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Abstract

This paper proposes a fully nonparametric test for cointegrating rank which does not require esti-

mation of a vector autoregressive model. The test exploits the fact that the degeneracy in the moment

matrix of the variables with mixed integration order corresponds to the notion of cointegration. With

an appropriate standardization, the test statistics are shown to have a nuisance parameter free limiting

distribution and to be consistent under reasonable conditions. Monte Carlo experiments also suggest

that the performance of the test is satisfactory with a moderate sample size. The proposed tests are

applied to the stochastic growth model using the U.S. aggregate data.
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1 Introduction

Since Engle and Granger�s (1987) seminal contribution, determining the number of cointegrating relations

in a set of integrated series has received considerable attention from researchers. The most frequently used

test in application is Johansen�s (1991) likelihood ratio (LR) test based on the parametric estimation of

a vector autoregressive (VAR) model. This test utilizes the technique of reduced rank regression since

cointegration corresponds to the reduced rank in the Þrst order VAR coefficient in the error correction

format. Unlike the residual-based test using single equation cointegrating regression, this LR test has a

preferable normalization-free property. However, since the procedure requires the assumption of a correctly

speciÞed Þnite order VAR process, the performance of the test is known to be sensitive to the misspeciÞ-

cation.1 To allow for more general dependency, Saikkonen and Luukkonen (1997) have employed the VAR

approximation with lag length that increases to inÞnity with a rate slower than the sample size. With such

a modiÞcation, the test can be justiÞed to have a nuisance parameter free limit distribution.

This paper proposes an alternative means of determining the cointegrating rank in a partially nonsta-

tionary multivariate system with general dependence. The distinctive feature of the new test is that the

test does not require estimation of a VAR model.2 The test exploits the well-known fact that the number of

cointegrating vectors is identical to the degree of degeneration in the space spanned by the sample moment

matrix in the limit. This idea of using the degeneracy of the variance matrix was Þrst employed by Phillips

and Ouliaris (1990) in the context of testing the no cointegration hypothesis ( bPz test in their notation).
As emphasized in their paper, such a variance matrix-based test also has the normalization-free property.3

1The sensitivity to the misspeciÞcation is reported in many simulation studies, including Boswijk and Franses (1992),
Cheung and Lai (1993), Bewley and Yang (1995b), Ho and Sorensen (1996), and Haug (1996).

2VAR-based procedures other than Johansen�s (1991) LR test include Stock and Watson�s (1988) common trend test, a
canonical correlation type test by Bewley and Yang (1995a), the FM-VAR rank test by Quintos (1998), and Snell�s (1999)
test with the replaced null and alternative hypotheses.

3This normalization-free property follows from the fact that it uses an idea related to the residual from the orthogonal
regression, which does not distinguish dependent variables from independent variables. See Phillips and Ouliaris (1990), p
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We consider the possibility of using the variance matrix for determining the cointegrating rank, which was

not explicitly discussed in their paper.

The test statistic is simply based on a standardized version of the inverse of the sample variance

matrix, and therefore it can easily be calculated. Unlike the VAR-based tests, it is a fully nonparametric

cointegration test for the following two reasons.4 First, it utilizes the degeneracy in the sample variance

matrix rather than the degeneracy in the Þrst order VAR coefficient estimates. Second, for the purpose

of eliminating the effect of dependency in the limiting distribution, the sample moment is standardized

using the nonparametric long-run variance estimation rather than lags in VAR models. Since the long-run

variance is deÞned by the spectral density at frequency zero (multiplied by a constant), this second aspect

is analogous to the choice between the nonparametric spectrum estimation and the autoregressive spectrum

estimation without kernel smoothing.5 Using the properties of nonparametric spectrum estimation for both

differenced [or I(0)] and overdifferenced [or I(−1)] variables available in the literature (Hannan, 1970, and

Phillips, 1995), we show that the test statistic based on the eigenvalues follows a familiar matrix unit root

distribution in the limit under the null hypothesis of a speciÞed cointegrating rank.6

Our test can also be interpreted as a multivariate version of the nonparametric variance ratio test for a

unit root. This view is in contrast to the fact that the VAR-based test of Johansen (1991) and Saikkonen

and Luukkonen (1997) can be interpreted as a multivariate augmented Dickey-Fuller (ADF) test.7 The

von Neumann (VN) ratio, the ratio of the sample variances of the Þrst differences and the levels of a time

172.
4Recently, another nonparametric cointegrating rank test was proposed by Bierens (1997). The advantage of our procedure

is the simplicity in both the test statistic and its limit distribution.
5See Robinson and Velasco (1997) and Parzen (1983) for the general discussions of the nonparametric spectrum estimation

method and the autoregressive spectrum estimation method, respectively.
6The test statistics by Stock and Watson (1988), Harris (1997) and Snell (1999) require estimation of the I(0)/I(1)

subsystems. For this purpose, they utilized principal components analysis which requires the eigenvalues of sample variance.
In contrast, our approach employs the eigenvalues of a standardized version of the inverse of the sample variance and uses
them directly as a test statistic.

7 In this context, the semiparametric version of Stock and Watson (1988) test is a multivariate Z test of Phillips (1987).
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series, was Þrst applied to test the random walk hypothesis by Sargan and Bhargava (1983). In a later

work, Nabeya and Tanaka (1990) pointed out that the iid error assumption can be relaxed to allow for

serial dependence without altering the limit distribution of the VN ratio if a nonparametric correction

term is introduced. Alternatively, the modiÞed VN ratio can be also constructed by simply replacing the

numerator with a sample long-run variance of the differenced [or I(0)] variables, and the ratio obtained

corresponds to our proposed test statistic in the scalar case. Furthermore, given the fact that the sample

variance and the sample long-run variance of an integrated variable have the same limiting distribution

with different rates of convergence (Phillips, 1991, and Corbae, Ouliaris and Phillips, 1999), we can also

construct a variant of the VN ratio by replacing the denominator with the sample long-run variance of the

level [or I(1)] variables. This idea is the basis of our second test statistic for cointegrating rank.

The remainder of the paper is organized as follows: Section 2 explains the model and assumptions.

In Section 3, two types of cointegrating rank tests are introduced and their asymptotic properties are

examined. Section 4 reports Monte Carlo results regarding the Þnite sample behavior of the test. The

comparisons with parametric and semiparametric procedures are also provided. Section 5 reports the

results of the test of the stochastic growth model as an empirical application of our procedure. Some

concluding remarks are made in Section 6. All the proofs are presented in the Appendix.

Throughout this paper, we use the symbols � d→� and � p→� to signify convergence in distribution and

convergence in probability, respectively. The inequality �> 0� denotes positive deÞnite when applied to

matrices. All the limits in the paper are taken as the sample size T →∞.
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2 Model and assumptions

Let {zt}∞t=1 be an n-vector process generated by

zt = zt−1 + ξt (1)

where {ξt}∞t=1 is a n-vector stationary innovation sequence and zt is initialized at t = 0 with z0 = 0.

Cointegration can be understood as a singularity of the long-run variance matrix of ξt deÞned by Ωξξ ≡P∞
k=−∞E

¡
ξkξ

0
0

¢
. In other words, zt is cointegrated if there exist cointegrating vectors which lie in the

null space of Ωξξ.

For convenience, we assume ξt to be a linear process and express cointegration as a singularity restriction

on the long-run moving average coefficient of the linear process.

