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Unrestricted Domain Extensions of Dominant
Strategy Implementable Allocation Functions

Paul H. Edelman and John A. Weymark

February 2018

Abstract It is shown that any one-person dominant strategy implementable alloca-

tion function on a restricted domain of types can be extended to the unrestricted

domain in such a way that dominant strategy implementability is preserved when

utility is quasilinear. A sufficient condition is identified for which this extension is

essentially unique.

Keywords dominant strategy incentive compatible; implementation theory; mecha-

nism design

1 Introduction

A mechanism consists of an allocation function and a payment function that respec-

tively determine the alternative that is chosen and the payment that must be made

by each individual as a function of their reported types. It is well known that for a

dominant strategy incentive compatible mechanism, there is no loss of generality if

attention is restricted to a one-person mechanism in which the types of all but one

individual are fixed. We show that any one-person dominant strategy implementable

allocation function g on a restricted domain of types can be extended to the unre-

stricted domain in such a way that dominant strategy implementability is preserved
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2 P. H. Edelman and J. A. Weymark

when utility is quasilinear. We identify a sufficient condition for which this exten-

sion is essentially unique in a sense made precise below. Much is known about the

properties of dominant strategy implementable allocation functions and their imple-

menting payment functions on an unrestricted domain (see, e.g., Cuff et al, 2012;

Vohra, 2011). Because g is the restriction of any of its unrestricted domain exten-

sions, the properties of g’s extensions can be used to analyze the properties of g

itself, particularly when the extension is essentially unique.

For an arbitrary type space, Rochet (1987) identifies a necessary and sufficient

condition for an allocation function to be dominant strategy implementable. Gui

et al (2004) show that Rochet’s conditions are equivalent to all cycles in the cor-

responding allocation graph having nonnegative length. The allocation graph is a

graph derived from the allocation function whose nodes are the alternatives. Gui

et al (2004) also show that the partition of the type space into the sets of types that

are assigned the same alternative by the allocation function can be identified using

polyhedra known as difference sets that are defined using the lengths of the arcs in

the allocation graph.1 Our arguments draw on the analysis by Edelman and Wey-

mark (2017) of the geometric structure of this partition when the cycle lengths in

the allocation graph are all zero. They also draw on an alternative characterization of

dominant strategy implementability in terms of node potentials due to Heydenreich

et al (2009).

In Section 2, we describe the model. Section 3 introduces allocation graphs and

states Rochet’s Theorem. Difference sets and the zero 2-cycle condition are con-

sidered in Section 4. Node potentials are introduced in Section 5. The existence of

an unrestricted domain extension of a dominant strategy implementable allocation

function is established in Section 6 and a sufficient condition for this extension to

be essentially unique is provided in Section 7. Examples illustrating our results are

presented in Section 8. In Section 9, we offer some concluding remarks.2

2 Preliminaries

As noted in Section 1, there is no loss of generality in restricting attention to one-

person mechanisms. The set of alternatives is A = {a1, . . . ,am}, where m ≥ 2. An

alternative is sometimes referred to by the integer i ∈ M = {1, . . . ,m} that indexes

it. The individual’s type is a vector v = (v1, . . . ,vm) (= v(a1), . . . ,v(am)), where

vi = v(ai) is his valuation of the ith alternative. The type space (the set of possible

types) is V , where |V | ≥ 2. The type space is unrestricted if V = R
m.

The mechanism designer knows that the individual’s type is in V , but does not

know its value. He designs a mechanism (g,π), where g : V → A is an allocation

function and π : V → R is a payment function. These functions specify the alterna-

1 The main results in Gui et al (2004) also appear in Vohra (2011).
2 Further details about the material discussed in Sections 2–5 and 9 may be found in Edelman and

Weymark (2017), Heydenreich et al (2009), and Vohra (2011).
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tive that is chosen and the individual’s payment (subsidy, if negative) as a function

of his reported type. The type space V is the domain of the mechanism.

The individual’s utility is his valuation minus his payment, and so is quasilinear.

Formally, given the mechanism (g,π), his utility is given by

v(g(ṽ))−π(ṽ) (1)

when v is his true type and ṽ is his reported type. The individual reports a type that

maximizes his utility, which need not be his true type.

