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Abstract

A growth model is studied in which the destruction (or exit) decision is decoupled
from the creative (or research) decision. In contrast with the existing literature, the
approach adopted here emphasizes that these important decisions are made by different
agents, but they ultimately influence each other. As such, the destruction decision is
just as important as that of creation, and in the model if destruction ceases, then so
will growth. Any distortion introduced into one of these decisions will then inevitably
affect the other as well. It is then possible to characterize endogenous features of
the equilibrium such as the number of workers and firms, the determinants of income
mobility, income inequality (Gini Coefficient), the growth rate, the lifespan of a firm,
and the effect of various taxes or distortions. A planning problem is also studied, and it
is shown that a multitude of factors may yield an optimum exit decision that is different
from the equilibrium decision rule. This may mean that the equilibrium can give rise
either too high or low a level of innovation, but also the destruction or exit rate may
also be too high or low. It is then shown that a non-linear tax/subsidy scheme, which
alters the research and exit decisions, may improve welfare, relative to the equilibrium
level. The model also yields welfare benefits/costs that are considerably different from
what one might normally expect.
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1 An Analysis of the Welfare Function

1.1 Calculating the Discounted Value of Output

In the steady-state, at any date there are workers who are earning the normalized wage of. Additionally,
the normalized value of profits of all firms can be shown to equal

Z 1


 ()  ()  =

Z 1


 ()

1
1−

µ
1



¶


=  (1− )
h
1− () 1

1−
i


Since both wages and profits grow at the rate of , the discounted value of wages plus profit, or total output
can be shown to be equal to



 − 
+

 (1− )
h
1− () 1

1−
i

 − 
 (1)

Since all agents have linear preferences, it would seem that if there were no externalities, that the welfare
function would be closely related to this last expression. Nevertheless, the analysis below will show that the
aggregate welfare function is not the same as equation (1).

1.2 Calculating the Equal-Weight Welfare Function

From the previous analysis, Let denote the value function of a worker, and  () denote the value function of
a firm-owner with relative technology . It is then straightforward to verify that the “equal-weighted” welfare
function for this economy can be written in the following manner:

 0 = ̄ +

Z 1


 ()  ()  (2)

= ̄ + (1− ) 1

h
1−

³


1
1−
´i
−
µ



 − 

¶
1

h
1− ()(1)(−)

i
()(

1
1−)

+

µ


 − 

¶h
1− ()(1)(−)

i


and from following equation for the welfare of a worker

 [ −  +  (∗)] =  −  (∗) +  (∗) ( (1)) (3)

∗I would like to thank Rick Bond for encouraging me to pursue this analysis.
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and also the following value function for a new firm-owner

 = 1 + 2

= 1

h
1− ()( 1

1−)
i
()(1)(−) + ()(1)(−) 

Now it will be convenient, in what is written below, to just remove the term  (∗) from equation (3).1 With
this in mind, equation (3) can now be written as

 [ −  +  (∗)] =  +  (∗)
h
1

h
1− ()( 1

1−)
i
()(1)(−) + ()(1)(−)

i

or, equivalently


h
 −  +  (∗)

³
1− ()(1)(−)

´i
=  +  (∗) 1

h
1− ()( 1

1−)
i
()(1)(−)  (4)

Equation (2) can now be written as

 0 = 

∙
 +

µ


 − 

¶h
1− ()(1)(−)

i¸

+1

∙
(1− )

h
1−

³


1
1−
´i
−
µ



 − 

¶h
1− ()(1)(−)

i
()(

1
1−)

¸

or
 0 = 2 + 11 (5)

where

1 = (1− )
h
1− ()( 1

1−)
i
−
µ



 − 

¶ ∙
1− ()


−


¸
()(

1
1−)

and

2 =  +

µ


 − 

¶h
1− ()(1)(−)

i
 0 (6)

But substituting equation (4) to substitute for  into equation (5) we have

 0 = 3 + 4 (7)

where

3 =
2h

 −  +  (∗)
³
1− ()(1)(−)

´i  0 (8)

and

4 =

⎡
⎣1 + 2

 (∗)
h
1− ()( 1

1−)
i
()(1)(−)

h
 −  +  (∗)

³
1− ()(1)(−)

´i

⎤
⎦
∙
 +

µ


1− 

¶¸−1
 (9)

2 Now Match Up Coefficients

It is now appropriate to match up the coefficients on the two problems. That is, we wish to compare equations
(1) and (7), and compare the coefficients on  and  in these two expressions.

1To recapture the exact nature of equations below, just replace  with ( −  (∗)).
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2.1 Labor

There are  workers, and each unit of labor earns  wages, which is discounted at the rate of , and which
grows at the rate of . Therefore the coefficient on  in equation (1) is



 − 
 (10)

The coefficient  in equation (7) is 3, given by equations (8) and (6), which can be written as

 +
³


−

´ h
1− ()(1)(−)

i

h
 −  +  (∗)

³
1− ()(1)(−)

´i  (11)

For equations (10) and (11) to be equal, it must be that

 +

µ


 − 

¶h
1− ()(1)(−)

i
=


h
 −  +  (∗)

³
1− ()(1)(−)

´i

 − 


which implies

( − ) + 
h
1− ()(1)(−)

i
= 

h
 −  +  (∗)

³
1− ()(1)(−)

´i

or, after cancelling terms


h
1− ()(1)(−)

i
=  (∗)

h³
1− ()(1)(−)

´i

which holds, since
 =  (∗) 

Therefore, the coefficients on  in equations (1) and (7) do indeed match up.

2.2 And Now Profits

Next, it is necessary to see if the coefficients on the term  in equations (1) and (7) match up. This means
comparing 4 with the following:

(1− )
h
1− () 1

1−
i

 − 
 (12)

Now this must match up with 4 from equation (9). Now the easiest way to proceed with the following
operations (and reversing these steps later):

1. Multiply 4 in equation (9) by
h
 +

³

1−

´i

2. Multiply the result by ( − )

3. Multiply the result by
h
 −  +  (∗)

³
1− ()(1)(−)

´i

This results in the following expression

( − )

1


 −  +  (∗)


1− ()(1)(−)


+ 2 (

∗)

1− ()( 1

1− )

()(1)(−)


 (13)
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Using the definition of 1 we have

( − ) (1− )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



− ( − )




 − 


1− ()


−



()(

1

1− )

 −  +  (∗)


1− ()(1)(−)



+( − )

2 (

∗)

1− ()( 1

1− )

()(1)(−)




Now using the definition of 2

( − ) (1− )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−


1− ()


−



()(

1

1− )

 −  +  (∗)


1− ()(1)(−)



+( − )

 (∗)


1− ()( 1

1− )

()(1)(−)



+( − )




 − 


1− ()(1)(−)


 (∗)


1− ()( 1

1− )

()(1)(−)



or, after cancelling the ( − ) term

( − ) (1− )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−


1− ()


−



()(

1

1− )

 −  +  (∗)


1− ()(1)(−)



+( − )

 (∗)


1− ()( 1

1− )

()(1)(−)



+



1− ()(1)(−)


 (∗)


1− ()( 1

1− )

()(1)(−)




Now using the fact that  =  (∗) yields

( − ) (1− )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−


1− ()


−



()(

1

1− )

 −  +  (∗)


1− ()(1)(−)



+( − )



1− ()( 1

1− )

()(1)(−)



+

1− ()(1)(−)


 (∗)


1− ()( 1

1− )

()(1)(−) 

Now expanding the first term yields

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−


1− ()


−



()(

1

1− )

 −  +  (∗)


1− ()(1)(−)



+( − )



1− ()( 1

1− )

()(1)(−)



+

1− ()(1)(−)


 (∗)


1− ()( 1

1− )

()(1)(−) 

Now, expanding the fourth term

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−


()(

1

1− ) − ()



+ 
1−

 
 −  +  (∗)


1− ()(1)(−)



+

1− ()( 1

1− )

()(1)(−)



−2

1− ()( 1

1− )

()(1)(−)



+

1− ()(1)(−)


 (∗)


1− ()( 1

1− )

()(1)(−)
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and cancelling a couple of terms produces

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

 −  +  (∗)


1− ()(1)(−)



+


()




+ 
1−


[ − ]

+


()




+ 
1−

 
 (∗)


1− ()(1)(−)



+

1− ()( 1

1− )

()(1)(−)



−2

1− ()( 1

1− )

()(1)(−)



+

1− ()(1)(−)


 (∗) ()(1)(−)

−

1− ()(1)(−)


 (∗) ()(

1

1− ) ()(1)(−) 

and cancelling the 4th and 8th terms yields:

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

 −  +  (∗)


1− ()(1)(−)



+


()




+ 
1−


[ − ]

+

1− ()( 1

1− )

()(1)(−)



−2

1− ()( 1

1− )

()(1)(−)



+

1− ()(1)(−)


 (∗) ()(1)(−) 

Now cancelling the 3rd term, and part of the 4th terms produces the following

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

 −  +  (∗)


1− ()(1)(−)



−2

()




+ 
1−



+

()(1)(−)



−2

1− ()( 1

1− )

()(1)(−)



+

1− ()(1)(−)


 (∗) ()(1)(−) 

and cancelling the 3rd term, and part of the 5th produces

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

 −  +  (∗)


1− ()(1)(−)



+

()(1)(−)



−2

()(1)(−)



+

1− ()(1)(−)


 (∗) ()(1)(−) 

Now grouping the last 3 terms yields

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)



−

 −  +  (∗)


1− ()(1)(−)



+

()(1)(−)

 
 −  +  (∗)


1− ()(1)(−)



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and grouping the last two terms produces

( (1− ) + )

1− ()( 1

1− )
 

 −  +  (∗)

1− ()(1)(−)


(14)

−

1− ()(1)(−)

 
 −  +  (∗)


1− ()(1)(−)




Now reversing steps 1, 2, and 3 by now dividing the previous equation by the following:

 +




1− 


( − )


 −  +  (∗)


1− ()(1)(−)



yields the following value for the term 4 :

(1− )

1− ()( 1

1− )


( − )
−



1− ()(1)(−)



( − )

 +



1−

 

But this does not match up with the coefficient of  in equation (1).

2.3 Summary

So this analysis has shown that the welfare function, given by equation (2), can be rewritten in the following alternative format:



 − 
+

 (1− )

1− () 1

1−


 − 
−



1− ()(1)(−)



( − )

 +



1−

  (15)

which is not exactly the same as equation (1).
There is another term. So where does the following term come from:?



1− ()(1)(−)



( − )

 +



1−

 

3 Interpretation:

The interpretation of this stuff is as follows. Consider the extra term in question,


h
1− ()(1)(−)

i

h
 +

³

1−

´i  (16)

New inventions or discoveries occur at the rate of

 = 

and these occur continuously. What happens when a discovery occurs? Each discovery produces potential flow
of profits (if the firm operates forever) equal to

h
 +

³

1−

´i 

However, this flow will be disrupted after an amount of time  has elapsed. Any event that occurs  periods
in the future, adjusting for growth, has a discounted value equal to

−(−) = ()(1)(−)  (17)
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When this occurs, a new invention occurs after  periods, which displaces today’s discovery, this has a net
present value of

h
 +

³

1−

´i −

⎛
⎝ h

 +
³


1−

´i

⎞
⎠ ()(1)(−)

which is equation (16). Since this “loss” is occurring at each instant, the discounted value of this is then


h
1− ()(1)(−)

i

h
 +

³

1−

´i
( − )



Another way to think of this is as follows: Consider an innovation, at date  = 0, of a new firm that
produces a flow of profits { ()}

∞
=0. The value of these profits is calculated as follows:

0 =

Z ∞

0
− ()  =

h
 +

³

1−

´i (18)

where 0 = 1. Now, this firm will be mothballed after  periods, and replaced by a new firm. The value of
the new firm’s profits, discounted back to date  = 0, can be shown to be

 = 
Z ∞


− (− )  =

−(−)h
 +

³

1−

´i 

It can be shown that in equilibrium equation (17) must hold, and so this last equation can be written as

 = 
Z ∞


− (− )  = ()

(1)(−)

⎡
⎣ h

 +
³


1−

´i

⎤
⎦ (19)

Hence, the net cost of an innovation can then be calculated as the difference between equation (18) and (19):

0 − =


h
1− ()(1)(−)

i

h
 +

³

1−

´i 

Remember that these prices or values grow at the rate of  over time. Therefore, the discounted value of
having this occur at each instant is then calculated as

Z ∞

0
−(−) [ −+]  =


h
1− ()(1)(−)

i

h
 +

³

1−

´i
( − )



Remark 1 Note that this term is zero when  = 0, when there are no new firms being created, this term is
zero. Next, assume  is constant. Then this term is zero when  = 0 (because then  = 0), and also when
 = 1 (because then  = 1). For  ∈ (0 1) this expression is positive, and has an “inverted -U” shape. Taking
into account the negative sign that appears in front of this term in equation (15), this would imply that the last
term is strictly convex in  .

