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1 Introduction

Impulse response analysis based on autoregressions plays a central role in quantitative economics

(see Kilian and Lütkepohl 2017). Many researchers have cautioned against relying on pre-tests

to diagnose and remove apparent unit roots in autoregressive processes (e.g., Elliott 1998; Rossi

and Pesavento 2007; Gospodinov, Herrera and Pesavento 2011). As result, autoregressions are

often estimated based on highly persistent data. A long-standing question has been how to assess

the uncertainty about response estimates when the dominant autoregressive root may be close to

unity. The asymptotic validity of conventional methods of asymptotic and bootstrap inference for

impulse responses for stationary processes has been established in Lütkepohl (1990) and Gonçalves

and Kilian (2004). Extensions to possibly integrated autoregressive processes are provided in In-

oue and Kilian (2002, 2003), building on Park and Phillips (1989) and Sims, Stock and Watson

(1990). Kilian and Lütkepohl (2017) note that the assumptions underlying the analysis of higher-

order autoregressions in Inoue and Kilian (2002) may be relaxed further by fitting lag-augmented

autoregressions, as proposed by Dolado and Lütkepohl (1996) and Toda and Yamamoto (1995).1

All these asymptotic justifications, however, rely on pointwise convergence results. It is unclear

whether they are valid uniformly across the parameter space.

In many econometric applications the distinction between pointwise and uniform validity, as

discussed in Giraitis and Phillips (2006), Mikusheva (2007a), Andrews and Guggenberger (2009),

and Kasy (2018), among others, is of no practical importance. This distinction matters, however,

when the distribution of the statistic of interest changes with the value of the population parameter

to be estimated, as would be the case in the AR(1) model when the autoregressive root approaches

unity. The concern is that for a 1− α confidence interval C to be asymptotically valid we need to

show that

lim
T→∞

inf
ρ
Pρ(ρ ∈ C) ≥ 1− α,

where ρ denotes the AR(1) slope parameter and the infimum is taken over the parameter space of

ρ. This means that there exists a sample size that guarantees the coverage accuracy of the interval

for any parameter value ρ. In contrast, under the pointwise approximation, the actual coverage

accuracy is not known and may become arbitrarily low, since the true value of ρ is not known.2

1Related work also includes Kurozumi and Yamamoto (2000) and Bauer and Maynard (2012).
2For example, Mikusheva (2007a) demonstrates that the conventional asymptotic normal approximation for the

slope parameter in the AR(1) model with near unit roots is pointwise correct, but not uniformly correct, which helps
explain the poor coverage accuracy of conventional confidence intervals in this model, as ρ approaches unity (see
Nankervis and Savin 1988; Hansen 1999; Kilian 1999).
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Concern over the reliability of conventional methods of inference when applied to highly persis-

tent autoregressive processes has subsequently motivated the development of nonstandard asymp-

totic approximations based on local-to-unity processes. For example, Stock (1991) proposes con-

structing confidence intervals for the dominant autoregressive root by inverting unit root tests.

Phillips (2014), however, proves that inference about the AR(1) slope parameter based on Stock’s

(1991) confidence interval, while asymptotically valid when the root is local to unity, has zero

coverage asymptotically when the root is far enough from unity.3

The lack of a uniform asymptotic approximation across the parameter space has undermined

the profession’s confidence in the accuracy of either of these confidence intervals in applied work

and has created interest in confidence intervals that remain asymptotically valid whether the AR(1)

slope parameter is unity, close to unity or far from unity. For example, under weak conditions,

the grid bootstrap of Hansen (1999) can be shown to provide a uniformly asymptotically valid

approximation to the distribution of the AR(1) slope parameter under both stationary and local-

to-unity asymptotics (see Mikusheva 2007a).

While the AR(1) process has been studied extensively in the literature, there has been much less

work on the problem of uniform inference in higher-order autoregressions, which are the workhorse

model in applied work. Allowing for additional lags turns out to change the properties of the

estimator of the autoregressive model dramatically. Our analysis shows that the lack of uniform

validity of the conventional Gaussian asymptotic approximation does not extend to inference on

individual slope parameters in higher-order autoregressive models. In the latter case, asymptotic

normality holds uniformly across the parameter space. This result has important implications

for inference on smooth functions of autoregressive slope coefficients such as impulse responses in

autoregressions.

Our contribution to this literature is fourfold. First, we show that conventional asymptotic and

bootstrap confidence intervals for individual impulse responses remain uniformly asymptotically

valid, as long as the horizon of the impulse response remains fixed with respect to the sample size,

generalizing the pointwise asymptotic results in Park and Phillips (1989), Sims, Stock and Watson

(1990) and Inoue and Kilian (2002). Our analysis covers both higher-order autoregressions and

lag-augmented autoregressions. We provide a suitable rank condition that ensures that inference

on impulse responses is uniformly valid. We show that lag-augmented autoregressions based on

3Phillips’ conclusion is consistent with simulation evidence in Hansen (1999), which illustrates the comparatively
poor coverage accuracy of Stock’s method in the stationary region.
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stationary, unit root or local-to-unity AR(p) processes always satisfy this rank condition at horizons

h ≤ p.4

Second, we establish the uniform asymptotic validity of Gaussian inference on the vectors of

autoregressive slope parameters and vectors of impulse responses. The joint asymptotic normality

of the estimator of autoregressive slope parameters has been postulated as a high-level assumption

in a range of studies including Montiel Olea, Stock and Watson (2016), Guerron-Quintana, Inoue

and Kilian (2017), and Gafarov, Meier and Montiel Olea (2018). Our analysis establishes the unifom

joint asymptotic normality of the lag-augmented estimator of the autoregressive slope parameters

under conditions not requiring the process to be stationary. We furthermore establish, under

the same conditions, the uniform joint asymptotic normality of the impulse response estimator

postulated by Granziera, Moon and Schorfheide (2018).

The latter result is also central for the construction of joint impulse response confidence in-

tervals based on Wald test statistics. Joint inference on impulse response functions has become

increasingly recognized as essential for practitioners interested in understanding the true extent

of the uncertainty about estimates of impulse response functions (e.g., Jordà 2009; Lütkepohl;

Staszewska-Bystrova and Winker 2015a,b,c; Inoue and Kilian 2016; Kilian and Lütkepohl 2017;

Bruder and Wolf 2018; Montiel Olea and Plagborg-Møller 2018). Our analysis shows that the use

of lag-augmented autoregressions is required for inference about impulse response functions based

on Wald test statistics to be uniformly asymptotically valid, when the dominant autoregressive root

may be arbitrarily close to unity.5

Third, a simulation study involving univariate autoregressions with varying degrees of persis-

tence confirms that the conventional asymptotic approximation based on fixed impulse response

horizons remains accurate even uniformly, as long as the horizon is reasonably small relative to the

sample size. We find that impulse response confidence intervals based on lag-augmented autore-

gressions are considerably more accurate in small samples than confidence intervals based on the

original autoregression. Substantial further improvements in coverage accuracy may be achieved by

bootstrapping the lag-augmented autoregression. The reason that delta method confidence inter-

vals tend to be less accurate than suitably constructed bootstrap confidence intervals is that, even

4In related work, Mikusheva (2012) established the uniform validity of one-dimensional impulse response inference
for a specific form of the grid bootstrap applied to autoregressions. Her uniformity results, however, do not apply to
the conventional delta method and bootstrap confidence intervals considered in our analysis.

5In contrast, the use of conservative sup-t or Bonferroni bounds, as discussed in Montiel Olea and Plagborg-
Møller(2018), only requires the marginal distributions of the impulse responses to be uniformly asymptotically normal
with strictly positive variances.
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for stationary processes, the finite-sample distribution of impulse responses is far from Gaussian.

The longer the horizon, the worse the normal approximation becomes. One potential remedy is the

use of the Hall percentile interval, which allows the distribution of the impulse response estimator

to be non-Gaussian. We find, however, that the use of the Hall percentile interval yields at best

modest improvements in practice and cannot be recommended.

An alternative is the bias-adjusted bootstrap method of Kilian (1999), which was designed

to improve the small-sample accuracy of impulse response confidence intervals in stationary au-

toregressions. This method yields consistently high uniform coverage accuracy when applied to

lag-augmented autoregressions. For example, for T = 240, uniform coverage rates range from 87%

to 89% and for T = 480 from 89% to 90%, for horizons between 1 and 12 periods, which is a

substantial improvement relative to the delta method for the same model. In contrast, without

lag augmentation, both delta method and bootstrap confidence intervals are much less accurate,

consistent with earlier simulation evidence in the literature. These results suggest that highly

persistent autoregressions in applied work should be routinely lag-augmented when conducting im-

pulse response inference. While lag-augmenting the autoregression will cause an increase in the

average width of the interval, we show by simulation that this loss in efficiency may for all practical

purposes be ignored, when the original autoregressive lag order is already large, as is typically the

case in applied work.