Assumption EC (Error Condition):

(a) ξt = C(L)εt =
P∞
j=0Cjεt−j, C0 = In.

(b) εt is iid with zero mean, variance matrix Σεε > 0, Þnite fourth order cumulants, and εs = 0 for

s ≤ 0.

(c)
P∞
j=0 j

2 kCjk < B <∞ where kCjk ≡ tr(C 0jCj)
1/2.

(d) H = [H1 : H2] is an orthogonal matrix where H1 is a n× r matrix and H2 is a n× (n− r) matrix

such that H 0
1C(1) = 0, and rank(H

0
2C(1)) = n− r, 0 ≤ r ≤ n. (If r = n, we take H = H1 = In, if r = 0,

we take H = H2 = In.)

(e)[C∗(1)0H1 : C(1)0H2] is nonsingular, where C∗(L) =
P∞
j=0C

∗
jL

j and C∗j = −
P∞
i=j+1Ci. (This also

implies the nonsingularity of C∗(1) for r = n, and the nonsingularity of C(1) for r = 0.)

EC (d) implies that zt has r cointegrating vectors (the columns of H1) and n− r unit roots. Using H,
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we can rotate zt into I(0)/I(1) subsystems as

zt ≡ H 0zt =

 H 0
1zt

H 0
2zt

 =
 z1t
z2t

 =
 I(0)
I(1)

 r

n− r
. (2)

Since EC (c) ensures the validity of decomposing zt into the stochastic trend and stationary components

using C(L) = C(1) + (1 − L)C∗(L) as in Phillips and Solo (1992, p.985), the transformed system can be

rewritten as

z1t = H0
1C

∗(L)εt = u1t (3)

∆z2t = H0
2C(L)εt = u2t (4)

with variance and long-run variance matrices of ut = (u01t, u02t) written as

Σuu =

 Σ11 Σ12

Σ21 Σ22

 > 0, Ωuu =

 Ω11 Ω12

Ω21 Ω22

 > 0, (5)

respectively. Note that the positive deÞniteness of the long-run variance matrix follows from EC (e).

Under Assumption EC, the multivariate version of the limit theory for linear processes developed by

Phillips and Solo (1992) can be used in our analysis, including the functional central limit theory. For

example, for s ∈ [0, 1], T−1/2
P[Ts]
t=1 u2t

d→ B2(s) ≡ Ω
1/2
22 Wn−r(s) where [Ts] signiÞes the integer part

of Ts and Wn−r(s) denote an (n − r)-vector standard Brownian motion. (When there is no ambiguity,

dimensional subscripts will be omitted to simplify the notation. We also write integrals with respect to

Lebesgue measure such as
R 1
0 W (s)ds by

R 1
0 W (s) or

R 1
0 W .)

As pointed out by Engle and Granger (1987, p. 260), when both I(0) and I(1) elements appear in the
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system, the sample variance matrix of zt deÞned by Mzz ≡ T−1
PT
t=1 ztz

0
t with the additional normalizer

1/T degenerates in the limit. This can be seen using the sample variance matrix of the transformed data

zt since

T−1Mzz = T
−2

TX
t=1

 z1tz1t0 z1tz2t
0

z2tz1t
0 z2tz2t

0

 d→

 0 0

0
R 1
0 B2B

0
2

 . (6)

Similarly, the singularity in the long-run variance matrix of ∆zt (namely, Ω∆z∆z = Ωξξ) and in its

consistent estimator (bΩ∆z∆z) can be understood using those of transformed data ∆zt (Ω∆z∆z and bΩ∆z∆z)
since

bΩ∆z∆z p→ Ω∆z∆z =

 Ω∆u1∆u1 Ωu2∆u1

Ω∆u1u2 Ωu2u2

 =
 0 0

0 Ω22

 (7)

where three zero submatrices follows from ∆u1t being an I(−1) process and Ωu2u2 = Ω22 follows from the

deÞnition in (5).

In this paper, we employ the kernel estimator of the long-run variance matrix of ∆zt given by

bΩ∆z∆z = T−1X
j=−T+1

w(j/K)bΓ∆z∆z(j), bΓ∆z∆z(j) = T−1Σ0∆zt+j∆zt0 (8)

where w(·) is a kernel function, K is a bandwidth parameter and Σ
0
signiÞes summation over 1 ≤ t,

t + j ≤ T . The class of kernels in our analysis is similar to the one employed by Phillips (1995), and is

assumed to satisfy the following condition:

Assumption KL (Kernel Condition): The kernel function w(·) : R→ [−1, 1] is a twice continuously

differentiable even function with:

(a) w(0) = 1, w0(0) = 0, w00(0) < 0; and either

(b) w(x) = 0, |x| ≥ 1, with lim|x|→1w(x)Á(1− |x|)2 =constant, or
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(b�) w(x) = O(x−2), as |x|→ 1.

In the subsequent section, we examine the asymptotic properties of two simple nonparametric tests for

cointegrating rank based on T−1Mzz and bΩ∆z∆z.

3 Test statistics

We consider testing the following hypotheses about the cointegrating rank of the n variable system,

H0 : r = s, H1 : r > s

where 0 ≤ s < n. Let λi (A) be the i-th largest eigenvalue of a matrix A. Our Þrst test statistic is

P (n, s) = T
nX

i=s+1

bλi (9)

where bλi = λi

³bΩ∆z∆zM−1
zz

´
. Since bλi�s are the eigenvalues in descending order, we expect that P (n, s)

consists of n− r zero eigenvalues of bΩ∆z∆zM−1
zz in the limit under the null hypothesis.

For the no cointegration hypothesis (r = 0), P (n, s) can also be written as T tr
³bΩ∆z∆zM−1

zz

´
. The

important difference between the present test statistic and the original Phillips-Ouliaris bPz test statistic is
in the selection of standardizing matrix. Instead of bΩ∆z∆z calculated from the Þrst differences, the original
bPz test employs bΩbξbξ based on the residuals from the Þrst order vector autoregression zt = bΦzt−1 + bξt.
Such a residual-based long-run variance matrix estimator converges to a nonsingular matrix even in the

case of cointegration and thus is a convenient approach in establishing the consistency of the test for no

cointegration hypothesis. On the other hand, we allow the degeneracy in the limit of bΩ∆z∆z as well as the
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degeneracy in the limit of T−1Mzz.8

Let us next consider a sample long-run variance matrix of the level series zt , or bΩzz, obtained from (8)
with ∆zt and K replaced by zt andM . In the same manner as for the normalized sample moment T−1Mzz

[see (6) above], we can show that the normalized sample long-run variance matrix (MT )−1bΩzz converges
to a (random) singular matrix. This similarity leads to the possibility of constructing another test statistic

using bΩzz in place of Mzz in (9). Our second test statistics for cointegrating rank is deÞned as

P ∗(n, s) =MT
nX

i=s+1

λ∗i (10)

where λ∗i = λi
³
wbΩ∆z∆zbΩ−1zz ´ and w = R∞−∞w(s)ds.9 If M is set to unity with a kernel satisfying w = 1,

then P ∗(n, s) reduces to P (n, s). This second test may therefore be viewed as a generalization of the Þrst

test.

The main result of the paper is stated in the following theorem:

Theorem 3.1: Suppose that {zt}∞1 is generated by (1) and assumptions EC and KL are satisÞed.