Remark 2 Additionally, it should be noted that in equation (16), when  = 0 new and old firms are essentially
worthless, (since  = 0), and so having a new firm replace an old one is just replacing one worthless asset
with another one. When  = 1 new firms are turning over at a very high rate - basically they are shutting
down just a moment after they begin initial production, and so the productivity of old firms is almost identical
to that of new firms.2 Therefore,

2And labor is turning over between firms at an arbitrarily high rate as well.
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4 Calculations:

Now what its the effect on welfare of changing ? According to the above calculations, discounted welfare of
the individuals can be written as



 − 
+

 (1− )
h
1− ()( 1

1−)
i

 − 
−


h
1− ()(1)(−)

i

h
 +

³

1−

´i
( − )



or

1

 − 

h
 + (1− )

h
1− ()( 1

1−)
ii
−


h
1− ()(1)(−)

i

h
 +

³

1−

´i
( − )

(20)

Now, first focus on the first term, It can be shown that




=  (1− )1−−1

h
1− ()( 1

1−)
i−−1 ∙µ 

1− 

¶
()

1
1− +

³
1− () 1

1−
´¸

 0

while



= − (1− )1−−2

h
1− ()( 1

1−)
i− h

(1− )
³
1− () 1

1−
´
+ ()

1
1−
i
  0 (21)

Therefore, these two equations imply that



µ




¶
+ (1− )

h
1− ()( 1

1−)
iµ



¶
= 0

This means that when we take the derivative wrt  in the factor price terms in the first term of equation
(20), we get zero. Then we are only left with calculating the derivative wrt  for the last term in equation
(20). Taking the derivative of

−
h
1− ()(1)(−)

i
(22)

with respect to  yields

−
h
1− ()(1)(−)

i 


+

∙µ
 − 



¶
()(1)(−)

¸


and this expression is of indeterminate sign. The reason is fairly clear. In equation (22), holding  constant,
when  % 1 =⇒  % 1, which means the expression in (22) approaches zero. Alternatively, when  & 0 =⇒
 & 0, which again implies that the expression in (22) approaches zero. The latter case is one in which there
no creation or destruction because the payoff to innovation is too low. In a sense, this is a traditional stagnant
economy. The former case is the opposite: when  % 1 each firm exits for an infinitesimally short period of
time, as it is immediately “destroyed” or replaced by another firm that is almost identical to it. Hence there
is very little difference or disparity between the new and the old firm.

5 Why, Why Why?

Why would there be this negative externality, which appears to be produced by too little  , or destruction?
This could happen for several reasons. First, changing  has two effects here. It alters the payoffs to labor
and firms (, and ). However, it also changes the level of destruction by changing the lifetime over which
firms are operational. This changes the discounted level of profits produced by any innovation, and therefore
changes the return to innovation.

8



Secondly, in the model there are really two activities, research (), and employment ()But there is only
one relative price, which is the wage (). The research activity is really not priced in the market, although
it does have a private reward. But as described above, this reward is not necessarily socially optimal. If the
wage is changed, this will alter the incentive work, which will change (), but this will also change the reward
to innovation. In other words, this single price will then determine the level of two activities. One might state
that the profit () is also a price, but this is not independent of the wage, and in fact, in setting the wage,
the profit function is determined as a residual.
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1 Introduction

An novel growth model is studied in which there are autonomous, endogenous processes
for both the creation and destruction of technologies. These processes are separate in
that they are the result of decisions made by different agents, although both influenced
by equilibrium market forces. While in much of the existing literature the destructive
process is a (regrettable) consequence, or secondary effect, of the innovative activity, here
the destructive process is of equal importance to that of innovation, and if the former were
to cease, then so would the latter. This model will permit the study of how these separate
decisions interact to produce an equilibrium growth rate, and allocations for individuals.
This also permits the study of why each of these decisions may not be made optimally, and
what policies could be employed to increase welfare.

Important contributions to the literature on economic growth have been made by the
study of models that capture the notion of “Creative Destruction”. However, in many
of these models the “creative” mechanism is actually indistinct from the “destructive”
mechanism, in that they are really the same process. It is often the case that in these
models, when one new good (or technology) is introduced, another must necessarily be
eliminated. It would then appear that such a model does not capture the true nature of
the “destructive process” in market economies, wherein products or firms are purged due
to the change in factor or product prices, which ultimately reduce the profitability of older
technologies.

As an example, consider the novel growth model of Aghion and Howitt [2], which employs
a framework in which there are innovations in the technology for producing an intermediate
good, which is then used to produce a final good. In their benchmark model, innovators
are given a monopoly (or patent on their good), and this monopoly lasts until some other
producer develops a lower-cost technology. The old incumbent is then displaced, or elim-
inated from the market. In this sense, the creative and destructive channels are really
indistinguishable. There are many other papers which have a similar linkage between the
entry and exit of firms or technologies, such as that of Grossman and Helpman [7], or Klette
and Kortum [9].1 However, this approach does not capture the notion that these entry and
exit decisions are generally made by different agents or firms, and that one person’s (or
firm’s) innovation does not necessarily compel the incumbent to leave. Furthermore, it is
important to understand and model the exit decision properly because the exit decision
must inevitably influence the innovation decisions, and vice versa.2

1Helpman and Grossman study a model in which the incumbents are not necessarily driven out of the
market completely, but instead they are pushed to making zero profits. Aghion and Howitt also consider this
case. In this instance, there are at most two participants in the market, so it is not quite a monopoly. But
once again, in these frameworks the innovative and destructive processes are essentially the indistinguishable.
In the paper by Klette and Kortum, firms can produce a multitude of goods, but if another firm successfully
innovates in producing an existing good, then the incumbent automatically loses the right or ability to
produce that good. Once again, the incumbent must exit the market when another firm innovates.

2There are other papers in which incumbent firms exit an industry, while newer firms enter. For example,
Luttmer [13] presents a model that is used to characterize the size distribution of firms. In his paper, firms
face exogenous variations in productivity, which eventually leads to exit from the market when they can no
longer cover their costs. However, Luttmer does not study many of the issues addressed here, such as why
the exit decision may not be made in a socially optimal manner, or how this decision affects the incentives
for innovation, or how government policies might alter this decision to achieve a better outcome.
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In this paper, there will be separate endogenous creation and destruction processes.3 The
development of new technologies is influenced by expected future destruction or exit, while
destruction is influenced by expected future innovation and the change in factor prices. The
development of new technologies alone does not necessitate the destruction of older ones,
since the latter can be employed forever. However, in equilibrium the development channel
makes older technologies more costly to operate, and therefore reduces the incentive to
keep them operational. Therefore, the number of operational technologies (or firms) will
be determined endogenously. In addition, the separate destruction or exit decision by an
incumbent is characterized as an optimal-stopping problem, and is then the result of that
firm-owner behaving optimally. In this way, the exit decision is not mandated merely by
the entry of a new firm.

The uncoupling of the creative (or innovative) and destructive (or exit) decisions is also
important because it is then possible to build these autonomous decisions into a planning
problem, and to compare these separate optimization conditions that result from such a
problem with those that might arise from an equilibrium. It is then possible to assess why
there might be too much, or too little innovation, as well as whether there is the proper
degree of destruction of older technologies.

In much of the existing literature, it seems that the creative or innovation activity is
viewed as beneficial, while the destructive process is seen as an unfortunate by-product of
innovation. However, by separating the creative and destructive processes, it is possible
to show that these activities, though interrelated, have a more complex relationship. In
this analysis it will be shown that the Creative forces have both a negative and a positive
consequence, while the same can be said for the Destructive process as well. The Creative
Process has a natural positive impact because it results in more productive technologies,
both currently and in the future. However, it also has a negative consequence because it
raises the cost of resource inputs to existing firms and makes these existing technologies less
profitable. Similarly, the Destructive Process has a negative effect because it results in older
firms shutting down, and resources moving on to existing firms. Nevertheless, this process
also has a positive effect because it results in reduced growth of resource factor prices, which
in turn makes existing firms more profitable. This raises the incentives to innovation, which
raises the future growth rate.

So why might the equilibrium level of destruction, or firm retirement, be suboptimal,
even in an environment in which mobile factors are paid their marginal products? Just as
there can be a difference between the private and social returns to innovation, say, because
of the intertemporal spillover, there can also be a difference between the private and social
returns to shutting down a firm or technology. That is, a firm-owner who decides that it
is best for him to shut down his firm (or, alternatively, to keep it operational) may not
be making the socially optimal decision. Furthermore, since these creation and destruction
decisions undoubtedly influence each other, if some factor (or wedge) should be introduced

3 It may be worthwhile before proceeding to establish the terminology that will be employed. In the
context of the present discussion, the term “destruction” refers to the voluntary shutdown of a firm due to
low productivity, or the voluntary withdrawal of a product from production due to low profitability. That is,
the destruction is a result of market forces. What is not meant by this term is the shutdown of a firm or the
termination of production due to government intervention or regulation, or of a competing firm encourage
government authorities to target a firm.
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into one of these problems, then this will distort the other decision as well. If one takes
for granted the idea that the innovation or research decision may not be made optimally,
perhaps because of some intertemporal spillover or some other externality, then the exit or
destruction decision will not be made optimally, since these decisions will inevitably affect
each other.

The model studied here has other novel features. It is frequently stated criticism of
representative agent models that they are reticent on such topics as economic inequality
and income mobility. However, in this model, not only is there inequality, but there is even a
specific formula that can be shown to characterize the Lorenz curve, and the Gini Coefficient.
This means that it is possible to see if the equilibrium yields to too much inequality, relative
to some optimum. Additionally, it is possible to assess how certain government policies, or
parameter changes influence the level of inequality. The model has predictions for many
relationships that are generated endogenously. In particular, the model is able to reproduce
the “Great Gatsby Curve,” showing that there is a positive relationship between the level
of income inequality, and the measure of income mobility.

The model presented below is also innovative for several other reasons. First, in contrast
to many other extant models, this one does not rely on market power (i.e. such as monop-
olists) to generate innovation or growth. In fact, there will be a continuum of technologies
or firms, and these will sell output and hire labor in a competitive market. Therefore, any
distortions in the model will not result from non-competitive forces. Secondly, in many
existing models the presence of an intertemporal spillover (or externality) will imply that
there will be too little innovation or growth. In contrast, the model studied below will have
an intertemporal spillover, but nevertheless this economy may produce either too high a
level of innovation or growth. Third, it is shown that there can be a multitude of factors
that will distort the private destructions decision away from the social optimum. Fourth, by
severing the direct linkage between the creative and destructive decisions, this permits the
study of how government policies might influence these processes separately. For example,
it is possible to study the impact of a policy that subsidizes the creation of new technologies,
while simultaneously taxing the destruction of old technologies. Such a policy would seem
impossible to study within the context of most extant models.

The remainder of the paper is organized as follows. In the next section the basic structure
of the model is described. This means characterizing the optimization problems of the
workers and firm-owners, and how they interact in an equilibrium. In Section 2 the structure
of the model is described, together with the optimization problems faced by the different
agents, and the equilibrium conditions. In Section 3 some features of the equilibrium are
illustrated, such as the calculation of the Gini coefficient, and the characterization of the
degree of income mobility, as well as some financial features. In Section 4 it is shown how the
model could be used to understand why an economy might undergo a long period of either
reduced or explosive growth, followed by another period that is quite different. Section 5
studies a version of a social planner’s problem which maximizes the welfare of individuals,
subject to the resource constraints. It is shown that there are a multitude of reasons why
the equilibrium decision rules, for both the creative and destructive decisions, will not
coincide with those that result from solving the planner’s problem. In Section 6 it is shown
that there could be gains from introducing a simple linear tax scheme. Section 7 shows
that there can be considerable welfare gains from introducing a non-linear, productivity-
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dependent tax/subsidy scheme, which alters the incentives for innovation. Section 8 shows
that the model yields welfare cost/benefit calculations that are quite different from those
of other models. Section 9 explores some implications the model may have for immigration
policy.

2 Description of the Model

There is some generality in the nature of this economy, and in the procedure for character-
izing the equilibrium, but in order to study the qualitative properties of an equilibrium it
is useful to use some specific functional forms.