Fourth, we establish the asymptotic validity of the Efron percentile interval at long horizons

based on the lag-augmented autoregression within the local-to-unity framework. Although impulse

response inference is not uniformly valid at long horizons, these results explain the excellent coverage

accuracy of this interval for persistent autoregressive processes at horizons as long as 60 periods.

Our simulation evidence suggests that there is little need for nonstandard interval estimators based

on long-horizon asymptotics in many applications of impulse response analysis. This result is in

stark contrast to earlier theoretical and bootstrap simulation results based on autoregressions that

were not lag augmented (see Phillips 1998; Kilian and Chang 2000). We also formally show that

other bootstrap confidence intervals for impulse responses based on lag-augmented autoregressions

such as Hall’s percentile interval or, for that matter, the delta method are not asymptotically valid

at long horizons. Likewise, equal-tailed and symmetric percentile-t intervals are not asymptotically

valid. This is the first example to our knowledge of a situation in which Efron’s percentile interval

is asymptotically valid for impulse response inference, but other intervals are not. Our results

also provide a formal justification for conducting long-horizon inference based on autoregressions
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in levels rather than in differences.

In related work, Mikusheva (2012) proposed a generalization of the grid bootstrap of Hansen

(1999) for autoregressions that allows uniformly asymptotically valid inference on individual impulse

responses. The advantage of Mikusheva’s procedure is that it nests as special cases the conven-

tional normal approximation for short-horizon impulse response estimators and the nonstandard

asymptotic approximation for long-horizon impulse response estimators, as discussed in Phillips

(1998), Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2006). Its disadvantage is

that it tends to be computationally costly. Our simulations show that for roots arbitrarily close to

or equal to unity the coverage accuracy of our computationally much less costly bias-adjusted boot-

strap method based on lag-augmented autoregressions is close to nominal coverage for reasonably

large sample sizes. It matches or surpasses the coverage accuracy of the grid bootstrap interval for

comparable horizons, as reported in Mikusheva (2012).

The remainder of the paper is organized as follows. In section 2, we establish notation and state

our assumptions about the data generating process and the estimated model. Section 3 contains

the derivation of the uniform validity of the conventional asymptotic Gaussian approximation.

We consider inference on individual impulse responses as well as vectors of impulse responses. In

section 4, we establish the uniform asymptotic validity of inference based on the recursive-design

bootstrap for autoregressions. In section 5, we examine the practical relevance of our asymptotic

analysis in finite samples. In section 6, we provide long-horizon asymptotics based on the local-to-

unity framework for impulse responses estimated from lag-augmented autoregressions. Section 7

contains the concluding remarks. Details of the proofs can be found in the appendix.

2 Notation and Assumptions

Consider a scalar autoregressive process of known order p > 1:

yt = d†t + y†t ,

y†t = φ1y
†
t−1 + φ2y

†
t−2 + · · ·+ φpy

†
t−p + ut,

where d†t is a deterministic function of time, ut is iid with zero mean and variance σ2 and ∆y†0 = · · · =
∆y†1−p = 0. Without loss of generality, we will focus on linear time trends, i.e., d†t = δ†0 + δ†1(t/T ).
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This process has an augmented Dickey-Fuller representation:

∆yt = δ0 + δ1
t

T
+ πyt−1 + γ1∆yt−1 + · · ·+ γp−1∆yt−p+1 + ut

= β′xt + ut, (1)

where δ0 = φ(1)δ†0 + δ†1(φ1 + 2φ2 + · · · + pφp), δ1 = φ(1)δ†1, φ(L) = 1 − φ1L − · · · − φpL
p, π =

−φ(1) =
∑p

j=1 φj − 1, γj = −(φj+1 + · · · + φp), ut
iid∼ (0, σ2), β = [δ0 δ1 π γ1 · · · γp−1]

′, and

xt = [1 t/T yt−1 ∆yt−1 · · · ∆yt−p+1]
′. When φp = 0, the AR(p) process underlying equation (1)

without loss of generality may be reinterpreted as a lag-augmented autoregression of order p− 1.

The autoregressive lag-order polynomial may equivalently be expressed as φ(L) = Πpi=1(1−ρiL),
where |ρ1| ≤ |ρ1| ≤ ... ≤ |ρp−1| ≤ |ρp| are the p autoregressive roots. Then ω = σ2/(φ†(1))2 where

φ†(L) = φ(L)/(1 − ρpL) and ρp is the largest root. Let θ = [β′, σ2]′. Let the parameter space

Θ ⊂ ℜdθ denote the set of θ where dθ = p + 3. Finally, let Jc(r) denote an Ornstein-Uhlenbeck

process such that Jc(r) =
∫ r
0 e

c(r−s)dW (s), where W (s) is a standard Brownian motion defined on

[0, 1] and c = T log(|ρp|). The model is estimated by least squares, yielding

β̂T = (
T∑

t=p+1

xtx
′
t)
−1

T∑

t=p+1

xtyt,

ût = yt − β̂′Txt,

σ̂2T =
1

T − p

T∑

t=p+1

û2t ,

σ̂4,T =
1

T − p

T∑

t=1

(û2t − σ̂2T )
2,

Σ̂T =


 σ̂2T ⊗ (

∑T
t=p+1 xtx

′
t)
−1 0(2+p)×1

01×(2+p) T−1σ̂4,T


 .

Assumption A. The data generating process satisfies:

(i) There are constants ρ and ρ in (0, 1) such that |ρp−1| ≤ ρ and either |ρp| ≤ ρ or ρ ≤ ρp ≤ 1.

(ii) {ut}Tt=1 is a sequence of iid random variables with E(ut) = 0 and

E






 ut

u2t − σ2




 ut

u2t − σ2



′
 =


 σ2 0

0 σ4


 .
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(iii) There are constants κ and K, where 0 < κ < K < ∞, that do not depend on the data

generating process such that κ ≤ σ2 ≤ K, κ ≤ σ4 ≤ K, κ ≤ E(u6t ) ≤ K, −K ≤ δ†0 ≤ K, and

−K ≤ δ†1 ≤ K.

Remarks.

1. Assumption (i) implies that the roots of |φ(z)| = 0 are either all outside the unit circle in

modulus or that φ(z) = 0 has at most one unit root and all the other roots are outside the

unit circle in modulus. We rule out the possibility that the data are generated by an I(2)

process or that the process is explosive. This assumption is standard in the literature (e.g.,

Mikusheva 2012). Assumption (i) also rules out complex near unit roots and roots near −1.

2. When the model is augmented with one lag, the population coefficient on that lag is known

to be zero. Although the augmented lag parameter is estimated, the uniform coverage rate

is defined as the limit of the infimum of the coverage probabilities with respect to the other

parameters, with the augmented lag parameter fixed at zero. This coverage rate is greater

than or equal to the uniform coverage rate in which the infimum is taken with respect to all

parameters. Thus, without loss of generality, we focus on the latter.

3. We abstract from the complications introduced by conditional heteroskedasticity in the error

term (see Gonçalves and Kilian 2004; Andrews and Guggenberger 2009).

4. We deliberately abstract from the lag order selection problem. As discussed in Kilian and

Lütkepohl (2017), conditioning on estimates of the lag order invalidates the asymptotic va-

lidity of inference on the autoregressive parameters. One way of circumventing this problem

is to set p equal to a conservative upper bound on the lag order, not unlike the upper bound

that users of infomation criteria already have to provide when estimating the lag order.

3 Asymptotic Results for the Delta Method

Let θ̂T denote the least-squares estimator of θ.

Proposition 1: Suppose that Θ satisfies Assumption A. Then

lim
T→∞

sup
θ∈Θ

sup
x∈ℜdθ

∣∣∣∣P (Σ̂
− 1

2

T (θ̂T − θ) ≤ x)− P (η(θ, T ) ≤ x)

∣∣∣∣ = 0, (2)
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where η(θ, T ) is













Υ−1(c)





1 1

2
ω
∫
1

0
Jc(r)dr 0

1

2

1

3
ω
∫
1

0
rJc(r)dr 0

ω
∫
1

0
Jc(r)dr ω

∫
1

0
rJc(r)dr ω2

∫
1

0
Jc(r)2dr 0

0 0 0 M




Υ−1(c)





− 1

2

Υ−1(c)





N1

N2

σω
∫
1

0
Jc(r)dW (r)

N3





N4





if |ρp| < 1,

N if ρp = 1,

(3)

Υ(c) = diag(1, 1, 1√
−2c

, Ip+1, 1), c = T log(|ρp|), ρp is the largest root of φ(z) = 0, [N1 N2]
′, N3 and

N4 are independent normal random vectors with zero means and covariance matrices given by

σ2


 1 1

2

1
2

1
3


 , σ2M ≡ σ2E







∆yt−1

...