In addition, let P (n, s) use bandwidth K = k0T
k with k0 > 0 and k ∈ (0, 1/2). Also let P ∗(n, s) use

bandwidths K = k0T
k and M = m0T

m with k0,m0 > 0, k ∈ (0, 1) and m satisfying


0 ≤ m < 2k for k ∈ (0, 1/3]

0 ≤ m < (k + 1)/2 for k ∈ (1/3, 1/2]

2k − 1 < m < (k + 1)/2 for k ∈ (1/2, 1).

8We do not use the residual-based estimator bΩbξbξ in our test statistics because such a test does not satisfy the assumption
required in Lemma A.1 in the Appendix.

9For example, w for Parzen, Tukey-Hanning and QS kernels are 3/4, 1, and 5/4, respectively.
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(a) Under H0,

P (n, s), P ∗(n, s) d→ tr

(µZ 1

0
Wn−rW 0

n−r

¶−1)
.

(b) Under H1,

(K2/T )P (n, s)
p→ −w00(0)

rX
i=s+1

λi
¡
Ω11Σ

−1
11

¢
> 0, and

(K2/MT )P ∗(n, s) p→−ww00(0)(r − s) > 0.

Remarks: (a) Part (a) of Theorem 3.1 shows that the two proposed test statistics have the same

limit distribution under the null hypothesis, while part (b) shows that both tests are consistent and test

statistics diverge at the rate of Op(T 1−2k) for P (n, s) and Op(T 1+m−2k) for P ∗(n, s) under the alternative.

It should be noted that P (n, s) requires the expansion rate of the bandwidth K to be slower than T 1/2

to establish the consistency of the test. The optimal growth rate of the bandwidth [for I(0) variables]

given in Andrews (1991) is k = 1/(2q + 1) where q is the characteristic exponent of the kernel. Since the

characteristic exponent under assumption KL is 2, we can establish the consistency of P (n, s) by using

the optimal rate k = 1/5. On the other hand, for P ∗(n, s), the expansion rate of the bandwidth, k, can

be any value between 0 and 1 if an appropriate choice of m is made. From the allowable combination

of k and m given in Theorem 3.1, it can easily be seen that we can simply set m = k without imposing

any restrictions [with the rate of divergence under the alternative given by Op(T 1−k)]. This seems to be a

convenient choice in practice. Alternatively, we can choose m which gives the maximum rate of divergence

under the alternative. For example, a combination of k = 1/5 and m = 2/5− ², with ² being an arbitrarily

small number, gives Op(T 1−²) as the rate of divergence under the alternative.10 It should also be noted

10This example has been suggested by a referee.
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that the asymptotic results of Theorem 3.1 are derived using the class of kernels satisfying Assumption KL

which include the Parzen, Tukey-Hanning and quadratic spectral (QS) kernels. In fact, we can relax the

assumption and employ other types of kernels, e.g., the Bartlett kernel, while maintaining the consistency

of the test. However, in such a case, the asymptotics in Theorem 3.1 should be modiÞed as well as the

choice of the expansion rate of the bandwidth discussed above.

(b) Instead of investigating the rate of divergence under the Þxed alternative ofH1, we can also consider

the local asymptotic power of the tests. For example, suppose we use the local alternative hypothesis of

n− r roots close to unity given in Phillips (1988, p.1029), and replace (4) by

z2t =
¡
In−r + T−1C

¢
z2t−1 + u2t (11)

where C =diag(c1, . . . , cn−r). Then, W (s) given in the Part (a) of Theorem 3.1 is replaced by the matrix

diffusion process JC(s) ≡
R s
0 exp{(s−t)C}dW (t). This outcome implies that both P (n, s) and P ∗(n, s) have

the same local asymptotic power despite the fact that they behave differently under the Þxed alternative.

Furthermore, this result can be used in comparison with the asymptotic power function of the VAR-based

test obtained by Johansen (1995, ch. 14) and Saikkonen and Lütkepohl (1999). For the scalar case, Elliott,

Rothenberg and Stock (1996, Þgure 1) have shown that both the VN ratio and the Dickey-Fuller type tests

for a unit root have power functions which are almost identical to the power envelope under the assumption

of no deterministic component.11 Since the power functions of our tests and the VAR-based tests are simply

their multivariate generalizations, both types of tests are expected to have similar asymptotic local powers.

(c) As in other cointegrating rank tests, our test statistics can be extended to allow for a more general

11See also Stock (1994) for explicit distribution of these two unit root tests under the local alternative.
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model with a deterministic trend. In place of (1), suppose that {zt}∞1 is generated by

zt = Γxt + z
s
t , zst = z

s
t−1 + ξt (12)

where xt = (1, t, . . . , tp)0 is a p-th order polynomial deterministic trend. If we employ the traditional method

of detrending and replace zt by the residuals from regression zt on xt, then W (s) in part (a) of Theorem

3.1 is replaced by the detrended Brownian motion process WX(s) ≡ W (s) − R 10 WX 0
³R 1
0 XX

0
´−1

X(s)

where X(s) = (1, s, . . . , sp)0. The percentiles of the limiting distribution for the constant case where xt = 1

and the linear trend case where xt = (1, t)0 as well as the case of no deterministic trend are available in

Phillips and Ouliaris (1990, tables 4a to 4c).12 Since these three cases are used in most applications, their

small sample properties will be considered in the next section. Hereafter, we denote the demeaned and the

detrended version of the test statistics by subscripts µ and τ , respectively.

An important contribution of Bhargava (1986) is that he performed the detrending after taking the Þrst

difference in the VN ratio test for a unit root. Such an approach to detrending turned out to be efficient

under the null hypothesis since it eliminates the redundant trend variable. Using a similar detrending

method in our cointegrating rank test is not simple, but possible. For example, let us Þrst transform the

data to I(0)/I(1) subsystems (3) and (4) based on a consistent estimate of H in an approach analogues to

Stock and Watson (1988). Second, we conduct detrending separately using the usual approach for (3) while

using the Þrst difference detrending method for (4) and calculate the test statistic using both detrended

series together.13 If we employ this semiparametric variant of our test, then, W (s) in part (a) is now

12To be precise, since Phillips and Ouliaris� tables are expressed in terms of the number of independent variables in the
cointegrating regression, they cover dimensions from two to six. See the footnote of Table 1 in the present paper for the
one-dimensional case.
13There are several different ways to conduct the Þrst difference detrending in cointegrated systems. See Lütkepohl and

Saikkonen (2000), for example. Alternatively, we can also employ the local GLS detrending which is efficient under the speciÞc
local alternative using an analogy to the DF-GLS test proposed by Elliot, Rothenberg and Stock (1996).
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replaced by the generalized Brownian bridge process VX(s) ≡W (s)−
R 1
0 dW

eX 0
³R 1
0
eX eX 0

´−1 R s
0
eX(t) where

eX(s) = (1, s, . . . , sp−1)0.14 Furthermore, we can also investigate the asymptotic properties of various types
of detrended tests under the local alternatives. Let us denote the Þrst difference detrended test for the

linear trend case with xt = (1, t)0 by subscript eτ . When the null hypothesis is r = n − 1, the simulation
results of Elliott, Rothenberg and Stock (1996, Þgures 2 and 3) imply that Pµ(n, s) and Peτ (n, s) uniformly
have higher local power than those of the VAR-based cointegrating rank tests. We can expect that the

same is true for other cases.