Time is assumed to be continuous, and there is no aggregate uncertainty. There are a
continuum of agents and the population size of the economy will be normalized to unity.
In the steady-state there will be  agents who will be workers, and (1−) who will be
termed firm-owners or managers. As will be shown below, the equilibrium level of  will be
determined by the model itself, since the agents get to choose whether they want to work,
or manage a firm. In this model there will be a dynamic evolution of agents from workers to
business (or firm) owners, and this movement will accompany and be related to the growth
rate. Workers will supply one unit of labor, and the managers will use their unit of time
to manage the firm. It will be instructive to focus first on the problem faced by the typical
firm-owner.

2.1 The (static) problem of the firm

Each firm-owner has access to a production function  ( ),  ∈ (0 1), for producing the
generic consumption good, with labor as an input. The variable  denotes the technology
parameter for a particular firm-owner, which is fixed while this firm is in operation. It
will be convenient to suppose that at any date , there is a firm with the leading, or best
technology, which will be labelled ̄. It will be supposed that there is a distribution of
technologies, which will be denoted  (), which is defined over some interval Λ ≡

£
 

¤
.

The firm-owner can hire labor in a competitive market at a price of , and this price
will change over time. The owner of a firm maximizes profits, which are written as follows:

 = max

{ ( )− } 

Here  represents the wage bill. The profit-maximizing condition is then


¡
−1

¢
= 

The demand for labor by this firm is written as

 =

µ




¶ 1
1−



The indirect profit function is then written as

 = ()
1

1− ()


1− ()


−1 (1− )  (1)
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Also, note that for a particular firm since the technology parameter  is fixed, and so the
following relationship must hold:

̇


=



− 1

µ
̇



¶
(2)

It will be seen that if this economy is growing at a constant rate, the wage will then exhibit
growth at this rate, which in turn will imply that the profitability of each firm will be falling.
The profit will continue to fall until the firm shuts down, at which time profit drops to zero.

It must be that the quantity of labor available equals the quantity demanded by all
firms. Note again that  is the amount of labor available. Then let  () denote the
distribution of technologies in period . Then the equilibrium condition for labor must be

 =

Z

Λ

µ




¶ 1
1−

 () (3)

so the date  wage is determined as follows:


1

1−
 =

1



Z

Λ

()
1

1−  ()  (4)

Note that the wage is homogeneous of degree one in all . That is, if all the technologies
of all firms in the economy were to be scaled up by some factor, then this would also be the
case for the wage as well. The equilibrium below will be one in which  is proportional to

, and in this case (̇) =
³ 

̄̄

´
.

2.2 The Distribution of Technologies

It will be convenient to put more structure on the distribution of the technologies of the
firms. Therefore, it will be assumed that the distribution  () will be a truncated recipro-
cal distribution, over the interval Λ.

4 The support of Λ will be changing over time. This
assumption about the structure and distribution of technologies is convenient because the
leading technology

¡
̄
¢
then becomes a sufficient statistic, which embodies all the infor-

mation about the distribution. Henceforth, we will let  =
¡
̄

¢
denote the “relative

technology” of a particular firm, which possesses technology parameter , when the best,
or frontier, technology is ̄ at that date. That is, this measures how far this firm is from
the technological frontier. Obviously  ranges between =

¡
̄

¢
and unity. Since the

distribution  () is assumed to be a truncated reciprocal distribution, it follows that the
distribution of  will be  = (1)  over the interval [ 1].

Since there are 1− firms, and their relative technologies are distributed with density
 = (1)  over the interval [ 1], it then follows that

1− =

Z 1



µ
1



¶
 = − ln () . (5)

4 It should be noted that the reciprocal distribution is what the Pareto distribution converges to as the
latter’s shape parameter approaches zero. The truncated reciprocal distribution has the convenient property
that, as you raise the lower and upper limit by the same proportion, the density on the overlapping section
is unchanged. In other words, the mass lost on the left side exactly equals the mass gained on the right side.
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Since  can range from zero to unity, it follows that  can range from −1 to unity.
Also, note that along a balanced growth path it will be the case that the frontier tech-

nology ̄ will grow at some rate . It follows that for a firm with a fixed technology , it
must be that

̇


=
−
·




= − (6)

2.3 Workers and Firm-Owners

It will be assumed that all individuals are risk-neutral, and so merely wish to consume
their income. Their preferences are assumed to be a function of the discounted stream of
consumption (,  ≥ 0) 5 Z ∞

0
−

£
 − 

¡
 ̄

¢¤
 (7)

where  is the rate of time preference.6 At any date there are two types of individuals.
There are workers, who supply their unit of labor inelastically which means that they earn
the market wage, which is the consumed  = .

7 Additionally, there are firm-owners, or
managers, who use their time to manage their firm. These firms hire labor at the market
wage, in order to maximize profit (). The firm-owner has proprietary ownership over his
technology (), and so owners of inferior technologies cannot costlessly upgrade or steal
superior technologies.

Workers are also permitted to use some additional time () to attempt to discover a
new technology, which may eventually permit them to become a firm-owner, or manager.
It seems appropriate to identify this as time spent in the pursuit of research or innovation.
This activity is successful with some probability  (·), but also has disutility −

¡
 ̄

¢
.8

This is the basis of the “creative process” in the economy. A worker who is successful in
inventing a new technology suddenly posses the frontier technology (̄), but this is at the
frontier only momentarily. Firm-owners cannot engage in this activity, and so for them

5Alternatively, it could be assumed that at any date , the individual has preferences over the con-
sumption goods which deliver a range of services. At date  this range is defined over the interval


0 ̄


.

Individuals then care about the services yielded by those commodities, and preferences are defined as fol-

lows:
∞
0

−
 ̄

0



. As time progresses, some older goods are no longer produced, while some

new goods are introduced. An innovation in  could then be interpreted as a new technology for producing
a new good. Each commodity then has the same production function  = , and so it will be optimal
to devote more labor to the production of more advanced technologies or commodities. This approach is
similar to that employed by Grossman and Helpman [5].

6The use of linear preferences makes the analysis simple in that the person basically is interested in his
net income. The analysis could also be conducted for any of the CRRA or logarithmic preferences as well,
with a suitable modification of the  (·) function, since the value functions can also be characterized for
these preferences. One advantage of the present approach is that it is simpler than using a more complicated
set of preferences. Additionally, another difference is that for linear preferences, when solving the planning
problem, the planner derives no benefit in merely redistributing income from one set of agents to the other.

7The reader will realize that there is nothing intrinsic to the model that necessarily means that this factor
must be “labor”. It could alternatively be given any other name. It is merely important that there be some
factor of production, which is in limited supply, that is owned by individuals, which is mobile across firms
or technologies, and that this factor be priced and allocated through a competitive market.

8The rationale for having this function depend up on ̄ is that as the leading technology rises, the
benefits of innovation are increased, but so are the costs.
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 = 0 (and  (0 ) = 0). One could interpret this “research sector”as being an informal, or
non-market, sector within which all innovation conducted. For example, it could be that
workers supply their work for a wage, and then they come home and spend some extra
time, labelled 

¡
 ̄

¢
engaged in puttering around informally, and there is some prospect

this activity will turn out something very profitable.9 It will be assumed that the amount
of effort expended by an agent in discovering a new technology () cannot be observed by
other agents, and so it is not possible to engage in contracts contingent on the amount
of effort (), or the outcome from such effort. The effect this innovative process is fully
internalized by the individual.

One can imagine a multitude of factors that might influence the function  (·). Obviously
first is that it should be an increasing function of the level of , and so frequently below the
shorthand notation of  () will be used. However, one could also envisage that this might
be a function of the economy-wide level of technology as well. More will be said below
regarding the importance of the function  () in explaining a multitude of phenomenon in
Section 4 below.

It will be assumed that firm-owners spend all their effort to manage their firm, and
cannot upgrade their technology parameter (). Firm-owners always have the option of
disposing of their technology (i.e. shutting down their firm) and becoming a worker at
the market wage.10 This will be part of the “destruction process” of older technologies.
However, only workers are assumed to have the opportunity to develop or invent a new
technology. This requires effort or disutility. When new technologies or firms are developed,
this raises the demand for labor which increases the equilibrium wage. This increases the
costs and reduces the profits of existing firms. At some juncture an owner of an older firm
will find his profit to be sufficiently low that he will elect to shut down the firm, and to
become a laborer. At this point he can begin to seek to obtain a new technology, which will
give rise to a new firm in the future. There will then be a churning of workers and firms as
this economy grow.

2.3.1 The Optimization Problem for a Worker

All workers are identical, irrespective of their previous history, or how long they have been
unemployed. Therefore, they will all devote the same amount of effort () in obtaining an
idea or new technology () which might become productive. As mentioned above, the effort

9This is not entirely ad-hoc, as it has its motivation in economic history. Many of the most historic
inventions were produced by individuals who were not employed in research labs, or universities, but instead
were people tinkering around in their spare time, and ultimately made historic discoveries. For example,
the Wright brothers were merely two capable mechanics who had bicycle shop but who, in their spare time,
loved to play around with things that might fly. This is also (or perhaps especially) true of the electronic
revolution over the past century. Issacson [8] describes the multitude of inventions that have given rise to
electronic, computer, internet, and IT revolutions. In his book, Issacson repeatedly refers to people making
or discovering things in their garage in their spare time. The word “garage” seems to arise recurrently in this
narrative, especially so when talking about the history of Silicon Valley. Reading this narative one gets the
impression that most of the discoveries were made by people, many of whom would never graduate college,
working long hours in their garages, and that the company offices or laboratories were merely places where
the inventors went to the next day to brief others on the progress of their research effort.
10All workers and firm-owners always have the option of using one of their old technologies to re-start an

old firm. However, for reasons that will become clear, this is an option that they will never utilize.
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that they expend in discovering a new technology is not observable by others. All workers
receive the flow of wages, labelled .

It is assumed that workers have discoveries that arrive according to a Poisson distri-
bution. Let  (·) be the probability of locating such a technology. For now, it will be
convenient to assume that  (), is merely a function of .

At each instant the flow of utility for a worker is the wage () net of research effort
expended (

¡
 ̄

¢
). It will be convenient to let  () denote the value function of such

a worker. Additionally, he receives the increased value of the job (̇ ()), plus with some
probability () he acquires a new technology so that he switches to running a firm, instead
of being a worker. Each worker takes the wage , and the leading technology

¡
̄
¢
as given

while expecting to receive a new technology
¡

¢
for himself, should his research effort

be successful. Therefore, the dynamic programming problem of worker is then written as
following Hamilton-Jacobi-Bellman equation:11

 () = max


n
 − 

¡
 ̄

¢
+ ̇ () +  () · [ ( )− ()]

o
 (8)

The optimization condition, for an interior optimum, is written as follows:

1
¡
 ̄

¢
= 0 () [ (+1 +1)− ()]  0 (9)

This is the condition that determines the equilibrium amount of innovation (). The right
side of equation (9) is the relative benefit from engaging in research or innovation (),
while the left side is the marginal cost. Clearly, the greater is the benefit, as expressed by
( − ), the greater will be the amount innovation. But this reward ( − ) also reflects
the amount of inequality in payoffs to the different agents. It then follows that the amount
of innovation is then likely to be linked to the degree of income inequality in the model.
Policies that are instituted to reduce inequality are then likely to reduce innovation. To the
extent that equilibrium innovation is too low, such policies are then likely to reduce welfare.

If it can be shown that equations (8) and (9) imply that if , 
¡
 ̄

¢
, and  (+1),

are all homogeneous of degree 1 in all , then so will  (), and and ̇ (). Therefore,
it will be convenient to let


¡
 ̄

¢
=  () ̄

where  (·) is strictly convex and differentiable. This means that the utility cost of research
becomes greater as ̄ increases.

12 However, this assumption also implies that it now makes
both the right and left side of equation (8) homogeneous of degree one in all , and this in
turn makes both sides of equation (9) also homogeneous of degree one in all . This feature
will be exploited below.

11An alternative, but roughly equivalent formulation, is to assume that the individual gets to consume
his wage, less some fraction () of this wage income that is spent on research. Since the market wage is
going to be proportional to the leading technology




, this means that the cost of research rises as  rises.

