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1 Introduction

A copula function is simply a multivariate distribution function with standard uniform marginals.

By Sklar ’s (1959) theorem, one can always model any multivariate distribution by modelling its

marginal distributions and its copula function separately, where the copula captures the entire

dependence structure in the multivariate distribution. Because of this flexibility, copulas have

gained popularity in the finance and insurance community1 in the past few years, where modeling

and estimating the dependence structure between several univariate time series are of great interest;

see Frees and Valdez (1998) and Embrechts, et al. (2002) for reviews.2

While modeling the contemporaneous dependence between several univariate time series is im-

portant, it is also important to model the temporal dependence of a univariate (nonlinear) time

series. In the copula approach to univariate time series modeling, the finite dimensional distribu-

tions of the time series are generated by copulas. By coupling different marginal distributions with

different copula functions, copula-based time series models are able to model a wide variety of mar-

ginal behaviors (such as skewness and fat tails) and dependence properties (such as clusters, positive

or negative tail dependence). Darsow, et al. (1992) provide a necessary and sufficient condition

for a copula-based time series to be a Markov process. Joe (1997) proposes a class of parametric

stationary Markov models based on parametric copulas and parametric marginal distributions, and

provides an application to daily air quality measurements.

In this paper, we study a class of univariate copula-based semiparametric stationary Markov

models, in which copulas are parameterized, but the invariant (or marginal) distributions are left

unspecified. Models in this class are completely characterized by two unknown parameters: the

copula dependence parameter α∗ (i.e., the finite-dimensional parameter in the copula function

specification); and the invariant (or marginal) distribution function G∗(·). The unknown marginal
distribution can be estimated by any one of the existing nonparametric methods, including the

rescaled empirical distribution function and the kernel smoothed estimator of the distribution

function. To estimate the copula dependence parameter α∗, we extend the two-step estimator

proposed for bivariate copula models with i.i.d. observations3 to our class of univariate copula-based

semiparametric time series models. We establish the consistency and
√
n−asymptotic normality of

the proposed estimators of (G∗, α∗) under easily-verifiable conditions. Interestingly, the asymptotic

variance of the two-step estimator of the copula dependence parameter α∗ does not depend on the

1Copulas have also proven to be useful in microeconometrics, see e.g. Lee (1982, 1983) on sample selection models,
and Heckman and Honore (1989) on competing risk models.

2Specific applications include Rosenberg (1999) and Cherubini and Luciano (2002) for multivariate option pricing,
Hull and White (1998) and Embrechts, et al. (2003) for portfolio Value-at-Risk, Li (2000) and Frey and McNeil
(2001) for default and credit risk, Costinot, et al. (2000) and Hu (2002) for contagion, to name only a few.

3Genest, et al. (1995) and Shih and Louis (1995) study this approach independently, while the latter paper allows
the i.i.d. observations generated from a bivariate copula model with random censoring. Both papers and Hu (1998)
present the asymptotic normality of their two-step estimators for i.i.d. observations.
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functional form of the marginal distribution G∗, and hence any marginal behavior (such as fat tails,

asymmetry) has no impact on the large sample inference based on the two-step estimator of α∗.

In economic and financial applications, estimating the dependence parameter is often not the

ultimate aim; one is often interested in estimating or forecasting certain features of the transition

distribution of the time series such as the (nonlinear) conditional moment and conditional quantile

functions. For example, estimating the conditional value-at-risk (VaR) of portfolios of assets, or

equivalently the conditional quantile of portfolios of assets, has become routine in risk manage-

ment, see e.g., Duffie and Pan (1997), Gourieroux and Jasiak (2002) and Engle and Manganelli

(2002). This can be easily accomplished for copula-based semiparametric time series models, as

the transition distribution of a time series in this class is completely characterized by the mar-

ginal distribution and the copula dependence parameter. Given the estimators of the marginal

distribution and the copula dependence parameter, one can easily construct an estimator of the

transition distribution of the time series and hence estimators of any (nonlinear) conditional mo-

ment and conditional quantile functions. Moreover, given the joint asymptotic distribution of the

estimators of (G∗, α∗), one can easily establish the
√
n−consistency and asymptotic normality of

the resulting estimators of the nonlinear conditional moment and conditional quantile functions.

It is interesting to note that although the conditional distribution of a copula-based semipara-

metric stationary Markov model depends on the unknown marginal distribution, estimators of the

nonlinear conditional moment and conditional quantiles are still
√
n-consistent and asymptotically

normal. Moreover, the estimated conditional quantile functions are automatically monotonic across

different quantiles, which is attractive for portfolio conditional VaR calculation.

In an unpublished working paper that is independently done from ours, Bouyé, et al. (2002) also

propose to use parametric copulas to model nonlinear autoregressive dependence of time series and

provide applications to financial returns and transactions based forex data.4 They briefly mention

the two-step procedure of Genest, et al. (1995)5 for estimating the copula dependence parameter

without establishing its large sample properties. Moreover, they didn’t study the estimation of

any conditional moment and conditional quantile functions of a copula-based semiparametric time

series model.

The rest of this paper is organized as follows. In Section 2, we present the class of copula-based

semiparametric time series models considered in this paper, and study their β−mixing property.
We also point out the close relation between these models and the generalized semiparametric

regression transformation models. In Section 3, we introduce the semiparametric estimator of the

copula dependence parameter and estimators of the conditional moment and conditional quantile

functions. Section 4 establishes the asymptotic properties of the estimators proposed in Section 3.

4Recently and independently, Gagliardini and Gourieroux (2002) have proposed a class of stationary Markov
duration time series models with proportional hazard and discussed its link to copulas.

5It is referred to as the canonical maximum likelihood (CML) estimation method in Bouyé, et al. (2002).
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In Section 5, we verify the conditions for the consistency and asymptotic normality of the two-step

estimator for three widely used copulas. Section 6 concludes with discussions of several extensions.

All the proofs are relegated to the Appendix.

2 Copula-Based Markov Models of Order 1

Let {Yt} be a stationary Markov process of order one with continuous state space. Then its

probabilistic properties are completely determined by the joint distribution of Yt−1 and Yt, H(y1, y2)

(say). By Sklar’s theorem, one can express H(y1, y2) in terms of the marginal distribution of Yt and

the copula function of Yt−1 and Yt. This suggests the copula approach as an alternative approach

to modeling a stationary Markov process: instead of specifying the joint distribution of Yt−1 and Yt

directly, one specifies the marginal distribution of Yt and the copula function of Yt−1 and Yt. The

advantage of the copula approach is that one has the freedom to choose the marginal distribution

and the copula function separately; the former characterizes the marginal behavior such as the

fat-tails of the time series {Yt}, while the latter characterizes the temporal dependence property
such as nonlinear, asymmetric dependence, of the time series.

In this paper, we will work with the class of copula-based, semiparametric time series models in

which the marginal distribution is left unspecified, but the copula function has a parametric form.

Assumption 1: {Yt : t = 1, ..., n} is a sample of a stationary first-order Markov process generated
from (G∗(·), C(·, ·;α∗)), where G∗(·) is the true invariant distribution which is absolutely continu-
ous with respect to Lebesgue measure on the real line; C(·, ·;α∗) is the true parametric copula for
(Yt−1, Yt) up to unknown value α∗, is absolutely continuous with respect to Lebesgue measure on

[0, 1]2, and is neither the Fréchet-Hoeffding upper nor lower bound.

It is known that if the copula of Yt−1 and Yt is either the Fréchet-Hoeffding upper bound

(C(u1, u2) = min(u1, u2)) or the lower bound (C(u1, u2) = max(u1 + u2 − 1, 0)), then Yt is almost

surely a monotonic function of Yt−1; the resulting time series is deterministic and under stationarity,

Yt = Yt−1 for the upper bound and Yt = G∗−1(1 −G∗(Yt−1)) for the lower bound. Assumption 1

rules out these two cases.

Remark: One standard approach that has been used to construct semiparametric time series

models is to specify a parametric conditional density of Yt given Yt−1 with an unspecified marginal

distribution of Yt−1. Our approach specifies the conditional density of Yt given Yt−1 semiparamet-

rically via

h∗(yt|yt−1) = g∗(yt)c(G
∗(yt−1), G

∗(yt);α
∗), (2.1)

where h∗(·|yt−1) is the true conditional density function of Yt given Yt−1 = yt−1, c(·, ·;α∗) is the
copula density of C(·, ·;α∗), and g∗(·) is the density of the marginal distribution G∗(·), which
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is unspecified. One obvious advantage of the copula approach over the standard approach is to

separate out the temporal dependence structure from the marginal behavior. In addition, the

temporal dependence structure as characterized by the copula function is invariant to any increasing

transformation of the time series. The copula approach also allows us to take advantage of numerous

existing parametric copulas to construct new conditional density functions via (2.1), see Joe (1997)

and Nelsen (1999) for expressions of many commonly used parametric copulas.