4 Experimental evidence

Since the testing procedure developed in the previous section is based on asymptotic theory, it is of interest

to examine its performance with sample sizes that are typical for economic time series. For this purpose,

this section reports the result of a Monte Carlo experiment designed to assess the small sample properties

of the proposed test. In addition, comparisons with VAR-based tests � Johansen�s (1991) LR test and

the semiparametric version of Stock and Watson�s (1988) test (hereafter the SW test)� are provided.

Consider the following bivariate VAR(1) model with iid errors:

z1t = φ1z1t−1 + ε1t,

z2t = φ2z2t−1 + ε2t

(13)

where εt = (ε1t, ε2t)
0 ≡ iidN(0, I2) and z1,0 = z2,0 = 0. The true cointegrating rank of this model is

14Such an approach is semiparametric in the sense that it requires the parametric estimation of H. Schmidt and Phillips
(1992) have pointed out that the Lagrange multiplier (LM) principle leads to the VN ratio test for a unit root with Þrst
difference detrending. Recently, a parametric version of the LM type unit root test has been extended to the cointegrating
rank test by Lütkepohl and Saikkonen (2000). In the special case where the null hypothesis is r = n−1, the limit distribution
of Lütkepohl and Saikkonen�s test is identical to that of our test up to a multiplicative constant. In general, however, the two
tests have different asymptotics.
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controlled by the number of ones in the pair of the parameters (φ1,φ2).
15 We Þrst investigate the small

sample size of the test for the null hypothesis r = 0 with (φ1,φ2) = (1.0, 1.0) and for the null hypothesis

r = 1 with (φ1,φ2) = (1.0, 0.0) using the sample variance of ∆zt as a standardized matrix (or K = 1).

The empirical sizes of P (n, s), Pµ(n, s) and Pτ (n, s) with various nominal levels (1, 5 and 10 percents)

and various sample sizes (T = 100, 200 and 500) are presented in the upper half of Table 1.16 The results

indicate that there are slight size distortions especially with tests for r = 0. However, they become less

severe by increasing the sample size from 100 to 500.

In practice, the determination of cointegrating rank using the LR test is often conducted by successively

testing the hypotheses starting from r = 0. For such a sequential procedure with the signiÞcance level α,

the probability of selecting true rank converges to 1−α while those of selecting the smaller rank converges

to zero.17 This point is discussed in Johansen (1995, ch.12) and the small sample performance of this

procedure using the LR test is investigated in Toda (1995). In line with this approach, we next consider

the performance of the proposed test in terms of a selected cointegrating rank with a sample size of 200,

which is a typical sample size found in macroeconomic data.18

Table 2 shows the relative frequencies of selected ranks using Pµ(n, s) and P ∗µ(n, s) based on the 5

percent signiÞcance level. The Parzen kernel with various choices of bandwidth parameter (K = 2, 4 and

8) is employed. For the additional bandwidth parameter required in P ∗µ(n, s), we simply set M = K. Note

that for the full unit roots case [r = 0 with (φ1,φ2) = (1.0, 1.0)], the theoretical selection frequency for

s = 0 is 0.95. For the cointegrated case [r = 1 with (φ1,φ2) = (0.8, 1.0), (0.9, 1.0) and (0.95, 1.0)], the

15Since both our test and the VAR-based test are invariant to the nonsingular transformation of the data, we can restrict
our attention to I(0)/I(1) subsystems (2) in the simulation without loss of generality.
16All data used in this section were generated using the standard normal (pseudo) random variable generator included in

the GAUSS programming language. Each experiment was replicated 10,000 times to obtain the sampling distribution.
17This implies that the rank selected by the sequential procedure is not consistent. See Lütkepohl and Poskitt (1998) and

Chao and Phillips (1999) for examples of consistent rank selection procedures using various information criteria.
18The basic simulation program for the sequential rank selection procedure was kindly provided by Hiro Toda.
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selection frequencies for s = 0, 1, and 2 are 0.00, 0.95 and 0.05, respectively. Similarly, those frequencies

are 0.00, 0.00 and 1.00, respectively, for the stationary case [r = 2 with (φ1,φ2) = (0.8, 0.8), (0.9, 0.9) and

(0.95, 0.95)]. For the purpose of comparison, the results from the LR test and the SW test based on the

VAR(1) model with a constant regressor are also shown in Table 2.19 Since the VAR model is correctly

speciÞed without serial dependence in the error, these parametric tests have a signiÞcant advantage over

our tests in this simulation design.

There are two notable Þndings from this experiment. First, increasing bandwidth (in this case to

K = 8) generally leads to poor performance of Pµ(n, s). Since the long-run variance is not necessary for

the iid case, this result resembles the over-speciÞed lag length case for the VAR-based method. In contrast,

the result based on P ∗µ(n, s) shows that they are relatively robust to variation in the bandwidths. Second,

with the exception of Pµ(n, s) when K = 8, our proposed test performs as well as the two other VAR-based

tests. In some cases, the performance of our test is better than parametric tests despite the fact that the

parametric model is correctly speciÞed.

An important motivation of our test is that it allows for a general class of data generating processes with

serial dependence. To see this aspect in small samples, we conduct another simulation with the following

experimental design. Consider the same model as before but with MA(1) errors as:

z1t = φ1z1t−1 + ε1t + θε1t−1,

z2t = φ2z2t−1 + ε2t + θε2t−1.
(14)

Similarly to the iid case, we Þrst present the size properties of our test statistics. The lower half of Table

1 reports the empirical sizes of P (n, s), Pµ(n, s) and Pτ (n, s) followed by those of P ∗(n, s), P ∗µ(n, s) and

19To be more speciÞc, Johansen (1991) proposed two different trace tests depending on the assumption on the constant
term; one with no restriction and the other constrained as part of the cointegrating vector. Only tests using the assumption
of no restriction are reported here.
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P ∗τ (n, s). The parameters are same as before except for the MA(1) parameter θ = 0.1, and the bandwidth

parameters K(= M) = 2, 3 and 4 for the sample sizes T = 100, 200 and 500, respectively, used for the

long-run variance estimation with the Parzen kernel. The result shows that there is more size distortion

and a slower convergence of the nominal size to the asymptotic size with increasing sample size than the

iid case. Next, we investigate the small sample properties of the sequential procedure with comparisons to

VAR-based tests when the sample size is 200. Table 3 shows the relative frequencies of selected ranks using

Pµ(n, s), P ∗µ(n, s), the LR test and the SW test with three different pairs of AR(1) parameters (φ1,φ2),

namely, (1.0, 1.0) for the full unit roots case, (0.8, 1.0) for the cointegrated case and (0.8, 0.8) for the

stationary case. The MA(1) parameters, namely θ, are 0.8, 0.5, −0.5 and −0.8 for the Þrst case, and 0.8

and 0.5 for the latter two cases. In addition to the Þxed bandwidth for Pµ(n, s) and P ∗µ(n, s) [only K = 4

case is reported here] and the simple VAR(1) model for the LR test and the SW test considered in the iid

case, data-based methods are employed. To be more speciÞc, the automatic bandwidth selection procedure

suggested in Andrews (1991) is used for the nonparametric test and the semiparametric correction term

for the SW test, while the BIC minimized VAR lag length is used for the LR test.