A mechanism (g,π) is dominant strategy incentive compatible if

v(g(v))−π(v)≥ v(g(ṽ))−π(ṽ), ∀v, ṽ ∈V. (2)

For such a mechanism, the individual has an incentive to report his true type what-

ever it is. The allocation function g is dominant strategy implementable if there ex-

ists a payment function π such that (g,π) is dominant strategy incentive compatible.

We only consider dominant strategy incentive compatible mechanisms.

Dominant strategy implementability has two implications that allow for some

simplification. First, the allocation and payment functions only depend on the valu-

ations of the alternatives that are ever chosen, so we can without loss of generality

suppose that g is surjective. Second, payments must be the same for types that are

allocated the same alternative, so a payment function that implements the allocation

function g can be equivalently described by a function ρg : M → R, where ρg(i)
is the payment if the ith alternative is chosen. That is, using ρg, g(v) solves the

following affine maximization problem:

g(v) = ai for some i ∈ argmax
i∈M

{vi −ρg(i)}, ∀v ∈V. (3)

The fact that g can be implemented by payments that only depend on the chosen

alternative is known as the taxation principle.

The ith alternative preimage is

Ri = {v ∈V |g(v) = ai}, ∀i ∈ M. (4)

That is, Ri is the set of types that are assigned the ith alternative by g. By assumption,

g is surjective, so each of these sets is nonempty.

3 Allocation Graphs and Rochet’s Theorem

The allocation graph Γg corresponding to g is the complete directed graph whose

nodes are the set M viewed as labels for the m alternatives. The length (which could

be negative) of the directed arc from node i to node j is

li j = inf
v∈R j

[v j − vi] . (5)
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By definition, lii = 0 for all i ∈ M. Provided that g is dominant strategy imple-

mentable, all of these lengths are finite. Let

l̄i =
1

m
∑

j

l ji, ∀i ∈ M, (6)

denote the average length of the arcs in Γg that terminate at node i.

For any pair of nodes i and j in Γg, a path is a sequence of directed arcs connecting

i to j and a k-cycle is a path from i to i with k arcs, where k is any positive integer.

The allocation function g satisfies the k-cycle nonnegativity condition if all k-cycles

in Γg have nonnegative length and it satisfies the zero k-cycle condition if all k-cycles

in Γg have zero length.

For an arbitrary type space, Rochet (1987) identifies a necessary and sufficient

condition for an allocation function to be dominant strategy implementable. Theo-

rem 1 provides a statement of of Rochet’s Theorem in terms of cycles in the alloca-

tion graph Γg.

Theorem 1 (Rochet (1987)). The following conditions for the allocation function

g : V → A are equivalent:

1. g is dominant strategy implementable.

2. For every integer k ≥ 2, the k-cycle nonnegativity condition is satisfied.

4 Difference Sets and the Zero 2-Cycle Condition

Our analysis exploits the geometric structure of the partition of the type space V

provided by the m alternative preimages. This structure is identified using polyhedra

defined on all of Rm. In the following, we let intS denotes the interior of the set S

and 1 denote the vector whose components are all equal to 1.

For all distinct i, j ∈ M, the pairwise difference set for the ordered pair of alter-

natives (ai,a j) is

H i j = {v ∈ R
m|vi − v j ≥ l ji} (7)

and its boundary is

Hi j = {v ∈ R
m|vi − v j = l ji}. (8)

Each of these pairwise difference sets is a closed halfspace in R
m. It is convenient

to let Hii = H ii = R
m. For all i ∈ M, the difference set for ai is the polyhedron

Pi =
m⋂

j=1

H i j. (9)

As Theorem 2 demonstrates, except for possibly on its boundary, the intersection

of the difference set Pi with the type space V is the set of types that are assigned the

ith alternative by g.
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Theorem 2 (Gui et al (2004)). For the allocation function g : V → A, for any alter-

native ai ∈ A:

1. For any type v ∈ Ri, v ∈ Pi ∩V .

2. If g satisfies the 2-cycle nonnegativity condition, then for any type v ∈ intPi ∩V ,

v ∈ Ri.

An implication of Theorem 2 is that if v ∈ V but v 6∈ Pi, then g(v) 6= ai. If

Hi j = H ji, then Pi and Pj have a facet in common and li j + l ji = 0. Dominant strat-

egy implementation implies that the difference sets for distinct alternatives have no

interior points in common. As a consequence, if Hi j 6= H ji, then li j + l ji > 0.