∆yt−p+1







∆yt−1

...

∆yt−p+1




′


and σ4, (4)

respectively, and N is the standard normal random vector that is the limit of η(θ, T ) as ρp ↑ 1.

Express the dψ × 1 vector of impulse responses ψ as a function of θ:

ψ = f(θ), (5)

where f : X → ℜdψ and Θ ⊂ X ⊂ ℜp+3. Our goal is to provide methods for uniform inference on

impulse responses in Θ.

Assumption B. Suppose that f : X → ℜdψ is continuously differentiable, that ψ does not depend

on δ†0 and δ†1, and that the rank of

Df(θ)diag(I2,
√
−2 log(|ρp|), Ip+1) (6)

is dψ for all θ ∈ Θ where Df(θ) = ∂f(θ)/∂θ′ and ρp is the largest autoregressive root.

Remarks.

1. A violation of Assumption B would occur, for example, if the autoregressice parameters were

zero in population and the impulse response horizon h > p (see Benkwitz, Lütkepohl and

Neumann 2000). We abstract from this well-known problem, as is standard in the literature,

since we are concerned with inference about impulse responses estimated from persistent time
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series processes.

2. Likewise, assumption B may fail for some exact unit root processes. Specifically, standard

delta method and bootstrap inference fails when the first-order linear approximation to ψ is

proportionate to ρ. In that case, the limiting variance of
√
T (ψ̂ − ψ) is zero, as discussed in

Kilian and Lütkepohl (2017), and the rank condition fails. Lag augmenting the autoregression

helps rule out this singularity in the asymptotic variance of f(θ).

3. To appreciate the usefulness of the rank condition in Assumption B, consider the AR(2)

process

∆yt = πyt−1 + γ∆yt−1 + ut,

where π = φ1 + φ2 − 1 and γ = −φ2, and the first two impulse responses are φ1 and φ21 + φ2.

Then

Df(θ) =


 1 1

2(π + γ + 1) 2(π + γ + 1)− 1




Note that the rank condition for the delta method is always satisfied. The matrix (6) can be

written as

T
1

2Df(θ)Υ−1
T (c) =




√
−2 log(|ρ2|) 1

2
√
−2 log(|ρ2|)(π + γ + 1) 2(π + γ + 1)− 1


 ,

where the first two columns are omitted because there is no deterministic component. This

expression shows that if one is interested in inference on the first impulse response, the rank

condition is always satisfied. As φ1, φ2 → 1/2, however, the second row approaches zeros, so

inference about the second impulse response is not possible. Even if the conventional rank

condition is satisfied, we can conduct uniform inference only on one of the parameters of

interest. Replacing the normalization matrix ΥT (c) so that the scaled Jacobian matrix has

full rank does not solve the problem because the joint asymptotic normality is likely to be

lost under a different normalization.

In contrast, when fitting an AR(3) model to the data generated by the AR(2) DGP, the rank

of the matrix (6),




√
−2 log(|ρ3|) 1 0

2
√
−2 log(|ρ3|)(π + γ1 + 1) 2(π + γ1 + 1)− 1 1


 ,
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is always 2. Thus, lag augmentation allows inference about the second impulse response as

well as joint inference about both of the impulse responses.

4. This example may be generalized. It can be shown that the rank condition in Assumption

B is satisfied for the first p impulse responses for all θ in the parameter space specified in

Assumption A and for all p = 1, 2, ..., when the autoregression is augmented by one lag. This

is true even for the processes described in Benkwitz et al. (2000). Suppose that yt follows an

AR(p) process. The companion matrix for the first p coefficients of the lag-augmented model

is given by

F =




π + γ1 + 1 γ2 − γ1 γ3 − γ2 · · · γp − γp−1 γp+1 − γp

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0




. (7)

Then the h-step-ahead impulse response is given by the (1,1) element of F h. The responses

are given by

π + γ1 + 1,

(π + γ1 + 1)2 + γ2 − γ1,

(π + γ1 + 1)3 + 2(π + γ1 + 1)(γ2 − γ1) + (γ3 − γ2),

...

(π + γ1 + 1)p + p(γp+1 − γp)
p−1(γ2 − γ1) + · · ·+ γp+1 − γp,

for h = 1, 2, 3, ..., p, respectively. We are concerned about uniform joint inference about the

first p impulse responses. Our claim is that the submatrix Mp obtained from eliminating the

first three columns of the p × (p + 3) matrix in Assumption B has rank p. Note that the

first p− 1 impulse responses are identical to those from an AR(p) model with γp = 0. Thus,

the (p− 1)× (p− 1) upper-left submatrix of Mp matches the corresponding (p− 1)× (p− 1)

submatrix for the AR(p) model that is obtained from lag-augmenting an AR(p − 1) model.

We prove this claim by mathematical induction. When p = 1 (i.e., the DGP is an AR(1)
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process and an AR(2) model is fitted), the 1× 2 matrix in Assumption B always has rank 1

satisfying Assumption B. Suppose that the rank condition is satisfied for p = k. That is, the

k×k submatrix has rank k. Denote that matrix by Mk. Then the (k+1)× (k+1) submatrix

for the AR(k + 1) model can be written as


 Mk 0k×1

01×k 0


+


 0k×k 0k×1

01×(k−1) − 1 1


 . (8)

Because Mk has rank k, this matrix has rank k+1 anywhere in the parameter space specified

in Assumption A. Thus, the claim holds for p = k + 1. Since this result holds for the first p

impulse responses jointly, it holds also for individual elements in this vector.

Proposition 2. Under Assumptions A and B,

lim
T→∞

sup
θ∈Θ

∣∣∣P
(
(DfT (θ̂T )Σ̂TDfT (θ̂T )

′)−
1

2 (f(θ̂T )− f(θ)) ≤ x
)
− Φ(x)

∣∣∣ = 0, (9)

lim
T→∞

sup
θ∈Θ

∣∣∣P
(
(f(θ̂T )− f(θ))′(Df(θ̂T )Σ̂TDfT (θ̂T )

′)−1(f(θ̂T )− f(θ)) ≤ x
)
− Fχ2

dψ

(x)
∣∣∣ = 0, (10)

where Fχ2
dψ

(·) is the cdf of the chi-square distribution with dψ degrees of freedom.

It follows from Lemma 2 of Kasy (2018) that confidence sets constructed from quantiles of the

standard normal and chi-square distributions have confidence level 1− α uniformly on Θ.

4 Asymptotic Results for Bootstrap Inference

Bootstrap approximations of the asymptotic distribution of the impulse response estimators may be

generated by standard recursive residual-based bootstrap algorithms for autoregressions (see Kilian

and Lütkepohl 2017). Let θ̂∗T denote the bootstrap estimator of θ̂T , constructed by bootstrapping

the original or the lag-augmented autoregressive model. Similarly, let P ∗ denote the bootstrap

analogue of P .

Proposition 3. Under Assumptions A and B,

lim
T→∞

sup
θ∈Θ

|P ∗(ΥT (c
∗)(θ̂∗T − θ̂T ) ≤ x)− P ∗(η∗(θ̂T , T ) ≤ x)| = 0, (11)
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almost surely conditional on the data, where c∗ = c +
∫ 1
0 J

τ
c (r)dW (r)/

∫ 1
0 (J

τ
c (x))

2dr, Jτc (r) =

Jc(r)−
∫ 1
0 (4− 6s)Jc(s)ds− r

∫ 1
0 (12s− 6)Jc(s)ds and η∗(·, ·) is η(·, ·) with c replaced by c∗.

Proposition 4. Under Assumptions A and B,

lim
T→∞

sup
θ∈Θ

|P ∗([(Df(θ̂∗T )Σ̂
∗
TDf(θ̂

∗
T )

′)−
1

2 f(θ̂∗T )− f(θ̂)] ≤ x)− Φ(x)| = 0, (12)

lim
T→∞

sup
θ∈Θ

|P ((f(θ̂∗T )− f(θ̂T ))(Df(θ̂
∗
T )Σ̂

∗
TDfT (θ̂

∗
T )

′)−1(f(θ̂∗T )− f(θ̂T )) ≤ x))− Fχ2(x)| = 0, (13)

almost surely conditional on the data.

To summarize, Propositions 1 through 4, extend the pointwise asymptotic results in Park and

Phillips (1989), Sims, Stock and Watson (1990), and Inoue and Kilian (2002) by establishing the

uniform validity of asymptotic and bootstrap inference about individual slope parameters and

impulse responses based on higher-order autoregressions. They also establish the corresponding

results for asymptotic and bootstrap inference based on lag-augmented autoregressions. Finally,

they establish the uniform validity of asymptotic and bootstrap inference based on lag-augmented

autoregressions about vectors of impulse responses.