The result from the MA(1) experiment can be summarized by the following two points. First, for the

Þxed bandwidth case (with K = 4), the two nonparametric tests perform uniformly better than the two

other tests based on the simple VAR(1) model for all parameter values. This result is not surprising since

VAR-based methods are misspeciÞed in this case and their asymptotic distributions are affected by nuisance

parameters caused by serial dependency in the error. Second, for the data-based methods, the performance

of VAR-based methods greatly improve for both the parametric case (LR test) and the semiparametric case

(SW test). In contrast, introduction of automatic bandwidths results in the less favorable performance

of Pµ(n, s) for the r = 1 case. This result is caused by the large value of bandwidths (K being larger

than 10) chosen in this case. At the same time, the performance of P ∗µ(n, s) is relatively unaffected, which
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implies its robustness to the choice of bandwidth. However, one should be cautious about using automatic

bandwidth selection methods in our nonparametric procedure. Since available methods are not designed

for the degenerating case (bΩ∆z∆z) nor the integrated case (bΩzz), they may not be a meaningful way of
selecting bandwidth from the viewpoint of optimality.

5 Empirical application

Based on the simulation results in the previous section, our new test performs as well as other existing tests

with a moderate sample size. In this section, we apply our method to test the implications on cointegrating

rank derived from economic theory.

The stochastic growth model has recently become one of the most widely used approaches in macroeco-

nomics literature [see Campbell (1994) and Cooley (1995), for example]. This model frequently employs

a permanent productivity shock as the main source of economic growth and ßuctuations, and such an

assumption implies the cointegrating rank of the system. We re-examine two different types of stochastic

growth models considered in King et al. (1991) with our new test statistics. The Þrst system consists

of three real variables, namely, output (yt), consumption (ct) and investment (it).20 The theory predicts

that the system zt = (yt, ct, it)
0 should have two cointegrating vectors. The second system includes three

nominal variables in addition to the Þrst three real variables. Additional variables are real money sup-

ply (mt − pt), interest rate (Rt) and inßation (∆pt). The cointegrating rank of this six-variable model

zt = (yt, ct, it,mt − pt, Rt,∆pt)0 should be three according to the model. We use seasonally adjusted,

quarterly U.S. data with the sample period from 1947:2 to 1998:1 giving a maximum sample size of 204

observations.21

20All variables are expressed in logarithms.
21The source of the data and variable construction method are almost identical to those used by King et al.(1991, footnote

5).
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Table 4 presents the results from Pµ(n, s), P ∗µ(n, s), the LR test and the semiparametric version of

SW test. First, we directly test the null hypothesis of cointegrating rank predicted by the model. The

null of r = 2 is not rejected by Pµ(n, s), P ∗µ(n, s) and the SW test, but is rejected by the LR test in the

three-variable system at the 5 percent level of signiÞcance. On the other hand, none of the four tests

reject the null of r = 3 in the six-variable system using the same level of signiÞcance. Therefore, with the

exception of the LR test in the three-variable system, the stochastic growth model is supported by the

single hypothesis testing approach.

Next, we consider the sequential procedure to determine the cointegrating rank of the system, which

imposes a stronger requirement on the model to be tested. At the 5 percent signiÞcance level, the selected

cointegrating ranks by Pµ(n, s), P ∗µ(n, s), the LR test and the SW test are 0, 1, 3, 1 for the three-

variable system and 0, 1, 3, 1 for the six-variable system, respectively. In contrast to the single hypothesis

testing approach with its weaker requirement, only one test out of eight yields a result that supports

the stochastic growth model. Thus, the empirical result in this section provides a good example of how

that our nonparametric cointegrating rank test can provide different conclusions from those obtained with

VAR-based methods.

6 Concluding remarks

This paper has proposed a fully nonparametric approach to testing for cointegrating rank which does

not require the estimation of the VAR model. The Þrst test utilizes the degeneracy of the standardized

sample moment matrix, while the second test uses the degeneracy of the standardized sample long-run

variance matrix. Based on the asymptotic analysis, both types of tests were shown to have a nuisance

parameter free distribution and to be consistent under reasonable conditions. Monte Carlo experiments
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have suggested that the performance of our test is also satisfactory in moderate sample sizes. Furthermore,

both asymptotic and simulation results have shown some advantages in using the second type of the test.

There are several ways in which this work can be extended. They include: (i) inclusion of the trend

break in the trend function and employment of efficient local GLS detrending; (ii) construction of an

optimal bandwidth selection procedure which would be suitable for our nonparametric cointegration test;

and (iii) conducting a Monte Carlo experiment with a more general data generating process or possibly

providing the Þnite sample comparisons of our sequential procedure to other information criterion-based

consistent procedures. These issues remain for future research. Nevertheless, we believe that the proposed

nonparametric procedure in this paper can serve as a useful alternative to the other cointegration tests

available in this literature.
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Appendix

Before proving Theorem 3.1, we state a lemma which gives the condition on a degenerating matrix for the
off diagonal blocks to have an asymptotically negligible effect in the calculation of the eigenvalues.

Lemma A.1: Let

XT =

·
AT T−β1BT
T−β2CT T−αDT

¸
, α,β1,β2 > 0

be an n×n random matrix where the dimensions of AT , BT , CT and DT are (r×r), (r×(n−r)), ((n−r)×r)
and ((n− r)× (n− r)), respectively, and AT is a positive deÞnite matrix (DT can be a singular matrix).
Suppose AT

p→ A > 0, BT
p→ B,CT

p→ C and DT
d→ D where A,B,C are constant matrices and D is a

random matrix.
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If α < β = β1 + β2, then(
λi (XT )

p→ λi (A) for i = 1, . . . , r,

Tαλi (XT )
d→ λi−r (D) for i = r + 1, . . . , n,

and
rX
i=1

λi (XT )
p→ tr (A) , Tα

nX
i=r+1

λi (XT )
d→ tr (D) .

Alternatively, for the normalized version of the same matrix with normalizer Tα,

TαXT =

·
TαAT T γ1BT
T γ2CT DT

¸
where γ1 = α− β1, γ2 = α− β2, the condition is replaced by α > γ = γ1 + γ2.

Proof of Lemma A.1: First, suppose det(T−αDT − λI) 6= 0, then the characteristic equation of XT
in the limit can be written as

det(XT − λI) = det
·
AT − λI T−β1BT
T−β2CT T−αDT − λI

¸
= det(T−αDT − λI)× det

h
(AT − λI)− T−βBT (T−αDT − λI)−1CT

i
p→ 0.

This convergence requires det(AT − λI) p→ 0. Since AT
p→ A > 0, we have λ(XT )

p→ λ(A) > 0 where λ(·)
is an eigenvalue of a matrix.

Next, suppose det(AT − λI) 6= 0, then

det(XT − λI) = det(AT − λI)× det
h
(T−αDT − λI)− T−βCT (AT − λI)−1BT

i
p→ 0.

Note that α < β implies

(T−αDT − λI)− T−βCT (AT − λI)−1BT = (T−αDT − λI) + op(T−α).

Therefore the characteristic equation requires det(T−αDT − λI) p→ 0 implying λ(XT )
p→ 0 and

Tαλ(XT )
d→ λ(D).