Consumption of the individual is then (1 − ). This approach would not affect many of the qualitative
features of the model, but would affect some quantitative results. For example, under this last interpretation
the individual would be using his after-tax income to engage in research, and so a labor tax would likely
reduce innovation.
12Under the formulation suggested in the prior footnote this latter assumption would not be necessary,

since research effort () would be proportional to the wage, which is homogeneous of degree one in all of the
operational technologies.
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2.3.2 The Optimization Problem for the Owner of a Firm

Begin by temporarily using the shorthand notation of  () for the value function for
a firm-holder who has access to a fixed (i.e. unchanging) technology , when the market
wage is . At each instant the owner of a firm, with technology , receives a flow of profit
of  () given by equation (1). Additionally, if he wishes to stay as a non-laborer and
run the firm, he gets the change in the value of the firm (̇ (·)), but otherwise he can shut
down the firm, and become a worker. The value function for a firm-owner (i.e. which has
a fixed technology  ∈ Λ), where the wage  is changing over time, is then written as
follows:

 () =  () + ̇ ()  (10)

As this economy grows, the value function for a worker ( ()) will be rising, because the
wage will be increasing. From equation (2), for a fixed technology  () may be falling
over time. Hence, it must be that  ( ) ≥  (), and as soon as this equation holds
with equality, the individual will shut down the firm and become a worker. Hence equation
(10) can then be written in the following abbreviated notation:

 = max
n
 + ̇  

o
 (11)

This last equation characterizes the optimal stopping problem faced by a firm-owner,
who must decide when to shut down his firm.13 Suppose that this shutdown date is denoted
 . Then the solution to this equation is given by the following expression:

 =

Z 


−(−)+ −(−)  (12)

Here, the value ( ) is actually the discounted value of the profit of the firm, plus an
American put option. The put option entitles the holder of the firm to sell it (i.e. ownership
of the profits), or really dispose of it, at any date for the value  . This equation satisfies
the value matching condition ( =  ) that insures that the welfare of a firm-owner is
equal to that of a worker, when the former decides to become a worker.

It is shown in Appendix A that this expression also satisfies the smooth-pasting condition
which would imply that ̇ = ̇ . The optimal shutdown, or exit date ( ) of the firm is
chosen optimally in equation (12), and this condition is also developed in Appendix A.

A sample path for the value functions for an individual is illustrated in Figure 1. Here
the individual begins as a worker, and then at a random date he obtains a new frontier
technology, and his value function jumps upward, but then falls and converges to the value
function for a worker, at which he then switches (shutters his firm) to become a worker
again. Then the process repeats itself at random times in the future.

2.3.3 Characterizing the Steady-State Equilibrium

It will be convenient to characterize the steady-state behavior of the model, in which there
is a balanced growth rate. From equation (4) it can be shown after some algebra that the

13This analysis bears some distant similarities to that of Lucas [11] in that in both models the marginal
manager should be indifferent between being a manager, or being a worker. However the analysis here is
more explicitly dynamic.
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wage can be written as follows:
 = 

where

 = 

∙
1



Z 1


()

1
1−  () 

¸1−
 (13)

Aghion and Howitt term  the “productivity-adjusted wage”. Similarly, for a firm with
relative technology  =

¡
̄

¢
∈ (0 1], using equations (4) and (1) it is possible to show

that profit can be written as

() = ̄
¡
̄

¢ 1
1− = ̄ ()

1
1− 

where

 = (1− )

∙
1



Z 1


()

1
1−  () 

¸−
 (14)

It seems natural to refer to  = as the “productivity-adjusted profit” for a firm at the

technological frontier (i.e.  = 1). Similarly  ()
1

1− would be the “productivity-adjusted
profit” for a firm with relative technology .

As mentioned above, the value functions, and the distribution of the firm productivities
will be completely characterized by the leading or frontier technology at any date (̄) The
wage and the profit of all firms will be homogeneous of degree one in (̄) In Appendix A
it is shown that since equation (12) is homogeneous in (̄) it is possible to re-write it as
̄ (), where the function  (·) is given as follows:

 () = 1 ()
1

1− + 2 ()
−()+1 (15)

where

1 =


 +
³


1−

´ (16)

2 =
h
 − 1

h
()(

1
1−)

ii
()(1)(−)  0 (17)

The first term in equation (15) represents the discounted value of the firm’s profits, if the
firm is operational forever. Since  is falling over time, this term is also falling over time.14

The second term of this equation (involving 2) reflects the fact that at some future date,
when  = , it is advantageous for the firm-owner to shut down his firm, and elect to

14One might find it unpalatable that the value of each firm is falling over time. This is obviously a
natural result of the simplifying assumption that new firms have the highest relative productivity, and so
existing firms are being surpassed in this dimension. This is reminiscent of the structure of the Pissarides
and Mortensen [14] model in which new employees (or matches) are relatively the “best” or most productive
— and it is all downhill from there, until finally the match is dissolved. But secondly, in the present study
it would be possible to imagine an alternative (but perhaps much more analytically complicated) structure
in which existing firms have random shocks to their productivity, but that they are eventually surpassed by
enough high-productivity entrants that they desire to shut down. This would be a much more complicated
model than the present one, and the simpler approach captures the necessary features that older technologies
necessarily die out.
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become a worker. Since the exponent
³
−+


´
in this expression is negative, this term is

rising over time as  falls.
It is straightforward to check that  () = , and it is a little more work to verify that

the smooth pasting condition (̇ = ̇ ) is satisfied.
The equation describing the worker’s value function (8) can be written as

 () =
n
̄ −  (∗) ̄ + ̇ () +  (∗)

£
 (1)− ()

¤o
 (18)

where ∗ is the optimally-chosen value of research. Note that equations (11) and (18)
are homogeneous of degree one in ̄.

15 Equivalently, if all the operational technologies
in the economy were to be scaled up by some positive factor, then so would be the value
functions, since this would also scale up the wage, as well as all of the profit functions.
Also, the worker knows that in the event of obtaining an innovation, it will be right on the

technological frontier (̄). As a result of the homogeneity, note that
̇
 = . Henceforth,

the value functions for the worker and the firm-owner will be written as ̄ , and ̄ (),
respectively.

Therefore dividing equation (18) by ̄, allows this to be written as follows:

 =  −  (∗) + +  (∗) [ (1)− ]  (19)

where the latter equation has used the fact that an agent who discovers a frontier technology
immediately has technology ̄.

It is shown in Appendix A that the solution to the optimal stopping problem faced by
a firm with an existing relative technology , is given by

 ()
( 1
1−) = ( − ) (20)

The left side of this expression is the instantaneous productivity-adjusted profit for a firm
with relative technology ( = ). The right side is the instantaneous return that the person
would get from becoming a worker. The presence of the growth rate term () reflects the
fact that the wage of the worker is growing at this rate. This equation implies that for a
firm with fixed technology , this firm will shut down or exit when the frontier technology
̄ reaches the point where the following holds

 = ̄

µ
( − )



¶1−
 (21)

This means that a firm manager with technology parameter , (or technology  relative to
the frontier) would be indifferent between being a firm-owner or a worker at that instant.
Since the frontier technology (̄) is continuously increasing, the firm-owner would then
switch to being a worker at that point. Prior to this shutdown, or exit date, the left side of
equation (21) is greater than the right side.

The condition for optimal research is then given by

0 () = 0 () [ − ] (22)

15Here  ( ), from equation (17) has been replaced with  (1).
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Henceforth, ∗ will denote the solution to this last equation It is then straightforward to
use equation (19) to calculate that

 =
 −  (∗) +  (∗) (1)

[ −  +  (∗)]
 (23)

It should be clear that the value functions of the two types of agents are interdependent.
Factors that influence one of the programming problems will then influence the other. For
example, a change in, say, the tax on wages, would then undoubtedly affect both value
functions, and then also impinge on both optimization conditions, which are influenced by
the size of these value functions.

Lastly, it is necessary to specify the determinants of the growth rate of the economy. It
would seem proper that this would be a function of the total amount of research undertaken
in the economy. That is to say, it is a function of the number of people engaged in research
(i.e. workers) and the rate at which they acquire the capability to become firm-owners,
which is a function of the effort they expend on innovation. Therefore, it is consistent
with the assumption that the technologies are distributed as truncated reciprocal, that the
growth rate will then be characterized in the following functional form:

 =  ()  (24)

This last equation is important in that the growth rate is a function not just of the amount of
research effort expended by each worker, but also by the fraction of the population engaged
in this activity. Therefore, in response to some change in the environment, it is possible
for per-person research effort () to fall, but for the growth rate to rise, if  also rises.
Note also that, from equation (5), the values of  and  are closely linked, and the latter
is really the measure of firm destruction, or a measure of how quickly firms will shut down.
Therefore, equation (24) indicates that both the creation or innovation () and destruction
() contribute to economic growth. Furthermore, if either  = 0, or  = 0, then growth
will cease, so that the absence of destruction will lead a halt in growth.

It should also be noted that employment for a firm with relative technology  is pro-

portional to 
1

1− . This in turn implies that employment across relative technologies is
distributed as a truncated Kumaraswamy distribution over the interval [ 1].

2.3.4 Summary of the Equilibrium Conditions

The parameters of the economy are then  , , , and the functional form for the functions
 (·), and  (·). The conditions characterizing he equilibrium are then given as follows.
Equation (5) gives the relationship between  , and :

1− = − ln () . (25)

Equations (13) and (14) define how productivity-adjusted wages and profits are determined:

 = 

∙µ
1− 



¶³
1− 

1
1−
´¸1−

(26)

 = (1− )

∙µ
1− 



¶³
1− 

1
1−
´¸−

 (27)
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Equation (20) gives the solution to the exit decision of an existing firm

 ()
( 1
1−) = ( − ) (28)

Equation (22) gives the solution to the optimal research problem

0 () = 0 () [ − ]  (29)

Lastly, equations (15) - (17) characterize the value functions for the firm-owner and the
worker:

 (1) =


 +
³


1−

´
∙
1− ()




+( 

1−)
¸
+ ()(1)(−) (30)

 =
 −  (∗) +  (∗) (1)

[ −  +  (∗)]
 (31)

Lastly, there is also the equation determining the growth rate

 =  ()  (32)

There are 8 equations in the eight unknowns:    ,   . The general
equilibrium structure of the model means that the growth rate (), the level of innovation
(), and the rate of destruction ( or ), are determined jointly with the wages for workers
and the profit for firms. This simultaneous structure makes it difficult to arrive at any
analytical results when studying this system of equations. Therefore, it is necessary to
study this equilibrium through numerical methods.

Before proceeding it seems appropriate to pause to note what the assumption of a
reciprocal distribution for the technologies () is buying here. In short, this assumption
simplifies the formulae in equations (26) and (27). Additionally, it provides a convenient
association, through equation (25), between the number of people operating firms, and the
rate of firm destruction. Lastly, it simplifies equation (31), by way of equation (18), because
the expected value of the value function ( (·)) for a person who discovers a new frontier
technology is then roughly equivalent to the leading technology at that moment.

In an equilibrium, it may be that the growth rate is very low, but it should still be
positive, as is shown in the following result:

Proposition 1 If  (0) = 0, and 0 (0) = 0. then in an equilibrium   0.
Proof. Suppose  = 0 Then either  = 0, or  = 0. Suppose the former is true. Then

equation (29) implies that  (1) =  . Equation (30) implies that  = 1, which implies
that  = 1. But this implies that  = 

  ∞, while lim%1

¡
 = 



¢
= +∞, which

is a contradiction. Similarly, if  = 0, and  = −1this would imply that   +∞while
 = +∞, because  = +∞ This means that many firm-owners could improve their utility
by shutting down their firms and becoming workers. But this necessitates having   0.
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3 Characterizing the Equilibrium

Before proceeding to study the quantitative behavior of this economy, it might be useful
to characterize some features of it. For some experiments it is difficult to obtain analytical
results because the general equilibrium nature of the economy produces some complicated
feedback effects through the eight equations. Therefore, for some experiments, numerical
methods will be used.

The following form will be used for the  (·) function

 () = 
1+

1 + 
(33)

where    0. Much of the analysis below is only used to illustrate some of the features of
the model, and is not intended to mimic any particular economy. Unless stated otherwise,
the following parameter values will be used for the benchmark economy:  = 07  = 65
 = 1  = 038  = 10.

These values produce a resulting equilibrium growth rate of 3%. Some of these para-
meters (e.g.  ) have usual justifications. For others, it is not clear how to clear how to
arrive at an appropriate value. For example, normally the value of (1) might be thought
of as related to the labor elasticity, but some reflection would reveal that this is not the
case here for several reasons. First, there is no intensive margin of employment. Secondly,
the choice of  is not an employment decision, and in fact it is the opposite: The choice of
 reflects the agent’s desire to exit the labor force, and to manage a firm.16

In general it is problematic to use such an explicit model to attempt to mimic an actual
economy because models with linear preferences frequently give implausible results. In
particular, the linear preferences imply an infinite intertemporal elasticity of substitution,
and this in turn can imply an implausibly large change in the growth rate in response
to a change in the after tax return to capital. Consequently, for some experiments it is
conceivable that minute changes in a tax rate can then yield infinite, or undefined, utility.