We note that under Assumption 1, the transformed process, {Ut : Ut ≡ G∗(Yt)}, is a stationary
parametric Markov process of order 1 in which the joint distribution of Ut and Ut−1 is given by

the copula C(u0, u1;α
∗), and the conditional density of Ut given Ut−1 = u0 is fUt|Ut−1=u0(u) =

c(u0, u;α
∗). This implies that Assumption 1 is consistent with the following generalized semipara-

metric regression transformation model:

Λ1,θ1(G
∗(Yt)) = Λ2,θ2(G

∗(Yt−1)) + εt, E{εt|Yt−1} = 0, (2.2)

whereG∗(·) is the unknown probability distribution function of Yt, Λ1,θ1(·) is a parametric increasing
function, Λ2,θ2(u0) ≡ E{Λ1,θ1(G∗(Yt))|G∗(Yt−1) = u0}, and the conditional density of εt given
G∗(Yt−1) = u0 satisfies:

fεt|G∗(Yt−1)=u0(ε) = c(u0,Λ
−1
1,θ1
(ε+ Λ2,θ2(u0));α

∗)÷ dΛ1,θ1(ε+ Λ2,θ2(u0))

dε
.

It is clear that the functional form of Λ2,θ2(·) is completely pinned down by Λ1,θ1(·) and the copula
density c(·, ·;α∗):

Λ2,θ2(u0) ≡ E{Λ1,θ1(Ut)|Ut−1 = u0} =
Z 1

0
Λ1,θ1(u)× c(u0, u;α

∗)du.

A special case of (2.2) is given by Λ1,θ1(u1) = u1, the identity mapping. Then Λ2,θ2(u0) =

E(Ut|Ut−1 = u0) = 1 −
R 1
0

∂C(u0,u;α∗)
∂Ut−1

du. For some commonly used copulas including the Plackett

copula and the Farlie-Gumbel-Morgenstern (F-G-M) copula, E(Ut|Ut−1 = u0) has simple expres-

sions, see e.g. Hutchinson and Lai (1990). However, for many copulas, transformations Λ1,θ1(u1)

that are different from the identity mapping will lead to simpler generalized semiparametric regres-

sion transformation model (2.2).

Example 1: Suppose the copula of Yt−1 and Yt is the Gaussian copula:

C(v1, v2;α) = Φα(Φ
−1(v1),Φ

−1(v2)), (2.3)

where 0 ≤ v1, v2 ≤ 1, Φ(·) is the distribution function of a standard normal random variable, and

Φα(·, ·) is the distribution function of the bivariate normal distribution with means zero, variances
1, and correlation coefficient α. Then the process {Yt} satisfies

Φ−1(G∗(Yt)) = αΦ−1(G∗(Yt−1)) + εt, (2.4)
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where εt ∼ N(0, 1−α2) and is independent of Yt−1. If in addition the marginal distribution G∗(·) is
the standard normal, then {Yt} is a linear AR(1) process. By allowing G∗(·) to be non-normal such
as Student’s t, (2.4) is able to generate first order Markov processes characterized by the Gaussian

copula, but non-normal marginal distributions.

It is known that the Gaussian copula is symmetric and has no tail dependence and hence can not

be used to model economic and financial time series exhibiting complicated nonlinear asymmetric

dependence and clusters of large and/or small values. Joe (1997) and Nelsen (1999) provide many

non-Gaussian copulas that might be used for this purpose.

Example 2: The Clayton copula given by:

C(u1, u2;α) = [u
−α
1 + u−α2 − 1]−1/α, where α > 0. (2.5)

has the lower tail dependence parameter: τL = 2−1/α and the upper tail dependence parameter:6

τU = 0. The lower tail dependence of the Clayton copula increases as α increases. When coupled

with fat-tailed marginal distributions such as the Student’s t distribution, this class of models

can generate time series with clusters of small values and hence provide alternative models for

economic and financial time series that do exhibit such clusters. To illustrate, Figures 1 and 2

present time series plots7 and the corresponding scatter plots of realizations of time series models

with the Clayton copula with α = (0.5, 2, 10) and the marginal distributions given by the standard

normal distribution (Figure 1) and the Student’s t distribution with degrees of freedom 3 (Figure

2) respectively. These figures demonstrate that: (1) the Clayton copula produces time series with

asymmetric dependence structure and the degree of asymmetry becomes stronger as α increases; (2)

as α increases, the lower tail dependence increases leading to smooth time series plots corresponding

to small realizations; (3) coupled with fat-tailed marginal distributions such as the Student’s t

distribution with 3 degrees of freedom, the Clayton copula with large α produces clusters of small

values.

To close this section, we present the β-mixing property of a copula-based Markov process {Yt}
below; see e.g. Bradley (1996) for the definition of β-mixing. A real-valued function Λ is called

norm-like if the closure of the set {x : Λ(x) ≤ B} is compact for each B > 0.

Proposition 2.1 Under Assumption 1, if c(u1, u2;α
∗) is positive on (0, 1)2, then (i) and (ii) hold:

(i) If there are constants 0 < λ < 1, 0 < d < ∞, a norm-like function Λ(·) ≥ 1, and a small
set K such that

R 1
0 Λ(u)× c(Ut−1, u;α∗)du ≤ λΛ(Ut−1)+d1K(Ut−1), then {Yt} is β-mixing with the

exponential decay rate: βt ≤ const× exp{−at} for some a > 0;
6The coefficients of lower and upper tail dependence of a bivariate copula C are defined as: τL = limq→0[C(q, q)/q]

and τU = limq→1[{1− 2q + C(q, q)}/(1− q)].
7The realizations are generated by a modification of the conditional approach described in Nelsen (1999) to time

series models. Alternative algorithms are available for generating random variables from specific copulas; see Devroye
(1986), Johnson (1987), and Nelsen (1999).
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(ii) If there are constants λ ∈ [0, 1), 0 < a, d < ∞, a norm-like function Λ(·) ≥ 1, and a

small set K such that
R 1
0 Λ(u)× c(Ut−1, u;α∗)du ≤ Λ(Ut−1)− a[Λ(Ut−1)]λ + d1K(Ut−1), then {Yt}

is β-mixing with the polynomial decay rate βt: βt(1 + t)λ/(1−λ) → 0 as t→∞.

The assumption that c(u1, u2;α
∗) is positive on (0, 1)2 ensures that any process satisfying As-

sumption 1 with copula density given by c(u1, u2;α
∗) is β-mixing, since any strictly stationary,

recurrent, aperiodic Markov process is β-mixing, albeit the β-mixing decay rate could be very slow

(see e.g. Bradley (1986)). The conditions in Proposition 2.1 on the copula are sufficient to ensure

that time series with such a copula is β-mixing with at least a polynomial decay rate. Unlike many

first-order nonlinear stationary Markov models for which conditions that ensure β-mixing with

certain decay rates involve the invariant distributions (see e.g. Chen, et al. (1998) for diffusion

models), conditions for β-mixing in Proposition 2.1 do not depend on the invariant distribution

G∗, but only depend on the copula specification. For instance, by applying Proposition 2.1(i) to

Example 1, one can easily verify that the time series {Yt} generated by the Gaussian copula is
β-mixing with the exponential decay rate as long as |α| < 1, regardless of its marginal distribution.

3 Estimation

In this section we first present estimators of model parameters (G∗, α∗) and then introduce estima-

tors of the conditional moment and conditional quantile functions of Yt given Yt−1.

3.1 Estimation of Model Parameters

A semiparametric copula-based time series model is completely determined by (G∗, α∗). The un-

known marginal distribution G∗ can be estimated by Gn(·), the rescaled empirical distribution
function defined as

Gn(y) =
1

n+ 1

nX
t=1

I{Yt ≤ y}. (3.1)

Under Assumption 1, the true joint distribution function of Yt−1 and Yt is of a semipara-

metric form: H∗(y1, y2) = C(G∗(y1), G∗(y2);α∗) and the conditional density of Yt given Yt−1 is

h∗(Yt|Yt−1) = g∗(Yt)c(G∗(Yt−1), G∗(Yt);α∗). Hence, if the marginal distribution G∗(·) is completely
known, then the log-likelihood function is given by

L(α) =
1

n

nX
t=1

log g∗(Yt) +
1

n

nX
t=2

log c(G∗(Yt−1),G
∗(Yt);α). (3.2)

Ignoring the first term and replacing G∗ with Gn in the second term on the right hand side of

(3.2) motivate the semiparametric estimator α̃ of α∗:

α̃ = argmaxαL̃(α), L̃(α) =
1

n

nX
t=2

log c(Gn(Yt−1), Gn(Yt);α). (3.3)
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The estimator α̃ extends that in Genest, et al. (1995) for an i.i.d. random sample {(Xi, Yi)}ni=1
from a bivariate distribution H(x, y) = C(F (x), G(y);α∗) to a univariate time series satisfying

Assumption 1. We note that the rescaled empirical distribution Gn(·) is used in the criterion (3.3)
instead of the standard empirical distribution n−1

Pn
t=1 I{Yt ≤ ·}; this is a neat device to ensure

that the criterion function is well defined for all finite n. As the partial derivatives of log c(u1, u2;α)

are infinity at ui = 0 or 1 for i = 1, 2 for many copula densities, the use of the rescaled empirical

distribution also ensures that the first order condition of the criterion (3.3) is well defined for all

finite n.