A further implication of Theorem 2 is that if g(v) = ai and v′ = v+ c · 1, then

g(v′) = ai except possibly when v (and, hence v′) is on the boundary of Pi. The latter

observation permits us to normalize the type vectors so that their components sum

to 0 or, equivalently, that they lie in the subspace 1⊥ of Rm orthogonal to 1.

For all i ∈ M, the normalized difference set for ai is

P̂i = Pi ∩1⊥. (10)

Theorem 3 shows that this set is a pointed cone with vertex pi whose jth component

is the average length of the arcs in Γg that terminate at node i minus the length of the

arc that goes from node j to node i.

Theorem 3 (Edelman and Weymark (2017)). For all i ∈ M, P̂i is a pointed cone

with vertex pi whose jth component is

pi
j = l̄i − l ji, ∀ j ∈ M. (11)

If the allocation function g is dominant strategy implementable and all of the

2-cycles in Γg have zero length, then all cycles in Γg have zero length (see Cuff

et al, 2012). The relationship between zero cycle lengths and the vertices of the

normalized difference sets is provided in Theorem 4.

Theorem 4 (Edelman and Weymark (2017)). If the allocation function g : V → A

is dominant strategy implementable, then the following conditions are equivalent:

1. The vertices {pi} of the normalized difference sets {P̂i} coincide.

2. g satisfies the zero 2-cycle condition.

Restrictions on the type space for which the conditions in Theorem 4 are satisfied

when the allocation function is dominant strategy implementable have been identi-

fied by Cuff et al (2012) and Edelman and Weymark (2017). For example, they hold

if the type space is unrestricted.

Because Pi is a cone, P̂i is the orthogonal projection of Pi onto 1⊥. The orthogonal

projection of the type space V onto 1⊥ (the projected type space) is also of interest.

This projection is denoted by V̂ .
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5 Implementability and Node Potentials

An alternative characterization of dominant strategy implementability to that pro-

vided by Rochet’s Theorem can be obtained using node potentials. The function

ρg : M → R is a node potential for the allocation function g : V → A if

ρg( j)≤ ρg(i)+ li j, ∀i, j ∈ M. (12)

That is, a node potential assigns a scalar to each node in the graph Γg in such a way

that (12) holds.

The payment function π : V → R corresponds to the node potential ρg if for

all i ∈ M and all v ∈ Ri, π(v) = ρg(i). In other words, the payment required by

the payment function π for any type v ∈ V that the allocation function g assigns

ai is the value assigned to the ith node in Γg by the node potential ρg. Theorem 5

provides a characterization of dominant strategy incentive compatibility in terms of

node potentials.

Theorem 5 (Heydenreich et al (2009)). For the allocation function g : V → A and

payment function π : V →R, (g,π) is dominant strategy incentive compatible if and

only if π corresponds to a node potential ρg : M → R.

The node potential ρg thus provides a set of implementing payments for the m al-

ternatives. Using Theorems 3 and 4, Edelman and Weymark (2017) show that when

the zero 2-cycle condition is satisfied, the common vertex p of the normalized differ-

ence sets are implementing payments. By (11), the payment for the ith alternative is

then l̄i (the average length of the arcs that terminate at node i in the allocation graph

Γg) because lii = 0 for all i ∈ M.

6 Extending the Domain

The allocation function g+ : Rm → A is an unrestricted domain extension of the

allocation function g : V →A if g+(v)= g(v) for all v∈V . Theorem 6 shows that any

dominant strategy allocation function on a restricted type space has an unrestricted

domain extension that is also dominant strategy implementable.

Theorem 6. If the allocation function g : V →A is dominant strategy implementable,

then g has a unrestricted domain extension g+ : Rm → A that is dominant strategy

implementable.

We give two proofs for Theorem 6 that provide different insights about the nature

of the extension. The first proof combines a revealed preference argument with the

taxation principle’s optimization problem in (3).

Proof (Version 1). Because g is dominant strategy implementable, there exists a

payment function π : V → R that implements it. By the taxation principle, this pay-
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ment function can be written as a function ρg : M → R because types that are as-

signed the same alternative have the same payment. Let

O = {(ai,ρg(i)) | i ∈ M} (13)

be the set of all combinations of an alternative and its corresponding payment for

the mechanism (g,π).
For v ∈V , let g+(v) = g(v). For all v ∈ R

m \V , let

g+(v) = ai for some i ∈ argmax
i∈M

{v(ai)−ρg(i)}. (14)

Because there are a finite number of alternatives, g+(v) is well defined. Thus, when

the type v is not in the domain V , the individual gets to choose any one of the

alternatives and pays the amount associated with it in the original mechanism. By

construction, when the individual is of type v, he is choosing a combination of an

alternative and a payment from O that is utility maximal for him. As a consequence,

because g+(v) = g(v) for v ∈ V , g+ is an extension of g that is dominant strategy

implementable. ⊓⊔

This proof of Theorem 6 is quite simple and highlights the importance of the

taxation principle for the construction of the extension of g. However, it does not

exploit the geometric structure that is provided by the difference sets and the lengths

in the allocation graph that are used to define them. Our second proof of Theorem 6

does.

