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Abstract

“Efficient Strategy-Proof Exchange

and Minimum Consumption Guarantees”

by

Shigehiro Serizawa and John A. Weymark

For exchange economies with classical economic preferences, it is shown
that any strategy-proof social choice function that selects Pareto optimal
outcomes cannot guarantee everyone a consumption bundle bounded away
from the origin. This result demonstrates that there is a fundamental conflict
between efficiency and distributional goals in exchange economies if the social
choice rule is required to be strategy-proof.

Journal of Economic Literature classification number: D71.
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1. Introduction

The main lesson to emerge from the literature that has built on the pioneering
article by Hurwicz [3] on incentive compatibility in economic environments
is that any strategy-proof social choice function that selects Pareto optimal
(i.e., efficient) outcomes must violate some other desirable properties of a
collective choice rule. For example, Satterthwaite [15, p. 44] writes that
“. . . even though a completely general theorem has not yet been formulated
and proved, it seems clear that no attractive social choice functions exist for
market settings that are both strategy-proof and efficient.” In this article,
we provide further support for this conclusion. We show that for exchange
economies with classical economic preferences, strategy-proofness and Pareto
optimality jointly imply that there exists a profile of preferences in the do-
main of the social choice function for which someone’s consumption of each
good is arbitrarily close to 0. Thus, in exchange economies, there is a funda-
mental conflict between efficiency and distributional goals if the social choice
rule is required to be strategy-proof.

More precisely, we consider exchange economies with n ≥ 2 individuals
and m ≥ 2 goods. The aggregate endowment of goods is fixed. A social
choice function assigns a feasible allocation to each profile of preferences in
its domain. It is assumed that everybody has the same set of admissible
preferences.

Each individual only cares about his own consumption, so preferences are
defined on the nonnegative orthant of R

m. A preference is classical if it is
continuous, strictly monotonic, and strictly convex, with the latter two prop-
erties only required to hold when the consumption of all goods is positive.1

A social choice function guarantees minimum consumption if there exists
an ε > 0 such that each individual is always assigned a commodity bundle at
least ε distance from the origin of his consumption set. Any social choice rule
that violates this property is clearly unsatisfactory on distributional grounds.

Our theorem shows that a social choice function cannot guarantee mini-
mum consumption if it is strategy-proof and chooses Pareto optimal outcomes
whenever the domain of individual preferences includes the set of classical,
smooth (unique supporting prices on the positive orthant), and homothetic

1The definition of a classical preference differs somewhat in some of the other articles
discussed in this section. For example, some authors require strict monotonicity to hold
on all of the nonnegative orthant.
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preferences. In particular, strategy-proofness, Pareto optimality, and mini-
mum consumption guarantee are incompatible for the domain of all classical
economic preferences.

If the endowment is privately owned and participation in the collective
choice procedure is voluntary, then the social choice function is individually
rational; i.e., each person is guaranteed a consumption bundle weakly pre-
ferred to his endowment. Hurwicz [3] has shown that strategy-proofness,
Pareto optimality, and individual rationality are inconsistent for two-person,
two-good exchange economies provided that the domain includes a suffi-
ciently rich set of classical preferences. This impossibility theorem has re-
cently been extended to the general n-person, m-good case by Serizawa [19].
Serizawa established his result for the same domain restriction used in our
theorem. He assumed that each person has a positive endowment of some
good. With the slightly stronger assumption that everyone has a positive en-
dowment of all goods, we show that Serizawa’s theorem is implied by ours.2

Our impossibility theorem is also related to the literature that investigates
whether it is possible to construct a nondictatorial social choice function for
an exchange economy that satisfies both strategy-proofness and Pareto op-
timality. With monotonic preferences, an individual is a dictator in an ex-
change economy if he always receives the whole endowment. For the domain
of classical preferences, Zhou [21] has shown that strategy-proofness, Pareto
optimality, and nondictatorship are inconsistent when there are at least two
goods, but only two individuals. His theorem has been extended by Schum-
mer [17] and Ju [5] to more restrictive domains. When there are at least
three individuals, Satterthwaite and Sonnenschein [16] have shown by ex-
ample how to construct efficient, strategy-proof, nondictatorial social choice
functions for the domain of classical preferences.3 In their example, someone
is bossy; i.e., there is an individual who can change the consumption bundle
of someone else by reporting a different preference without affecting his own
consumption bundle. Serizawa [18] has strengthened strategy-proofness by

2Serizawa has also shown that individual rationality can be replaced in his theorem by
an equal-treatment property that requires individuals who have the same preferences for
own consumption to receive commodity bundles that are indifferent to each other.

3Dasgupta, Hammond, and Maskin [2] have demonstrated that no strategy-proof,
Pareto optimal, and nondictatorial social choice functions exist for n-person, m-good ex-
change economies when the individual preference domain is the set of all strictly monotonic
and strictly convex preferences. Their result relies on the presence of discontinuous pref-
erences in the domain.
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requiring that no pair of individuals can manipulate the social choice function
by misreporting their preferences. He has shown that this pairwise strategy-
proofness condition and Pareto optimality jointly imply that the social choice
function is dictatorial on the classical domain of preferences when there are
two or more individuals and two or more goods.