5 Simulation Evidence

In this section, we demonstrate that our asymptotic analysis helps understand the finite-sample

accuracy of delta method and bootstrap confidence intervals for impulse responses. Without loss

of generality, we generate 5,000 samples of {yt}Tt=1 from the data generating process yt = ρyt−1+ut,

ut
iid∼ N(0, 1), where ρ ∈ {0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 1}, T ∈ {80, 120, 240, 480, 600, 6000, 12000,

24000}, and y0 = 0. We focus on roots exceeding 0.95 because for smaller roots conventional boot-

strap approximations are known to work well (see Kilian 1999).6 For each sample of length T ,

we fit an AR(p) model, p ∈ {2, 4, 6}, with intercept and construct the implied responses to a unit

shock at horizons h ∈ {1, ..., 60}. Lag-augmented autoregressions include an additional lag, but

the impulse responses are based on the estimates of the first p slope coefficients only. We do not

6Alternative specifications of the data generating process with standardized t4 or standardized χ2
3 errors, as in

Kilian (1998a), yield results very similar to the baseline specification with N(0, 1) errors and, hence, are not shown to
conserve space. These specific distributions were chosen because their moments resemble those of residual distributions
often encountered in applied work (see Kilian 1998a). Although the standardized t4 distribution does not satisfy our
sufficient condition A(iii), the simulation results are robust to this violation.
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include a linear time trend in the fitted model because the inclusion of deterministic time trends is

rare in applied work.7

Since the results are not sensitive to the lag order p, the tables shown in this section concentrate

on the case of p = 4. Our analysis focuses on confidence intervals for individual impulse responses.

The nominal confidence level is 90%. In constructing the uniform coverage rates as the infimum of

the coverage rates for a given impulse response across ρ ∈ {0.95, 0.96, 0.97, 0.98, 0.99, 0.995, 1} for

given T , one has to account for the bias caused by data mining across ρ. The reason is that the

coverage rates in the simulation study (like any estimate of a proportion) are subject to estimation

error. They have an approximate Gaussian distribution. Thus, even if the estimate of the coverage

rate were centered on 0.90 for each ρ, there would be sampling variation in the simulated coverage

rates. It can be shown by that under the null hypothesis that the coverage is truly 0.90, the lowest

coverage rate across all ρ would be 0.894, which biases downward our estimate of the uniform

coverage rate. This means that we need to adjust upward the infimum across ρ obtained in the

simulation by 0.006 to control for data mining. This adjustment is independent of the sample size

because it only reflects the Monte Carlo simulation error. Details of the rationale of this adjustment

can be found in the appendix.8

The delta method intervals are based on closed-form solutions for the impulse-response standard

error, as discussed in Lütkepohl (1990). Table 1 shows that the uniform coverage rates of the delta

method interval converge to 0.90, as T → ∞, as predicted by asymptotic theory, whether inference

is based on the AR(4) model or the lag-augmented AR(5) model. There is strong evidence that

delta method intervals based on the lag-augmented AR(5) model are considerably more accurate in

small samples than delta method intervals based on the AR(4) model. For example, for T = 480,

the uniform coverage accuracy at horizon 12 is 86% for the lag-augmented model compared with

only 63% for the original model. These differences are not predicted by our asymptotic analysis in

section 3. For large T , as expected, there is nothing to choose between these approaches.

Not surprisingly, the coverage accuracy is excellent at short horizons, but deteriorates as h

increases, except when T is large. This finding mirrors the conclusions of Kilian and Chang (2000)

and Phillips (1998) that the conventional asymptotic approximation remains accurate, as long as

7Likewise, we do not consider autoregressions excluding an intercept. Normal asymptotic appoximations tend to
work better when the regression model does not include an intercept because the exclusion of deterministic regressors
reduces the small-sample bias of the least-squares estimator. This regression specification is hardly ever used in
applied work, however.

8An alternative approach would have been to view ρ as local to unity and to report results for the implied ρ,

given T and a grid of Pitman drifts. Since our asynptotic results do not hinge on this particular asymptotic thought
experiment, it is more natural to focus on the grid of possible ρ values in the simulation study.
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the horizon is small relative to the sample size. Only when the horizon of the impulse response is

allowed to grow with the sample size, conventional asymptotic approximations for impulse response

estimators become asymptotically invalid in a local-to-unity setting. Table 1 illustrates that even for

horizons as large as h = 12, for moderately large samples, the conventional asymptotic Gaussian

approximation remains reasonably accurate. For example, for T = 480, coverage rates for the

lag-augmented model range from 90% at short horizons to 86% at horizon 12.

An important question is whether the accuracy of impulse response inference may be improved

by bootstrapping the impulse responses. In Table 2, we examine the coverage accuracy of several

commonly used bootstrap confidence intervals.9 The distribution of impulse response estimators

is known to be non-normal in small samples (see Kilian 1999). The first two panels in Table

2 show results based on the Hall percentile interval which accounts for small-sample bias in the

impulse response estimator and which does not require normality to hold (see Hall 1992). The

bootstrap data are generated based on a recursive design-bootstrap, as discussed in Kilian and

Lütkepohl (2017). All results are based on 1,000 bootstrap replications. Table 2 shows that

bootstrap confidence intervals greatly improves the accuracy of inference based on the AR(4) model.

For example, the uniform coverage rates for T = 480 range from 90% at horizon 1 to 85% at horizon

12. In contrast, for the lag-augmented model bootstrap inference does not yield improved uniform

coverage accuracy. Thus, overall, the Hall percentile interval cannot be recommended.

An alternative approach that has been shown to work well in bootstrapping stationary autore-

gressions is the bias-adjusted bootstrap of Kilian (1999), which replaces the least-squares estimates

of the slope parameters by first-order mean bias-adjusted estimates when implementing the boot-

strap. Impulse response intervals are based on the standard Efron percentile interval (see Efron

1979). Table 2 shows that this method greatly improves the uniform coverage accuracy of the

bootstrap confidence intervals, whether the model is lag-augmented or not, but by far the most

accurate coverage rates are obtained based on the lag-augmented model. For T = 80, the coverage

rates are between 80% and 87%, depending on the horizon. For T = 120, the coverage accuracy

improves to between 83% and 88%. For T = 240, they are at least 87% and for T = 480 and

T = 600 at least 89%. This evidence suggests that the conventional asymptotic approximation

remains accurate at longer horizons than previously thought possible. Performance deteriorates,

when the autoregression is not lag-augmented, whether inference is based on the delta method or

9A general introduction to bootstrap methods for autoregressions and details of the construction of each of these
intervals can be found in Kilian and Lütkepohl (2017).
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the bootstrap.

Our coverage results suggest that highly persistent autoregressions in applied work should be

routinely lag-augmented. While lag-augmenting the autoregression will cause an increase in the

average width of the interval, a reasonable conjecture is that this loss in efficiency may for all

practical purposes be ignored, when the original autoregressive lag order is already large, as is

typically the case in applied work. Since lag augmentation is necessary to control coverage accuracy

in finite samples, it is difficult in general to compare the average width of intervals based on the

original and on the lag-augmented model. Some insight may be gained, however, by comparing the

average width of the Efron percentile interval at short horizons, because at these horizons both the

intervals based on the bias-adjusted lag-augmented autoregression and the intervals based on the

bias-adjusted original autoregression are about equally accurate (see Table 2). Table 3 shows the

percentage increase in the average interval width at these horizons, computed as the average of the

percentage increases in average interval width obtained for each ρ. We find that the loss in power

from lag augmentation tends to be negligible. Even for T = 80 and T = 120 the average interval

width increases by only 1.5% and 1%, respectively, when a fifth autoregressive lag is added. For

T = 240, that increase drops to 0.5% and for larger samples sizes the increase further reduces to

0.2%, consistent with our conjecture.

An important question is how quickly the accuracy of our asymptotic approximation deteriorates

with the impulse response horizon. Table 4 shows that the coverage accuracy of the Efron percentile

interval based on the bias-adjusted lag-augmented autoregression is preserved even at much longer

horizons. For example, for T = 240 uniform coverage accuracy of the bootstrap confidence interval

for the lag-augmented model is at least 88% at every impulse response horizon from 12 to 36. For

T = 480 the lowest uniform coverage rate at these horizons is 89% and for T = 600 it is 90%. Even

for horizons as long as 60, the coverage accuracy remains excellent.10

These results suggest that for many applications of impulse response analysis there is no need to

rely on nonstandard interval estimators based on long-horizon asymptotics for impulse responses,

as long as we apply the bias-adjusted bootstrap method to the lag-augmented autoregression.