3.2 Estimation of Conditional Moment and Conditional Quantile Functions

In economic and financial applications, one is often interested in estimating or forecasting certain

characteristics of Yt given Yt−1. These can be easily obtained from the conditional density function

h∗(·|Yt−1) of Yt given Yt−1. For example, the conditional k-th moment of Yt given Yt−1 can be

calculated via

E(Y k
t |Yt−1 = y) =

Z
zkh∗(z|y)dz =

Z
zkc(G∗(y), G∗(z);α∗)dG∗(z). (3.4)

More generally, we may be interested in estimating a vector of conditional moment functions

E[ψ(Yt)|Yt−1], where ψ is a vector of known measurable functions of Yt. Since

E[ψ(Yt)|Yt−1 = y] =

Z
ψ(z)c(G∗(y), G∗(z);α∗)dG∗(z), (3.5)

it can be estimated by the following simple plug-in estimator:

eE[ψ(Yt)|Yt−1 = y] =

Z
ψ(z)c(Gn(y), Gn(z); eα)dGn(z). (3.6)

Another important characteristic of the conditional distribution of Yt given Yt−1 is the con-

ditional quantile of Yt given Yt−1 or the conditional VaR of Yt. Estimating the conditional VaR

of portfolios of assets has become routine in risk management, see Gourieroux and Jasiak (2002).

For {Yt} satisfying Assumption 1, the conditional quantile function of Yt given Yt−1 can be easily

estimated. To see this, note that Yt = G∗−1(Ut) is a monotonic transformation of Ut. Hence the

q-th conditional quantile of Yt given Yt−1 is given by

QY
q (Yt−1) = G∗−1(Qq(G

∗(Yt−1);α
∗)), (3.7)

where Qq(u;α
∗) is the conditional quantile function of Ut given Ut−1 = u:

Qq(u;α
∗) = C−12|1(q|u;α

∗), (3.8)

in which C2|1(·|u;α∗) = ∂
∂u1

C(u, ·;α∗) ≡ C1(u, ·;α∗) is the conditional distribution of Ut given

Ut−1 = u. Bouyé and Salmon (2002) provide explicit expressions of the conditional quantile func-

tions Qq(·;α) for several specific copulas including the Gaussian copula, the Frank copula, and the
Clayton copula.
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It follows from (3.8) and (3.9) that the plug-in estimator of the conditional quantile Qq(u;α
∗)

of Ut given Ut−1 = u is:

eQq(u) = Qq(u; α̃) = C−12|1(q|u; eα), (3.9)

and the plug-in estimator of the conditional quantile QY
q (y) of Yt given Yt−1 = y is:

eQY
q (y) = G−n (

eQq(Gn(y))) = G−n
³
C−12|1(q|Gn(y); eα)´ , (3.10)

where G−n (v) = inf{y : Gn(y) ≥ v}. For specific copulas, explicit expressions for the conditional
quantile estimators are available. For example, for the Clayton copula,

eQq(u) = [(q
−α̃/(1+α̃) − 1)u−α̃ + 1]−1/α̃, eQY

q (y) = G−1n ([(q
−α̃/(1+α̃) − 1)Gn(y)

−α̃ + 1]−1/α̃).

In general, the conditional quantile function Qq(·;α∗) is nonlinear. But as it is derived from the
conditional distribution of Ut given Ut−1, it is automatically monotonic across different quantiles. As

a result, the semiparametric conditional quantile function for {Yt} also satisfies the monotonicity
property and so does its plug-in estimator eQY

q (y). This is a nice feature of the copula-based

approach. Although Koenker and Bassett’s (1978) linear quantile regression estimator satisfies this

monotonicity property, the nonlinear quantile regression extension typically fails to be monotonic

across quantiles.

Remark: Instead of using the rescaled empirical distribution function Gn(·) to estimate G∗(·),
we could use the following kernel estimator of the distribution function defined as:

bGn(y) =
1

n

nX
t=1

K(
y − Yt
an

),

where K(x) =
R x
−∞ k(z)dz for a kernel density function k : R → [0,∞), and an is the bandwidth

going to zero at a certain rate as n → ∞. Likewise, we could estimate α∗, E[ψ(Yt)|Yt−1] and
QY
q (Yt−1) using

bGn(·) instead of Gn(·). According to the general theory of Newey (1994) on

semiparametric two-step estimation, the first order limiting distributions of the estimators based

on bGn(·) will be the same as those based on Gn(·) under appropriate conditions.

4 Large Sample Properties

The main difficulty in establishing the asymptotic properties of the semiparametric estimator eα
is that the score function and its derivatives could blow up to infinity near the boundaries. To

overcome this difficulty, we first establish convergence of Gn(·) in a weighted metric and then use it
to establish the consistency and asymptotic normality of α̃. Finally we present the joint asymptotic

distribution of Gn(·) and α̃ which can be used together with the Delta method to establish the

asymptotic properties of the conditional moment and conditional quantile estimators.
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4.1 Estimators of Model Parameters

In the following we define eUn(v) ≡ Gn(G
∗−1(v)) for v ∈ (0, 1). Let W ∗(·) be a zero-mean tight

Gaussian process in D[0, 1] such that W ∗(0) =W ∗(1) = 0, and

E{W ∗(v1)W
∗(v2)} = min{v1, v2}− v1v2

+
∞X
k=2

{Cov[I(U1 ≤ v1), I(Uk ≤ v2)] + Cov[I(Uk ≤ v1), I(U1 ≤ v2)]}.

Lemma 4.1 Suppose {Yt} satisfies Assumption 1 and is β-mixing. Let w(·) be a continuous func-
tion on [0, 1] which is strictly positive on (0, 1), symmetric at v = 1/2, and increasing on (0, 1/2].

(1) If βt = O(t−b) for some b > 0 and
R 1
0

1
w(v) log(1 +

1
w(v))dv <∞, then

sup
v∈[0,1]

¯̄̄̄
¯ eUn(v)− v

w(v)

¯̄̄̄
¯ = oa.s.(1), sup

y

¯̄̄̄
Gn(y)−G∗(y)

w(G∗(y))

¯̄̄̄
= oa.s.(1).

(2) If either (i) βt = O(t−b) for some b > γ/(γ − 1) with γ > 1 and
R 1
0 (

1
w(v))

2γdv < ∞; or (ii)
βt = O(b−t) for some b > 1 and

R 1
0 (

1
w(v))

2 log(1 + 1
w(v))dv <∞, then

√
n
³ eUn(·)− ·

´
/w(·)→dist W

∗(·)/w(·) in D[0, 1],

√
n sup

y

¯̄̄̄
Gn(y)−G∗(y)

w(G∗(y))

¯̄̄̄
= Op(1).

The results in Lemma 4.1 are more general than the standard results: supy |Gn(y)−G∗(y)| =
oa.s.(1) and

√
n supy |Gn(y) − G∗(y)| = Op(1). Obviously, choosing w(v) ≡ 1 in Lemma 4.1 leads

to the latter results. More importantly, weight functions of the form: w(v) = [v(1− v)]1−ξ for all

v ∈ (0, 1) and for some ξ ∈ (0, 1), also satisfy the conditions of Lemma 4.1 for appropriate choices of
ξ. Such weight functions approach zero when v approaches 0 or 1. Hence, the results in Lemma 4.1

are stronger than the standard results, allowing us to handle unbounded score functions. Previously

Shao and Yu (1996, theorem 2.2) obtained results similar to our Lemma 4.1(2) for stationary strong

mixing processes with decay rate O(t−b), b > 1 +
√
2. Our assumption on the β-mixing decay rate

and the method of proof are different from theirs. According to our private communication with

Shao and Yu, there is no existing result similar to Lemma 4.1(1).

In the following, we shall define G as the space of probability distributions over the support of
Yt [say R]. For any G ∈ G we let ||G−G∗||G = supy |{G(y)−G∗(y)}/w(G∗(y))| with w(·) satisfying
the condition in Lemma 4.1(1). Let Gδ = {G ∈ G : ||G−G∗||G ≤ δ} for a small δ > 0.

Let A ⊂ Rd be the parameter space. For α ∈ A, we use ||α − α∗|| to denote the usual
Euclidean metric. In addition, let l(v1, v2;α) = log c(v1, v2;α). Denote lα(v1, v2;α) ≡ ∂l(v1,v2;α)

∂α ,

lα,α(v1, v2;α) ≡ ∂2l(v1,v2;α)
∂α∂α0 and lα,j(v1, v2;α) ≡ ∂2l(v1,v2;α)

∂vj∂α
for j = 1, 2.