As noted by Zhou [21], Satterthwaite and Sonnenschein’s example has
the property that there is some individual who always receives nothing, what
he calls an inverse dictator. For the domain of classical preferences, Zhou
conjectured that there must be an inverse dictator if the social choice function
satisfies strategy-proofness and Pareto optimality. This is the case if there
are only two people because if one person is a dictator, then the other person
is an inverse dictator. Zhou’s conjecture has recently been shown to be false
by Kato and Ohseto [8], at least when there are four or more individuals.
The social choice functions Kato and Ohseto have constructed to disprove
Zhou’s conjecture always assign the whole endowment to one person, but
who this person is is profile-dependent. As a consequence, their social choice
functions are not very appealing.4

While Zhou’s conjecture is not correct, our theorems demonstrate that
something similar in spirit to his conjecture is true: for an exchange economy
with classical preferences, an efficient, strategy-proof social choice function
must generate unacceptable distributions of the goods in some circumstances.
While there need not be someone who always receives no consumption, it is
nevertheless the case that at least one person must sometimes be allocated
a consumption bundle arbitrarily close to the origin.5

The rest of this article is organized as follows. In Section 2, we present
the model. We formally state our impossibility theorem in Section 3. We
present some preliminary results that are used to help prove our theorem
in Section 4. Section 5 is devoted to the proof of our theorem. Section 6
provides some concluding remarks.

4See also the related examples in Kato and Ohseto [9].
5Strategy-proofness in exchange economies has also been studied using different as-

sumptions. For example, Barberà and Jackson [1] and Hurwicz and Walker [4] drop
Pareto optimality, but adopt other restrictive assumptions. Continuous social choice func-
tions have been analyzed by Ju [6] and Sprumont [20], among others.
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2. The Model

The set of individuals is N = {1, . . . , n}, where n ≥ 2. There are m ≥ 2
private goods, denoted by M = {1, . . . ,m}. The consumption set for each
individual is R

m
+ .6 A consumption bundle for individual i ∈ N is a vector xi =

(xi
1, . . . , x

i
m) ∈ R

m
+ . When no specific individual is intended, the superscript

is suppressed. The economy’s endowment of goods is Ω ∈ R
m
++. If the

resource endowment is privately owned, then Ω =
∑

i∈N ωi, where ωi ∈ R
m
+ is

individual i’s endowment. Endowments are fixed and publically known. An
allocation is a vector x = (x1, . . . , xn) ∈ R

mn
+ . The set of feasible allocations

for an n-person, m-good exchange economy with endowment Ω is

X = {x ∈ R
mn
+ |

∑
i∈N

xi ≤ Ω}.

Let X∗ = X ∩ R
mn
++ denote the set of feasible allocations with positive con-

sumptions.
A preference R is a complete, reflexive, and transitive binary relation on

R
m
+ . The corresponding strict preference P and indifference I relations are

defined in the usual way: for all x, x̄ ∈ R
m
+ , (i) xP ix̄ ↔ [xRx̄ and ¬(x̄Rx)]

and (ii) xIx̄ ↔ [xRx̄ and x̄Rx]. The set of all preference orderings on R
m
+

is R. Each individual i ∈ N is assumed to have a preference ordering Ri on
R

m
+ .

Given a preference R ∈ R and a consumption bundle x ∈ R
m
+ , the upper

contour set of R at x is UC(R, x) = {x̄ ∈ R
m
+ | x̄Rx} and the lower contour

set of R at x is LC(R, x) = {x̄ ∈ R
m
+ | xRx̄}. A preference R ∈ R is

continuous if UC(R, x) and LC(R, x) are both closed for all x ∈ R
m
+ . A

preference R ∈ R is strictly convex on R
m
++ if UC(R, x) is strictly convex

for all x ∈ R
m
++. A preference R ∈ R is strictly monotonic on R

m
++ if for

all x, x̄ ∈ R
m
++, x > x̄ → xP x̄.7 A preference R ∈ R is homothetic if for

all x, x̄ ∈ R
m
+ and all λ > 0, (λx)R(λx̄) ↔ xRx̄. A preference R ∈ R is

smooth if for all x ∈ R
m
++, there is a unique vector p ∈ Sm−1 such that p is

the normal of a supporting hyperplane to UC(R, x) at x.8

6
R

m
+ and R

m
++ are the nonnegative and positive orthants, respectively, of the Euclidean

m-space R
m. The origin in R

m is 0m.
7We use the following conventions for vector inequalities: for all x, y ∈ R

m, (i) x ≥
y ↔ [xk ≥ yk for all k ∈ M ], (ii) x > y ↔ [x ≥ y and x 
= y], and (iii) x � y ↔ [xk > yk

for all k ∈ M ].
8Sm−1 is the unit simplex in R

m.
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A preference R ∈ R is classical if it continuous (on R
m
+ ) and strictly

convex and strictly monotonic on R
m
++. We denote the class of classical pref-

erences by RC . Because a classical preference is only required to be strictly
convex and strictly monotonic on R

m
++, rather than on all of R

m
+ , Cobb-

Douglas and CES preferences are in RC . We also consider three subclasses
of RC . RCH is the class of homothetic preferences in RC , RCS is the class of
smooth preferences in RC , and RCHS is the class of homothetic and smooth
preferences in RC .

A preference profile is an n-tuple R = (R1, . . . , Rn) ∈ Rn. The subprofile
obtained by removing Ri from R is R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn). It
is sometimes convenient to write the profile (R1, . . . , Ri−1, R̄i, Ri+1, . . . , Rn)
as (R̄i;R−i).

Each individual is a priori restricted to having a preference in D ⊆ R.
A social choice function f : Dn → X assigns a feasible allocation to each
preference profile in Dn. The set Dn is the domain of the social choice
function. For all R ∈ Dn, the outcome chosen can be written as f(R) =
(f 1(R), . . . , fn(R)), where f i(R) is the consumption bundle allocated to
individual i by f .

3. The Impossibility Theorem

We consider four social choice function axioms. The first of our axioms is
strategy-proofness. A social choice function is strategy-proof if no one can
ever obtain a preferred outcome by misreporting his preference.