Finally, required results follow from the fact that the eigenvalues in the Þrst set are larger than those
in the second set in the limit. 2

Proof of Theorem 3.1: The basic premise of the proof is to show that the standardized inverse of
moment matrix satisÞes the condition given in Lemma A.1. In this proof, upper case letters are used to
denote data matrices constructed from the observations. For example, Z01 = [z11, . . . , z1T ].

P (n, s) part: First we rotate the data with H as

λi

³
T bΩ∆z∆zM−1

zz

´
= λi

³
TH 0bΩ∆z∆zH ×H 0M−1

zz H
´
= λi

³
T bΩ∆z∆zM−1

zz

´
= λi

³
TD−1T bΩ∆z∆zD−1T ×DTM−1

zz DT

´
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where
DT = diag

h
Ir, T

1/2In−r
i
.

Using the results from Hannan (1970) and lemma 8.1 (a) and (b) in Phillips (1995), under assumption
KL, we have the following expression for the Þrst term,

TD−1T bΩ∆z∆zD−1T =

"
T bΩ∆u1∆u1 T 1/2bΩu2∆u1
T 1/2bΩ∆u1u2 bΩu2u2

#

=


· −(T/K2)w00(0)Ω11 + op(T/K2) Op(T

1/2/K2)

Op(T 1/2/K2) Ω22 + op(1)

¸
, for k ∈ (0, 1/3]· −(T/K2)w00(0)Ω11 + op(T/K2) Op(1/

√
K)

Op(1/
√
K) Ω22 + op(1)

¸
, for k ∈ (1/3, 1/2).

For the second term,

DTM
−1
zz DT = TDT

·
Z 01Z1 Z 01Z2
Z 02Z1 Z 02Z2

¸−1
DT

=

·
T (Z 01Q2Z1)−1 −T 3/2(Z01Z1)−1Z 01Z2(Z02Q1Z2)−1
−T 3/2(Z02Q1Z2)−1Z02Z1(Z 01Z1)−1 T 2(Z 02Q1Z2)−1

¸
=

·
Σ−111 + op(1) Op(T

−1/2)
Op(T

−1/2) T 2(Z02Z2)−1 + op(1)

¸
where Qi = I − Zi(Z0iZi)−1Z 0i for i = 1, 2. Combining the results for the Þrst term and the second term
yields

λi

³
T bΩ∆z∆zM−1

zz

´
= λi

µ· −(T/K2)w00(0)Ω11Σ−111 + op(T/K
2) Op(T

1/2/K2) +Op(1/
√
K)

Op(T
1/2/K2) +Op(1/

√
K) Ω22T

2(Z 02Z2)−1 + op(1)

¸¶
where order of off diagonal blocks depend on k. Without loss of generality, suppose k0 = 1. The rate of
expansion for the (1,1) block can then be written as T/K2 = T 1−2k = Tα with α = 1− 2k > 0. Similarly,
let T γ1 and T γ2 be the rates of expansion for the (1,2) and (2,1) blocks, respectively. Since

γ1 = γ2 =

½
1/2− 2k, for k ∈ (0, 1/3]
−k/2 , for k ∈ (1/3, 1/2),

we have

α− γ = α− (γ1 + γ2)
=

½
2k > 0, for k ∈ (0, 1/3]
1− k > 0, for k ∈ (1/3, 1/2).

Therefore, in either case, the condition required in Lemma A.1 is satisÞed. From Lemma A.1 and
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T 2(Z02Z2)−1
d→
³R 1
0 B2B

0
2

´−1
, we have

(K2/T )λi
³
T bΩ∆z∆zM−1

zz

´
p→−w00(0)λi

¡
Ω11Σ

−1
11

¢
for i = 1, . . . , r, and

λi

³
T bΩ∆z∆zM−1

zz

´
d→ λi−r

Ã
Ω22

µZ 1

0
B2B

0
2

¶−1!
for i = r + 1, . . . , n. Under H0,

P (n, s) =
nX

i=s+1

λi

³
T bΩ∆z∆zM−1

zz

´
=

nX
i=r+1

λi

³
T bΩ∆z∆zM−1

zz

´
d→
n−rX
i=1

λi

Ã
Ω22

µZ 1

0
B2B

0
2

¶−1!
= tr

(
Ω22

µZ 1

0
B2B

0
2

¶−1)
= tr

(µZ 1

0
Wn−rW 0

n−r

¶−1)

as required in part (a). Under H1,

(K2/T )P (n, s) = (K2/T )
nX

i=s+1

λi
³
T bΩ∆z∆zM−1

zz

´
= (K2/T )

rX
i=s+1

λi

³
T bΩ∆z∆zM−1

zz

´
+ (K2/T )

nX
i=r+1

λi

³
T bΩ∆z∆zM−1

zz

´
= −w00(0)

rX
i=s+1

λi
¡
Ω11Σ

−1
11

¢
+ op(1)

as required in part (b).

P ∗(n, s) part: We Þrst rotate the data as

λi

³
MT bΩ∆z∆zbΩ−1zz ´ = λi

³
MTH 0bΩ∆z∆zH ×H 0bΩ−1zz H´ = λi ³MT bΩ−1∆z∆zbΩ−1zz ´

= λi

³
MTD−1MT bΩ∆z∆zD−1MT ×DMT bΩ−1zz DMT´

where
DMT = diag

h
Ir, (MT )

1/2In−r
i
.

By the same line of argument used in the proof of P (n, s) part, under assumption KL, we have the
following expression for the Þrst term,

MTD−1MT bΩ∆z∆zD−1MT =
"
MT bΩ∆u1∆u1 (MT )1/2bΩu2∆u1
(MT )1/2bΩ∆u1u2 bΩu2u2

#
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=


· −(MT/K2)w00(0)Ω11 + op(MT/K2) Op((MT )

1/2/K2)

Op((MT )
1/2/K2) Ω22 + op(1)

¸
, for k ∈ (0, 1/3]· −(MT/K2)w00(0)Ω11 + op(MT/K2) Op(

p
M/K)

Op(
p
M/K) Ω22 + op(1)

¸
, for k ∈ (1/3, 1).

Next, from the argument on the asymptotic properties of long-run variance estimator for I(1) series
used in Phillips (1991) and Corbae, Ouliaris and Phillips (1999), we can show that

1

MT
bΩz2z2 d→

µZ ∞

−∞
w(s)ds

¶Z 1

0
B2B

0
2 and

1

M
bΩz2z1 = 1

M
bΩz2u1 = Op(1).

Using these results, we have the following asymptotics for the second term,

DMT bΩ−1zz DMT = DMT
" bΩz1z1 bΩz1z2bΩz2z1 bΩz2z2

#−1
DMT

=

"
(bΩz1z1 − bΩz1z2 bΩ−1z2z2 bΩz2z1)−1

−(MT )1/2(bΩz2z2 − bΩz2z1 bΩ−1z1z1 bΩz1z2)−1bΩz2z1 bΩ−1z1z1
−(MT )1/2bΩ−1z1z1 bΩz1z2(bΩz2z2 − bΩz2z1 bΩ−1z1z1 bΩz1z2)−1

MT (bΩz2z2 − bΩz2z1 bΩ−1z1z1 bΩz1z2)−1
#

=

·
Ω−111 + op(1) Op(

p
M/T )

Op(
p
M/T ) MT bΩ−1z2z2 + op(1)

¸
.