3.1 Calculating the Lifespan of a Firm

It is of interest to calculate the lifespan of a firm. Since there is no aggregate uncertainty
and, from the perspective of a firm-owner, there is no uncertainty at all in its operation, each
firm will have the same lifespan, because each faces the same optimal-stopping problem.
Now for a firm with a fixed value of , when the best technology is , it is the case that
 = . Using equation (6), this implies that  starts out at 1, and falls to  and so the
lifespan of a firm (̂ ) must satisfy the following:

−̂ = 

16Additionally, it is natural to suppose that the parameter  represents “labor’s share” of income. However,
as mentioned above (see footnote 7), a literal interpretation of this as labor may not be appropriate, and
instead it may represent any resources that are mobile across alternative technologies. To the extent that
resources are not mobile across various firms or industries, the parameter  may have to take on a much
lower value.
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This in turn implies that the length of time that a firm is operational is calculated as follows:

̂ =
− ln ()


=
1−


 (34)

However, ,  and  are all functions of the parameters, and the policy variables in the
economy.

3.2 Calculating Income Mobility

In most general equilibrium, representative agent models, it is impossible to establish any
predictions about income mobility. This is not the case here. Some reflection would indicate
that income mobility will be related to the level of growth. This is shown in the following.

Proposition 2 The average time it takes the worker to cycle through from initially becom-
ing a worker, to becoming a firm-owner, and finally shutting it down, is

 =
1


 (35)

Proof. Let us use the short-hand notation of  () = . First, let us establish the
expected waiting time for each worker to find an innovation. In this case the probability
distribution over waiting a length of time  for an innovation is written as

 () = 1− −

For a worker, the expected time to an innovation is then written as

() =

Z ∞

0
− = 1.

Equation (34) shows the average amount of time a worker spends in the workforce. Adding
these two quantities together delivers the average amount of time an agent will spend in
the two activities:

 =
− ln ()


+

µ
1



¶


Using equation (5), we then obtain equation (35).
The degree of income mobility can then be measured as the inverse of the average time

to cycle through these two activities:
1


=  (36)

3.3 Calculating the Lorenz Curve and the Gini Coefficient

It has been a long-standing research issue to investigate the relationship between the level
of income inequality and the corresponding growth rate. For example, Greenwood and
Jovanovic [4] provide a model in which increased inequality may accompany higher growth.
But there is mixed evidence on this topic. Fortunately, the model presented here can be
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used to study this issue, since both inequality and growth are determined by the equilibrium
of the model.

It is straightforward to verify that aggregate output in this economy is

 =  +

∙Z 1



³


1
1−
´
 () 

¸
= Ω

where
Ω =  +

h
1− () 1

1−
i


It is then possible to see that the fraction of the aggregate income earned by the poorest
 · 100 percent of the population would be

 () =

⎧
⎨
⎩


Ω for  ∈ [0  ]

+

 ∗





1
1−


()



Ω where ∗ = −1, for  ∈ [ 1]

where ∗ is related to  through the relationship between  and  . It is not straightforward
to see how various parameters influence this equation. This is because the parameters
influence the endogenous variables, such as  ,   ,and .

It is then straightforward to then calculate the Gini Coefficient from this expression.
Figure 2 shows some illustrations of Lorenz curves for this economy. The initial (or left)
portion of the curve is straight because all workers get paid the same wage which is pro-
portional to total output. However, firms have different levels of profit, and so the Lorenz
curve is “curved” toward the right. The “kink” takes place right at  . In Figure 2 one
curve corresponds to having no taxes or transfers, while the other has a profit tax of 30%,
with the resulting revenue distributed in a lump-sum manner. Introducing the tax reduces
inequality as well as the growth rate. Also, note that introducing the tax raises the value
of  , which means that the level of business destruction also rises.

For many parameter values that were studied, it turned out that the Gini coefficients
tend to be decreasing in the profit tax. However, the relationship between inequality and
labor taxation is more complicated. An example of this is shown in Figure 3, for the
benchmark model. In this case, the Gini coefficient is shown as a function of the tax rate,
for both the labor and profit, and revenue is given back to individuals as a lump-sum
transfer. As can be seen, it appears that inequality is decreasing in both taxes for this
economy. Raising the profit tax reduces inequality because this amounts to taking revenue
from the richer agents, and redistributing it to the poorer individuals. As the labor tax
increases from zero, inequality is partly increased because of the net transfer from workers
to firm-owners. However, the general equilibrium effects dictate that  will fall, which
means that business destruction falls. Essentially, an increase in the labor tax increases the
incentive for workers to engage in research, and also makes firm-owners want to keep their
firms operating for longer. This implies that there will be fewer workers and more firms in
equilibrium, and this can result in marginally lower income inequality.

As indicated earlier, there must be some degree of inequality, as reflected in the size
of ( − ), for individuals to engage in the research activity (). There are other models
in which greater inequality may accompany higher growth (see, for example, Greenwood
and Jovanovic [4]. However, equation (29) shows that in the present model it is absolutely
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vital for growth that there be inequality. It does not follow, however, that welfare need be
strictly increasing in inequality as well.

3.3.1 An Aside on the “Great Gatsby” Curve

This model produces both a growth rate, a measure of income mobility, and a measure of
inequality, which depend on various parameters. There seem to be few general equilibrium
models that are useful for studying this relationship between these phenomena. It is also
noteworthy that Krueger [10] has reviewed the data from various countries, and has found
that there may be a positive relationship between the level of inequality (Gini) and the
intergenerational earnings elasticity. Until now it has not been clear if relationship could
be explained within the context of an equilibrium model.

One way to explain this phenomenon with the benchmark model is to consider other-
wise identical economies, but which have different values of the labor tax. This results in
variations in the level of inequality, and growth, as well as many other variables. Figure 4
shows the relationship between the resulting levels of the Gini coefficient, and the degree of
income mobility, defined by equation (36). This example is not intended to mimic exactly
the relationship observed in the data, but the point is to show that it is possible to produce
such a negative relationship from an equilibrium model. In this model it is also possible to
let other parameters vary so that this relationship is quite different from that shown in the
figure.

3.4 Growth and Taxation

It has been recognized that in the US there seems to be very little relationship between
the growth rate, and various measures of income taxation (see, for example, Stokey and
Rebelo [18]). It is then somewhat of a test of any model to see if it can replicate this (non)
relationship. Therefore, consider the benchmark model without taxes, in which the growth
rate is 3.0%. If an income tax (i.e. on both labor and profit) of 30% is introduced, with
the resulting revenue distributed in a lump-sum manner, the growth rate is only reduced
to 246%. This is a reduction that is sufficiently small that it is unlikely to be detected in
the data.17 An imposition of the profit income tax alone has a similarly negligible impact.

3.5 Financial Implications

It is possible to establish some features about the value, and the rate of return on a firm
in this environment. A firm here is really an asset that yields a flow of profit to the
owner. It is possible to calculate the value of this asset, which will then be the value of
the stream of profits, discounted at the constant rate . Suppose that an agent invents a
new frontier technology

¡

¢
at date . This produces a flow of profit which is + () =

+ (+)
1

1− . This flow falls over time at the rate of
³


1−

´
, and is characterized as

follows:
+ = 

h
(


−1)

i


17These reductions in the growth rate are of a similar magnitude, whether the government revenue is
destroyed, or given back to individuals in a lump-sum manner.
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This continues until the firm shuts down at date  + ̂ . In general, the value in period
 + , of a technology developed in period in period , which then has ̂ −  periods until
shutdown, is then calculated as follows:

+ =

¡


¢ ³
1−

h
−[+(


1−)](̂−)

i´

 +
³


1−

´




This is not the same price that would hold if the profit stream were to prevail forever. The
“destruction effect” is evident in the negative term in the numerator, which insures that
+̂ = 0. It is also implicit in that the finite horizon for the profit also indirectly affects
the values of  and .

It is of interest to look into the behavior of the price-dividend ratio (or ). Figure

5 shows that this ratio approaches zero as the age of the firm approaches
³
+ ̂

´
. This

means that the model predicts that younger firms will have higher price-dividend ratios
than will otherwise identical older firms. This comports with the observation that indeed
younger firms indeed do tend to have higher ratios.18 Note as well that although profit falls
as the firm ages, it does not converge to zero, and approaches its terminal date. The reason

for this is that as the firm’s age approaches ̂  its employment approaches
³



´ 1
1−
.

It is possible to conduct some other interesting experiments here as well. For example,
Figure 5 also shows what happens to this ratio as the tax on profits is raised from zero to
40%, and revenue distributed in a lump-sum manner. In this instance, although the lifespan
of a firm (̂ ) increases, and the (before-tax) price-dividend ratio rises as well. The lifespan
rises because although the number of operational firms (as measured by (1−)) falls, the
growth rate falls even more. Altering the tax rate, or any other policy parameter, changes
not only the growth rate, but also changes the value of .

The same figure also shows what happens if both taxes are raised to 40%. In this instance
the price-dividend ratio rises even more , as does the lifespan of a firm. This results from
the fact that the number of firms increases an infinitesimal amount, while the growth rate
falls from 3% to 2.26%.

3.6 Political Economy Considerations

It is natural to wonder about the political-economy considerations of the model. In many
models in which there are both workers and firm-owners, these types of agents can have
radically different preferences over the tax rates. Workers, may then wish for the lowest
possible labor tax, and the highest transfers to themselves. Other agents may seek something
close to the opposite. However, in this model the agents are not so bifurcated in their
preferences, since agents will evolve from one state to the other. Therefore, it is of interest
to see how preferences of agents are a function of government taxes and transfers.

Consider the benchmark version of the model, with parameters specified above, but
where the government levies a labor tax. The revenue is given back to agents in a lump
sum manner, with each individual getting the same amount. This is shown in Figure 6. For

18Although the typical view is that younger firms tend to have higher price-dividend ratios because they
have higher expected growth opportunities.
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the range of taxes under consideration, firm-owners prefer a slightly higher labor tax, while
workers prefer a lower one. The curve represents the “average”, or equally-weighted welfare
function (see equation (37) below). Generally, it seems the preferences of the workers and
the firm-owners are single-peaked in the tax rate. For the benchmark economy ( = 038),
welfare is maximized with a labor tax of 30%. In this environment, the median voter is also
a worker. These workers prefer to have a labor tax since they also inevitably benefit from
the higher growth that results from this policy.

For this configuration of parameters for the economy, growth is very important in the
calculation of welfare, and for this reason all agents prefer a negative tax rate on profits.
This is not a generic result, since there are parameter values for which the welfare function
might be maximized with a positive profit, or income tax.

Varying the parameters of the economy will obviously change these results. This is
illustrated in Figure 6, where the equally-weighted welfare functions for several other values
of the parameter .19 Increasing this parameter essentially makes research more costly to
workers, and therefore raises the cost of increased growth. When  is raised from 0.38 to
1.0, average welfare is now maximized at a tax rate of 15%, instead of 30%. When  is
lowered further to 0.20, the tax rate that maximizes welfare now rises to 44.4%.

3.7 Factors Influencing Firm Destruction

An innovative feature of this model is that gives rise to an endogenous level of firm exit, or
destruction. It is then instructive to investigate how various factors influence this exit rate.
First of all, it is essential to determine how to measure this feature. One way to do this
is to let “” denote a ordinal measure of destruction, since the higher is this variable, the
fewer will be the number of firms. An alternative measure of destruction is the average time
a new firm will spend being operational. This is given by the variable ̂ = 1−

 (equation

(34)). It would seem that the inverse of ̂ would be a candidate measure of the rate of
destruction.

Next, it is necessary to vary some feature of the model to see how this influences the
level of destruction. Varying the tax rates seems like a natural candidate, since increases in
this policy parameter will be change welfare, as well as the growth rate. Figure 7a shows

how both  and
³
1̂

´
vary in the steady-state, as the labor tax rate () changes, for

benchmark level, and the resulting revenue is distributed in a lump-sum manner.20 As can
be seen, increases in the tax rate lead to lower levels of  , and higher levels of ̂ , both
of which indicate a lower level of business exit. Increased labor taxation results in more
operational firms, and these firms produce for a longer period of time.