Strategy-proofness. A social choice function f is strategy-proof if for all
R ∈ Dn, all i ∈ N , and all R̄i ∈ D, f i(R)Rif i(R̄i;R−i).

A feasible allocation is (strongly) Pareto optimal if there is no other fea-
sible allocation that would benefit someone without worsening the situation
of anyone else. Formally, an allocation x ∈ X is Pareto optimal for the pref-
erence profile R ∈ Dn if for all x̄ ∈ X, [x̄iP ixi for some i ∈ N ] → [xjP jx̄j for
some j ∈ N ]. Given Ω ∈ R

m
+ , let P(R,Ω) denote the set of Pareto optimal

allocations for the profile R ∈ Dn. A social choice function is Pareto optimal
if it always choose Pareto optimal outcomes.

Pareto optimality. A social choice function f is Pareto optimal if for all
R ∈ Dn, f(R) is Pareto optimal for R.
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A social choice function guarantees minimum consumption if for every
profile in the domain, each individual’s consumption bundle is bounded away
from the origin.

Minimum consumption guarantee. A social choice function f gurantees
minimum consumption if there exists an ε > 0 such that for all R ∈ Dn and
all i ∈ N , ‖f i(R)‖ ≥ ε.

If this axiom is satisfied, everyone is ensured of receiving a consumption
bundle at least distance ε from the origin. Note that the value of ε is profile
independent. Minimum consumption guarantee is a very weak distributional
requirement because ε can be arbitrarily close to 0. If this axiom is violated,
there must exist a profile for which someone receives a commodity bundle
arbitrarily close to the origin.9

Our final axiom only applies if endowments are privately owned. Individ-
ual rationality requires that nobody is ever made worse off than he would be
consuming his endowment. When this condition is satisfied, individuals will
voluntarily participate in the social choice procedure.

Individual rationality. A social choice function f is individually rational
if for all R ∈ Dn and all i ∈ N , f i(R)Riωi.

Our impossibility theorem shows that strategy-proofness and Pareto op-
timality are incompatible with the minimum consumption guarantee axiom
when the domain of the social choice function contains the set of profiles
of classical, homothetic, and smooth preferences. In particular, these three
axioms are inconsistent on the domain of classical preference profiles.

Theorem. Suppose that RCHS ⊆ D ⊆ R. If a social choice function
f : Dn → X satisfies strategy-proofness and Pareto optimality, then it vi-
olates minimum consumption guarantee.

The proof of this theorem may be found in Section 5. The proof involves
first showing that the axioms are inconsistent when D = RCHS and then
using an extension argument to show that the axioms are also incompatible
on any larger domain.

9Moulin and Thomson [12] have considered a related axiom. Their axiom requires each
person to be provided with a commodity bundle that is weakly preferred to having an ε
share of the aggregate endowment, where 0 < ε ≤ 1/n.
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Our impossibility theorem can be used to provide an alternative proof of
a slight variant of one of the main results in Serizawa [19]. In Serizawa’s the-
orem, endowments are privately owned. He has shown that for a preference
domain satisfying the restriction in our theorem, it is not possible to satisfy
strategy-proofness, Pareto optimality, and individual rationality.

Corollary. Suppose that endowments are privately owned with ωi � 0m for
all i ∈ N and that RCHS ⊆ D ⊆ R. If a social choice function f : Dn → X
satisfies strategy-proofness and Pareto optimality, then it violates individual
rationality.10

Proof. First, suppose that f is strategy-proof and Pareto optimal and that
RCHS ⊆ D ⊆ RC . With this domain restriction, we show that individual
rationality implies minimum consumption guarantee when ωi � 0m for all
i ∈ N , which contradicts the Theorem.11

Let ε̄ = mini∈N mink∈M ωi
k. By assumption, ε̄ > 0. Because preferences

are continuous on R
m
+ and strictly monotonic on R

m
++, individual rationality

implies that for any R ∈ Dn and any i ∈ N , ‖f i(R)‖ ≥ mink∈M ωi
k ≥ ε̄.

Hence, f satisfies minimum consumption guarantee.
Having established the theorem for classical domains, an extension argu-

ment similar to the one used in part (b) of the proof of the Theorem can be
used to establish the theorem when RC ⊂ D ⊆ R. ✷

4. Preliminary Results

In this section, we present a number of preliminary results that are used to
help prove the Theorem. With the exception of Lemma 7, the lemmas in this
section have already been established in the earlier literature or are minor
extensions of known results. See Serizawa [19] for further details.

One implication of stategy-proofness when individuals have classical pref-
erences is that if an individual’s consumption of some good increases as a
result of a change in this person’s reported preference, then the consumption
of at least one other good must decrease. A social choice function with this
property is said to be diagonal. See Barberà and Jackson [1], Serizawa [19],
and Zhou [21].

10Serizawa [19] only requires that ωi > 0m for all i ∈ N .
11Individual rationality does not imply minimum consumption guarantee if individuals

do not have positive endowments of all goods.
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Lemma 1. Suppose that D ⊆ RC and f : Dn → X is a strategy-proof social
choice function. For all R ∈ Dn, all i ∈ N , and all R̄i ∈ D, if x ∈ X is such
that xi < f i(R) or xi > f i(R), then x 
= f(R̄i;R−i).

Consider a preference R ∈ R and a consumption bundle x ∈ R
m
+ . A

preference R̄ ∈ R is a (strict) Maskin monotonic transform of R at x (see
Maskin [11]) if [x̄ ∈ UC(R̄, x) and x̄ 
= x] → x̄Px.