Proposition 4.2 Suppose Assumption 1 and the following conditions hold:
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C1. (i) α∗ ∈ A, A is a compact subset of Rd; (ii) E[lα(Ut−1, Ut;α))] = 0 if and only if α = α∗;

C2. (i) lα(v1, v2;α) is well-defined for (v1, v2;α) ∈ (0, 1)2 × A, and for all α ∈ A, lα(Ut−1, Ut;α)

is Lipschitz continuous at α with probability one; (ii) lα,j(v1, v2;α), j = 1, 2 are well-defined and

continuous in (v1, v2;α) ∈ (0, 1)2 ×A;
C3. {Yt : t = 1, 2, ...} is β-mixing with the mixing decay rate βt = O(t−b) for some b > 0;

C4. E{supα∈A ||lα(Ut−1, Ut;α)|| log[1 + ||lα(Ut−1, Ut;α)||]} <∞;
C5. for j = 1, 2, E{supα∈A,G∈Gδ ||lα,j(G(Yt−1),G(Yt);α)||w(Ut−2+j)} < ∞, where w(·) satisfies
the condition in Lemma 4.1(1).

Then: ||eα− α∗|| = op(1).

We now discuss conditions C1-C5. The first two conditions are standard. The third condition,8

C3, requires that the process {Yt} be β-mixing with the polynomial decay rate, which may be

verified via Proposition 2.1. Roughly speaking, C4 is a moment condition on the score function.

C5 states that the partial derivatives of the score function with respect to the first two arguments

must be dominated by a function which has a finite first moment when weighted by a weighting

function w(·) satisfying the condition in Lemma 4.1(1). If the partial derivatives of the score

function are bounded, then one can choose the identity weighting function and C5 is automatically

satisfied. However, as the partial derivatives of the score function can be unbounded for some

copula functions, C5 may not be satisfied with the identity weighting, but may be satisfied with

other weighting functions such as w(v) = [v(1− v)]1−ξ for all v ∈ (0, 1) and for some ξ ∈ (0, 1).
In the following we denote Fδ = {(α,G) ∈ A × Gδ : ||α − α∗|| ≤ δ} for a small δ > 0. Let

{Gη : η ∈ [0, 1]} ⊂ Gδ be a one-dimensional smooth path in Gδ with Gη|η=0 = G∗. In particular we

can take Gη = G∗ + η[G − G∗] for G ∈ Gδ. Let {(αη, Gη) : η ∈ [0, 1]} ⊂ Fδ be a one-dimensional

smooth path in Fδ with (αη, Gη)|η=0 = (α∗, G∗). We also define

A∗n ≡ 1

n− 1

nX
t=2

[lα(Ut−1, Ut;α
∗) +W1(Ut−1) +W2(Ut)], (4.1)

W1(Ut−1) ≡
Z 1

0

Z 1

0
[I{Ut−1 ≤ v1}− v1]lα,1(v1, v2;α

∗)c(v1, v2;α
∗)dv1dv2, (4.2)

W2(Ut) ≡
Z 1

0

Z 1

0
[I{Ut ≤ v2}− v2]lα,2(v1, v2;α

∗)c(v1, v2;α
∗)dv1dv2. (4.3)

The following set of conditions are sufficient to ensure the
√
n -asymptotic normality of eα:

A1. (i) condition C1 is satisfied with α∗ ∈ int(A); (ii) B ≡ −E [lα,α(Ut−1, Ut;α
∗)] is positive

definite; (iii) Σ ≡ limn→∞ V ar(
√
nA∗n) is positive definite; (iv) ||eα−α∗|| = op(1), and supy |{Gn(y)−

G∗(y)}/w2(G∗(y))| = Op(n
−1/2), where w2(·) satisfies the condition in Lemma 4.1(2);

8We could replace this condition with a strong mixing condition by using the result in Shao and Yu (1996)
mentioned earlier. However the conditions on the strong mixing decay rate and the existence of finite higher order
moments of the score function and its partial derivatives will be stronger than those for β-mixing processes. As many
copula models have score functions blowing up at a fast rate, it is essential to maintain minimal requirements for
the existence of finite higher order moments. This motivates us to use the β-mixing condition instead of the strong
mixing.
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A2. lα,α(v1, v2;α) is well-defined and continuous in (v1, v2;α) ∈ (0, 1)2 × int(A);
A3. the interchange of differentiation and integration of lα(Gη(Yt−1), Gη(Yt);αη) with respect to

η ∈ (0, 1) is valid;
A4. (i) {Yt : t = 1, 2, ...} is stationary β-mixing with the mixing decay rate βt = O(t−b) for some

b > γ/(γ − 1), in which γ > 1; (ii) E{||W1(Ut−1) +W2(Ut)||2γ} <∞;
(iii) E{sup(α,G)∈Fδ ||lα(G(Yt−1),G(Yt);α)||}

2γ <∞;
A4’. (i) {Yt : t = 1, 2, ...} is stationary β-mixing with the mixing decay rate βt = O(b−t) for some

b > 1; (ii) E{||W1(Ut−1) +W2(Ut)||2 log[1 + ||W1(Ut−1) +W2(Ut)||]} <∞;
(iii) E{sup(α,G)∈Fδ ||lα(G(Yt−1),G(Yt);α)||

2 log[1 + ||lα(G(Yt−1), G(Yt);α)||]} <∞;
A5. E{sup(α,G)∈Fδ ||lα,α(G(Yt−1), G(Yt);α)||}

2 <∞;
A6. E{sup(α,G)∈Fδ ||lα,j(G(Yt−1), G(Yt);α)||w(Ut−2+j)}2 <∞ for j = 1, 2, where w(·) satisfies the
condition in Lemma 4.1(1) and E{[w2(Ut)w(Ut)

]2} <∞.
We now comment on conditions A1 and A6; the other conditions are similar to those in Propo-

sition 4.2. Condition A1(i) requires that α∗ be in the interior of the parameter space. This is

also assumed in Genest, et al. (1995) and is a typical condition in classical parametric and semi-

parametric models, see the conclusion section for further discussion on this. A1(ii) and A1(iii) are

also standard regularity conditions. A1(iv) requires that Gn(·) converge uniformly to G∗(·) at a
rate n−1/2 in the weighted metric with the weight w2(·) satisfying the condition in Lemma 4.1(2).
This condition implies that w2(·) could go to zero at a slower rate than that in Lemma 4.1(1).
Similar to C5, A6 requires that the partial derivatives of the score function be dominated by a

function which has a finite second moment when weighted by the weight function w(·) satisfying
the condition in Lemma 4.1(1). The assumption

R 1
0 [

w2(v)
w(v) ]

2dv < ∞ in A6 restricts the relative

decay rate of w(·) in A6 to w2(·) in A1(iv); when the time series {Yt} is stationary β-mixing with

the exponential decay rate, we can take w2(v) ≈
p
w(v), see e.g., the Gaussian copula example in

Section 5. The fact that w(·) could go to zero at a fast rate is very important for copula models in
which supα ||lα,j(v1, v2;α)|| (j = 1, 2) can blow up to infinity at a fast rate.

Proposition 4.3 Under Assumption 1 and conditions A1 - A3, A4 (or A4’), A5 - A6, we have:

(1) α̃−α∗ = B−1A∗n+ op(n
−1/2); (2)

√
n(α̃−α∗)→ N(0, B−1ΣB−1) in distribution, where B and

Σ are defined in A1 and A∗n in (4.1).

The additional terms W1(Ut−1) and W2(Ut) in A∗n are introduced by the need to estimate the

marginal distribution function G∗(·). In the case where the distribution G∗(·) is completely known,
both terms disappear from A∗n. It is interesting to note that the asymptotic variance of α̃ does not

depend on the functional form of the marginal distribution G∗.
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4.2 Conditional Moment and Conditional Quantile Estimators

Asymptotic properties of the conditional moment and conditional quantile estimators can be estab-

lished from the joint asymptotic distribution of Gn(·) and α̃ via the Delta method. Lemma 4.1(2),

Proposition 4.3(1) and the Cramér-Wold device lead to the following result.

Proposition 4.4 Under the conditions of Proposition 4.3,

√
n

µ
Gn(·)−G∗(·)
w(G∗(·)) , [α̃− α∗]

¶
→
µ
W ∗(G∗(·))
w(G∗(·)) , Z∗

¶
in distribution,

where (W
∗(·)

w(·) , Z
∗) is a bivariate Gaussian process on D[0, 1]×Rd and Z∗ ∼ N(0, B−1ΣB−1).

The covariance of (W
∗(·)

w(·) , Z
∗) can be derived by using the expression of Gn(·) and Proposition

4.3(1). The expression is tedious and thus omitted. Proposition 4.4 and the following expansions

can be used to establish the asymptotic distributions of the conditional moment and conditional

quantile estimators. In particular, they show that even though the transition distribution of the

time series model is semiparametric, the conditional moment and conditional quantile functions can

still be consistently estimated at the parametric
√
n−rate and the estimators are asymptotically

normally distributed.

