
shown that type k’s optimal income schedule y(·) is given by (24). Observe that (A.11)
is equivalent to (27) and that (25) and (A.10) are equivalent for the optimal income
schedule for this case.

Case 2: w < wb < wB = w̄. In this case, the value of before-tax income for the types
on the bridge is not, as in Case 1, yR(wB). Instead, the types in [wb, w̄] receive ỹ(wb, λ).
The two variables wb and λ are determined by the following modified versions of (A.10)
and (A.11):

λ

[∫ wb

w

GR(w, ỹ(w, λ))dw +

∫ w̄

wb

GR(w, ỹ(wb, λ))dw − u0

]

= 0 (A.12)

and

∫ k

wb

θM(w, ỹ(wb, λ))dw + λ

∫ k

wb

θR(w, ỹ(wb, λ))dw + (1 + λ)

∫ w̄

k

θR(w, ỹ(wb, λ))dw = 0.

(A.13)
Noting that ỹ(w, λ) = y0(w) for w ≤ wb, the proof for this case is completed as in

Case 1 by observing that (A.13) is equivalent to (26).
Case 3: w = wb < wB < w̄. In this case, the value of before-tax income for the types

on the bridge is yR(wB), as in Case 1. The two variables wB and λ are determined by
solving

λ

[∫ wB

w

GR(w, yR(wB))dw +

∫ w̄

wB

GR(w, yR(w))dw − u0

]

= 0 (A.14)

and (A.11). The proof for this case is completed as in the previous two cases.

Proof of Proposition 3. Recall that ỹ(w, λ) is the solution to the first-order conditions
(15) for a fixed value of λ. Outside of the bridge on the income schedule proposed
by type k, y(w, k) = ỹ(w, λ(k)). It follows from (15), (19), and the Implicit Function
Theorem that for all k ∈ [w, w̄],

∂ỹ(w, λ(k))

∂λ
= −

θR(w, y(w, k))

θMy (w, y(w, k)) + λθRy (w, y(w, k))
< 0, ∀w < wb(k) (A.15)

and
∂ỹ(w, λ(k))

∂λ
=

∂yR(w, k)

∂λ
= 0, ∀w > wB(k). (A.16)

The inequality in (A.15) follows from the observations immediately below (20).
The same three cases arise as in the proof of Proposition 2.
Case 1: w < wb < wB < w̄. We note that the left-hand sides of (A.9)–(A.11) are

functions of wb, wB, λ, and k. We call these functions Υ(wb, wB, λ, k), Ψ(wb, wB, λ, k),
and Φ(wb, wB, λ, k), respectively. Let Ψ

∗(wb, wB, λ, k) denote the term in square brackets

23



on the left-hand side of (A.10). We employ the Implicit Function Theorem to deter-
mine how the endogenous variables in (A.9)–(A.11) respond to a change in k. Implicit
differentiation of these three equations yields





Υwb
ΥwB

Υλ

Ψwb
ΨwB

Ψλ

Φwb
ΦwB

Φλ









dwb

dwB

dλ



 =





−Υk

−Ψk

−Φk



 dk. (A.17)

We now compute the entries in (A.17) and evaluate them at the solution to type k’s
problem. From (A.9),

Υwb
=

∂ỹ(wb(k), λ(k))

∂wb

> 0; (A.18)

ΥwB
= −

∂yR(wB(k))

∂wB

< 0; (A.19)

Υλ =
∂ỹ(wb(k), λ(k))

∂λ
< 0; (A.20)

Υk = 0. (A.21)

The inequalities in (A.18) and (A.19) hold because an optimal income schedule is in-
creasing outside of the bridge. Because of the continuity of an optimal income schedule,
the equality in (A.15) also holds for w = wb(k). The inequality in (A.20) follows from
this observation and the argument used to establish the inequality (A.15).