Combining the results for the Þrst term and the second term yields

λi

³
MT bΩ∆z∆zbΩ−1zz ´ = λiµ· −(MT/K2)w00(0)Ir + op(MT/K2) E

F Ω22MT bΩ−1z2z2 + op(1)
¸¶

where

E =

½
Op(M

3/2T 1/2/K2), for k ∈ (0, 1/3] or for k ∈ (1/3, 1) with m ≥ (3k − 1)/2
Op(

p
M/K), for k ∈ (1/3, 1) with m < (3k − 1)/2

and

F =

½
Op((MT )

1/2/K2), for k ∈ (0, 1/3]
Op(

p
M/K), for k ∈ (1/3, 1).

Suppose, without loss of generality, k0 = m0 = 1. By the same argument used in the proof for P (n, s),
with respect to expansion rate for the (1,1) block, we have

α = 1 +m− 2k > 0

if m > 2k − 1. For the off diagonal blocks, we have

γ1 =
1+ 3m

2
− 2k, γ2 =

1 +m

2
− 2k for k ∈ (0, 1/3],

γ1 =
1+ 3m

2
− 2k, γ2 =

m− k
2

for k ∈ (1/3, 1) with m ≥ (3k − 1)/2, and
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γ1 = γ2 =
m− k
2

for k ∈ (1/3, 1) with m < (3k − 1)/2.

When k ∈ (0, 1/3],

α− γ = (1 +m− 2k)−
½µ

1 + 3m

2
− 2k

¶
+

µ
1 +m

2
− 2k

¶¾
= 2k −m > 0

if m < 2k. Similarly, when k ∈ (1/3, 1) with m ≥ (3k − 1)/2,

α− γ = (1 +m− 2k)−
½µ

1 + 3m

2
− 2k

¶
+
m− k
2

¾
=
1

2
−m+ k

2
> 0

if m < (k + 1)/2. Finally, when k ∈ (1/3, 1) with m < (3k − 1)/2,

α− γ = (1 +m− 2k)− 2× (m− k
2

) = 1− k > 0.

Therefore, for all cases, the condition required in Lemma A.1 is satisÞed under the assumption on the
growth rate of bandwidth given in Theorem 3.1. From Lemma A.1, we have

(K2/MT )λi
³
MT bΩ∆z∆zbΩ−1zz ´ p→ −w00(0)λi (Ir) = −w00(0)

for i = 1, . . . , r, and

λi
³
MT bΩ∆z∆zbΩ−1zz ´ d→ λi−r

Ã
Ω22w

−1
µZ 1

0
B2B

0
2

¶−1!
for i = r + 1, . . . , n where w =

R∞
−∞w(s)ds. Under H0,

P ∗(n, s) =
nX

i=s+1

λi
³
MTwbΩ∆z∆zbΩ−1zz ´ = nX

i=r+1

λi
³
MTwbΩ∆z∆zbΩ−1zz ´

d→
n−rX
i=1

λi

Ã
Ω22

µZ 1

0
B2B

0
2

¶−1!
= tr

(µZ 1

0
Wn−rW 0

n−r

¶−1)

as required in part (a). Under H1,

(K2/MT )P ∗(n, s) = (K2/MT )
nX

i=s+1

λi

³
MTwbΩ∆z∆zbΩ−1zz ´

= (K2/MT )
rX

i=s+1

λi

³
MTwbΩ∆z∆zbΩ−1zz ´+ (K2/MT )

nX
i=r+1

λi

³
MTwbΩ∆z∆zbΩ−1zz ´

= −ww00(0)(r − s) + op(1)

as required in part (b). 2
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Table 1
Empirical Size

(1) iid error
Nominal T = 100 T = 200 T = 500
Size P Pµ Pτ P Pµ Pτ P Pµ Pτ

(a) s = r = 0, (φ1,φ2) = (1.0, 1.0)
10.0 8.2 7.5 7.6 8.9 8.7 8.6 9.8 9.8 9.4
5.0 3.6 3.4 3.3 4.1 4.2 4.0 4.5 4.6 4.6
1.0 0.7 0.6 0.4 0.8 0.8 0.6 1.0 0.9 0.7

(b) s = r = 1, (φ1,φ2) = (0.0, 1.0)
10.0 9.2 9.5 8.8 9.7 9.8 9.1 9.6 10.5 10.4
5.0 4.3 4.5 4.0 4.8 4.5 4.3 4.9 5.0 5.1
1.0 0.7 0.8 0.8 0.9 0.9 0.9 0.9 1.0 1.0

(2) MA(1) error with θ = 0.1
Nominal T = 100 T = 200 T = 500
Size P Pµ Pτ P Pµ Pτ P Pµ Pτ

(a) s = r = 0, (φ1,φ2) = (1.0, 1.0)
10.0 4.9 3.7 2.7 6.1 5.0 4.0 8.1 7.1 6.1
5.0 1.9 1.5 0.8 2.7 2.2 1.4 3.6 3.1 2.7
1.0 0.3 0.1 0.1 0.4 0.2 0.1 0.6 0.5 0.3

(b) s = r = 1, (φ1,φ2) = (0.0, 1.0)
10.0 6.5 6.1 4.9 8.1 7.7 6.3 9.2 8.5 7.9
5.0 2.8 2.2 1.9 3.6 3.1 2.4 4.3 4.0 3.3
1.0 0.5 0.3 0.2 0.5 0.4 0.4 0.7 0.6 0.6

Nominal T = 100 T = 200 T = 500
Size P ∗ P ∗µ P ∗τ P ∗ P ∗µ P ∗τ P ∗ P ∗µ P ∗τ

(a) s = r = 0, (φ1,φ2) = (1.0, 1.0)
10.0 7.0 5.3 4.9 9.6 6.9 6.3 12.5 8.4 7.9
5.0 3.2 2.3 1.9 4.5 3.2 2.7 6.0 3.8 3.7
1.0 0.5 0.3 0.2 0.8 0.5 0.4 1.2 0.6 0.5

(b) s = r = 1, (φ1,φ2) = (0.0, 1.0)
10.0 8.4 7.0 6.7 11.7 8.4 7.8 14.4 9.0 9.0
5.0 3.6 2.8 2.9 5.4 3.6 3.4 7.1 4.4 4.0
1.0 0.7 0.4 0.4 0.9 0.6 0.7 1.5 0.7 0.8

Notes: n = 2. P , Pµ, Pτ , P ∗, P ∗µ and P ∗τ represent P (n, s), Pµ(n, s), Pτ (n, s), P ∗(n, s), P ∗µ(n, s) and
P ∗τ (n, s), respectively. Critical values for part (a) are taken from Tables 4a to 4c in Phillips and Ouliaris
(1990). Those for part (b) are obtained by following the procedure described in Appendix B of Phillips
and Ouliaris. 10% (5%, 1%) level critical values for P (n, s), Pµ(n, s) and Pτ (n, s) are 13.0 (17.6, 29.3),
21.5 (27.5, 40.2) and 35.5 (42.6, 56.9), respectively. Parzen kernel is used for the MA(1) error case with
the bandwidth parameters K(=M) = 2, 3 and 4 for the sample sizes T = 100, 200 and 500, respectively.
All numbers are based on 10,000 replications.
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Table 2
Determination of Cointegrating Rank with IID Error

Pµ(n, s) P ∗µ(n, s) LR SW
H0 K = 2 K = 4 K = 8 K = 2 K = 4 K = 8 V AR(1) V AR(1)