Consider any dominant strategy implementable allocation function g and let π be

a payment function that implements it. By Theorem 5, π corresponds to some node

potential ρg. Let

l+i j = ρg( j)−ρg(i), ∀i, j ∈ M. (15)

The value l+i j is the increment in the payment required if a j is chosen instead of ai

by the allocation function g using the payment function π corresponding to the node

potential ρg. The node potential allocation graph Γ +
g is defined to be the complete

directed graph with node set M for which the length of the directed arc from node i

to node j is l+i j .

It follows immediately from (15) that every cycle in Γ +
g has zero length.

Lemma 1. If ρg : M → R is a node potential for the dominant strategy imple-

mentable allocation function g : V → A, then for every integer k ≥ 2, any k-cycle

in the node potential allocation graph Γ +
g has zero length.

Lemma 2 shows that the length of any arc in the allocation graph Γg is at least as

large as the length of the corresponding arc in the node potential allocation graph

Γ +
g and that these arc lengths coincide when an arc is part of a zero length 2-cycle

of Γg.

Lemma 2. If ρg : M → R is a node potential for the dominant strategy imple-

mentable allocation function g : V → A, then for all i, j ∈ M,
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li j ≥ l+i j . (16)

and for all i, j ∈ M for which li j + l ji = 0,

l+i j = li j. (17)

Proof. Because ρg is a node potential for g, (16) follows from (12) and (15). Con-

sider any i, j ∈ M for which li j + l ji = 0. Because li j + l ji = 0 and l+i j + l+ji = 0, if

li j > l+i j , we would have

0 = li j + l ji > l+i j + l+ji = 0,

which is impossible. Hence, because (16) holds, (17) does as well. ⊓⊔

For the allocation function g : V → A, the zero 2-cycle graph is the graph Γ 2
g

with node set M that has an edge between nodes i and j, denoted i ∼ j, if and only

if li j + l ji = 0. This graph is undirected and only has an edge between two nodes if

the length of the 2-cycle formed by the arcs connecting these nodes in Γg is zero.

For all i ∈ M, let P+
i be the difference set for ai defined as in (9) but using the

lengths {l+i j } instead of the lengths {li j} when defining the analogues of the pairwise

difference sets in (7). Also let P̂+
i ⊆ 1⊥ be the corresponding normalized difference

set for ai. An implication of Lemma 2 is that for all i ∈ M, Pi ⊆ P+
i and P̂i ⊆ P̂+

i .

In moving from Pi to P+
i , any facet of Pi that is defined using an alternative whose

node forms a 2-cycle of Γ 2
g with node i is unchanged, whereas any facet of Pi that

is defined using an alternative whose node does not form a 2-cycle of Γ 2
g with node

i is moved parallel so as to increase the size of this difference set. We use these

observations in our second proof of Theorem 6.

Proof (Version 2). Because g is dominant strategy implementable, by Theorem 5,

there exists a node potential ρg : M → R and a payment function π : V → A corre-

sponding to it that implements g. By Lemma 2, l+i j = li j and l+ji = l ji for any pair of

nodes i and j for which i ∼ j in the 2-cycle graph Γ 2
g . For any pair of nodes i and

j for which i 6∼ j, by (16), li j > l+i j and l ji > l+ji . Hence, by the definitions of Pi and

P+
i ,

Pi ⊆ P+
i , ∀i ∈ M. (18)

We now show that

∪i∈MP+
i = R

m. (19)

On the contrary, suppose that there exists a v ∈ R
m for which v /∈ P+

i for any i ∈ M.