The superior accuracy of this method at longer horizons is not explained by our fixed-horizon

10Our analysis in Tables 1 through 4 focused on nominal 90% intervals. Confidence levels of 90% or smaller
are conventional for element-wise impulse response inference. In constructing joint confidence intervals based on
the Bonferroni method, it is customary to rely on much higher element-wise confidence levels (see Lütkepohl et al.
2015, 2018). It is therefore useful to note that, for T = 240 or larger, nominal 99% impulse response confidence
intervals based on our preferred method have effective uniform coverage rates of between 98% and 99% at all horizons
considered.
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asymptotics in sections 3 and 4, however. In the next section, we formally establish the asymptotic

validity of this method (and this method alone) under the assumption that the impulse response

horizon increases linearly with the sample size, which helps explain its greater robustness to the

impulse response horizon.

6 Impulse Responses at Long Horizons

In this section, we show that Efron’s percentile interval bootstrap is asymptotically valid for long-

horizon impulse response inference when there is a near unit root. We first consider the AR(1)

model for illustration:

yt = φ1yt−1 + ut, (14)

where φ1 = ec/T for some constant c ≤ 0, y0 = 0 and ut
iid∼ (0, σ2). As is well known, the estimator

φ̂1 in this model has a nonstandard distribution, as does the [λT ]-step-ahead impulse response

φ̂
[λT ]
1 . In contrast, in the lag-augmented model

yt = φ1yt−1 + φ2yt−2 + ut, (15)

which may equivalently be expressed as

∆yt = πyt−1 + γ∆yt−2 + ut, (16)

√
T (φ̂1,T − φ1) =

√
T (π̂T + γ̂T − π − γ) is asymptotically normally distributed.

Let z and z∗ be random variables such that
√
T (γ̂ − γ)

d→ z and
√
T (γ̂∗ − γ̂)

d→ z∗,

where ∗ denotes random variables defined under the bootstrap probability measure. The linear

approximation to the limiting distribution of the impulse response depends on the limit of the

Jacobian. The Jacobian of φ̂
[λT ]
1 , [λT ](φ̂1)

[λT ]−1, converges to zero when z is negative and diverges

to infinity when z is positive. In contrast, the bootstrap version of the Jacobian [λT ](φ̂∗1)
[λT ]−1

converges to zero when z + z∗ is negative and diverges to infinity when z + z∗ is positive. Thus,
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Hall’s percentile interval fails in the lag-augmented model.

Moreover, the delta method interval fails because it is based on the t-statistic

φ̂
[λT ]
1 − φ

[λT ]
1

[λT ]φ̂
[λT ]−1
1 ÂSE(φ̂1)

(17)

where ÂSE(φ̂1) is the estimate of the asymptotic standard error of φ̂1. Expressing the numerator

of the t-statistic as

(φ̂
[λT ]−1
1 + φ̂

[λT ]−2
1 φ1 + · · ·+ φ

[λT ]−1
1 )(φ̂1 − φ1), (18)

the t-statistic can be expressed as

(φ̂
[λT ]−1
1 + φ̂

[λT ]−2
1 φ1 + · · ·+ φ

[λT ]−1
1 )

[λT ]φ̂
[λT ]−1
1

· φ̂1 − φ1

ÂSE(φ̂1)
. (19)

Note that the second component of (19) is the t-statistic for φ1 and is asymptotically normally

distributed in the lag-augmented model. The first component of (19) can be written as

1

[λT ]

(
1 +

φ1

φ̂1
+

(
φ1

φ̂1

)2

+ · · ·+
(
φ1

φ̂1

)[λT ]−1
)

=
1

[λT ]

1− (φ1/φ̂1)
[λT ]

1− (φ1/φ̂1)

=
1− (φ1/φ̂1)

[λT ]

[λT ]/
√
T

· φ̂1√
T (φ̂1 − φ1)

. (20)

Because
φ1

φ̂1
=

1

1 + 1√
T

√
T (φ̂1−φ1)
φ1

(21)

it follows that

1

[λT ]/
√
T

(
1−

(
φ1

φ̂1

)[λT ]
)

= − 1

[λT ]/
√
T

(
1 +

1√
T

√
T (φ̂1 − φ1)

φ1

)[λT ]

+ o(1).

Thus, depending on the sign of the limit z, the first component either converges to zero or diverges

to infinity. The delta method fails because the t-statistic (17) does not converge to a standard

normal distribution.

Similarly, intervals based on bootstrapping the t-statistic fail. The bootstrap-t statistic can be
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written as

1

[λT ]/
√
T

(
1 +

1√
T

√
T (φ̂∗1 − φ̂1)

φ̂1

)[λT ]

× φ̂∗1√
T (φ̂∗1 − φ̂1)

× φ̂∗1 − φ̂1

ÂSE
∗
(φ̂∗1)

. (22)

The percentile-t bootstrap interval fails because the original t-statistic either converges to zero or

diverges to infinity, whereas the limiting value of the bootstrap-t statistic depends on the sign of

z∗, which may differ from the sign of z.

In contrast, impulse response inference based on Efron’s percentile interval remains asymptoti-

cally valid at long horizons, because, as the horizon lengthens, the impulse response can be expressed

as a monotonic function of the asymptotically normal estimator φ̂1,T . Unlike other confidence in-

tervals, the Efron percentile interval is transformation-respecting. In other words, the interval for

a given monotonic transformation of the original parameter may be obtained by transforming the

interval endpoints obtained for the original parameter using the same function (see Efron 1979).

The implications of this point for long-horizon impulse response inference are formalized in the

following proposition.

Assumption C. The data generating process satisfies:

(i) |ρj | < 1 for j = 1, ..., p− 1 and ρp = ec/T for some constant c ≤ 0.

(ii) {ut}Tt=1 is a sequence of iid random variables with E(ut) = 0 and E(u2t ) <∞.

Proposition 5: Suppose that the DGP is an AR(p) model and that Assumption C is satisfied. The

AR(p) model is augmented by one lag. Let F̂ and F̂ ∗ denote the companion matrices for the first

p coefficients of the estimated lag-augmented model and its bootstrap analogue,

F̂ =




φ̂1 φ̂2 · · · φ̂p−1 φ̂p

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




, F̂ ∗ =




φ̂∗1 φ̂∗2 · · · φ̂∗p−1 φ̂∗p

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




,
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respectively. The h-step-ahead impulse response estimate and bootstrap estimate are the (1,1)

elements of F̂ h and F̂ ∗h, respectively.

F can be written as

F = PJP−1, (23)

where J is the Jordan normal form of F and P consists of eigenvectors and generalized eigenvectors

of P . Thus

F h = PJhP−1 (24)

The hth power of the Jordan normal form is given by

Jh =




ρhp 0 · · · 0

0 Jhm2
(ρp−1) · · · 0

...
...

. . .
...

0 0 · · · Jhmq(ρ1)



, (25)

where mj is the multiplicity of the jth largest root with m1 = 1 such that
∑q

j=1mj = p, and

Jhmj (ρk) =




ρhk
(
h
1

)
ρh−1
k

(
h
2

)
ρh−2
k · · ·

(
h

mj−1

)
ρ
h−mj+1
k

0 ρhk
(
h
1

)
ρh−1
k · · ·

(
h

mj−2

)
ρ
h−mj+2
k

...
...

...
. . .

...

0 0 0 · · · ρhk




(26)

for j = 1, 2, ..., q. Because there is one and only one local-to-unity root (ρp), the (1,1) element of

F [λT ] can be approximated by

P11ρ
[λT ]
p P 11 + o(1), (27)

where P11 is the (1,1) element of P and P 11 is the (1,1) element of P−1. Similarly, the (1,1) element

of F̂ [λT ] and that of F̂ ∗[λT ] can be approximated by

P̂11ρ̂
[λT ]
p P̂ 11 + op(1), (28)

P̂ ∗
11ρ̂

∗[λT ]
p P̂ 11∗ + o∗p(1), (29)

19



respectively. Taking the log on both sides

log(P̂11) + log(P̂ 11) + [λT ] log(ρ̂p) + op(1), (30)

log(P̂ ∗
11) + log(P̂ 11∗) + [λT ] log(ρ̂∗p) + o∗p(1). (31)

Because there is one and only one local-to-unity root (ρp), ρ̂p and ρ̂
∗
p are continuously differentiable

in (φ̂1, ..., φ̂p) and (φ̂∗1, ..., φ̂
∗
p), respectively. Thus, ρ̂p is asymptotically normally distributed in the

lag-augmented model. Because Efron’s percentile bootstrap method is transformation-respecting

and because ρ̂p is asymptotically normally distributed, the percentile bootstrap remains asymptot-

ically valid, when other intervals fail. Since bias adjustments of the slope parameters are of order

T , this argument remains valid when using Efron’s interval in conjunction with bias adjustments

(see Kilian 1998b).