Under mild conditions, one can show that the conditional moment estimator (3.6) satisfies

eE[ψ(Yt)|Yt−1 = y]−E[ψ(Yt)|Yt−1 = y]

=

Z
ψ(z)c(G∗(y),G∗(z);α∗)d[Gn(z)−G∗(z)]

+

Z
ψ(z)c1(G

∗(y), G∗(z);α∗)[Gn(y)−G∗(y)]dG∗(z)

+

Z
ψ(z)c2(G

∗(y), G∗(z);α∗)[Gn(z)−G∗(z)]dG∗(z)

+

Z
ψ(z)cα(G

∗(y), G∗(z);α∗)dG∗(z)× (eα− α∗) + op(n
−1/2),

where cj(·, ·;α∗) denotes the partial derivative of c with respect to the j argument, j = 1, 2, α.
Similarly, one can show that under mild conditions, the conditional quantile estimator (3.9) of

Ut given Ut−1 = u satisfies

eQq(u)−Qq(u;α
∗) =

∂C−12|1(q|u;α∗)
∂α

(eα− α∗) + op(n
−1/2).

Again the asymptotic distribution of the estimator of the conditional quantile of Ut given Ut−1

does not depend on the marginal distribution G∗. Nevertheless, the fact that G∗ is unknown and

is estimated by Gn does affect the asymptotic variance of eQq(u) via its impact on (eα− α∗).

Finally after tedious calculations, we have for the conditional quantile estimator (3.10) of Yt

given Yt−1 = y:

eQY
q (y)−QY

q (y)

12



=
1

g∗(QY
q (y))

{Gn(Q
Y
q (y))−G∗(QY

q (y))}+
1

g∗(QY
q (y))

{
∂C−12|1(q|u;α∗)

∂u1
[Gn(y)−G∗(y)]}

+
1

g∗(QY
q (y))

{
∂C−12|1(q|u;α∗)

∂α
(eα− α∗)}+ op(n

−1/2), with u = G∗(y).

Again the conditional quantile of Yt given Yt−1 can be estimated consistently at the parametric
√
n−rate. Unfortunately the limiting distribution of its estimator depends on the marginal density

g∗(QY
q (y)).

4.3 Statistical Inference

The asymptotic distributions of the estimators established in this section may be used to construct

inference procedures for the underlying population quantities of interest. The unknown asymptotic

variances of the estimators of α∗ and of E[ψ(Yt)|Yt−1 = y] can be simply estimated by any existing

heteroscedasticity autocorrelation consistent (HAC) covariance estimators, see e.g. Newey and

West (1987) and Andrews (1991). The asymptotic variance of the estimator of the conditional

quantile QY
q (y) can be obtained by combining a consistent estimator (say a kernel estimator) of

the marginal density g∗(QY
q (y)) with a HAC estimator, see e.g. Robinson (1983), Powell (1991),

Newey (1994) and Engle and Manganelli (2002). Alternatively, some bootstrap methods may be

used to approximate the asymptotic distributions of the estimators of interest directly.

For the class of copula-based semiparametric time series models, one convenient bootstrap

procedure is the semiparametric bootstrap which takes advantage of the fact that Yt = G∗−1(Ut),

where {Ut}nt=1 is a stationary first-order Markov process with the copula C(u1, u2;α
∗) being the

joint distribution of (U1, U2). The semiparametric bootstrap procedure involves:

Step 1. Generate n independent U(0, 1) random variables {Xt}nt=1.

Step 2. Generate U b
1 = X1 and U

b
t = C−12|1(Xt|U b

t−1; α̃) for t = 2, ..., n. This leads to one bootstrap

sample {Ub
t }nt=1.

Step 3. Let Y b
t =

bG−1n (U b
t ), where

bGn(y) is the kernel estimator defined in Section 3. Compute

the corresponding estimate using the bootstrap sample {Y b
t }nt=1.

Step 4. Repeat Steps 1 - 3 a large number of times and use the empirical distribution of the

centered bootstrap values of the estimator to approximate its distribution.

Observing that conditional on the time series {Yt}nt=1, the bootstrap time series {Y b
t } satisfies

Assumption 1 with the continuous marginal distribution bGn(·) and the copula function C(·, ·; α̃) and
hence under the conditions of Proposition 4.3, bootstrap works for all the estimators we proposed in

the sense that the conditional distribution of the bootstrap estimator converges in probability to the
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asymptotic distribution of the corresponding estimator based on the original data. Consequently,

inference procedures can be constructed from the bootstrap distribution.

5 Verification of Conditions for Some Copula Families

In this section we verify the conditions of Propositions 4.2 and 4.3 for three copulas: the Gaussian

copula, the Frank copula, and the Clayton copula. The Gaussian copula is widely used and turns

out to be the most difficult to check, as its score function blows up faster than most other copulas.

By choosing the weighting functions in A1(iv) and A6 carefully, we are able to verify them for the

Gaussian copula. Unlike the Gaussian copula, the Frank copula has bounded score functions. As a

result, the identity weighting is enough to verify the conditions of Propositions 4.2 and 4.3 for the

Frank copula. The Clayton copula also has unbounded score functions. Similar arguments used to

verify conditions for the Gaussian copula can be used to show that the Clayton copula also satisfies

the conditions of Propositions 4.2 and 4.3 for appropriate choices of the weighting functions.

5.1 The Gaussian Copula

From (2.1), it follows that the copula density of the Gaussian copula is given by

c(v1, v2;α) =
φα(Φ

−1(v1),Φ−1(v2))

φ(Φ−1(v1))φ(Φ−1(v2))
,

where φα(·, ·) is the density function of Φα(·, ·) and φ(·) is the density function of Φ(·). Apart from
a constant term, we get

l(v1, v2, α) = −
1

2
ln(1− α2)− 1

2(1− α2)
{[Φ−1(v1)]2 + [Φ−1(v2)]2 − 2αΦ−1(v1)Φ−1(v2)}.

As a result, the first and second order partial derivatives of l(v1, v2, α) are given by

lα(v1, v2, α) =
α(1− α2)− α{[Φ−1(v1)]2 + [Φ−1(v2)]2}+ (1 + α2)Φ−1(v1)Φ−1(v2)

(1− α2)2
,

lα,α(v1, v2, α) =
1 + α2

(1− α2)2
+
(6α+ 2α3)Φ−1(v1)Φ−1(v2)− (1 + 3α2){[Φ−1(v1)]2 + [Φ−1(v2)]2}

(1− α2)3
,

lα,1(v1, v2, α) =
(1 + α2)Φ−1(v2)− 2αΦ−1(v1)

(1− α2)2φ(Φ−1(v1))
, lα,2(v1, v2, α) =

(1 + α2)Φ−1(v1)− 2αΦ−1(v2)
(1− α2)2φ(Φ−1(v2))

.

5.1.1 Consistency

We first establish the consistency of eα for α∗ by verifying conditions C1 - C5 of Proposition 4.2.
Suppose |α∗| < 1, especially, α∗ ∈ int(A) with A = [−1 + η, 1− η] for an arbitrarily small η > 0.

Then condition C1(i) is satisfied. Conditions C1(ii), C2, and C3 are trivially satisfied. It remains
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to verify conditions C4 and C5. We first notice that there are constants M1, M2 > 0 and small

� > 0 such that for all v ∈ (0, 1), the following inequalities hold:¯̄̄̄
¯ Φ−1(v)φ(Φ−1(v))

¯̄̄̄
¯ ≤ [v(1− v)]−1, |Φ−1(v)| ≤M1[v(1− v)]−�,

1

φ(Φ−1(v))
≤M2[v(1− v)]−1,

see e.g., Hu (1998, page 132). Let r(v) ≡ v(1− v), then there are constants k1, k2 > 0 such that

sup
α∈A

||lα(v1, v2, α)| | ≤ k1{[r(v1)r(v2)]−� + [r(v1)]−2� + [r(v2)]−2�} ≤ k2[r(v1)r(v2)]
−2�.

Since Ut ∼ U(0, 1), one can easily verify that condition C4 is satisfied as long as � ∈ (0, 1/2)
such that

R 1
0 [r(v)]

−2�{1 + log([r(v)]−2�)}dv <∞. For condition C5, since

sup
α∈A

||lα,1(v1, v2, α)| | ≤ k1
[r(v2)]

−� + 1

r(v1)
, sup

α∈A
||lα,2(v1, v2, α)|| ≤ k2

[r(v1)]
−� + 1

r(v2)
,

for some constants k1, k2 > 0, it suffices to show that for an arbitrarily small δ > 0,

E

"
sup
G∈Gδ

{[r(G(Yt−1))]−1[r(G(Yt))]−�}w(Ut−1)

#
<∞,

for a weighting function w(·) satisfying the condition for Lemma 4.1(1). By the definition of Gδ,
one can show that the following inequalities hold almost surely:

1

G∗(Yt)− δw(G∗(Yt))
≥ 1

G(Yt)
≥ 1

G∗(Yt) + δw(G∗(Yt))
,

1

1−G∗(Yt)− δw(G∗(Yt))
≥ 1

1−G(Yt)
≥ 1

1−G∗(Yt) + δw(G∗(Yt))
.