Using the lengths {l+i j } instead of the lengths {li j} in (7) and (9), it then follows that

for all i ∈ M, there exists an i j ∈ M such that

vi − vi j
< l+i j i

. (20)
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Because the number of nodes is finite, there exists a k-cycle for some k ∈ {2, . . . ,M}
in which each arc is the arc from i to i j for some i. Let E be the set of the arcs in this

cycle with the arc that starts at node i denoted by ii j. By (20),

0 = ∑
ii j∈E

[vi − vi j
]< ∑

ii j∈E

l+ii j
. (21)

By Lemma 1, every cycle in the complete directed graph Γ +
g has zero length, which

contradicts (21). Hence, (19) holds.

We now construct the allocation function g+ : Rm → A. For all v ∈ V , we let

g+(v) = g(v) so that g+ is an unrestricted domain extension of g. By construction,

intP+
i ∩ intP+

j =∅ for all i, j ∈ M. For all i ∈ M, let g+(v) = ai for any v ∈ intP+
i \V .

For any other v ∈R
m, there exists a maximal subset I ⊆ M for which v ∈ ∩I∈I P+

i .

For such a v, let g+(v) = ai for some i ∈I . By construction, the allocation function

g+ satisfies the conditions in Theorem 2 reinterpreted so as to apply to g+.

By Lemma 1, all cycles in Γ +
g have zero length. Hence, by Rochet’s Theorem

(Theorem 1), g+ is dominant strategy implementable. ⊓⊔

An implication of Theorem 6 is that Γ +
g is the allocation graph for the allocation

function g+. Because all 2-cycles in this graph have zero length and g+ is dominant

strategy implementable, it follows from Theorem 4 that the normalized difference

sets {P̂+
i } have a common vertex, which we denote by p+.

7 Essential Uniqueness of an Unrestricted Domain Extension

Two allocation functions g and g′ that have the same domain are essentially equiv-

alent if their difference sets are identical. By Theorem 2, both of these functions

assign the same alternative to any type in their common domain that is in the inte-

rior of any of the difference sets. It is only when v is on the boundaries of two or

more difference sets that g(v) and g′(v) can differ. An unrestricted domain extension

g+ of an allocation function g is essentially unique if any other unrestricted domain

extension of g is essentially equivalent to g+.

In Theorem 7, we show that a dominant strategy implementable allocation func-

tion g has an essentially unique unrestricted domain extension if the zero 2-cycle

graph Γ 2
g is connected. This graph need not have any cycles, but as Lemma 3 estab-

lishes, if there are any, they must have zero length. This observation is used to help

prove our uniqueness result.

Lemma 3. If the allocation function g : V → A is dominant strategy implementable,

then any cycle of the zero 2-cycle graph Γ 2
g has zero length.

Proof. By Lemma 2, for any i, j ∈ M for which i ∼ j in Γ 2
g , l+i j = li j. Because Γ +

g is

complete and all of its cycles have zero length, it follows that any cycle of Γ 2
g must

have zero length. ⊓⊔
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Theorem 7 demonstrates that connectedness of the zero 2-cycle graph is suffi-

cient for the uniqueness of an unrestricted domain extension.

Theorem 7. If the allocation function g : V →A is dominant strategy implementable

and the zero 2-cycle graph Γ 2
g is connected, then g has an essentially unique unre-

stricted domain extension g+ : Rm → A.

Proof. Consider any three nodes i, j,k ∈ M of Γ 2
g for which i ∼ j and j ∼ k, but

i 6∼ k. By Lemma 3, the length of the path from node i to node k via node j is the

negative of the reverse path. Adding the arc from node k to node i to the first path

results in a cycle. Moreover, there is a unique arc length l∗ki that results in this cycle

having zero length. The reverse cycle only has zero length if the arc from node i to

node k has length −l∗ki. The graph Γ 2
g is connected, and so by assigning lengths in

this way, we have uniquely extended Γ 2
g to a graph for which all three cycles exist

and have zero length. A simple induction argument shows that this way of assigning

lengths to arcs that are not in Γ 2
g uniquely extends Γ 2

g to a complete graph Γ ∗
g all of

whose cycles have zero length. Lemmas 1 and 2 and Theorem 6 then imply that Γ ∗
g

coincides with the node potential allocation graph Γ +
g . The difference sets for any

unrestricted domain extension g+ of g are uniquely determined by the lengths of

the arcs in Γ +
g . Hence, any unrestricted domain extension of g must have the same

difference sets and, therefore, there is an essentially unique unrestricted domain

extension of g. ⊓⊔

8 Examples

We provide three examples to illustrate how to construct an unrestricted domain

extension of an allocation function whose domain is not all of Rm. Edelman and

Weymark (2017) use the allocation functions in the first two examples to illustrate

Theorem 4, but they do not consider domain extensions.