Next, Figure 7b shows how both  and ̂ vary in the steady-state, as the tax rate on
profit () changes, for benchmark economy. This example illustrates that these different
measures of business destruction do not always move in the same direction. In this case,
raising the profit tax results a higher level of both  and ̂ . In other words, it results in
fewer firms, but also a lower growth rate. Since the latter effect overwhelms the former, the
value of ̂ rises.

19These curves have been normalized so that they each have a value of zero when the tax rate is zero.
20 In this figure the values of both  and (1̂ ) are normalized to unity when the tax rate is zero.
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This result may be important for another reason. It seems to be an interesting but
open question as to whether there is a “cleansing effect” of recessions, in that a recession
may have a beneficial effect of reducing the economy of low-productivity firms. To the
extent that comparative dynamics exercises should be taken seriously, an increase in the
tax rate on profit will reduce the growth rate, and so could have a similar observed effect
to that of a recession, since the growth rate falls. Suppose one were to take the level
of ‘ ’ as the measure of business destruction, since as  rises the number of firms falls.
Figure 7b suggests that the rate of business destruction could then increase, as some of the
low-productivity firms that were operating under the benchmark economy, now would shut
down earlier. However, it is not clear that this should be interpreted as a cleansing effect.

In contrast, in Figure 7a, by raising the labor tax, which causes the growth rate to rise,
this lowers the rate of destruction. Through this channel there would seem to be a negative
relationship between the rate of growth and the rate of business destruction.

4 A Digression on Growth Traps and Surges

It is an ongoing endeavor to try to understand why different economies or countries grow
at different rates, or seem to be stuck with low levels of productivity. Some economies have
to be innovative in producing new technologies or products, while others can be content
to import or copy foreign technologies, which are superior to their domestic counterparts.
Parente and Prescott [15] study models which can speak to this topic. The present model
can also be used to address this issue as well.

Here the functions ( ̄) and (·) are important, as these functions are the mechanisms
through which agents obtain better technologies. That is, in an alternative setting the
process of growth could be generated through research and development, or alternatively it
may be through copying or obtaining a foreign technology. Whatever form this takes, the
functions ( ̄) and (·) would characterize the relative costs and benefits to the domestic
agents.

There are several cases to consider. First suppose, as is done earlier that (·) =  · ,
where   0. If  is close to zero, then this economy will have difficulty attaining significant
sustained growth. Obviously a higher level of this parameter would mean higher potential
levels of growth. Of course, there are other general equilibrium effects to consider, such as
the number of workers and firms, as well as the exit decision, which will also influence the
growth rate. Additionally, one might also consider a case in which (·) =  · 

¡
̄
¢
, so that

the probability of obtaining a new technology evolves as the economy grows. Consider the
“S-shaped” function for 

¡
̄
¢
shown in Figure 8. In this case the economy might grow at

a very slow pace at first, but then after attaining some threshold level, it proceeds to grow
at a much higher rate. Two other  (·) functions are drawn in the figure: one (2) would
certainly produce higher persistent growth than the other (1). One could imagine various
formulations of this function that could help explain various growth puzzles.

20



5 Characterizing a Social Optimum

It is important to investigate why the equilibrium growth path could produce a measure
of welfare that might not be optimal. To do this, it would be necessary to establish what
problem a social planner might face. Here we will set up such an artificial optimization
problem that will help to clarify the different channels through which decisions will influence
the welfare of agents. This analysis is intended merely to explore the many effects that
decisions can have on welfare of agents, but not to fully characterize a social optimum.

Imagine an initial state of the world in which all of the agents have some technology
, which is drawn from a reciprocal distribution with an initial upper bound of 0 . From
an ex-ante perspective, agents are all identical, and do not know which location in the
distribution that they will occupy. That is, there is a “veil of ignorance” which makes all
individuals identical before economic activity (and growth) begins. Then, let the economy
proceed from this point, with either the market outcomes studied above, or alternatively
under the solution to the planning problem, studied below. In any case, there is no need to
have a transition from one steady state to another.

The planner would then maximize the expected welfare of these agents. Along the
growth path there will then be  agents who will be workers with value functions denoted
 . There will also be (1−) agents who will have value functions reflecting the relative
technology that they own. That is, for an agent who owns a firm with relative technology ,
their value function will then be denoted by  (). The planner will then seek to maximize
the following welfare or objective function

 ∗ =  +

Z 1


 ()  ()  (37)

or, using equations (15) through (17)
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One way to solve for a social optimum is to let the social planner choose both  , and ,
which is to say that the planner will choose the level of destruction and creation. Choosing
the value of employment () is the same as choosing the degree of firm destruction (),
through equation (25). The planner would solve this problem subject to the constraints
given in equations (25), (26), (27), (30) (31), and (32). Equations (28) and (29) would not
be part of the planner’s problem, since these equations constitute the solution to problem
faced individual agents.21

21This is a rather artificial planning problem because we are letting the planner choose , whereas in
Secton 2 it was stated that individual’s choice of  could not be observed by others. In Section 7 below it
will be shown how distortions might be partially overcome, and welfare improved even if the individual’s
choice of  cannot be observed. This is done in more detail in the technical appendix.
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5.1 Optimal Research

The optimization condition determining the equilibrium amount of research effort is given
by equation (29). The corresponding condition for the solution to the planner’s problem
would be derived by maximizing equation (37), with respect to , subject to the relevant
constraints. Such a condition might loosely be characterized as follows:


£
−0 (∗) + 0 (∗) ( − )

¤
+

µ
 ∗







¶

| {z }
+

+ 1

µ
1






¶

| {z }
?

+ 2

µ








¶

| {z }
?

(39)
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Now if we ignore the last three terms in equation (39), then setting the first term equal
to zero effectively gives us equation (29), which is the equilibrium condition. It is the
other three remaining terms in equation (39) that are omitted from the equilibrium condi-
tion. These terms reflect the intertemporal externality, in that the private research decision
ignores how current research would influence the welfare of either workers ( ) or firm-
owners ( ), through the growth rate. As the discussion from the previous section indicates,
the sum of these three terms could be either positive or negative, and so it might be that
the equilibrium of such an economy might generate too much, or too little innovation. If
both the “ ” and “” functions in Figure 1 are strictly increasing in the growth rate then
a marginal increase in the growth rate will increase welfare, and so the sum of the last two
terms in equation (39) will be positive, providing the fall in  is not too pronounced.

The second term in equation (39) reflects the fact that the managers of older firms
benefit from increased growth because it means reaching the shutdown date for his firm
earlier, at which point they benefit from higher wage growth when he becomes a worker.
After some work it can be shown that this expression is positive.

The last two terms in equation (39) are really composed of two effects. First is the fact
that increased research raises the growth rate, which reduces the value ( ()) of an existing
firm by raising its costs (i.e. wages). This is closely related to what Aghion and Howitt term
the “business stealing effect”. In many models the individual innovator is unable to capture
the benefits from future innovations that build on his initial innovation. But here the owner
of a high-productivity firm may be hurt by this effect, because future innovations raise the
growth rate, and this can reduce the value of his initial innovation. However, for owners
of low-productivity firms, who are soon due to shut down their firm and become workers,
raising the growth rate has a positive effect on their welfare. It is clear, from equation (16),

that the effect of research on a new firm can be negative
³
1
  0

´
. However, since 1

could be either positive or negative, it is unclear whether this effect on aggregate welfare is
positive or negative.

The last term in equation (39) shows that increasing the value of  also affects the value
of being a worker ( ), and in principle this effect can be positive or negative. The positive
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effect results from the increased future wage growth. But the negative effect results from
the fact that higher growth can result in a lower value of a firm ( ), and each worker plans
on being firm-owners at a future date.

In equilibrium the individual agents do not take into account the last three terms in
equation (39). Since the sum of these terms could be positive or negative, it is not clear
if there will be too much or too little research activity in equilibrium. This is noteworthy
because in almost all models in which there is an intertemporal spillover, there will be too
little innovation in equilibrium. But the analysis of this model suggests that the presence
of such an intertemporal spillover need not guarantee that there is too little innovation.

5.2 Optimal Destruction

Next, it is important to characterize how a change in  can influence the objection function,
given by equation (37). Roughly speaking, a change in N influences welfare through three
channels: i) directly through the value of  and (), ii) indirectly through the growth rate
(), iii) indirectly through the factor prices  and . The planner would consider all
these effects, and so the comprehensive optimization condition for equation for choosing 
can then be characterized by the following seven terms:
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The first term results from treating  , 1, 2, and  as constants, using equation (25) to
replace (), and then taking the derivative with respect to  . The second through fourth
terms are the indirect effects on the growth rate, and the fifth through seventh terms operate
through the factor prices.

In an equilibrium of this economy, only the first term would be set to zero (from equa-
tion (28)) since this individual’s optimization condition in an equilibrium. This expression
measures the relative welfare of being a worker, as opposed to running a marginal firm, and
thereby captures the equilibrium exit decision.

The second term in equation (40) reflects the fact that a manager of an older firm
benefits from increased growth because it means reaching the shutdown date for his firm
earlier, at which point he benefits from higher wage growth when he becomes a worker.
This expression is positive.

The third and fourth terms are the intertemporal growth effects, and these illustrate
how changing the destruction rate will influence the future growth rate. This is a different
type of intertemporal spillover than is usually considered.

The third term measures how an increase in  would change the welfare of firm-owners
by increasing growth rate (through equation (32)). Once again this effect could be positive
or negative. The reason that higher growth might reduce this value is because the higher is
the growth rate in the economy, the more rapidly the value of profits of existing firms might
fall, and hence the quicker they exit as well. This is truly where the “creation through
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destruction” effect is present. Increasing the number of people engaged in research (i.e.
increasing ) here alters the overall incentive to engage in research, because the resulting
effect on growth changes the future value of the firms, which influencing their exit decision.

The fourth term reflects the fact that changing  would influence the welfare of workers
through growth rate. Again, this term could be either positive or negative. The positive
effect arises because the increased growth raises the growth rate of wages, and so raises
the welfare of workers. The potential negative impact arises because eventually the worker
will eventually become a firm-owner, and according to the logic of the previous paragraph,
increased growth may reduce the value of being a firm-owner.

It should be noted again that if both the value functions  and  , shown in Figure 1,
are strictly increasing, then the sum of the third and fourth terms will be positive: that is,
a marginal increase in the growth rate alone will increase the welfare of all agents.

The last three terms of equation (40) are the non-dynamic (or quasi-intratemporal)
effects of changing the destruction rate.

The fifth term captures the idea that increasing  reduces the welfare of workers for
two reasons: first it increases the supply of workers, but it also lowers the number of firms
employing workers. Both effects reduce the equilibrium wage. This term is negative, and
therefore illustrates that increased business destruction can reduce welfare.

Then, there is the sixth expression. Here increasing  increases the welfare of firm-
owners for two reasons: it increases the supply of workers, but it also lowers the number of
firms employing workers. Essentially, quicker destruction of older firms increases the stock

of labor, which makes existing firms more valuable. Although the term
³
1


´
is positive,

it is not clear if the sixth term is positive because 1 is of indeterminate sign. Therefore,
increased business destruction could raise or lower welfare. The reason for the indeterminate
sign is because the firm-owner will eventually become a worker, and at point they may be
harmed by the increase in  .

Lastly, there is the seventh expression. This term reflects the fact that higher labor
force raises the return or payoff to owning a firm, which each worker will hope to do at
some future date.

One might expect that since preferences (equation (7)) is linear in consumption, that
the equilibrium welfare function (equation (38)) would also equal the discounted value of
output. It is shown in the technical appendix that this is not the case. The welfare function
is lower precisely by an amount that is equal to the net value of the creation-destruction
process. That is, this difference is equal to the value of firms that are being destroyed minus
the value of firms created, at each instant of time.

The notion of destruction is usually thought of as having only negative consequences,
but equation (40) shows that this is not necessarily the case. Several of these terms can
potentially be positive, which shows that there certainly can be some positive effects as-
sociated with increased destruction. In particular, increased destruction of firms in this
setting frees up resources (labor) for the more productive firms, and this can be socially
beneficial. It also can mean that there are more agents engaged in innovation which can
result in higher growth.

Since the second through fourth terms in equation (40) characterize the growth effects,
one might be tempted to refer to these as the growth or intertemporal effects, in contrast
with the fifth through seventh terms, which might be termed static or intratemporal effects.
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Applying such terminology would be misleading. The fifth through seventh terms also
have indirect growth effects, since these reflect the incentives for engaging in research,
which ultimately influence the growth rate. Conversely, although the second through fourth
terms indeed influence the resulting growth rate, and the growth rate in turn influences the
intratemporal trade-offs that are present in the remaining terms.