Hence, we get

1

r(Ut−1)− δw(Ut−1)
≥ 1

[1− Ut−1 − δw(Ut−1)][Ut−1 − δw(Ut−1)]
≥ 1

r(G(Yt−1))
,

1

{r(Ut)− δw(Ut)}�
≥ 1

{[1− Ut − δw(Ut)][Ut − δw(Ut)]}�
≥ 1

{r(G(Yt))}�
.

Let w(v) = [r(v)]1−ξ for some ξ ∈ (0, 1). By Holder’s inequality, we have

E

∙
w(Ut−1)

[r(Ut−1)− δw(Ut−1)]{r(Ut)− δw(Ut)}�
¸

≤ {E[{[r(Ut)]
ξ − δ}−p]}1/p{E[{r(Ut)− δ[r(Ut)]

1−ξ}−�q]}1/q,

where p, q > 1 and 1
p+

1
q = 1. Hence condition C5 is satisfied as long as ξ ∈ (0, 1/p) and � ∈ (0, 1/q).

Proposition 4.2 now implies that eα− α∗ = op(1).
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5.1.2
√
n-normality

We now establish
√
n -asymptotic normality of eα by verifying conditions A1 - A6 of Proposition

4.3. Obviously A1(i) is satisfied. One can easily verify that

B =
1 + α∗2

(1− α∗2)2
, W1(Ut−1) =

α∗{[Φ−1(Ut−1)]2 − 1}
2(1− α∗2)

, W2(Ut) =
α∗{[Φ−1(Ut)]

2 − 1}
2(1− α∗2)

,

A∗n =
−1
n− 1

nX
t=2

α∗(1 + α∗2)([Φ−1(Ut−1)]2 + [Φ−1(Ut)]
2)− 2(1 + α∗2)Φ−1(Ut−1)Φ−1(Ut)

2(1− α∗2)2
.

Hence conditions A1(ii)(iii) are satisfied. Since the time series generated from Assumption 1 with

the Gaussian copula is stationary β-mixing with the exponential decay rate, condition A1(iv)

is satisfied with the weighting function w2(v) = [r(v)](1−ξ)/2 for some ξ ∈ (0, 1). Conditions

A2, A3 and A4’(i)(ii) are satisfied. It remains to check conditions A4’(iii), A5 and A6. Since

supα∈A ||lα,α(v1, v2, α)| | ≤ k[r(v1)r(v2)]
−2�, similar to condition C5, one can conclude that condi-

tions A4’(iii) and A5 are satisfied if

E{[{r(Ut−1)− δw(Ut−1)}{r(Ut)− δw(Ut)}]−4�(1 + log[r(Ut)− δw(Ut)]
−2�)} <∞,

which is satisfied for some � ∈ (0, 1/8). Finally let w(v) = [r(v)]1−ξ for some ξ ∈ (0, 1) satisfying
the condition in Lemma 4.1(1). Then E{[w2(Ut)w(Ut)

]2} =
R 1
0

1
[r(v)]1−ξ

dv <∞. Also for any p, q > 1 with
1
p +

1
q = 1 we have

E

∙
w(Ut−1)

{r(Ut−1)− δw(Ut−1)}{r(Ut)− δw(Ut)}�
¸2

≤ {E[{[r(Ut)]
ξ − δ}−2p]}1/p{E[{r(Ut)− δ[r(Ut)]

1−ξ}−2�q]}1/q <∞,

where the last inequality holds as long as ξ ∈ (0, 12p) and � ∈ (0,
1
2q ). Hence condition A6 is satisfied.

Consequently, the following result holds:

√
n(α̃− α∗) = B−1A∗n + op(1)→ N(0, 1− α∗2) in distribution.

5.2 The Frank Copula

The Frank copula density function is

c(v1, v2;α) = log(α−1)
αv1αv2

1− α

∙
1− (1− αv1)(1− αv2)

1− α

¸−2
if α > 0, α 6= 1;

= 1 if α = 1.

This copula generates positive dependence between Yt−1 and Yt when α ∈ (0, 1), negative depen-
dence when α > 1, and independence when α = 1, see Nelsen (1999) for additional properties. We

assume α∗ ∈ int(A) with A = [A−1, A] for a large A > 1.
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If α > 0, α 6= 1, then

l(v1, v2, α) = log log(α
−1)− log(1− α) + (v1 + v2) logα− 2 log

µ
1− (1− αv1)(1− αv2)

1− α

¶
.

Hence,

lα(v1, v2, α) =
1

α logα
+

1

1− α
+

v1 + v2
α

−
2
h
(1−αv2)αv1v1+(1−αv1 )αv2v2

α(1−α) − (1−αv1 )(1−αv2)
(1−α)2

i
1− (1−αv1 )(1−αv2)

1−α
,

lα,1(v1, v2, α) =
1

α
+
2
h
(1−αv2)αv1v1+(1−αv1 )αv2v2

α(1−α) − (1−αv1 )(1−αv2)
(1−α)2

i h
(1−αv2 )αv1 logα

1−α

i
[1− (1−αv1 )(1−αv2)

1−α ]2

−
2
h
(1−αv2 )αv1 (1+logα)−αv2v2αv1 logα

α(1−α) + (1−αv2 )αv1 logα
(1−α)2

i
1− (1−αv1 )(1−αv2)

1−α
,

lα,α(v1, v2, α) =
2
h
(1−αv2)αv1v1+(1−αv1 )αv2v2

α(1−α) − (1−αv1 )(1−αv2)
(1−α)2

i2
[1− (1−αv1 )(1−αv2)

1−α ]2

−
2 (1−α

v1 )
(1−α)3

n³
2v2
α − 2v2 + 1−

(1−α)2v2(1−v2)
α2

´
αv2 − 1

o
1− (1−αv1 )(1−αv2)

1−α

−
2 (1−α

v2 )
(1−α)3

n³
2v1
α − 2v1 + 1−

(1−α)2v1(1−v1)
α2

´
αv1 − 1

o
− 4v1v2αv1αv2

α2(1−α)

1− (1−αv1 )(1−αv2)
1−α

− 1 + logα
(α logα)2

+
1

(1− α)2
− v1 + v2

α2
.

If α = 1, then l(v1, v2, α) = 0; lα(v1, v2, α) = v1 + v2 − 2v1v2 − 1/2; lα,1(v1, v2, α) = −2v2 + 1;
and lα,α(v1, v2, α) = 2(v1v2)

2 − 2(v1v2)(v1 + v2 − 2)− (v1 + v2) + 5/12.

It is easy to see that Conditions C1, C2, A2 and A3 are automatically satisfied. Although

the score function and its derivatives are in complicated forms, one can show that |lα(v1, v2, α)|,
|lα,α(v1, v2, α)|, |lα,j(v1, v2, α)| for j = 1, 2, are all bounded uniformly in v1, v2 ∈ [0, 1] and α ∈
int(A). Hence Conditions C4, C5, A4(iii) or A4’(iii), A5 and A6 are trivially satisfied with the iden-
tity weighting function w(·) = 1. Assuming condition A4(i) or A4’(i), then conditions A1(ii)(iii)(iv)
with w2(·) = 1, and A4(ii) or A4’(ii) are trivially satisfied. We can now apply Proposition 4.2 to
establishing the consistency of eα, and apply Proposition 4.3 to obtain its√n−asymptotic normality.
5.3 The Clayton Copula

The copula density of the Clayton copula is given by

c(v1, v2;α) = (1 + α)v
−(α+1)
1 v

−(α+1)
2 [v−α1 + v−α2 − 1]−(α−1+2), where α > 0.

Hence, the log-copula density and its derivatives are:

l(v1, v2;α) = log(1 + α)− (α+ 1) log v1 − (α+ 1) log v2 − (α−1 + 2) log(v−α1 + v−α2 − 1).
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lα(v1, v2;α) =
1

1 + α
− log(v1v2) +

log(v−α1 + v−α2 − 1)
α2

+ (
1

α
+ 2)

v−α1 log v1 + v−α2 log v2

v−α1 + v−α2 − 1
,

lα,1(v1, v2;α) =
−1
v1
+
(1 + 2α)[v−α2 (log v2 − log v1) + log v1] + 2(v−α1 + v−α2 − 1)

vα+11 (v−α1 + v−α2 − 1)2
,

lα,α(v1, v2;α) = − 1

(1 + α)2
− 2

α3
log(v−α1 + v−α2 − 1)− 2(v

−α
1 log v1 + v−α2 log v2)

α2(v−α1 + v−α2 − 1)

+ (
1

α
+ 2){(v

−α
1 log v1 + v−α2 log v2)

2

(v−α1 + v−α2 − 1)2
− v−α1 (log v1)

2 + v−α2 (log v2)
2

(v−α1 + v−α2 − 1)
}.