From (A.10),

Ψwb
= λ(k)[GR(wb(k), ỹ(wb(k), λ(k)))−GR(wb(k), y

R(wB(k)))] = 0; (A.22)

ΨwB
= λ(k)

[

GR(wB(k), y
R(wB(k)))

+

∫ wB(k)

wb(k)

θR(w, yR(wB(k)))dw −GR(wb(k), y
R(wB(k)))

]

= λ(k)

∫ wB(k)

wb(k)

θR(w, yR(wB(k)))dw

{

< 0 if λ(k) > 0

= 0 if λ(k) = 0
;

(A.23)

Ψλ = λ(k)

∫ wb(k)

w

θR(w, ỹ(w, λ(k)))
∂ỹ(w, λ(k))

∂λ
dw +Ψ∗(wb, wB, λ, k) > 0; (A.24)

Ψk = 0. (A.25)

The second equality in (A.22) follows from (A.9). When λ(k) > 0, the inequalities in
(A.23) and (A.24) follow from the fact that θR(y, w) < 0 for all (y, w) above the yR(w)
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locus and, in the latter case, from (A.10) and (A.15). When λ(k) = 0, the correspond-
ing equality in (A.23) trivially holds and the inequality in (A.24) follows because then
Ψ∗(wb, wB, λ, k) > 0.12

From (A.11),

Φwb
= −θM(wb(k), y

R(wB(k)))− λ(k)θR(wb(k), y
R(wB(k))) = 0; (A.26)

ΦwB
=

(
∫ k

wb(k)

[
θMy (w, yR(wB(k))) + λ(k)θRy (w, y

R(wB(k)))
]
dw

+ (1 + λ(k))

∫ wB(k)

k

θRy (w, y
R(wB(k)))dw

)

∂yR(wB(k))

∂wB

< 0;

(A.27)

Φλ =

∫ wB(k)

wb(k)

θR(w, yR(wB(k)))dw = ΨwB

{

< 0 if λ(k) > 0

= 0 if λ(k) = 0
; (A.28)

Φk = θM(k, yR(wB(k)))− θR(k, yR(wB(k))) > 0. (A.29)

The second equality in (A.26) follows from (15) and (A.9). The inequality in (A.27)
follows from the second-order condition (19) and the increasingness of an optimal income
schedule outside of the bridge. The sign of Φλ in (A.28) follows from (A.23). The
inequality in (A.29) follows from (16) and (17).

Let A be the matrix on the left-hand side of (A.17). The determinant |A| is given by

|A| = Υwb
[ΨwB

Φλ −ΨλΦwB
] = (+) [(≤ 0)(≤ 0)− (+)(−)] > 0. (A.30)

The sign of |A| in (A.30) follows from (A.18), (A.23), (A.28), (A.24), and (A.27).
Now, by Cramer’s Rule, and making use of (A.18)–(A.30),

dwb(k)

dk
=

∣
∣
∣
∣
∣
∣

0 ΥwB
Υλ

0 ΨwB
Ψλ

−Φk ΦwB
Φλ

∣
∣
∣
∣
∣
∣

|A|
=

−Φk[ΥwB
Ψλ −ΥλΨwB

]

|A|

=
−(+)

(−)
︷ ︸︸ ︷

[(−)(+)− (−)(≤ 0)]

(+)
> 0;

(A.31)

dwB(k)

dk
=

∣
∣
∣
∣
∣
∣

Υwb
0 Υλ

0 0 Ψλ

0 −Φk Φλ

∣
∣
∣
∣
∣
∣

|A|
=

ΦkΥwb
Ψλ

|A|
=

(+)(+)(+)

(+)
> 0; (A.32)

12Strictly speaking, it is possible to have λ(k) = Ψ∗(wb, wB , λ, k) = 0. We ignore this knife-edge case
because once Proposition 3 has been established for k for which this is not the case, continuity can be
used to establish the proposition for this case as well.
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dλ(k)

dk
=

∣
∣
∣
∣
∣
∣

Υwb
ΥwB

0
0 ΨwB

0
0 ΦwB

−Φk

∣
∣
∣
∣
∣
∣

|A|
=

−ΦkΥwb
ΨwB

|A|
=

−(+)(+)(−)

(+)
> 0 if λ(k) > 0 . (A.33)

This completes the proof for the first case.
Case 2: w < wb < wB = w̄. Let Ψ(wb, λ, k) and Φ(wb, λ, k) denote the expressions

on the left-hand sides of (A.12) and (A.13), respectively, and let Ψ
∗

(wb, λ, k) denote the
term in square brackets in (A.12). The calculations needed to apply the Implicit Function
Theorem are as follows:

Ψwb
= λ(k)

[

GR(wb(k), ỹ(wb(k), λ(k)))−GR(wb(k), ỹ(wb(k), λ(k)))

+

(∫ w̄

wb(k)

θR(w, ỹ(wb(k), λ(k)))dw

)
∂ỹ(wb(k), λ(k))

∂wb

]{

< 0 if λ(k) > 0

= 0 if λ(k) = 0
;

(A.34)

Ψλ = λ(k)

[ ∫ wb(k)

w

θR(w, ỹ(wb(k), λ(k)))
∂ỹ(w, λ(k))

∂λ
dw

+

∫ w̄

wb(k)

θR(w, ỹ(wb(k), λ(k)))
∂ỹ(wb(k), λ(k))

∂λ
dw

]

+Ψ
∗

(wb, λ, k) > 0;

(A.35)

Ψk = 0; (A.36)

Φwb
= −θM(wb(k), ỹ(wb(k), λ(k)))− λ(k)θR(wb(k), ỹ(wb(k), λ(k)))

+

(
∫ k

wb(k)

[
θMy (w, ỹ(wb(k), λ(k))) + λ(k)θRy (w, ỹ(wb(k), λ(k)))

]
dw

+ (1 + λ(k))

∫ w̄

k

θRy (w, ỹ(wb(k), λ(k)))dw

)

∂ỹ(wb(k), λ(k))

wb

< 0;

(A.37)

Φλ =

∫ w̄

wb(k)

θR(w, ỹ(wb(k), λ)(k)) < 0; (A.38)

Φk = θM(k, ỹ(wb(k), λ(k))) + λ(k)θR(k, ỹ(wb(k), λ(k)))− (1 + λ(k))θR(k, ỹ(wb(k), λ(k)))

= θM(k, ỹ(wb(k), λ(k)))− θR(k, ỹ(wb(k), λ(k))) > 0.

(A.39)

The arguments establishing the signs of these derivatives are very similar to those used in
the previous case. One notable additional argument is that the top line on the right-hand
side of (A.37) vanishes by (15).

Using notation and a style of argument similar to that used in the proof of Case 1,
we consider the matrix equation:

[
Ψwb

Ψλ

Φwb
Φλ

] [
dwb

dλ

]

=

[
0

−Φk

]

dk. (A.40)
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Using (A.34)–(A.39) together with (A.40), we conclude that

|Ā| = Ψwb
Φλ −ΨλΦwb

= (≤ 0)(−)− (+)(−) > 0; (A.41)

dwb(k)

dk
=

∣
∣
∣
∣

0 Ψλ

−Φk Φλ

∣
∣
∣
∣

|Ā|
=

ΨλΦk

|Ā|
=

(+)(+)

(+)
> 0; (A.42)

dλ(k)

dk
=

∣
∣
∣
∣

Ψwb
0

Φwb
−Φk

∣
∣
∣
∣

|Ā|
=

−Ψwb
Φk

|Ā|
=

−(−)(+)

(+)
> 0 if λ(k) > 0 . (A.43)

It remains to show that wB(k) remains at w̄ if k is marginally increased. If, on the
contrary, it decreased, this would contradict the finding in Case 1 that wB(·) is increasing
at k when w < wb < wB < w̄. This completes the proof for the second case.

Case 3: w = wb < wB < w̄. This case is similar to Case 1 except that (A.9) is not
used and the functions Φ and Ψ are evaluated with wb = w. Notably, this results in λ
not appearing in the term in square brackets in the Ψ function, so Ψλ = Ψ∗(wb, wB, λ, k).
The term Υwb

disappears from the analogs to (A.30), (A.32), and (A.33), but all other
calculations remain essentially unchanged from Case 1. Specifically,

|A| = ΨwB
Φλ −ΨλΦwB

> 0; (A.44)

dwB(k)

dk
=

ΦkΨλ

|A|
=

(+)(0)

(+)
= 0 if λ(k) > 0 ; (A.45)

dwB(k)

dk
=

ΦkΨλ

|A|
=

(+)(+)

(+)
> 0 if λ(k) = 0 ; (A.46)

dλ(k)

dk
=

−ΦkΨwB

|A|
=

−(+)(−)

(+)
> 0 if λ(k) > 0 . (A.47)

This completes the proof for the third case. Proposition 3 follows from what has been
established in the three cases.