In each of our examples, there are three alternatives. When this is the case, 1⊥

is a plane, which facilitates the use of diagrams. In our diagrams, the orientation

is chosen so that 1⊥ lies flat in the page. Each of the three normalized difference

sets P̂1, P̂2, and P̂3 lies in this plane. These sets are pointed cones whose bounding

rays form a 120◦ angle. Because the allocation function g is surjective, each of the

normalized difference sets must have a nonempty intersection with the projected

type space V̂ and each type in V̂ must be in at least one of them.

Example 1. A situation in which the conditions in Theorem 4 are satisfied is illus-

trated in Figure 1. Each pair of normalized difference sets shares a common facet,

and so all 2-cycles (and, hence, all cycles) have zero length. By Theorem 4, this

is only possible if P̂1, P̂2, and P̂3 share a common vertex. As we have seen in Sec-

tion 5, the ith component of this vertex is the average length l̄i of the arcs in Γg that

terminate at node i.
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V̂

p+

P̂1 = P̂+
1

P̂2 = P̂+
2

P̂3 = P̂+
3

Fig. 1 Illustration of Example 1

To define the allocation function g+ that extends g to all of R
3, we must, of

course, let g+(v) = g(v) for all v ∈ V . For v 6∈ V , for all i, j ∈ M, g+ assigns al-

ternative ai to any v ∈ intPi, ai or a j to any v ∈ Pi ∩Pj, and a1, a2, or a3 to any

v ∈ P1 ∩P2 ∩P3.

In Figure 1, the union of the three normalized difference sets {P̂i} is all of 1⊥

and, hence, the union of the the corresponding difference sets {Pi} is all of Rm. As

a consequence, for each i ∈ M, the normalized difference set P̂+
i for g+ coincides

with the corresponding normalized difference set P̂i for g and, hence, their common

vertex p+ is also the common vertex of P̂1, P̂2, and P̂3.

P̂1

P̂2

P̂3

V̂

p1 p2 = p+

p3

F̂13

F̂31

Fig. 2 Illustration of Example 2

Example 2. A situation in which the conditions in Theorem 4 are not satisfied is

illustrated in Figure 2. The vertex p2 of P̂2 lies outside of V̂ and differs from the ver-

tices p1 of P̂1 and p3 of P̂3. Because the type space V is connected and m = 3, there
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must be at least two zero length 2-cycles (see Edelman and Weymark, 2017; Vohra,

2011). Because the vertices of the normalized difference sets are not all the same, it

then follows from Theorem 4 that exactly one of the two cycles has positive length.

Here, it is the 2-cycle for a1 and a3. This 2-cycle has positive length because P̂1 and

P̂3 have no type in common. In contrast, each of the other two pairs of normalized

difference sets share a common facet, and so the other 2-cycles have zero length.

There are points in R
3 that are not in any of the normalized difference sets. The

allocation function g+ that extends g to all of R
3 is defined by first constructing

difference sets P+
1 , P+

2 , and P+
3 for which (i) Pi ⊆ P+

i for all i ∈ M and (ii) ∪i∈MPi =
R

3. This is done by constructing normalized difference sets P̂+
1 , P̂+

2 , and P̂+
3 for

which (i) P̂i ⊆ P+
i for all i ∈ M and (ii) ∪i∈MP̂i = 1⊥. The only way to do this is to

make p2 the common vertex of P̂+
1 , P̂+

2 , and P̂+
3 .

By (8), for each i, j ∈ M, vi−v j = l ji on the line Hi j ∩1⊥. Hence, any normalized

difference set P̂i has a facet whose slope is the same as one of the facets of P̂j for

j 6= i. In Figure 2, F̂13 and F̂31 are the parallel facets of P̂1 and P̂3, respectively. The

sets P̂+
1 and P̂+

3 are obtained from P̂1 and P̂3 by moving these facets so that they

coincide with the dashed line in the figure. The set P̂+
2 is set equal to P̂2.3 The three

normalized difference sets constructed in this way have p2 as their common vertex

p+. For each i ∈ M, P+
i = {v ∈ R

3 | v = ṽ+ c ·1 for some ṽ ∈ P̂+
i }.