If an individual receives the commodity bundle x at the profile R, strategy-
proofness implies that this individual receives the same commodity bundle if
his preference is subjected to a Maskin monotonic transform at x.

Lemma 2. Suppose that f : Dn → X is a strategy-proof social choice func-
tion. For all R ∈ Dn and all i ∈ N , if R̄i ∈ D is a Maskin monotonic
transform of Ri at f i(R), then f i(R̄i;R−i) = f i(R).

Lemma 2 is a private goods counterpart to a public goods theorem estab-
lished by Muller and Satterthwaite [13]. A proof of Lemma 2 may be found
in Serizawa [19]. Note that Lemma 2 holds for any domain. If there are only
two individuals, an implication of this lemma is that nobody’s consump-
tion bundle is changed if a Maskin monotonic transform is applied to one
person’s preference at the commodity bundle assigned to him by the social
choice function. With more than two individuals, the commodity bundles of
the other individuals can be affected by this kind of change in i’s preference.

A preference R on R
m
+ is a Cobb-Douglas preference if it can be represented

by a utility function U : R
m
+ → R of the form

U(x) = xα1
1 · · ·xαm

m (1)

for all x ∈ R
m
+ , where αk > 0 for all k ∈ M . A preference R on R

m
+ is a

constant-elasticity-of-substitution (CES) preference if it can be represented
by a utility function U : R

m
+ → R of the form

U(x) =


 ∑

k∈M

bk(xk)
ρ




1/ρ

(2)

for all x ∈ R
m
+ , where bk > 0 for all k ∈ M and 0 
= ρ < 1. Cobb-Douglas

and CES preferences are in RCHS. Given x0 ∈ R
m
++, the preference R on R

m
+

is the x0-generated Leontief preference if it can be represented by a utility
function U : R

m
+ → R of the form

U(x) = min{x1/x
0
1, . . . , xm/x

0
m} (3)

10



for all x ∈ R
m
+ . Given p ∈ R

m
++, the preference R on R

m
+ is the linear prefer-

ence with normal p if it can be represented by a utility function U : R
m
+ → R

of the form

U(x) =
∑
k∈M

pkxk (4)

for all x ∈ R
m
+ .

For any smooth classical preference R on R
m
+ and any consumption bundle

x0 in the interior of the consumption set, let U be a utility representation
of R that is differentiable at x0. Let Uρ be the utility function obtained by
setting

bk =
∂U(x0)

∂xk

(x0
k)

1−ρ (5)

in (2). It is readily verified that ∇Uρ(x0) (the gradient of Uρ at x0) is pro-
portional to ∇U(x0) when 0 
= ρ < 1. As ρ approaches 1, Uρ approaches a
linear utility function whose indifference contours are orthogonal to ∇U(x0).
In the limit as ρ goes to −∞, Uρ represents the x0-generated Leontief pref-
erence. Hence, for sufficiently small ρ, Uρ represents a preference that is
a CES Maskin monotonic transform of R at x0. Further, this transformed
preference can be chosen to be arbitrarily close to the x0-generated Leontief
preference.

Lemma 3. If R ∈ RCS and x0 ∈ R
m
++, then there exists a CES Maskin

monotonic transform of R at x0 that is arbitrarily close to the x0-generated
Leontief preference.12

Pareto optimality implies that individuals with identical preferences are
assigned commodity bundles that are proportional to each other by the social
choice function if their preferences are classical and homothetic. See Schum-
mer [17] and Serizawa [19]. In the differentiable case, this follows because
with a strictly convex, homothetic preference, the marginal rates of substi-
tution for two commodity bundles are equal if and only if the commodity
bundles are proportional.

Lemma 4. Suppose that f : Dn → X is a social choice function satisfying
Pareto optimality. For all R ∈ Dn and all i, j ∈ N , if Ri = Rj ∈ RCH and
f i(R) 
= 0m, then there exists a λ ≥ 0 such that f j(R) = λf i(R).

12A natural metric for measuring the closeness of continuous, monotonic preferences is
the Kannai [7] metric.
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Serizawa [19] has shown that if all but one person shares a common classi-
cal, homothetic preference, from the perspective of the remaining individual,
we effectively have a two-person economy for the purposes of identifying
Pareto-optimal allocations. More precisely, for an economy with endowment
Ω, if one individual, say person 1, has a classical preference R1 and everyone
else has the same classical, homothetic preference R0, then the projection of
the set of Pareto optimal allocations to 1’s consumption set in the n-person
economy is the same as the set of Pareto optimal allocations (viewed from
person 1’s perspective) for the two-person economy defined by the profile
(R1, R0) and the endowment Ω.

To state Serizawa’s result formally, we need to introduce some more no-
tation. Given Ω ∈ R

m
+ , let

X2 = {x ∈ R
2m
+ | x1 + x2 ≤ Ω}

denote the set of feasible allocations for an exchange economy with two in-
dividuals and endowment Ω and let X∗

2 = X2 ∩ R
2m
++. The set of Pareto

optimal allocations for this economy is P2((R
1, R2),Ω) when the profile is

(R1, R2) ∈ D2. For all A ⊆ X and all A ⊆ X2, the projection of A on i’s
consumption set is Pri A.

Lemma 5. For all Ω ∈ R
m
++, all R0 ∈ RCH , all i ∈ N , and all Ri ∈ RC,

Pri P2((R
i;R0),Ω) = Pri P((Ri;R0, . . . , R0),Ω).