It is useful to illustrate these points by simulation. Table 5 restricts the impulse response horizon

to be a fraction λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} of the sample size T . We focus on impulse response

inference based on the lag-augmented autoregression, since impulse response inference based on the

original autoregression fails at long horizons, regardless of how the interval is constructed. This fact

follows from Phillips (1998) and may easily be verified by simulation. The more interesting question

is how well our asymptotic approximation works for the lag-augmented AR(4) model. As predicted

by our theoretical analysis, conventional delta method inference breaks down at long horizons,

even when working with the lag-augmented model. Even for T = 600, the coverage rates of the

nominal 90% delta method interval remain between 49% and 68%, depending on λ. Similarly, the

coverage rates of the Hall percentile interval range from 43% to 52% for T = 600, illustrating the

failure of this method. Likewise, equal-tailed and symmetric percentile-t impulse response intervals

show no tendency to converge to their nominal probability content (results not shown to conserve

space). In contrast, even without bias adjustments, the coverage rates of Efron’s percentile interval

improve range about 85% for T = 240 to 89% for T = 600. Applying bias adjustments for the

slope parameters, further increases the finite-sample accuracy. The coverage accuracy increases to

about 89% for T = 240 and 90% for T = 600, regardless of λ.

Remarks.

1. Proposition 5 establishes the asymptotic validity of impulse response inference based on

Efron’s percentile interval within the local-to-unity framework. It does not establish its
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asymptotic validity in the stationary region. Thus, long-horizon inference is not uniformly

valid in the parameter space. It is valid only for roots close to unity. Further simulations

(not shown to conserve space) suggest that for reasonably large samples our asymptotic ap-

proximation is excellent for roots of 0.8 or larger. An immediate implication is that impulse

response inference is likely to be more reliable at long horizons when persistent autoregressive

processes are expressed in levels rather than in differences.

2. Proposition 5 may be generalized to vector autoregressive processes, as long as there is only

one large root, as is commonly assumed in related studies (see, e.g., Pesavento and Rossi

2006; Mikusheva 2012). For a potential alternative approach that allows for multiple large

roots see Phillips and Lee (2016) and the references therein.

3. In related work, Mikusheva (2012) proposes a generalization of the grid bootstrap of Hansen

(1999) for autoregressions that allows inference on individual impulse responses that, like

our approach, is uniformly asymptotically valid in the parameter space. The advantage of

Mikusheva’s asymptotic approximation is that it nests as special cases the conventional normal

approximation for short-horizon impulse response estimators and the nonstandard asymptotic

approximation for long-horizon impulse response estimators, as proposed by Phillips (1998),

Wright (2000), Gospodinov (2004) and Pesavento and Rossi (2006). The disadvantage of

Mikusheva’s procedure is that its computational cost tends to be prohibitive for all but the

simplest autoregressive processes.11 Our approach provides a computationally less costly

alternative to Mikusheva’s grid bootstrap in many applied settings for short as well as long

horizons. For example, at horizons up to 12 periods, even for T = 240, the infimum of the

impulse response coverage rates based on our conventional bootstrap asymptotics for lag-

augmented autoregressive models ranges from 87% to 89%. For T = 480, the coverage rates

reach 89% to 90%, depending on the horizon. The latter coverage rates are at least as accurate

as the grid bootstrap coverage rates for T = 500 reported in Mikusheva (2012), which range

from 87% to 92% at similar horizons.

7 Concluding Remarks

Although impulse response inference has played an important role in macroeconometrics since the

11The largest process considered by Mikusheva (2012) in her simulation analysis is an AR(2) process. Her method
does not appear to have been applied to autoregressions with more lags.
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1980s, all existing proofs of the asymptotic validity of conventional delta method and bootstrap

confidence intervals are based on pointwise Gaussian asymptotic approximations. As has been

shown for the AR(1) model, this approximation may fail when the dominant root of the autore-

gressive process is near unity, resulting in intervals with poor coverage accuracy. In this paper, we

showed that the failure of conventional confidence intervals, as the dominant autoregressive roots

approaches unity, does not extend to higher-order autoregressions. We established the uniform

asymptotic validity of conventional asymptotic and bootstrap inference about individual impulse

responses and vectors of impulse responses at fixed horizons. We showed that for inference about

vectors of impulse responses based on Wald test statistics to be uniformly valid in the parameter

space, autoregressions must be lag augmented. Inference about individual impulse responses, in

contrast, under weak conditions is uniformly valid even without lag augmentation.

We further documented that the conventional asymptotic approximation works well in mod-

erately large samples, as long as the impulse response horizon remains reasonably small relative

to the sample size. The highest small-sample accuracy is achieved when bootstrapping the lag-

augmented autoregressive model using the bias-adjusted bootstrap method of Kilian (1999). For

horizons between 1 and 12 periods, for example, this approach achieves uniform coverage rates of

between 87% and 90% for T = 240 and between 89% and 90% for T = 480 and T = 600, which is a

substantial improvement relative to the delta method for the same model. In contrast, without the

lag augmentation, both delta method and bootstrap confidence intervals are much less accurate,

consistent with earlier simulation evidence in the literature. We provided formal asymptotic argu-

ments why our preferred method of inference based on lag-augmented autoregressions retains its

accuracy even at very long impulse response horizons, when other methods do not. Although the

latter result does not hold uniformly across the parameter space, it does hold in a local-to-unity

setting.

These results suggest that highly persistent autoregressions in applied work should be routinely

lag-augmented when conducting impulse response analysis. While lag-augmenting the autoregres-

sion will cause an increase in the average width of the interval, we showed that the loss in efficiency

caused by including one extra lag may for all practical purposes be ignored, when the original

autoregressive lag order is already large, as is common in applied work.

Our approach provides a highly accurate alternative to the much more computationally costly

grid bootstrap of Mikusheva (2012) in many applied settings. In fact, the coverage accuracy of

the bias-adjusted bootstrap remains excellent at horizons as long as 60 periods for sample sizes as
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small as T = 240. Thus, we overturn the standard finding that conventional bootstrap confidence

intervals become increasingly inaccurate at longer horizons, even when using bias adjustments.

For example, Kilian and Chang (2000) documented by simulation that the coverage accuracy of

conventional methods of impulse response inference is inadequate for all but the shortest horizons.

The reason for this difference in results was our use of the lag-augmented autoregressive model,

which is new in impulse response inference.
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Appendix A

To prove Proposition 1, we follow the steps taken in Mikusheva (2007a,b). First we show that

the estimation uncertainty about the asymptotic covariance matrix is asymptotically negligible

(Lemma B1). Next, we show that the distribution of the least-squares estimator can be uniformly

approximated by that based on Gaussian autoregressive processes (Lemma B2). Third, we show

that the latter can be uniformly approximated by the local-to-unity asymptotic distribution (Lemma

B3). Proposition 2 follows from Proposition 1 and the rank condition in Assumption B.

As in Mikusheva (2007a, 2012), we split the parameter space into two overlapping parts:

AT = {θ ∈ Θ : |1− ρp| < T 1−α},

BT = {θ ∈ Θ : |1− ρp| > T 1−α},

for some 0 < α < 1.

Proof of Proposition 1. First, it follows from Lemma B1 that

lim
T→∞

sup
θ∈Θ

sup
x∈ℜdθ

∣∣∣∣P (Σ̂
− 1

2

T (θ̂T − θ) ≤ x)− P (Σ
− 1

2

T (θ̂T − θ) ≤ x)

∣∣∣∣ = 0, (A.1)

where

Σ̂T =


 σ̂2T (

∑T
t=p+1 xtx

′
t)
−1 0(p+2)×1

01×(p+2) σ̂4,T


 , ΣT =


 σ2(

∑T
t=p+1 xtx

′
t)
−1 0(p+2)×1

01×(p+2) σ4


 . (A.2)

Next, it follows from Lemma B2 that the distribution of Σ
− 1

2

T (θ̂T − θ) based on {yt}Tt=1 can be

uniformly approximated by that based on {ȳt}Tt=1 where

∆ȳt = δ0 + δ1

(
t

T

)
+Πȳt−1 + Γ1∆ȳt−1 + · · ·+ Γp−1∆ȳt−p+1 + ūt

= βx̄t + ūt, (A.3)
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and ūt
iid∼ N(0, σ2). It follows from Lemma 5 of Mikusheva (2007a) and Lemma B3 that

Υ−1
T (c)

T∑

t=p+1

x̄tx̄
′
tΥ

−1
T (c) −




1 1
2 ω(c)

∫ 1
0 Jc(r)dr 0

1
2

1
3 ω

∫ 1
0 rJc(r)dr 0

ω
∫ 1
0 Jc(r)dr ω

∫ 1
0 rJc(r)dr ω2

∫ 1
0 Jc(r)

2dr 0

0 0 0 M




= op(1) (A.4)

and

Υ−1
T (c)

T∑

t=p+1

x̄tēt −




N1

N2

σω(c)
∫ 1
0 Jc(r)dW (r)

N3




= op(1), (A.5)

uniformly over AT , where c = T log(|ρp|).
Third, it follows from Lemma 12(a) and (b) of Mikusheva (2007b), (A.4) and (A.5) that

T
1

2 (σ̂2T − σ2) =
1√
T

T∑

t=p+1

(û2t − σ2)

=
1√
T

T∑

t=p+1

((ut − (β̂T − β)′xt)
2 − σ2)

=
1√
T

T∑

t=p+1

(u2t − σ2 − 2(β̂T − β)′xtut + (β̂T − β)′xtx
′
t(β̂T − β))

=
1√
T

T∑

t=p+1

(u2t − σ2 − 2
√
T (β̂T − β)′ΥT (c)

T
Υ−1
T (c)

T∑

t=p+1

xtut

+
1

T
(β̂T − β)′ΥT (c)Υ

−1
T (c)

T∑

t=p+1

xtx
′
tΥ

−1
T (c)ΥT (c)(β̂T − β)

=
1√
T

T∑

t=p+1

(u2t − σ2) +Op(T
− 1

2 )

d→ N4, (A.6)

uniformly on Θ.