(a) r = 0
(φ1,φ2) = (1.0, 1.0)

s = 0 96.3 97.2 98.8 95.3 94.9 94.0 94.7 95.4
s = 1 3.6 2.7 1.2 4.6 5.0 5.8 4.9 4.3
s = 2 0.1 0.1 0.0 0.1 0.1 0.1 0.4 0.3

(b) r = 1
(φ1,φ2) = (0.8, 1.0)

s = 0 0.3 1.9 22.8 0.1 0.4 1.6 2.9 0.3
s = 1 95.5 94.5 74.8 95.4 94.8 93.6 92.0 95.3
s = 2 4.2 3.6 2.4 4.5 4.7 4.8 5.1 4.5

(φ1,φ2) = (0.9, 1.0)
s = 0 36.8 47.4 69.3 31.9 32.9 36.3 55.7 40.8
s = 1 59.9 50.0 29.2 64.6 63.4 60.1 40.3 56.7
s = 2 3.3 2.6 1.5 3.5 3.8 3.6 4.0 2.5

(φ1,φ2) = (0.95, 1.0)
s = 0 78.0 82.7 90.9 74.4 73.8 73.4 84.8 82.0
s = 1 20.8 16.3 8.7 24.1 24.7 25.0 13.6 16.9
s = 2 1.2 0.9 0.5 1.5 1.5 1.6 1.6 1.1

(c) r = 2
(φ1,φ2) = (0.8, 0.8)

s = 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
s = 1 0.0 0.0 0.7 0.0 0.0 0.1 0.0 0.0
s = 2 100.0 100.0 99.3 100.0 100.0 100.0 100.0 100.0

(φ1,φ2) = (0.9, 0.9)
s = 0 0.3 0.8 5.0 0.1 0.3 0.6 4.9 21.9
s = 1 14.2 20.9 37.6 12.4 14.6 20.9 26.9 10.5
s = 2 85.5 78.3 57.4 87.5 85.0 78.5 68.2 67.6

(φ1,φ2) = (0.95, 0.95)
s = 0 35.6 42.0 57.3 32.0 31.8 32.9 62.1 71.8
s = 1 48.6 45.1 35.2 50.2 50.6 50.3 29.1 20.0
s = 2 15.8 12.9 7.5 17.9 17.6 16.9 8.8 8.2

Notes: n = 2, T = 200. Each row shows the relative frequency of selecting the cointegrating rank to be
s by sequential procedure with the 5% signiÞcance level. Bold numbers indicate the frequencies of selecting
the true rank. Critical values for the LR test and the SW test are from Tables 1.1∗ in Osterwald-Lenum
(1992) and from Table 2 in Stock and Watson (1988), respectively. Parzen kernel is used for nonparametric
tests [Pµ(n, s) and P ∗µ(n, s)] with bandwidth K(=M). All numbers are based on 10,000 replications.

28



Table 3
Determination of Cointegrating Rank with MA(1) Error

Pµ(n, s) P ∗µ(n, s) LR SW
θ H0 K = 4 data K = 4 data V AR(1) data V AR(1) data

(a) r = 0, (φ1,φ2) = (1.0, 1.0)
0.8 s = 0 98.7 99.5 97.8 93.8 91.7 90.4 100.0 99.1

s = 1 1.2 0.5 2.1 6.0 7.5 8.7 0.0 0.9
s = 2 0.1 0.1 0.1 0.1 0.8 0.9 0.0 0.1

0.5 s = 0 98.6 99.2 97.6 94.5 93.1 89.6 99.9 98.4
s = 1 1.3 0.8 2.3 5.4 6.2 9.7 0.1 1.5
s = 2 0.1 0.1 0.1 0.2 0.7 0.8 0.0 0.1

-0.5 s = 0 65.6 86.9 50.1 67.1 12.2 70.3 10.4 33.0
s = 1 30.9 12.1 44.1 30.4 58.2 25.8 48.6 51.3
s = 2 3.5 1.0 5.8 2.6 29.5 3.9 41.0 15.7

-0.8 s = 0 0.2 10.4 0.0 0.8 0.0 9.1 0.0 0.0
s = 1 27.1 53.4 19.0 41.4 0.5 39.2 0.2 6.3
s = 2 72.8 36.2 81.0 57.8 99.5 51.7 99.8 93.7

(b) r = 1, (φ1,φ2) = (0.8, 1.0)
0.8 s = 0 6.2 62.8 2.7 5.8 70.7 25.4 56.3 23.0

s = 1 91.9 35.8 94.8 89.7 27.5 68.7 43.7 75.4
s = 2 1.9 1.4 2.5 4.5 1.8 5.9 0.1 1.6

0.5 s = 0 5.5 38.3 2.1 3.7 61.0 10.2 38.7 10.7
s = 1 92.5 59.8 95.2 92.1 37.0 82.4 61.1 86.9
s = 2 2.0 1.9 2.6 4.2 2.0 7.4 0.2 2.3

(c) r = 2, (φ1,φ2) = (0.8, 0.8)
0.8 s = 0 0.0 0.0 0.0 0.0 4.5 0.7 43.0 6.4

s = 1 0.1 3.1 0.0 0.3 18.8 7.1 3.7 0.3
s = 2 99.9 96.9 100.0 99.7 76.6 92.2 53.3 93.3

0.5 s = 0 0.0 0.0 0.0 0.0 1.2 0.1 22.5 1.4
s = 1 0.0 0.7 0.0 0.1 10.5 1.9 1.9 0.1
s = 2 100.0 99.3 100.0 99.9 88.3 98.1 75.6 98.5

Notes: n = 2, T = 200. data implies that bandwidths for nonparametric tests [Pµ(n, s) and P ∗µ(n, s)],
the semiparametric SW test, and VAR lag length for the LR test are selected by using a data-based method.
All numbers are based on 10,000 replications. See also notes for Table 2.
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Table 4
Empirical Results for the Stochastic Growth Models

(a) Three-Variable Model (n=3, r=2)
H0 Pµ(n, s) P ∗µ(n, s) LR SW

s = 0 75.88 112.9∗ 40.27∗ -26.34∗

s = 1 30.15 44.21 18.62∗ -22.99
s = 2 0.19 0.20 4.93∗ -0.730

(b) Six-Variable Model (n=6, r=3)
H0 Pµ(n, s) P ∗µ(n, s) LR SW

s = 0 200.38 290.04∗ 131.97∗ -111.51∗

s = 1 117.27 145.92 82.89∗ -20.75
s = 2 66.29 76.77 47.66∗ -18.48
s = 3 30.96 35.84 23.57 -13.15
s = 4 6.39 6.74 7.02 -11.15
s = 5 0.18 0.18 2.38∗ -7.89

Notes: Numbers with asterisks imply that the null hypothesis is rejected at the 5% signiÞcance level.
Critical values for nonparametric tests [Pµ(n, s) and P ∗µ(n, s)] are taken from Table 4b in Phillips and
Ouliaris (1990) and footnotes from Table 1. Those for the LR test and the SW test are taken from Table
1 in Osterwald-Lenum (1992) and Table 2 in Stock and Watson (1988), respectively. Parzen kernel with
optimal bandwidth is used for both nonparametric tests and the semiparametric SW test. VAR lag length
for the LR test is selected by minimizing BIC.
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