Now suppose that the social choice function satisfies strategy-proofness,
Pareto optimality, and minimum consumption guarantee. Consider a profile
R in which everybody has classical, smooth, and homothetic preferences
and in which all but one individual, say person 1, has the same preference
R0. Suppose that individual 1’s consumption bundle at this profile is in
X∗ and is not proportional to Ω. We know from Lemma 4 that if R̄0 is a
classical, homothetic, Maskin monotonic transform of R0 at the aggregate
consumption bundle of individuals 2 through n, then it is also a Maskin
monotonic transform of R0 at the assigned consumption bundles of each of
these individuals at the profile R. If person j’s preference (j 
= 1) is changed
from R0 to R̄0, Lemma 2 implies that j’s consumption doesn’t change, but,
in general, we don’t know what happens to the consumption of the other
individuals when n > 2. Lemma 6 shows that if R0 is changed to R̄0 for all
j 
= 1, then person 1’s consumption is unaffected if the Maskin monotonic
transform R̄0 is smooth, not just classical and homothetic.

12



Lemma 6. Suppose that f : Dn → X is a strategy-proof social choice func-
tion that satisfies Pareto optimality and minimum consumption guarantee.
For all i ∈ N and all Ri, R0, R̄0 ∈ D ∩ RCHS, if 0m � f i(Ri;R0, . . . , R0) �
Ω, f i(Ri;R0, . . . , R0) is not proportional to Ω, and R̄0 is a Maskin mono-
tonic transform of R0 at

∑
j �=i f

j(Ri;R0, . . . , R0), then f i(Ri;R0, . . . , R0) =
f i(Ri; R̄0, . . . , R̄0).

Lemma 6 is another application of the observation that if all but one
person has the same classical, homothetic preference, then, in some circum-
stances, this group of individuals can be treated as an aggregate from the
perspective of the other individual. Note that it is not claimed in Lemma 6
that the individual consumptions of individuals other than i are unaffected
by the preference change.

Lemma 6 is a variant of a theorem established by Serizawa [19]. Serizawa
assumes that R̄0 is a CES preference, but all that is required for his proof
is that it be in RCHS. In addition, Serizawa assumes that the social choice
function satisfies individual rationality, rather than minimum consumption
guarantee. However, individual rationality is only used by Serizawa to show
that nobody receives the consumption bundle 0m at any of the profiles con-
sidered in the proof of his theorem. This conclusion is also implied by our
minimum consumption guarantee axiom.

A preference R on R
m
+ is additively separable if there exist functions

fk : R+ → R for all k ∈ M such that R can be represented by a utility
function U : R

m
+ → R of the form

U(x) =
∑
k∈M

fk(xk) (6)

for all x ∈ R
m
+ . A smooth, additively separable preference has the property

that the marginal rate of substitution between a pair of goods only depends
on the consumptions of these two goods. A smooth preference R on R

m
+

is pairwise homothetic if for all x, x′ ∈ R
m
++, all k, k′ ∈ M , and all λ > 0,

[x′
j = λxj for j = k, k′ and x′

j = xj for j 
= k, k′] → MRSkk′(x,R) =
MRSkk′(x′, R), where MRSkk′(x,R) denotes the marginal rate of substitution
between goods k and k′ at the commodity bundle x for the preference R.
Note that Cobb-Douglas and CES preferences are additively separable and
pairwise homothetic.

A set of allocations A ⊂ X is increasing from person i’s perspective at
xi ∈ Pri A if for all x̄i ∈ Pri A and all k, k′ ∈ M , xi

k < x̄i
k ↔ xi

k′ < x̄i
k′ .
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Consider a two-person economy in which both individuals have smooth
classical preferences that are also additively separable and pairwise homo-
thetic. Lemma 7 demonstrates that the set of Pareto optimal allocations
for this economy is increasing from the perspective of either individual at a
Pareto optimal allocation with positive consumptions.

Lemma 7. For all Ω ∈ R
m
++, all R1, R2 ∈ RCS that are additively separable

and pairwise homothetic, all i ∈ {1, 2}, and all xi ∈ Pri[P2((R
1, R2),Ω)∩X∗

2 ],
Pri P2((R

1, R2),Ω) is increasing from person i’s perspective at xi.

Proof. Without loss of generality, let i = 1.
First, suppose that m = 2. Consider any x1 ∈ Pr1[P2((R

1, R2),Ω) ∩ X∗
2 ].

Pareto optimality requires that MRS12(x
1, R1) = MRS12(Ω − x1, R2). If x1

is proportional to Ω, pairwise homotheticity implies that Pri P2((R
1, R2),Ω)

is the line segment joining the origin of 1’s consumption set to Ω, from
which the conclusion follows immediately. If x1 is not proportional to Ω, we
can without loss of generality suppose that x1

1/x
1
2 > Ω1/Ω2. Let L1 be the

restriction to Pr1 X2 of the line that includes 02 and x1 and let L2 be the
restriction to Pr1 X2 of the line that includes Ω and x1. See Figure 1. By
pairwise homotheticity, MRS12(x̄

1, R1) = MRS12(x
1, R1) for all x̄1 ∈ L1\{02}

and MRS12(Ω − x̄1, R2) = MRS12(Ω − x1, R2) for all x̄1 ∈ L2\{Ω}. Because
preferences are strictly convex, the marginal rates of substitution can only
be equal in the two regions between L1 and L2 in Figure 1. Thus, in X∗

2 , any
Pareto optimal allocation lies in one of these two regions. Similarly, on the
boundary of the Edgeworth box, an allocation (x̄1,Ω − x̄1) can only satisfy
the necessary conditions for Pareto optimality if either (i) x̄1

2 = 0 and x̄1 lies
to the left of L2 or (ii) x̄1

1 = Ω1 and x̄1 lies above L1. Because L1 and L2 have
positive slopes, it follows that Pr1 P2((R

1, R2),Ω) is increasing from person
1’s perspective at x1.