It follows from (A.4), (A.5) and (A.6) that

lim
T→∞

sup
θ∈AT

sup
x∈ℜdθ

∣∣∣∣P (Σ
− 1

2

T (θ̂T − θ) ≤ x)− P (η(θ, T ) ≤ x)

∣∣∣∣ = 0. (A.7)
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Using

√
−2c

∫ 1

0
Jc(r)dW (r)

d→ N(0, 1), (A.8)

(−2c)

∫ 1

0
J2
c (r)dx

p→ 1, (A.9)

as in Phillips (1987), it follows from Lemma 12(a) and (b) of Mikusheva (2007b) and (A.6) that

lim
T→∞

sup
θ∈BT

sup
x∈ℜdθ

∣∣∣∣P (Σ
− 1

2

T (θ̂T − θ) ≤ x)− P (η(θ, T ) ≤ x)

∣∣∣∣ = 0. (A.10)

Therefore, Proposition 1 follows from (A.7) and (A.10). �

Proof of Proposition 2. Because f(·) is continuously differentiable,

T
1

2 (f(θ̂T )− f(θ)) = T
1

2Df(θ̄T )(θ̂T − θ)

= T
1

2Df(θ̄T )Υ
−1
T (c)ΥT (c)(θ̂T − θ)

= T
1

2Df(θ̄T )Σ
1

2

TΣ
− 1

2

T (θ̂T − θ)

= T
1

2Df(θ̄T )Υ
−1
T (c)(ΥT (c)ΣTΥT (c))

1

2

×Σ
− 1

2

T (θ̂T − θ), (A.11)

where θ̄T is a point between θ̂T and θ.

Note that T
1

2F (θ)ΥT (c) equals (6), that the first two columns consist of zeros by Assumption B

and that in the nonstationary region AT , the elements of the third column converge to zero. Thus,

it follows from (A.4), (A.5) and (A.11) that

(Df(θ̂T )Σ̂TDf(θ̂T )
′)−

1

2T
1

2 (f(θ̂T )− f(θ)) (A.12)

converges in distribution to the standard normal random vector uniformly on AT . In the stationary

region B, it follows from Lemma 12(a) and (b) of Mikusheva (2007b) and (A.6) that (A.12) converges

in distribution to the standard normal random vector uniformly on BT . Thus, (9) follows. (10)

follows from the second remark about Theorem 1 in Kasy (2018). �

Proof of Proposition 3. Because we assume that the variance is uniformly bounded away from zero

and uniformly bounded from above in Assumption A(iii), the arguments in the proof of Lemma 6 of
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Mikusheva (2007a) carry through after scaling the residual in her proof by its standard deviation.

Thus, the empirical distribution of the scaled residuals belongs to the Lr(K,M, θ) class12, and the

Skorohod representation result in Lemma 12 of Mikusheva (2007a) applies. In other words, for

any realization of the disturbance term, there exists K > 0, M > 0 and θ such that the empirical

distribution function of the residual-based bootstrap, F̂T , belongs to Lr(K,M, θ) for all θ ∈ Θ.

Thus, there is an almost sure approximation of the partial sum process by Brownian motions: For

any ε > 0 there exists δ > 0 such that

lim
T→∞

sup
FT∈Lr(K,M,θ)

P ∗


 sup

0≤s≤1

∣∣∣∣∣∣
1√
T

[sT ]∑

t=1

u∗t − σW (s)| > εT−δ

∣∣∣∣∣∣


 = 0. (A.13)

Moreover, by Lemma B2 with c, ut, xt, yt replaced by c∗, u∗t , x
∗
t , y

∗
t , respectively, the relevant boot-

strap sample moments can be approximated by those generated from a Gaussian autoregressive

process with β = β̂T almost surely conditional on the data. A bootstrap version of Lemma B1 may

be constructed by replacing σ̂4,T and σ4,T by σ̂∗4,T and σ̂4,T , respectively. Repeating the arguments

in the proof of Lemma 5 of Mikusheva (2007a) yields a bootstrap version of Lemma B3 in which c

is replaced by c∗ from which we obtain the desired result. �

Proof of Proposition 4. The proof of Proposition 4 is analogous to that of Proposition 2. �

Appendix B

Throughout Appendix B, suppose that Assumptions A and B are satisfied.

The following lemma builds on Lemma 3 of Mikusheva (2007a):

Lemma B1.

σ̂4,T = σ4 + op(1) (B.1)

12Mikusheva (2007a) defines this class to be the class of sequences of distributions FT such that the mean is zero,
the variance σ2

T satisfies |σ2
T | ≤ MT−θ and the supremum of the rth moment with respect to T is less than K.
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uniformly on Θ.

Proof of Lemma B1. σ̂4,T can be approximated by

σ̂4,T =
1

T − p

T∑

t=p+1

û
4
t − σ̂

4
T

=
1

T − p

T∑

t=p+1

û
4
t − σ

4 + op(1)

=
1

T − p

T∑

t=p+1

(ut − (β̂T − β)′xt)
4 − σ

4 + op(1)

=
1

T − p

[
T∑

t=p+1

u
4
t − 4((β̂T − β)′xt)u

3
t

+6((β̂T − β)′xt)
2
u
2
t − 4((β̂T − β)′xt)

3
ut + ((β̂T − β)′xt)

4
]

=
1

T − p

[
T∑

t=p+1

u
4
t − 4(ζ′T x̃t)u

3
t + 6(ζ′T x̃t)

2
u
2
t − 4(ζ′T x̃t)

3
ut + (ζ′Txt)

4

]

(B.2)

where the second equality follows from Lemma 3 of Mikusheva (2007a), ζT = (
∑T

t=p+1 xtx
′
t)

1

2 (β̂T −
β) and x̃t = (

∑T
t=p+1 xtx

′
t)
− 1

2xt. As shown in the proof of Proposition 1, ζT = Op(1) uniformly on

Θ. Because
∑T

t=p+1 x̃tx̃
′
t = Ip+2,

T∑

t=p+1

p+2∑

j=1

x̃kt ≤ 1, (B.3)

for k = 4, 6, 8. Thus, it follows from the Cauchy-Schwarz inequality that

∣∣∣∣∣∣
1

T − p

T∑

t=p+1

(ζ ′T x̃t)u
3
t

∣∣∣∣∣∣
≤


 1

T − p

T∑

t=p+1

(ζ ′T x̃tx̃
′
tζT )




1

2

 1

T − p

T∑

t=p+1

u6t




1

2

= Op(T
− 1

2 ), (B.4)
∣∣∣∣∣∣

1

T − p

T∑

t=p+1

(ζ ′T x̃t)
2u2t

∣∣∣∣∣∣
≤


 1

T − p

T∑

t=p+1

(ζ ′T x̃t)
4




1

2

 1

T − p

T∑

t=p+1

u4t




1

2

≤ C


‖ζT ‖4
T − p

T∑

t=p+1

p+2∑

j=1

x̃4j,t




1

2

 1

T − p

T∑

t=p+1

u4t




1

2

= Op(T
− 1

2 ), (B.5)
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∣∣∣∣∣∣
1

T − p

T∑

t=p+1

(ζ ′T x̃t)
3ut

∣∣∣∣∣∣
= Op(T

− 1

2 ), (B.6)

∣∣∣∣∣∣
1

T − p

T∑

t=p+1

(ζ ′T x̃t)
4

∣∣∣∣∣∣
= Op(T

− 1

2 ), (B.7)

where the last two results follow from arguments similar to the one used in the second result and

the Op(T
− 1

2 ) terms are uniformly on Θ. Thus, (B.1) follows. �

The next lemma is a slight extension of Lemma 11 of Mikusheva (2007b) which we present for

completeness.