Proof of Proposition 4. We need to show that the function V 0(w, ·) is single-peaked.
That is, we need to show that V 0(w, k) is nonincreasing in k for k > w and nonde-
creasing in k for k < w. This is done by determining the sign of the right-hand side of
(33). We only need to consider the case in which λ(k) > 0 because single-peakedness for
the case in which the the minimum-utility constraint does not bind has been established
by Brett and Weymark (2016, Proposition 8). Recall that k ∈ (wb(k), wB(k)) (that is,
type k is on the bridge of his selfishly optimal schedule) and that ỹ(w, λ) is the solution
to the first-order conditions (15) for a fixed value of λ. As in the preceding two proofs,
there are three cases to consider.

Case 1: w < wb(k) < wB(k) < w̄. We make use of the following inequalities:

∂y(w, k)

∂k
=

∂ỹ(w, λ(k))

∂λ

dλ(k)

dk
< 0, ∀w < wb(k); (A.48)
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∂y(w, k)

∂k
=

∂yR(wB(k))

∂wB

dwB(k)

dk
> 0, ∀w ∈ (wb(k), wB(k)); (A.49)

∂y(w, k)

∂k
=

∂yR(w)

∂k
= 0, ∀w > wB(k); (A.50)

The first of these inequalities follows from (A.15) and Proposition 3. The other two follow
from (24) and, in the case of (A.49), from Part 2 of Proposition 3. The expression in the
middle of (A.49) is the change in the income of types on the bridge due to a change in
k, which is the same for all types in (wb(k), wB(k)).

(a) We first suppose that k > w and show that V 0(w, k) is decreasing in k. By (16),
(17), and (33),

∂V 0(w, k)

∂k
=

∫ w

w

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt. (A.51)

The term in square brackets (A.51) is equal to the term in square brackets in (33), which
is positive. Thus, if w ≤ wb(k), (A.48) implies that the integrand in (A.51) is everywhere
negative. Therefore, ∂V 0(w, k)/∂k < 0 when k > w and w ≤ wb(k).

On the other hand, if wb(k) < w < k, substituting (15) into (A.51) yields

∂V 0(w, k)

∂k
= −(1 + λ(k))

∫ wb(k)

w

θR(t, y(t, k))
∂y(t, k)

∂k
dt

+

∫ k

wb(k)

θM(t, y(t, k))
∂y(t, k)

∂k
dt−

∫ k

wb(k)

θR(t, y(t, k))
∂y(t, k)

∂k
dt

−

∫ k

w

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.52)

Using the first-order condition (A.11) for the placement of the bridge endpoints and the
observation that ∂y(t, k)/∂k is a constant for all t ∈ (wb, wB) to re-express the second
term on the right-hand side of (A.52), we obtain

∂V 0(w, k)

∂k
= −(1 + λ(k))

∫ wb(k)

w

θR(t, y(t, k))
∂y(t, k)

∂k
dt

−λ(k)

∫ k

wb(k)

θR(t, y(t, k))
∂y(t, k)

∂k
dt− (1 + λ(k))

∫ wB(k)

k

θR(t, y(t, k))
∂y(t, k)

∂k
dt

−

∫ k

wb(k)

θR(t, y(t, k))
∂y(t, k)

∂k
dt−

∫ k

w

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.53)

Collecting terms in (A.53), this equality reduces to

∂V 0(w, k)

∂k
= −(1 + λ(k))

∫ wB(k)

w

θR(t, y(t, k))
∂y(t, k)

∂k
dt

−

∫ k

w

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.54)
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Differentiating the minimum utility-constraint (A.10) with respect to k and using (A.50)
and the definition of θR(w, y) in (17), it follows that the first term on the right-hand side
of (A.54) vanishes. By (A.49), the integrand in the second term of the right-hand side
of (A.54) is always positive. Hence, ∂V 0(w, k)/∂k < 0 when wb(k) < w < k. We have
thus shown that V 0(w, k) is decreasing in k when k > w.