Now, suppose that that m > 2. Consider any x1 ∈ Pr1[P2((R
1, R2),Ω) ∩

X∗
2 ]. Pareto optimality requires that MRS1k(x

1, R1) = MRS1k(Ω − x1, R2)
for all k 
= 1. Fix the consumptions of all goods but 1 and k for an arbitrary
k 
= 1. Because the preferences are pairwise homothetic, the proof of the
two-good case shows that if x1

1 is increased (resp. decreased), the first-order
conditions for Pareto optimality for goods 1 and k of the two individuals can
only be satisfied if x1

k is also increased (resp. decreased). We now adjust the
consumptions of the other goods so that the allocation is Pareto optimal.
Because preferences are additively separable, the marginal rates of substitu-
tion for goods 1 and k are independent of the quantities consumed of the

14



other goods. Hence, if x̄1 ∈ Pr1 P2((R
1, R2),Ω) and x̄1

1 > x1
1 (resp. x̄1

1 < x1
1),

then x̄1
k > x1

k (resp. x̄1
k < x1

k) for all k 
= 1. ✷

5. A Proof of the Theorem

In this section, we provide a proof of the Theorem. In part (a) of the proof,
the Theorem is established for the domain (RCHS)n. In part (b), an extension
argument is used to show that the Theorem also holds on larger domains.

(a) In this part of the proof, it is supposed that D = RCHS. Contrary to
the theorem, suppose that f is a strategy-proof social choice function that
satisfies Pareto optimality and minimum consumption guarantee. Because
f guarantees minimum consumption, there exists an ε > 0 such that for
all R ∈ Dn and all i ∈ N , ‖f i(R)‖ ≥ ε. Consider any such ε and let
d = (d1, . . . , dm) ∈ R

m
++ be the commodity bundle proportional to Ω that is

ε distance from 0m.
Step 1. Given α ≥ 1, define the Cobb-Douglas utility function Uα on R

m
+

by setting

Uα(x) = xα
1x2 · · ·xm (7)

for all x ∈ R
m
+ . Let R(α) be the preference represented by Uα.

First, suppose that everyone has the symmetric Cobb-Douglas preference
R(1). Let x◦ = f(R(1), . . . , R(1)). By minimum consumption guarantee
and Lemma 4, x◦i is proportional to Ω for all i ∈ N . Clearly, there exists
an i ∈ N such that x◦i ≤ Ω/n. Without loss of generality, we assume that
person 1 is such an individual.

Now, suppose that person 1 has the preference R(α) for some α > 1.
Let xα = f(R(α), R(1), . . . , R(1)). By minimum consumption guarantee,
xαi 
= 0m for all i ∈ N . Lemma 4 then implies that xαi is proportional to
xαj for all i, j 
= 1. Because everyone has a Cobb-Douglas preference, Pareto
optimality implies that xα ∈ X∗.

By Lemma 5, Pr1 P2((R(α), R(1)),Ω) = Pr1 P((R(α), R(1), . . . , R(1)),Ω).
For allocations in the interior of X, Pareto optimality requires that marginal
rates of substitution be equalized. In particular,

αxα1
k

xα1
1

=
Ωk − xα1

k

Ω1 − xα1
1

, ∀k ∈ M\{1}, (8)

where use has been made of the fact that everyone but person 1 has the same
homothetic preference and has consumption bundles that are proportional
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to each other. For given values of the consumption of good 1, everyone has
symmetric Cobb-Douglas preferences for the other goods. Hence, by Lemma
4, Pareto optimality also implies that

xα1
k′

xα1
k

=
Ωk′

Ωk

=
x◦1

k′

x◦1
k

, ∀k, k′ ∈ M\{1}. (9)

By Lemma 1, neither xα1 > x◦1 nor xα1 < x◦1 holds. From (8) and (9), it
then follows that xα1 ∈ (x◦1

1 ,Ω1) × ∏
k �=1(0, x

◦1
k ).

Other than requiring α > 1, the value of α in this step is arbitrary. If
there exists an α for which xα1

k < dk for all k 
= 1, say α = ᾱ, proceed to
Step 5. Otherwise, go to Step 2.

Step 2. Let Hα denote the hyperplane through xα1 whose normal is
given by ∇Uα(xα1). We want to determine the value of a1 for which a =
(a1, d2, x

α1
3 , . . . , xα1

m ) ∈ Hα. Using (8), it is straightforward to show that

a1 = xα1
1 +

[
Ω1 − xα1

1

Ω2 − xα1
2

]
[xα1

2 − d1
2]. (10)

Let γ = Ω1 − xα1
1 , which we know is positive. Recall that xα1

2 < x◦1
2 ≤ Ω2/n

and d1
2 > 0. From (10), we have

a1 < Ω1 − γ + γ

[
Ω2

n
− d1

2

Ω2 − Ω2

n

]

< Ω1 − γ + γ

[
Ω2

n

Ω2 − Ω2

n

]

= Ω1 − γ + γ
[

1

n − 1

]

= Ω1 − γ
[
n − 2

n − 1

]
≤ Ω1,

where the last inequality follows from the fact that n ≥ 2 and γ > 0. Thus,
a1 < Ω1.