We note that there are constants k1, k2 > 0 and small γ > 0 such that the following inequalities

hold for all vi ∈ (0, 1), i = 1, 2 and all α > 0:

| log vi| ≤ k1v
−γ
i , 0 ≤ log(v−α1 + v−α2 − 1) ≤ k2(v

−γ
1 + v−γ2 ), 0 ≤ v−αi

v−α1 + v−α2 − 1
≤ 1.

The remaining verifications of the conditions in Propositions 4.2 and 4.3 for the Clayton copula are

very similar to those for the Gaussian copula and are omitted due to space limitations.

6 Conclusions and Extensions

In this paper, we have studied the temporal dependence properties and the estimation of a class

of semiparametric stationary Markov time series models; a member of this class is completely

characterized by a parametric copula and a nonparametric marginal distribution. We have proposed

simple estimators of the unknown marginal distribution and the copula dependence parameter, and

have established their large sample properties under easily verifiable conditions. In addition, we

have demonstrated that features of the transition distribution of models in this class such as the

(nonlinear) conditional moment and conditional quantile functions can be easily estimated and

their asymptotic properties can be easily established from those of the estimators (Gn(·), α̃).
As this class of semiparametric Markov models is relatively new, much work remains to be done.

We now list a few of them, some of which will be addressed in other papers.

α∗ on the boundary: The results established in this paper can be used to construct tests

for the correct density forecasts and for the serial independence of a time series that are robust

to misspecification of the marginal distribution, see Chen and Fan (2003). Regarding tests for the

serial independence of a time series, one limitation of the asymptotic results obtained in this paper

is due to Condition A1(i): the true parameter value α∗ is in the interior of the parameter space. If

a parametric copula is such that it equals to the independence copula when the parameter takes its

value on the boundary of the parameter space, then our Proposition 4.3 is not applicable. In this

case, one may establish the limiting distribution result by following Andrews’ (2001) approach.

Choice of copula: An important issue faced by an applied researcher interested in using the

class of semiparametric copula-based time series models is the choice of an appropriate parametric
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copula. In different contexts, (1) Chen, et al. (2003) propose two simple tests for the correct

specification of a parametric copula in the context of modeling the contemporaneous dependence

between several univariate time series9 and of the innovations of univariate GARCH models used

to filter each univariate time series; (2) Chen and Fan (2004) establish pseudo-likelihood ratio

tests for selection of parametric copula models for multivariate i.i.d. observations under copula

misspecification. Extensions of these tests to time series models considered in this paper will be

addressed in a separate paper.

Markov processes of higher order: In principle, the results in this paper can be extended

to copula-based semiparametric Markov processes of any finite order. For modeling higher order

Markov processes, the parametric copula approach has an additional appealing feature. That is, the

finite dimensional distribution of such processes depends on nonparametric functions of only one

dimension and hence achieves dimension reduction. This is particularly useful when the dimension

is high due to the curse of dimensionality associated with fully nonparametric modeling. Student’s

t copula and its extensions should prove useful in high dimensions, see Demarta and McNeil (2004).

Time-varying copulas: Patton (2002a, b, 2004) extended Sklar’s theorem to multivariate

conditional distributions and applied parametric conditional copulas to model the time-varying

dependence between different exchange rates; see Rockinger and Jondeau (2002) and Granger et

al. (2003) for similar applications. We can borrow their idea to let the copula function be time-

varying in a parametric manner. Alternatively we could let the copula dependence parameter to

be time-varying in a Markov-switching manner. Of course both of these extensions will make the

resulting time series no longer stationary Markovian. We shall investigate these models in future

work.

Appendix: Technical Proofs

Proof. (Proposition 2.1) First, Assumption 1 with a positive copula density function c and

conditions in (i) imply that the Markov process {Ut} satisfies all the conditions for theorem 5.2 in

Down, et al. (1995), hence {Ut} is geometric ergodic. This and the definition of beta-mixing imply
that {Ut} is beta-mixing with the exponential decay rate.

Second, Assumption 1 with a positive copula density function c and conditions in (ii) imply that

the Markov process {Ut} satisfies all the conditions for theorem 3.6 in Jarner and Roberts (2001),

hence {Ut} is ergodic with the polynomial decay rate. This and the definition of beta-mixing imply
that {Ut} is beta-mixing with the polynomial decay rate.

Since G∗(·) is a continuous probability distribution, and by the definition of beta-mixing, {Yt}
is beta-mixing with certain decay rate as long as {Ut} is beta-mixing with the same decay rate.
Hence we obtain the results (i) and (ii).

9Fermanian (2003) has proposed another copula specification test in this context.
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Proof. (Lemma 4.1) For result (1), we first consider the class of functions { 1
w(v)I(Ut ≤ v) :

v ∈ (0, 1/2]}. Denote F (Ut) ≡ supv∈(0,1/2]
¯̄̄
1

w(v)I(Ut ≤ v)
¯̄̄
as the envelop function. Since 1

w(v) is

decreasing in v ∈ (0, 1/2], we have F (Ut) ≤ 1
w(Ut)

. Hence E[{F (Ut) log[1 + F (Ut)]}] < ∞ by the

assumption on w(·) and that {Ut} is uniformly distributed over (0, 1). Now we can apply Rio’s

(1995, page 924) theorem 1 and application 5, and obtain
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
= oa.s.(1) for any

fixed v ∈ (0, 1/2]. Now for any small ε > 0, we form a grid of points v0 = 0 < v1 < ... <

vm = 1/2 such that Pr{ 1
w(v)I(Ut ≤ v) : v ∈ (vi, vi+1)} < ε for each i ∈ {0, 1, ...,m}. Then

supv∈(0,1/2]
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
≤ maxi

¯̄̄
{ eUn(vi)− vi}/w(vi)

¯̄̄
+ ε. Hence

lim supn{supv∈(0,1/2]
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
} ≤ ε almost surely. By taking a sequence of small εm → 0,

we see that lim supn{supv∈(0,1/2]
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
} = 0 almost surely. Hence { 1

w(v)I(Ut ≤ v) :

v ∈ (0, 1/2]} is a Glivenko-Cantelli class. To show that { 1
w(v)I(Ut ≤ v) : v ∈ (1/2, 1)} is also a

Glivenko-Cantelli class, we note that 1
w(v) is symmetric about 1/2, decreasing in v ∈ [0, 1/2], andR 1

0
1

w(v)dv < ∞. As a result, it suffices to show that { 1
w(v) [1 − I(Ut ≤ v)] : v ∈ (1/2, 1)} is a

Glivenko-Cantelli class, which can be established in the same way as that for v ∈ (0, 1/2].
For result (2), by the same reasoning as above, it suffices to show that { 1

w(v)I(Ut ≤ v) : v ∈
(0, 1/2]} is a Donsker class. Again by the assumption on w(·), we have that the envelop function
F (Ut) ≤ 1

w(Ut)
. Also by the assumption on w(·) and that {Ut} is stationary β-mixing and Ut is a

uniform (0, 1) random variable, we have either E[F (Ut)]
2γ <∞ with γ > 1 for β-mixing with the

polynomial decay, or E{[F (Ut)]
2 log[1+F (Ut)]} <∞ for β-mixing with the exponential decay. Now

we can apply theorem 1 in Doukhan, et al. (1995) to conclude that { 1
w(v)I(Ut ≤ v) : v ∈ (0, 1/2]}

is a Donsker class.

In the following let µn(f) ≡ 1
n−1

Pn
t=2[f(Yt−1, Yt) − Ef(Yt−1, Yt)] be the empirical process

indexed by f . Also let Ut ≡ (G∗(Yt−1),G∗(Yt)), eUt ≡ (Gn(Yt−1), Gn(Yt))

Proof. (Proposition 4.2) Notice that by Assumption 1 and condition (C3) and Lemma 4.1, we

have ||Gn −G∗||G = op(1) for the weight function w(·) stated in condition (C5). Under condition
(C1), eα solves infα∈A eQ(α) with eQ(α) = { 1n

Pn
t=1 lα(

eUt, α))}0{ 1n
Pn

t=1 lα(
eUt, α))}, and α∗ solves

infα∈AQ(α) with Q(α) = {E[lα(Ut, α))]}0{E[lα(Ut, α))]}. Again under conditions (C1) and (C2.i),
it suffices to show that

sup
α∈A

|| 1
n

nX
t=1

lα( eUt, α)−E[lα(Ut, α)]|| = op(1)

First by conditions (C2), (C3) and (C5), and Assumption 1,

sup
α∈A

|| 1
n

nX
t=1

{lα( eUt, α)− lα(Ut, α)}|| ≤
1

n

nX
t=1

sup
α∈A

||lα( eUt, α)− lα(Ut, α)||

=
1

n

nX
t=1

sup
α∈A

||
2X

j=1

lα,j(Gη(Yt−1), Gη(Yt), α)[Gn(Yt−2+j)−G∗(Yt−2+j)]||

≤
2X

j=1

Ã
1

n

nX
t=1

sup
α∈A,G∈Gδ

{|lα,j(G(Yt−1), G(Yt), α)|w(G∗(Yt−2+j))}
!
× ||Gn −G∗||G = op(1).
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It remains to show that

(*) sup
α∈A

|| 1
n

nX
t=1

lα(Ut, α)−E[lα(Ut, α)]|| = op(1)

Under conditions (C1.i) and (C2.i), we know that for any ε > 0, there exists δ > 0 and m finite

integers such that {α1, ..., αm} forms a δ-covering of A, and

sup
α∈A,||α−αi||≤δ

||lα(Ut, α)− lα(Ut, αi)|| ≤ ε, sup
α∈A,||α−αi||≤δ

||E{lα(Ut, α)− lα(Ut, αi)}|| ≤ ε.