The allocation function g+ that extends g to all of R3 is now defined as in Exam-

ple 1. That is, g+(v) = g(v) for all v ∈ V and for all other v ∈ R
3, for all i, j ∈ M,

g+ assigns alternative ai to any v ∈ intPi, ai or a j to any v ∈ Pi ∩Pj, and a1, a2, or a3

to any v ∈ P1 ∩P2 ∩P3. All 2-cycles in the corresponding allocation graph have zero

length.

In both Examples 1 and 2, that allocation function g has an essentially unique

unrestricted domain extension g+. Moreover, the common vertex p+ of the normal-

ized difference sets P̂+
1 , P̂+

2 , and P̂+
3 for g+ coincides with some of the vertices of

the normalized difference sets P̂1, P̂2, and P̂3 for g. In Example 3, the allocation

function g does not have an essentially unique unrestricted domain extension. For

the extension g+ considered in this example, p+ does not coincide with a vertex of

any of the normalized difference sets for g.

Example 3. The projected type space V̂ and the three normalized difference sets P̂1,

P̂2, and P̂3 for the allocation function g are as illustrated in Figure 3. Because V̂ is not

connected, V is not connected either. Because l12 + l21 = 0, the common vertex p+

of the three normalized difference sets P̂+
1 , P̂+

2 , and P̂+
3 for the extension g+ must lie

on the line through p1 and p2. It must also lie on a line that is parallel to the upward

sloping facets of P̂1 and P̂3 and on a line that is parallel to the downward sloping

facets of P̂2 and P̂3. Furthermore, it must lie weakly to the right of P̂1 and weakly

to the left of P̂3. It is because these constraints leave some freedom about where to

locate p+ that there is not an essentially unique unrestricted domain extension of g.

The exact location of p+ (subject to these constraints) depends on which payment

function is used to implement g or, equivalently, what node potential is used.

3 In Figures 2 and 3, we do not label these three normalized difference sets. However, they are

easily identified by our descriptions of their construction.
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p1p2

p3

p+

V̂

V̂

P̂1

P̂2

P̂3

Fig. 3 Illustration of Example 3

The rays that originate at p+ are the facets of the normalized difference sets for

g+. These sets are used as in Examples 1 and 2 to specify the alternative assigned

by g+ for types that are not in V . All 2-cycles in the allocation graph for g+ have

zero length.

9 Concluding Remarks

A dominant strategy implementable allocation function g satisfies the revenue equiv-

alence property if for any two payment functions π and π ′ that implement it, there

exists a scalar c such that

π ′(v) = π(v)+ c, ∀v ∈V. (22)

Heydenreich et al (2009) show that revenue equivalence holds if and only if for any

two nodes i and j in the allocation graph Γg, the length of the shortest path from i

to j is the negative of the length of the shortest path from j to i. An implication of

this result is that the length of the cycle formed by the shortest paths from node i

to j and from node j to i is zero. This cycle need not be a 2-cycle because these

paths need not be the direct paths between these two nodes. However, Edelman and

Weymark (2017) show that when the zero 2-cycle condition is satisfied, the shortest

path between two nodes is the direct path. As a consequence, revenue equivalence is

implied by the zero 2-cycle condition when g is dominant strategy implementable.

In general, g need not satisfy either the revenue equivalence property or the zero 2-

cycle condition. Nevertheless, any unrestricted domain extension of g must satisfy

the zero 2-cycle condition because the domain is unrestricted (Cuff et al, 2012) and,

hence, it satisfies the revenue equivalence property.
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When the zero 2-cycle condition is satisfied by a dominant strategy imple-

mentable allocation function g, the normalized difference sets for it and for any

unrestricted domain extension are the same. As we have seen, their common vertex

p is a set of implementing payments for the alternatives and, hence, the payment

function π that corresponds to it is an implementing payment function (as a func-

tion of the type). Because this is a situation in which revenue equivalence holds, the

set of all payment functions that implement g is the set of all π ′ that satisfy (22) for

some scalar c for the payment function π identified in this way.

It is an open question whether there is a simple way to characterize all of the

implementing payment functions for a dominant strategy implementable allocation

function g when revenue equivalence does not hold. Such a characterization can be

obtained if there exists a simple characterization of the normalized difference sets

for all of the unrestricted domain extensions of g when there is not an essentially

unique extension. Using the vertices of these normalized difference sets, implement-

ing payments can be identified as is done here for the case in which an unrestricted

domain extension is essentially unique.
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