From the discussion in Section 4, we know that we can find a CES pref-
erence R′ on R

m
+ and associated utility function U ′ for which (i) ∇U ′(xα1) is

proportional to ∇Uα(xα1) and (ii) R′ is arbitrarily close to the linear prefer-
ence whose indifference contours are hyperplanes parallel to Hα. In view of
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the discussion in the preceding paragraph, R′ can be chosen so that xα1I ′ā,
where ā = (ā1, d2, x

α1
3 , . . . , xα1

3 ) for some ā1 ∈ (a1,Ω1).
Step 3. Let x′ = f(R′, R(1), . . . , R(1)). We now show that x′1 = xα1.
Because f is Pareto optimal and f 1(R(α), R(1), . . . , R(1)) = xα1, by the

construction of R′, the gradients ∇U ′(xα1), ∇Uα(xα1), and ∇U1(Ω − xα1)
are all proportional to each other. Thus, the marginal rates of substitution
of R′ at xα1 are equal to the marginal rates of substitution of R(1) at Ω −
xα1. Because preferences are convex and (xα1,Ω − xα1) ∈ X∗

2 , it follows
that xα1 ∈ Pr1 P2((R

′, R(1)),Ω). Because f is Pareto optimal, we also have
x′1 ∈ Pr1 P((R′, R(1), . . . , R(1)),Ω) and, hence, by Lemma 5 that x′1 ∈
Pr1 P((R′, R(1)),Ω).

Suppose that x′1 
= xα1. Because CES and Cobb-Douglas preferences are
additively separable and pairwise homothetic and because (xα1,Ω − xα1) ∈
X∗

2 , by Lemma 7, either xα1 � x′1 or xα1 � x′1. In either case, we have a
contradiction with Lemma 1. Thus, x′1 = xα1.

Step 4. Let R̃(ν) be the preference represented by a CES utility function
Ũ ν on R

m
+ of the form

Ũ ν(x) = [νb̄1(x1)
ρ +

m∑
k=2

ν−1b̄k(xk)
ρ]1/ρ (11)

for all x ∈ R
m
+ , where (b̄1, . . . , b̄m) ∈ R

m
++ and ρ are chosen so that R̃(1) = R′.

Let Y = {x ∈ X | (i)
∑

i∈N xi = Ω and (ii) x1
1 = Ω1 or x1

2 = · · · = x1
m = 0}.

As ν → ∞ in (11), person 1’s preference approaches the preference R̃(∞) in
which he only cares about good 1. In the limit, the set of Pareto optimal
allocations P((R̃(∞), R(1), . . . , R(1)),Ω) is contained in Y . Thus, because
ā1 < Ω1, there exists a ν̄ sufficiently large such that for all x1 ∈ LC(R′, xα1)∩
UC(R̃, xα1)∩Pr1 P((R̃, R(1), . . . , R(1)),Ω), we have d1 < xα1

1 < x1
1 < Ω1 and

0 < x1
k < dk for all k 
= 1, where R̃ = R̃(ν̄). See Figure 2.13

Let x̃ = f(R̃, R(1), . . . , R(1)). Strategy-proofness implies that x̃1 ∈
LC(R′, xα1) ∩ UC(R̃, xα1). Because f is Pareto optimal, we also have x̃1 ∈
Pr1 P((R̃, R(1), . . . , R(1)),Ω). Hence, d1 < x̃1

1 < Ω1 and 0 < x̃1
k < dk for all

k 
= 1.
Step 5. If Steps 2, 3, and 4 are utilized, let R∗ = R̃ and x∗ = x̃. Otherwise,

let R∗ = R(ᾱ) and x∗ = xᾱ. In either case, d1 < x∗1
1 < Ω1 and 0 < x∗1

k < dk

for all k 
= 1. These inequalities imply that there exists a p ∈ R
m
++ such

13In Figure 2, the curve through x̃1 is Pr1 P2((R̃, R(1)),Ω).
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that
∑

k∈M pkdk >
∑

k∈M pkx
∗1
k . For all k ∈ M , let ek be the vector for which

ek
k = 1 and ek

k′ = 0 for all k′ 
= k.
Because a CES preference can be chosen to be arbitrarily close to a linear

preference, we can find a CES preference R̄ on R
m
+ and associated utility

function Ū with the following properties: (i) ∇Ū(x∗1) = p, (ii) dP̄x∗1, (iii)
there exists an open, convex cone Kp ⊂ R

m
++ with vertex at 0m containing

p such that ∇Ū(x1) ∈ Kp for all x1 in Pr1 X, and (iv) for all k ∈ M ,
there exists an open, convex cone Kk ⊂ R

m with vertex at 0m containing ek

such that Kp ∩ Kk = ∅. Note that (iii) and (iv) imply that for any pair of
goods k, k′ ∈ M , there is an open interval Ikk′ whose lower bound is strictly
positive and whose upper bound is finite such that |MRSkk′(x1, R̄)| ∈ Ikk′ for
all x1 ∈ Pr1 X.

Step 6. We now construct a CES Maskin monotonic transform of R(1)
at

∑
i�=1 x

∗i = Ω − x∗1. For x ∈ R
m and δ > 0, let Bδ(x) be the open ball

of radius δ centered at x. We choose δ̄ > 0 sufficiently small so that (i)
UC(R̄, d) ∩ Bδ̄(x

∗1) = ∅ and (ii) there exists a δ∗ > δ̄ for which Bδ∗(x
∗1) ⊂∏

k∈M(0,Ωk). Let Z = {x ∈ R
m
+ | xk = Ωk − x∗1

k for some k ∈ M}. Let
K∗ ⊂ R

m
++ be an open, convex cone with vertex at 0m containing Ω − x∗1

for which (K∗ ∩ Z) ⊂ Bδ̄(Ω − x∗1) and Ω 
∈ K∗. Because K∗ is a cone,
(K∗ ∩ Z) ⊂ Bδ̄(Ω − x∗1) and UC(R̄, d) ∩ Bδ̄(x

∗1) = ∅ imply that x1 � x∗1

for all x1 ∈ (Ω − K∗) ∩ UC(R̄, d).
By Lemma 3, we can find a CES Maskin monotonic transform R̂ of R(1)

at Ω − x∗1 that is arbitrarily close to the (Ω − x∗1)-generated Leontief pref-
erence. Let Û be a differentiable utility function representing R̂. We choose
R̂ so that for all x ∈ R

m
+\K∗ for which x 
= 0m, ∇Û(x) 
∈ Kp. Because

R̂ is a CES Maskin monotonic transform of R(1) at Ω − x∗1, by Lemma 6,
f 1(R∗, R̂, . . . , R̂) = x∗1.