This analysis is further complicated for another reason. Let us suppose, hypothetically,
that in an equilibrium the last seven terms in equation (40) summed to zero. One might
then be tempted to conclude that this would mean that an optimum level of destruction
would prevail because this condition would then amount to having equation (28) hold. But
this would be false. The reason is that for the conditions from the planning problem to
coincide with the market equilibrium conditions, it is necessary that both equation (40)
coincide with equation (28), and also for equation (39) to coincide with equation (29). If
either of these fails to hold, then both the equilibrium levels of creation and destruction will
not coincide with the levels for the planning problem, because of the interdependency of
these problems.

It is natural to ask why the equilibrium conditions might not deliver the appropriate
amount of destruction (through  or ), that is suggested in equation (40). Another way of
seeing the avenues through which this works is to recognize that the second through fourth
terms in equation (40) are proportional to the second through fourth terms in equation
(39). Since these terms operate through altering the growth rate, it would seem that these
terms collectively represent the intertemporal spillover.

However, the fifth through seventh terms in equation (40) do not directly influence the
growth rate, but affect the instantaneous payoffs to workers and firm-owners. So just from a
static or instantaneous perspective, why might the social benefit from shutting down a firm
(and becoming a worker) be different from the private benefit? To gain some perspective,
consider an experiment in which the wage and the growth rate are held constant. In this
instance, for a marginal firm, the cost to society of shutting down this firm and having the
manger become a worker is the profit of the firm, less the wage paid to the new worker:22

 ()−  =  ()
( 1
1−) − (41)

In general, this term could be positive or negative.23 However, from the equilibrium studied
above it is possible to establish more. From equations (19) and (20) it follows that

 ()−  = − (∗) +  (∗) [ (1)− ] 

Given the form of the function described in equation (33), it is straightforward to verify that
in equilibrium the right side of this equation is positive. Hence the social cost to shutting
down a marginal firm is positive in equilibrium.

22Since at the given wage, the labor released by the shuttered firm is able to earn their wage elsewhere.
Therefore the loss to society is the output produced by the firm minus the old wage bill, plus the new wage
earned by the firm-owner who becomes a worker.
23When  % 1 =⇒  % 1, and this term in is strictly positive. This is because there are very few firms

(and lots of workers), and so the cost of shutting down a marginal firm is positive. On the other hand, if
 & 0 =⇒  & −1, and this term approaches minus infinity. In this instance there are lots of firms and
few workers. Shutting down a marginal firm is then a large negative number, which is to say that there is a
big social benefit to doing so.
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At this point a comparison of this model with that of Aghion and Howitt is in order.
Aghion and Howitt describe four distortions which are present in their model. Two of these
occur because of the presence of monopolists, which do not exist here. Of the remaining
two, one of these is due to the “intertemporal spillover”, which is present in this model, in
equation (39). The remaining distortion in their model is what they term the “appropriabil-
ity” effect, which is present in the patent-race literature. Usually this last distortion reflects
the fact that the return to investing in a new technology would be the profit that results
in equilibrium, whereas in the social optimum the return must be total output (profit plus
wages). In the present model this effect is located in a peculiar place. Here, ignoring the
growth effects, the social benefit to discovering a new technology is encapsulated by  . But

the net social benefit is
³
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1
1−
´
, which reflects the fact that while a new firm is

created, another is shut down. This social benefit can also be re-written as

( − ) +
³
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´


The first term is the benefit that accrues to the new firm-owner, who ceases to be a worker,
and this is present in equations (22), (29), (39). The second term is the benefit that accrues
to the individual who shutters his low-productivity firm and becomes a worker, and this
is present in equations (28) and (40).24 But in equilibrium this last term is zero because
of the value matching condition, and so all of the social benefit to innovation accrues to
the innovator. Therefore, it appears that the “appropriability” effect is not present in this
model.

In summary then, of the four distortions in Aghion and Howitt’s paper, three of them
are absent here. The remaining one is “intertemporal spillover”, which reflects the fact
that future innovators benefit from past innovations. Additionally, there seem to be several
distortions in the current model that are not present in that of Aghion and Howitt.

6 The Model with Linear Taxation and Lump-Sum Transfers

It is of interest to see how the model changes if there is government taxation, and to see
if there are government policies that may improve welfare. Let us consider this specifically
within the context of the economy described in Section 3, but where government uses linear
taxation to finance transfers. Let  and  denote the constant tax rates on labor income
and profits, respectively. The latter tax is proportional to the profit of the firm. The
government revenue from the labor tax is then equal to the tax rate multiplied by the
quantity of labor income (). Normalizing or dividing this by the leading technology
then yields this quantity of labor tax revenue equal to 

Similarly, suppose each firm is taxed at the rate of . Then, for a firm with relative

technology , its normalized profit is then  () =  ()
1

1− . It is then straightforward to es-

tablish that normalized total revenue from the profit tax would be  (1− )
h
1− 

1
1−
i
.

It should be noted that this exercise takes some re-working of the analysis of Section 2
because the presence of the transfer changes equations (15), (20), and (23).

24Or see equation (49) in Appendix A.
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Now suppose that all government revenue is given back to individuals in a lump-sum
manner. The size of this transfer is then calculated as

 =  +  (1− )
h
1− 

1
1−
i


It is then possible to calculate how welfare (as given by equation (37)), inequality, or growth
vary as these simple tax rates (, ) change. For the benchmark economy, growth is so
important that welfare is strictly decreasing in the profit tax () over any reasonable range.

Panels (a) and (b) of Figure 9 present the results from a simple experiment for the
benchmark economy. In this case the labor tax rate is varied from zero to 60%, while
the profit tax is set to zero. The resulting revenue, whether positive or negative, is given
equally to all agents in a lump sum manner. As the figure shows, for the benchmark
economy welfare is maximized by having a labor tax of 30%. This policy of transferring
revenue from workers to firm-owners raises the growth rate, and the number of firms. This
policy also raises inequality as well. For some parameterization it is the case that welfare is
maximized with a negative labor tax, and a positive profit tax, which would then suggest
that the equilibrium (with no taxes) would too little inequality.

Panels (c) and (d) of Figure 9 show the same features for an identical economy, except
that  = 10. In this case welfare is maximized by by having a tax rate on labor of  = 15%.
In this case growth is relatively more expensive, and therefore, less desirable.

Of course, by varying some of the parameters of the economy, it is possible to raise
welfare by using either a negative or a positive income tax, or even a profit tax. However, it
frequently appears to be the case that the Gini coefficient and the growth rate are negatively
related, so that higher growth is accompanied by higher inequality.

7 Welfare Improvements Through Productivity-Dependent
Government Taxation and Transfers

The previous sections indicate that the equilibrium of the model may not result in decisions
that would maximize aggregate welfare. It is possible to imagine a set of non-linear, or
state-dependent taxes and transfers, that may raise welfare welfare. This section develops a
specific class of such policies. To do this, consider a problem which treats all workers identi-
cally, and denote their productivity-adjusted consumption productivity-adjusted consump-
tion as . Next, let  () denote the productivity adjusted consumption of a firm-owner
who owns a firm with relative productivity . That is, whereas in Section 2 an individual

who owned a firm with relative productivity () would consume profit  () = 

³
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here we will let the firm-owner consume  () instead. Then the consumption of the workers
and firm-owners will not necessarily equal their equilibrium counterparts. Furthermore, for
computational convenience suppose that the growth rate of consumption of all firm-owners
is denoted

̇ ()

 ()
= ̂

and it will be assumed that this is constant. Now the analysis of this model can mimic
much of Section 2. The value function for the worker, which is the counterpart to equations
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(31) is given as follows

 =
 −  (∗) +  (∗) ̂ (1)

[ −  +  (∗)]


The value function for the firm-owner with relative productivity ̂ () is calculated in Ap-
pendix B.

Now consider the planning problem of choosing a consumption level (), and a function
( ()) to maximize the analog to equation (37), which is the objective function

max
()

½
 +

Z 1


̂ ()  () 

¾
 (42)

Next equations (28) and (29) must also hold here as well:

̂ () =

0 () = 0 ()
h
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i


Then, to insure that all output is consumed, it must be the case that total resource constraint
is satisfied:

 +

Z 1
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1−
i


where the equalities define aggregate output, and  and  are given by equations (26)
and (27) respectively.

Lastly, equations (25) and (32) must also hold. This ensures that this new allocations
can be compared with those of the previous sections.

The solution to this planners problem can then be decentralized because there will be
an implied system of taxes or subsidies that result. The implied tax rate on labor would

 = 1−





while the (non-linear) tax or subsidy on profits will be

 () = 1−
 ()


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For the government to balance its budget, it must then also be the case that

0 =  +

Z 1


 ()

³



1−
´


A full explanation of how this problem is solved is presented in Appendix B.
To see what the resulting implied tax rates might look like, it is best to consider a couple

of parameterized examples. Throughout this analysis, the measure of aggregate welfare will
be given by equation (37).
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The parameter values used henceforth will be the same as in the benchmark with the
exception that the growth equation (32) will now by determined as  = ()14, where 
is chosen so as to imply a value for  equal to the benchmark value of 010.25

Example 3 Consider the parameterization of the benchmark economy described in Section
3. Figure 10 shows the welfare function, as a function of the level of employment (), and
the level of research (), for various paths of the tax and subsidy policies. The marker
‘¥’ shows the point at which the equilibrium is located (with  =  () = 0), while the
marker labelled ‘*’ shows where welfare is maximized with the system of non-linear taxes.
As can be seen, relative to the equilibrium, the welfare-maximizing outcome with taxes
results in more research effort, and slightly more employment. This result means that in
equilibrium there is not enough business destruction. In other words, firms are not shutting
soon enough. It is possible to remedy this.

Figure 11 shows the tax and subsidy policy, of the sort described above, that results in
a higher level of welfare for this economy. In this case it is best to have the government
tax labor at a rate of 13%, and then use this revenue to subsidize firms according to the
schedule in Figure 11. This schedule shows that the highest productivity firms should be
subsidized at rate of 57.6%, while the lowest productivity firms be taxed at a rate of 11.5%.
This is obviously a shift of resources from the workers, and owners of low-productivity firms
(who will soon become workers), to the owners of high-productivity firms. The benchmark
model had a growth rate of 3%, while the optimum resulting from this problem produces a
growth rate of 3.27%.

To understand why this policy improves welfare it is best to note that Figure 11 implies
that, to increase welfare relative to the equilibrium level, research effort and employment
need to both be increased. This can certainly be done by shifting resources from the workers
to the firms, with a larger subsidy given to the high-productivity firms. As the firms age,
however, this subsidy is curtailed until it eventually becomes a tax. Since the reward to
being a new firm-owner is so high, this raises the level of research. But taxing owners of
low productivity firms will raise the level of destruction (or ).

It is of interest to assess how big the welfare improvement would be from such a policy.
Relative to the benchmark, the increase in utility from the tax/subsidy policy is an increase
of 1.9%. Since utility is linear in consumption, it seems appropriate to view this as equivalent
to an increase of 1.6% in initial consumption for all agents.

Example 4 Now consider the very same parameterization as in the previous example, but
now let  = 05. In this case the equilibrium growth rate is 1.36%̇. However the solution
to the problem of maximizing welfare with the system of non-linear taxes, described above,
results in a growth rate of 1.30%, so the equilibrium growth rate is too high. In this
example it seems that there is too much of research, and also too much employment (or
firm destruction) in equilibrium.

25This formulation implies that there is an externality in the “search” or innovation process, so that the
more innovation that takes place, either by higher levels of  or  , the lower the level of  each individual
will face. This is equivalent to a search externality in the search literature. This formulation is adopted
because, given the linear form of the preferences (equation (7)), and decision rules, the objective function
(equation (38)) then tends be rather linear, and that maximizing welfare can result corner solutions which
might entail solutions such as  → 1. Adopting this alternative formulation for the growth rate then adds
enough curvature to the objective function to produce interesting, non-trivial results.
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Figure 12 shows the implied tax and subsidy policies that result from this constrained
planning problem. In this case the planner would impose a subsidy, or negative labor tax,
of 3.24%. The tax on firms, shown in the figure ranges from -5.2% on the owners of the
low productivity firms, to a tax, of 14.2% on the owners of the high productivity firms. As
can be seen in the figure, this tax scheme is not linear, and has a slightly concave feature.
Such a tax scheme would certainly reduce the amount of research effort, since the benefit of
being a firm-owner is reduced. Similarly, the subsidy to low-productivity firms helps raise
the overall number of firms, and so lower the level of firm destruction ().