(b) We now show that k < w implies that V 0(w, k) is increasing in k. By (33),

∂V 0(w, k)

∂k
=

∫ wb(k)

w

[θM(t,y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt

+

∫ wB(k)

wb(k)

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt

+

∫ w

wB(k)

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.55)

Using (15) in the first term on the right-hand side of (A.55) and rearranging yields

∂V 0(w, k)

∂k
= −(1 + λ(k))

∫ wb(k)

w

θR(t, y(t, k))
∂y(t, k)

∂k
dt

+

∫ k

wb(k)

θM(t, y(t,k))
∂y(t, k)

∂k
dt−

∫ k

wb(k)

θR(t, y(t, k))
∂y(t, k)

∂k
dt

+

∫ wB(k)

k

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt

+

∫ w

wB(k)

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.56)

Using (A.11) in the second term on the right-hand side of (A.56) and our previous
observation that the expression on the right-hand side of the equality in (A.49) is constant
on the interval (wb, wB) yields, after some re-grouping of terms,

∂V 0(w, k)

∂k
= −(1 + λ(k))

∫ wB(k)

w

θR(t, y(t, k))
∂y(t, k)

∂k
dt

+

∫ w

k

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.57)

As in the case of k > w, the first term on the right-hand side of (A.57) vanishes, so that

∂V 0(w, k)

∂k
=

∫ w

k

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt. (A.58)

If w < wB(k), then the integrand on the right-hand side of (A.58) is always positive by
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(A.49). If w > wB(k), we can rewrite (A.58) as

∂V 0(w, k)

∂k
=

∫ wB(k)

k

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt

+

∫ w

wB(k)

[θM(t, y(t, k))− θR(t, y(t, k))]
∂y(t, k)

∂k
dt.

(A.59)

The first-term on the right-hand side of (A.59) is positive by (A.49) and the second
term is zero by (A.50). Thus, the right-hand side of (A.58) is positive for all w 6= wB

for which k < w. By continuity, the same conclusion also holds when w = wb. Thus,
∂V 0(w, k)/∂k > 0 when k < w. That is, V 0(w, k) is increasing in k for k < w, which
completes the proof that V 0(w, ·) is single-peaked for the case in which w < wb(k) <
wB(k) < w̄.

Case 2: w < wb(k) < wB(k) = w̄. For all w < wb(k), (A.48) applies. The income on
the bridge is now ỹ(wb(k), λ(k)). Hence,

∂ỹ(wb(k), λ(k))

∂k
=

∂ỹ(wb(k), λ(k))

∂wb

dwb(k)

dk
+

∂ỹ(wb(k), λ(k))

∂λ

dλ(k)

dk
. (A.60)

Using (A.42) and (A.43) in (A.60), upon rearranging terms we obtain

∂ỹ(wb(k), λ(k))

∂k
=

Φk

|Ā|

[
∂ỹ

∂wb

Ψλ −
∂ỹ

∂λ
Ψwb

]

=
(+)

(+)
[(+)(+)− (≤ 0)(−)] > 0, (A.61)

where we have suppressed the arguments of the terms on the right-hand side of this
equation. The sign of ∂ỹ(wb(k), λ(k))/∂wb is positive because when wb increases, the
original lower endpoint of the bridge now has its income determined by the y0(·) schedule,
which is increasing. The sign of ∂ỹ(wb(k), λ(k))/∂λ follows from (A.15) and the continuity
of y0(·). The other signs have been established in the proof of Proposition 3.

The rest of the proof for this case is almost identical to the proof in Case 1. Instead
of appealing to (A.10) and (A.11), appeal is made to (A.12) and (A.13). Also, (A.61)
is used to show that ∂y(t, k)/∂k > 0 on the bridge in (A.54), (A.58), and (A.59) rather
than (A.49).

Case 3: w = wb(k) < wB(k) < w̄. Only minor modifications are needed to the
proof of Case 1. The terms in which w < wb(k) drop out as they are no longer relevant.
The inequality in (A.49) is now an equality, so ∂V 0(w, k)/∂k = 0 in (A.54), (A.58), and
(A.59). Thus, a marginal increase in k does not affect the utility of any type w.
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