Lemma B2. Suppose that ȳt follows

∆ȳt = c+ d(t/T ) + πȳt−1 + γ1∆ȳt−1 + · · ·+ γp−1∆ȳt−p+1 + ūt

= βx̄t + ūt, (B.8)

where ūt
iid∼ N(0, σ2). Then thre exists a completion of the initial probability space and the

realization of ȳt on this probability space such that

sup
θ∈AT

sup
t=1,...,T

∥∥∥∥
yt√
T

− ȳt√
T

∥∥∥∥ = o(1) a.s., (B.9)

sup
θ∈AT

sup
t=1,...,T

∥∥∥∥
yt√
T

∥∥∥∥ = O(1) a.s., (B.10)

sup
θ∈AT

∥∥∥∥∥∥
Υ−1
T (c)

T∑

t=p+1

xtut −Υ−1
T (c)

T∑

t=p+1

x̄tūt

∥∥∥∥∥∥
= o(1), (B.11)

sup
θ∈AT

∥∥∥∥∥∥
Υ−1
T (c)

T∑

t=p+1

xtx
′
tΥ

−1
T (c)−Υ−1

T (c)

T∑

t=p+1

x̄tx̄
′
tΥ

−1
T (c)

∥∥∥∥∥∥
= o(1), (B.12)

sup
θ∈AT

∥∥∥∥∥∥
(

T∑

t=p+1

xtx
′
t)
− 1

2

T∑

t=p+1

xtu
′
t − (

T∑

t=p+1

x̄tx̄
′
t)
− 1

2

T∑

t=p+1

x̄te
′
t

∥∥∥∥∥∥
= o(1). (B.13)

Proof of Lemma B2.

Because κ ≤ σ2 ≤ K, (B.9) and (B.10) follow from Lemma 11(a) and (b), respectively, of

Mikusheva (2007b) who normalizes σ2 to one. Similarly, (B.11) follows from Lemma 11(c), (d),
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(e), and (f) of Mikusheva (2007b) and (B.12) from her Lemma 11(g), (h), and (i). (B.13) follows

from (B.11) and (B.12). �

The next two results follow from the arguments used in the proof of Lemma 5 of Mikusheva

(2007a).

Lemma B3.

lim
T→∞

sup
θ∈AT

E

∥∥∥∥∥∥∥∥∥∥∥∥

vech




Υ−1

T

T∑

t=p+1

x̄tx̄tΥ
−1

T −





1 1

2
ω
∫

1

0
Jc(r)dr 0

1

2

2

3
ω
∫

1

0
rJc(r)dr 0

ω
∫

1

0
Jc(r)dr ω

∫
1

0
rJc(r)dr ω2

∫
1

0
Jc(r)

2dr 0

0 0 0 M









∥∥∥∥∥∥∥∥∥∥∥∥

2

= 0,

(B.14)

lim
T→∞

sup
θ∈AT

E

∥∥∥∥∥∥∥∥∥∥∥∥

Υ−1
T

T∑

t=p+1

x̄tūt −




N1

N2

σω
∫ 1
0 Jc(r)dW (r)

N3




∥∥∥∥∥∥∥∥∥∥∥∥

2

= 0. (B.15)

The following result is a slight modification of equation (21) of Inoue and Kilian (2002):

Lemma B4.

Let δ0,T = φT (1)δ
†
0,T + δ†1,T (φT,1 + 2φT,2 + · · ·+ pφT,p), δ

†
0,T = δ†0 + ξcT

−1/2 + o(T−1/2), δ1,T =

φT (1)δ
†
1,T , δ

†
1,T = δ†1 + ξdT

−1/2 + o(T−1/2), φT (L) = 1 − φT,1L − · · · − φT,pL
p, πT = −φT (1) =

∑p
j=1 φT,j − 1 = ξ0T

−1 + o(T−1), γT,j = −(φT,j+1 + · · · + φT,p) = γj + ξjT
−1/2 + o(T−1/2),

uT,t
iid∼ (0n×1, σ

2
T ), and σ2T = σ2 + ξσ2T−1/2 + o(T−1/2) for some [ξc ξd ξ0, ξ1 · · · ξp−1 ξσ2 ]′w.

Define a triangular array

∆yT,t = δ0,T + δ1,T

(
t

T

)
+ πT yT,t−1 + γT,1∆yT,t−1 + · · ·+ γT,p−1∆yT,t−p+1 + uT,t

= β′TxT,t + uT,t, (B.16)

where βT = [δ0,T δ1,T πT γT,1 · · · γT,p]′, and xt = [1 t/T yt−1 ∆yt−1 · · · ∆yt−p+1]
′. Then

lim
T→∞

sup
θ∈Θ

sup
x∈ℜdθ

∣∣∣P (ΥT (cT )(θ̂T − θ) ≤ x)− P (ηT (θ, T ) ≤ x)
∣∣∣ = 0, (B.17)
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where cT = T log(1 + ρp,T ).

The proof of Lemma B4 is based on the same arguments already used in the proof of Proposition

1 and is omitted. �

Appendix C

We want to evaluate the 1− α level confidence set

min
i∈{1,2,...,7}

Pρi(ψi ∈ Ci), (B.18)

where ψi and Ci are the true parameter values and ρi is the ith value of ρ.

Because Pρi(ψi ∈ Ci) is not analytically tractable in finite samples, it is approximated by

simulation:

P̂ρi(ψi ∈ Ci) =
1

M

M∑

j=1

I(ψi ∈ C
(j)
i ) (B.19)

where M is the number of Monte Carlo simulations and C
(j)
i is a level 1− α confidence set for the

jth Monte Carlo iteration.

The problem is that even when the coverage rate is uniform in finite samples the estimate (B.19)

may have downward bias due to “data mining”.

To estimate the bias, express the Monte Carlo estimate of the coverage rate as:

Xi =
1

5000

M∑

j=1

dij , (B.20)

where dij ’s are iid Bernoulli random variables with parameter 1−α for i = 1, ..., 7. That is, 5000Xi

is a binomial random variable with parameters 5000 and 1− α. Then the expectation of

Y = min
i∈{1,2,...,7}

Xi (B.21)

minus (1− α) is the data mining bias. Thus, the expectation of Y can be estimated from

1

n

n∑

j=1

min
i∈{1,2,...,7}

X
(j)
i (B.22)
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When α = 0.1, d = 7, and M = 5000, as in our simulation study, the normal approximation

yields 0.894, implying a data mining bias of 0.006. The same answer is obtained when simulating

this bias rather than relying on the normal approximation.
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ü
tk
ep

oh
l
(2
01

7)
.
T
h
e
u
n
if
or
m

co
ve
ra
ge

ra
te
s
ar
e
co
m
p
u
te
d
as

th
e

in
fi
m
u
m

ac
ro
ss

th
e
ρ
va
lu
es
,
ad

ju
st
ed

fo
r
d
at
a
m
in
in
g
b
ia
s.

38



T
a
b
le

3
:
P
er
ce
n
ta
ge

in
cr
ea
se

in
av
er
ag

e
w
id
th

of
n
om

in
al

90
%

E
fr
on

p
er
ce
n
ti
le

in
te
rv
al
s
b
as
ed

on
b
ia
s-
ad

ju
st
ed

la
g-
au

gm
en
te
d
au

to
re
-

gr
es
si
on

re
la
ti
v
e
to

th
e
sa
m
e
in
te
rv
a
l
b
a
se
d
on

th
e
b
ia
s-
ad

ju
st
ed

or
ig
in
al

au
to
re
gr
es
si
on

Im
p
u
ls
e
re
sp
on

se
h
or
iz
on

T
1

2
3

80
1.
43

1.
53

1.
53

12
0

0.
94

0.
98

1.
03

24
0

0.
47

0.
47

0.
46

48
0

0.
21

0.
22

0.
25

60
0

0.
16

0.
19

0.
17

N
ot
es
:
T
h
e
d
at
a
ar
e
g
en

er
a
te
d
fr
om

y t
=
ρ
y t

−
1
+
u
t,
u
t
ii
d ∼
N
(0
,1
),
ρ
∈

{0
.9
5,
0.
96
,0
.9
7,
0.
98
,0
.9
9,
0.
99

5
,1
}.

T
h
e
la
g-
au

gm
en
te
d
fi
tt
ed

m
o
d
el

is
an

A
R
(5
)
m
o
d
el

w
it
h
in
te
rc
ep

t.
T
h
e
b
o
ot
st
ra
p
d
at
a
ar
e
ge
n
er
at
ed

u
si
n
g
th
e
re
cu

rs
iv
e-
d
es
ig
n
b
o
ot
st
ra
p
m
et
h
o
d
,
as

d
is
cu

ss
ed

in
K
il
ia
n
an

d
L
ü
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