The increase in welfare as a result of this system of taxes and subsidies, relative to the
equilibrium is 0.25%.

These examples are instructive for several reasons. First, suppose the welfare-enhancing
tax policies resulting from this example were imposed on such an economy. An independent
observer of this economy would see that the government is certainly imposing a distortional
tax/transfer policy between firms that certainly looks like the government is “picking win-
ners and losers”.26 Not only that, but this policy would reduce the growth rate. All of this
is true, but it results from the government trying to maximize welfare, which is what these
policies are intended to do. The reason this policy improves welfare is that the planner
is recognizing that the level of research, as well as the rate of firm exit (or destruction)
is something that needs to be altered, and this is an important economic variable to be
considered.

Additionally, this last example illustrates other novel features. In nearly all models
with intertemporal spillovers for research, the optimal policy is to subsidize research to take
advantage of this externality. However, in this last example there is such a spillover, but
nevertheless it is welfare-enhancing to reduce research. What is missing from other models
in the existing literature is that they do not have a destruction (or firm-exit) decision that
is both endogenous and autonomous. In this last example the planner is using this feature,
but reducing the amount of destruction, and to some extent this offsets the reduction in
research (through equation (32)), and changes the incentive to engage in research. This
example shows that by ignoring the endogenous exit behavior of firms, or omitting the
destruction feature, much of the existing literature is ignoring an important feature that
contributes to the incentives for innovation and growth.

8 A Note on the Welfare Benefits of Increased Growth

Another noteworthy feature of this model is how welfare costs are created. With linear
preferences, it is easy to establish that the consumption equivalent benefit from raising
the growth rate from  to 0, when the rate of time preference is , is determined by the
following equation

0 − 

 − 0
 (43)

So, in the first example, when  = 07, and the growth rate rises from 3% to 327%, equation
(43) would imply a welfare benefit of 7.24%. But, as mentioned above, the welfare benefit

26But since such a government policy is known in advance, it no more constitutes “picking winners and
losers” than does a progressive or regressive tax code.
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is actually only 16% - which is substantially lower. In the second example, the growth rate
falls from 1.36% to 1.3%. Equation (43) would imply a welfare cost of 1.1% but in actuality

welfare rises by .25%̇. How could these welfare measures by so different? The reason lies in
recognizing that the change in the growth rate affects different agents in different ways. An
increase in the growth rate increases the welfare of workers, but it reduces the welfare of
firm-owners, by increasing the rate at which their profit or consumption falls. Furthermore,
the increase in the welfare of the workers is mitigated by the fact that they also wish to be a
firm-owner in the future, and an increase in the growth rate would reduce the welfare benefit
of being a firm-owner.27 Lastly, changing the value of  also changes the composition of
the welfare function (equation (38)), which then affects these calculations.

We have become accustomed to assuming that there can be substantial welfare benefits
from raising the growth rate.28 These examples show that these benefits may be much
different than previously thought.

9 Implications for Immigration Policy

It is interesting to note that this model may have implications for immigration policy.
Consider a policy a “guest worker” program wherein the government admits some workers
into the economy, and these workers can only work - they cannot obtain and run a firm.
These workers then receive wage income which can be consumed (or repatriated to their
home country; it really does not matter). In this case this would raise the supply of labor
() in equation (3). This will result in a lower level of wages for all workers, which will
lower the value function for a worker ( ). This will raise the return to innovation, and
result in a higher level of . As long as this does not result in too big a drop in the number
of domestic workers, this can then raise the growth rate. On the other hand, if the number
of domestic workers does indeed fall, then it is conceivable that the growth rate would also
fall.

10 Final Remarks

It is an accepted fact of life that a growing economy is organic in nature, and exhibits a
continual birth and mortality of products and technologies. Yet most studies of economic
growth fail to model the decisions that give rise to these phenomena, and therefore cannot
assess whether these decisions are made optimally.

Integral to the study of optimal growth is the determination of the optimal incentives for
agents to seek innovations of new technologies. Some of these incentives reflect the ability

27 It might seem that this discussion is ignoring the effect that research effort is having on disutility through
the  (·) function in equation (7). It turns out that this effect is of a secondary or minimal size. In fact, for
the first example, the allocations from the planning problem results in reduced total research because there
are fewer workers. This factor increases total welfare. Despite this the welfare gain is much lower than the
gain resulting from equation (43).
28And these benefits from increased growth are typically largest for the case of linear utility, considered

here. The reason is that with concave utility the welfare benefits are reduced by the diminishing marginal
utility, or equivalently, the higher interest rate. If the examples here indicate that the welfare benefits in the
case with linear utility have previously been overstated, then it would seem that these benefits in the case
of concave utility have also been exaggerated.
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for innovators to capture some of the market share, or resources of older incumbents. This
frequently means that the innovation process leads to the eventual termination of older
technologies. It can then be a mistaken step of logic to conclude that the destruction of
older technologies is an unfortunate by-product of innovation. The analysis presented above
shows why this is not the case, and instead both the creation and the destruction effects
have mutually beneficial and detrimental effects. The study of optimal growth, and the
development of the optimal incentives to obtain this growth rate, must weigh the different
impacts of these decisions. This paper has used a relatively simple model to attempt to
describe these channels. It was shown that the design of welfare-enhancing policies must take
into consideration not just the appropriate amount of innovation, or entry of new firms, but
also the apposite rate of destruction, or exit of old firms. By disregarding this last feature,
existing models of growth are ignoring an important observation, and consequently this may
result in suggesting policies that are far from optimal.

Much of the existing literature focuses on developing the proper incentives for innovation
alone, which would then result in an optimal growth rate. What this literature ignores, and
what the analysis of this paper shows, is that it is equally important to provide the proper
incentives for the optimal retirement or exit of older firms or technologies, since the exit and
innovation decisions are interrelated. This analysis also suggests that the ideal government
policy in this model may be quite different from that is most existing growth models. For
example, there may be good reasons for imposing tax or subsidies that depend on the
productivity (or profit) of the firm, in order to provide the correct incentives for innovation
or exit. Also, the presence of an intertemporal spillover need not necessarily imply that
there is too little innovation (and growth) in equilibrium.

Characterizing optimal government policies in such an economy can be a very tricky
business, since designing the proper incentive scheme in an environment with interrelated
decisions can be a delicate matter. As has been shown, in this environment there can be
considerable welfare gains from adopting certain government policies. But unless the policy
maker knows the exact parameters and structure of the environment, there is a potential
of implementing the wrong incentives. Furthermore, there can also be considerable welfare
losses from implementing the wrong policies.
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11 Appendix A

Here it is shown that equations (15) - (17) characterize the solution to equation (12). First,

note that since 
 log

¡

¢
= , and  () =  ()

1
1− . As described in the text, since the

profit functions, the wage function, and the function ( ) are all homogenous of degree
one in , it follows that the value functions for the optimization problems will then be
homogeneous as well. It follows that the value function (equation (12)) for a firm-owner
with relative technology () can be written as follows

 ()
¡
̄
¢
=

Z 


−(−)

³¡
̄
¢
(−)

´
 ()

1
1− + −(−)

³
̄

(−)
´
 (44)
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and so dividing by ̄ results in

 () =

Z 


−(−)

³
(−)

´
 ()

1
1− + −(−)

³
(−)

´
 (45)

Since
³
̇


´
= −, this last expression can be written as

 () =
 ()

1
1−

 +
³


1−

´
h
1− −(−)(+(


1−))

i
+

³
(−+)(−)

´
 (46)

where  is the exit date for the firm. By choosing this date  optimally, this yields the
following exit condition:

 ( )
1

1− = ( − ) (47)

From equation (6), since the remaining lifetime of a firm with relative technology ()
must satisfy

 −  =
ln ()− ln ()




In general for a firm with relative technology () equation (46) must then satisfy

 () =


 +
³


1−

´
h
()

1
1−
i
+

µ




¶−(1)(−)
− 

 +
³


1−

´
∙
()




+( 

1−)
¸
()−()+1

(48)
which then can be written as

 () = 1 ()
1

1− + 2 ()
−()+1

where for any  ∈ [ 1]

1 =


 +
³


1−

´

2 =
h
 − 1

h
()(

1
1−)

ii
()(1)(−)  0

It is easy to see from equation (48) that the following value matching condition must hold

 () = . (49)

The optimal exit condition (equation (47)) can also derived by choosing the optimal value
of (). Maximizing the value function in equation (48) with respect to () also leads to the
condition in equation (47).

The smooth-pasting condition is derived by taking the derivative of equation (45) with
respect to , and evaluate the result at  =  .29 Then, using equation (47) yields the fact
that ̇ = ̇  The latter functions are the technology-normalized value functions (i.e.

29Equivalently, one could take the derivative of equation (48) with respect to , and evaluate the result at
 =  See Stokey [17] for an explanation of the necessity of this condition.
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divided by ). Figure (1) may be a little deceptive because this figure shows the actual
value functions:  (), and  , rather than  (), and  . These functions are growing
at the rate of  when the two functions equal each other.

Another way to characterize the value function of a new firm-owner is to note that since³
̇


´
= −, for the case of a firm-owner with a new technology at  = 0, equation (45) can

be written as follows:

 (1) =

Z ∞

0
− () ()

1
1− + −

¡
−

¢
−
Z ∞


− () ()

1
1− 

=

Z ∞

0
− ()

¡
−

¢ 1
1− + −

¡
−

¢
− ( )

1
1−

Z ∞


− ()

¡
−

¢ 1
1− 

=

Z ∞

0
− (

)
−
1− + −

¡
−

¢
− −

¡

¢
( )

1
1−

Z ∞

0
− (

)
−
1− 

=


 +
³


1−

´ + −(−)

⎡
⎣ −  ( )

1
1−

 +
³


1−

´

⎤
⎦ 

The first term on the right side of this last expression is the discounted value of profits

from running the firm forever, given that the profits are falling at the rate of
³


1−

´
. Next,

the term −(−) , reflects that fact that at some future date  , which is chosen optimally,
the firm will be shut down. At that date the firm will have relative technology denoted
by  . By shutting down the firm at that date the firm-owner will be giving up a future

profit stream, the value of which is ( )
1

1−

+( 
1−)

 But the firm-owner benefit from switching to

becoming a worker because the value of doing so exceeds that of keeping the firm operational

forever (i.e.    ( )
1

1− ).

12 Appendix B

In this section a description of the welfare-enhancing consumption streams is provided.
In this case define the productivity-adjusted consumption level for a firm-owner with

relative technology () as follows:

 () = Φ
³

1+
1−
´
 (50)

where Φ and  are constants to be determined below. This formulation then implies a
growth rate of

̇ ()

 ()
≡ ̂ =

µ
1 + 

1− 

¶
̇




In the basic version of the model Φ = 1, and  = 0. With this modification of the model in
mind, following the logic of the basic model, the value function, the productivity-adjusted
value function for a firm-owner with relative technology () as

 () = 1 ()
1+
1− + 2 ()

−()+1 
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where

1 =
Φ

 +
³

̂
1−

´

2 =
h
 − 1

h
()(

1+
1−)

ii
()(1)(−)  0

Letting  denote the productivity-adjusted consumption of a worker, the value function
for such a worker is given by

 =
 −  (∗) +  (∗)

³
̂ (1)

´

[ −  +  (∗)]


The optimal cut-off or shutdown condition is modified to now be

()
1+
1− =

( − )




The optimal research or innovation condition is unchanged from the benchmark model:

0 () = 0 ()
h
̂ (1)−

i


The government must choose the level of , and the path or function  (), for  ∈ [ 1],
subject to the resource constraint:

 +

Z 1


 ()  ()  =




= 

h
1− 

1
1−
i


in order to maximize welfare (42). However, given the formulation in equation (50), choosing
a path for  () is really synonymous with choosing the parameters Φ and . Therefore,
the welfare-maximizing solution is derived by conducting a parameter search for these two
parameters. By permitting values of Φ both above and below unity, and values of  that
range from -.50 to +.80, permits either a regressive or progressive tax regime. Different
parameter values then give rise to alternative values for the endogenous variables, such as
the equilibrium growth rate, profit, et cetera.

If  = 0, and 0  Φ  1, then this amounts to a constant or flat tax on profits. If   0
(resp.  0) then the tax is progressive (regressive), because it increases in income, or falls
as relative productivity () falls.

36


