Step 7.14 Let x̂ = f(R̂, . . . , R̂). By minimum consumption guarantee and
Lemma 4, x̂i is proportional to Ω and x̂i ≥ d for all i ∈ N .

Because x̂1 ≥ d, UC(R̄, x̂1) ⊆ UC(R̄, d). By Step 6 we know that x1 �
x∗1 for all x1 ∈ (Ω − K∗) ∩ UC(R̄, d). Hence, x1 � x∗1 for all x1 ∈ (Ω −
K∗) ∩ UC(R̄, x̂1).

Step 8. Let x̄ = f(R̄, R̂, . . . , R̂). Comparing the outcomes when person 1
reports either R̄ or R̂ and everyone else reports R̂, strategy-proofness implies
that x̄1 ∈ UC(R̄, x̂1).

14Some of the constructions used in this and the following two steps of the proof are
illustrated in Figure 3.
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By Lemma 5, Pr1 P((R̄, R̂, . . . , R̂),Ω) = Pr1 P2((R̄, R̂),Ω). If (x1,Ω −
x1) ∈ X∗

2 , Pareto optimality implies that ∇Û(Ω − x1) is proportional to
∇Ū(x1). From Step 5 we know that ∇Ū(x1) ∈ Kp for all x1 ∈ Pr1 X2. Thus,

because ∇Û(Ω−x1) 
∈ Kp for any (Ω−x1) ∈ R
m
+\K∗ for which (Ω−x1) 
= 0m,

(x1,Ω − x1) ∈ P2((R̄, R̂),Ω) ∩ X∗
2 implies that x1 ∈ (Ω − K∗).15 By Lemma

7, for all x1 ∈ Pr1[P2((R̄, R̂),Ω) ∩ X∗
2 ], Pr1 P2((R̄, R̂),Ω) is increasing from

person 1’s perspective at x1. Because preferences are classical, P2((R̄, R̂),Ω)
is a connected set.16 Hence, because Ω−K∗ is a convex cone with vertex at Ω
containing x∗1, x1 must be in the closure of Ω−K∗ if x1 ∈ Pr1 P2((R̄, R̂),Ω),
x1 � x∗1, and (x1,Ω − x1) ∈ X2\X∗

2 . Because of how K∗ is constructed in
Step 6, if (x1,Ω−x1) ∈ X2\X∗

2 , x1 is in the closure of Ω−K∗, and x1 � x∗1,
then x1 = Ω. Because x∗1 � 0m and x1 � x∗1 for all x1 ∈ (Ω − K∗) ∩
UC(R̄, x̂1), it then follows that UC(R̄, x̂1)∩Pr1 P2((R̄, R̂),Ω) ⊆ (Ω−K∗)∪Ω.

By minimum consumption guarantee, x̄1 
= Ω. Because x̄1 ∈ UC(R̄, x̂1)∩
Pr1 P2((R̄, R̂),Ω), we have shown that x̄1 ∈ (Ω − K∗) ∩ UC(R̄, x̂1).

Step 9. By Step 7 we know that x1 � x∗1 for all x1 ∈ (Ω − K∗) ∩
UC(R̄, x̂1). By Step 8, x̄1 ∈ (Ω − K∗) ∩ UC(R̄, x̂1). Hence, x̄1 � x∗1.
But this inequality contradicts Lemma 1 because x̄1 = f 1(R̄, R̂, . . . , R̂) and
x∗1 = f 1(R∗, R̂, . . . , R̂). Therefore, f cannot satisfy strategy-proofness,
Pareto optimality, and minimum consumption guarantee on the domain
(RCHS)n.

(b) Now, suppose that RCHS ⊂ D ⊆ R. Contrary to the Theorem,
suppose that f satisfies strategy-proofness, Pareto optimality, and minimum
consumption guarantee. Let f ∗ denote the restriction of f to the domain
(RCHS)n. The function f ∗ also satisfies all three axioms, contradicting what
was established in part (a) of the proof.

6. Concluding Remarks

We have shown that an efficient strategy-proof social choice function cannot
guarantee minimum consumption in exchange economies with classical eco-
nomic preferences. Thus, there is a fundamental conflict between efficiency
and distributional goals if the collective choice procedure is required to pro-
vide incentives for individuals to always truthfully reveal their preferences.

15Because Ω 
∈ K∗, x̂1 is proportional to Ω, and (x̂1,Ω − x̂1) ∈ X∗
2 , it follows from this

observation that x̄ 
= x̂.
16See Mas-Colell, Whinston, and Green [10, p. 541].
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It would be socially undesirable to permit any individual to have a consump-
tion bundle arbitrarily close to the origin. We therefore conclude that in
order for a social choice function to be acceptable, departures from strategy-
proofness and/or Pareto optimality must be condoned. Barberà and Jackson
[1] and Roberts and Postlewaite [14], among others, have made important
contributions to our understanding of the tradeoffs that are possible between
strategy-proofness and Pareto optimality in exchange economies, but much
more remains to be learned.
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