Hence

sup
α∈A,||α−αi||≤δ

|| 1
n

nX
t=1

{lα(Ut, α)− lα(Ut, αi)}|| ≤ ε,

sup
α∈A,||α−αi||≤δ

||µn (lα(Ut, α))− µn (lα(Ut, αi)) || ≤ 2ε.

Under conditions (C3) and (C4), we have by theorem 1 and application 5 in Rio (1995),

max
1≤i≤m

||µn (lα(Ut, αi)) || = op(1).

Hence (*) is valid.

Recall that ||G−G∗||G ≡ supy |{G(y)−G∗(y)}/w(G∗(y))| where w(·) satisfies the condition in
Lemma 4.1(1). In the following we also denote ||G−G∗||G,w2 ≡ supy |{G(y)−G∗(y)}/w2(G∗(y))|
where w2() satisfies the condition in Lemma 4.1(2).

Lemma A.1: Suppose Assumption 1, conditions A1 - A3, A4 or A4’, and the followings hold:

(a) uniformly over (α,G) ∈ Fδ,

µn (lα(G(Yt−1), G(Yt), α)− lα(Ut, α
∗)) = op(n

−1/2),

(b) uniformly over (α,G) ∈ Fδ with ||G−G∗||G,w2 = Op(n
−1/2),¯̄̄̄

¯ E{lα(G(Yt−1), G(Yt), α)}−E{lα,α(Ut, α
∗)[α− α∗]}

−P2
j=1E{lα,j(Ut, α

∗)[G(Yt−2+j)−G∗(Yt−2+j)]}

¯̄̄̄
¯

= o(||α− α∗||) + o(||G−G∗||G,w2).

Then: α̃− α∗ = B−1A∗n + op(n
−1/2).

Proof. By condition A1(i) and the first order condition, we have

1

n− 1

nX
t=2

lα(Gn(Yt−1), Gn(Yt); α̃) = 0.

In the following we denote Z = (Yt−1, Yt). By condition (a) we have:

EZ [lα(Gn(Yt−1), Gn(Yt), eα)] + µn(lα(Ut, α
∗)) = op(n

−1/2).

By condition (b) we have uniformly over (α,G) ∈ Fδ with ||G−G∗||G,w2 = Op(n
−1/2),

EZ{lα,α(Ut, α
∗)[eα− α∗]}+

2X
j=1

EZ{lα,j(Ut, α
∗)[Gn(Yt−2+j)−G∗(Yt−2+j)]}

+o(||eα− α∗||) + o(||Gn −G∗||G,w2) + µn(lα(Ut, α
∗))

= op(n
−1/2).

21



Since ||Gn −G∗||G,w2 = Op(n
−1/2) and ||eα− α∗|| = op(1) by condition A1(iv), we have

−EZ{lα,α(Ut, α
∗)}[eα− α∗] + op (||eα− α∗||) = A∗n + op(n

−1/2)

By conditions A1(i)(iii), A4 or A4’, and the definition of A∗n, applying theorem 1 of Doukhan, et

al. (1995), we have
√
nA∗n → N(0,Σ). Now condition A1(ii) implies for any fixed λ 6= 0, all eα with

||eα− α∗|| = op(1),

√
nλ0[eα− α∗] +

√
n× op

¡
|λ0[eα− α∗]|

¢
=
√
nλ0B−1A∗n + op(1),

which could hold only if
√
n|λ0[eα−α∗]| is bounded in probability since√nλ0B−1A∗n → N(0, B−1ΣB−1).

Thus we obtain
√
n(eα− α∗) =

√
nB−1A∗n + op(1).

Lemma A.2: Condition (a) is implied by Assumption 1, conditions A1-A3, A4 or A4’, A5-A6.

Proof. We first show that {lα(G(Yt−1),G(Yt), α) : (α,G) ∈ Fδ} is a Donsker class by applying theo-
rem 1 of Doukhan, et al. (1995). Define the envelop function F (Yt−1, Yt) = sup(α,G)∈Fδ |lα(G(Yt−1), G(Yt), α)|.
Then EZ{[F (Yt−1, Yt)]2γ} <∞, γ > 1 by condition A4(i)(iii) for beta mixing with polynomial de-

cay rate, or EZ{[F (Yt−1, Yt)]2 log[1 + F (Yt−1, Yt)]} < ∞ by condition A4’(i)(iii) for beta mixing

with exponential decay rate. By condition A3,

|lα(G(Yt−1), G(Yt), α)− lα(Ut, α
∗)|

≤ |lα,α(Gη(Yt−1), Gη(Yt), αη)| × ||α− α∗||
+|lα,1(Gη(Yt−1), Gη(Yt), αη)w(G

∗(Yt−1))| × ||G−G∗||G
+|lα,2(Gη(Yt−1), Gη(Yt), αη)w(G

∗(Yt))| × ||G−G∗||G
≤ { sup

(αη ,Gη)∈Fδ
|lα,α(Gη(Yt−1),Gη(Yt), αη)|} × ||α− α∗||

+{ sup
(αη,Gη)∈Fδ

|lα,1(Gη(Yt−1), Gη(Yt), αη)w(G
∗(Yt−1))|} × ||G−G∗||G

+{ sup
(αη,Gη)∈Fδ

|lα,2(Gη(Yt−1), Gη(Yt), αη)w(G
∗(Yt))|} × ||G−G∗||G .

Hence by conditions A5 and A6,

logN[] (ε, {lα(G(Yt−1), G(Yt), α) : (α,G) ∈ Fδ}, L2(P ))
≤ K1 logN (ε, {α ∈ A : ||α− α∗|| ≤ δ}, || · ||)

+K2 logN (ε,Gδ, || · ||G) ≤ const.× {ln(1
ε
) +

1

ε
}

this and condition A4(i)(iii) or A4’(i)(iii) imply that all the conditions for Theorem 1 of Doukhan,

et al. (1995) is satisfied, hence {lα(G(Yt−1), G(Yt), α) : (α,G) ∈ Fδ} is a Donsker class, moreover
for any δn → 0,

sup
EZ [lα(G,α)−lα(Ut,α∗)]2<δn

µn (lα(G(Yt−1), G(Yt), α)− lα(Ut, α
∗)) = op(n

−1/2).

Under conditions A5 and A6, EZ{|lα(G(Yt−1), G(Yt), α)− lα(Ut, α
∗)|2}→ 0 as ||α− α∗||→ 0 and

||G−G∗||G → 0. This implies condition (a).

Lemma A.3: Condition (b) is implied by conditions A1(i)(iv), A2, A3, A5 and A6.

22



Proof. By conditions A1(i) and A2, lα(G(Yt−1), G(Yt), α) is continuously Gateaux differentiable

in a neighborhood of (α∗,G∗). By Proposition A5.1.E of Bickel, et al. (1993, page 455), condition

(b) is implied by: (*) for some small � > 0,

sup
n ¯̄̄

dEZ{lα(Ut−1+η4G(Yt−1),Ut+η4G(Yt),α∗+η4α)}
dη

¯̄̄
: ||4α||+ ||4G||G,w2 ≤ 1, |η| ≤ �

o
<∞.

By condition A3,¯̄̄̄
dEZ{lα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)}
dη

¯̄̄̄
=

¯̄̄̄
EZ

µ
dlα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)

dη

¶¯̄̄̄
≤ EZ

µ¯̄̄̄
dlα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)

dη

¯̄̄̄¶
≤ EZ (|lα,α(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)|)× ||4α||
+EZ (|lα,1(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)w2(G
∗(Yt−1))|)× ||4G||G,w2

+EZ (|lα,2(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α
∗ + η4α)w2(G

∗(Yt))|)× ||4G||G,w2

By Holder inequality,

EZ (|lα,1(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α
∗ + η4α)w2(G

∗(Yt−1))|)

≤
q
EZ{|lα,1(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α∗ + η4α)w(Ut−1)|}2

s
E

∙
w2(Ut−1)

w(Ut−1)

¸2
.

Hence (*) is satisfied given conditions A5 and A6.

Proof. (Proposition 4.3) Result (1) follows directly from Lemmas A.1, A.2 and A.3, Lemma

4.1 and Proposition 4.2. Result (2) follows from result (1) and conditions A1 and A4 (or A4’) and

a standard central limit theorem for stationary beta-mixing processes.
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Figure 1: Clayton Copula, G = normal 
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Figure 2: Clayton Copula, G = t (df=3) 




