Price Rigidity and Price Dispersion: Evidence from Micro Data

by

Eyal Baharad and Benjamin Eden

Working Paper No. 03-W21
September 2003

DEPARTMENT OF ECONOMICS
VANDERBILT UNIVERSITY
NASHVILLE, TN 37235
www.vanderbilt.edu/econ

Eyal Baharad
The University of Haifa

Benjamin Eden
Vanderbilt University and The University of Haifa.

August 2003

We use large unpublished data set about the prices by store of 381 products collected by the Israeli bureau of statistics during 1991-92 in the process of computing the CPI. On average 24% of the stores changed their price where the average is over products and months. Using the standard calculation this would imply that on average prices remain unchanged for 4.1 months. We argue that the standard calculation suffers from a large aggregation bias due to Jensen's inequality and our best estimate suggests that prices remain unchanged on average for more than 7.5 months. We then assess the importance of price rigidity in generating price dispersion. We find no evidence that price rigidity as measured by the frequency of nominal price changes is related to price dispersion. We also find no evidence that a shock to the inflation rate increases price dispersion. These findings are not consistent with standard versions of the staggered price setting model but are roughly consistent with a simple version of the uncertain and sequential trade model.

[^0]
1. INTRODUCTION

There is a growing literature that attempts to use micro data for assesing the importance of price rigidity. Some examples are: Carlton (1986), Cecchetti (1986), Lach and Tsiddon (1992), Kashyap (1995), Eden (2001), Bils and Klenow (2002) and Crucini and Shintani (2002). The estimation of the length of the period for which prices remain unchanged is a main concern of this literature. Taylor (1999) summarized the literature by saying that on average prices remain unchanged for about a year. Bils and Klenow (2002, hereafter BK) use unpublished US data from the BLS for 1995 - 1997 on the monthly frequency of price changes for 350 detailed categories of consumer goods and services. They find that the median duration is less than 5 months and the mean duration is less than 4 months.

Here we use Israeli data about the prices of 381 narrowly defined products by stores which were collected by the Israeli bureau of statistics in the process of computing the CPI during the period 19911992. We show that the BK estimates may suffer from a downward aggregation bias. This bias arises because of Jensen's inequality and correcting it may significantly narrow the difference between the estimates cited by Taylor (1999) and the new estimates obtained by BK. Using the BK estimation method we obtain very similar estimates of the average length of the period (4.1 months) but after correcting for the aggregation bias we obtain an estimate of 7.5 months which may still be downwardly biased.

We then turn to asses the economic importance of price rigidities by testing the predictions of two types of models. The staggered price setting model proposed by Taylor (1980) and more recently studied by Chari, Kehoe and McGrattan (2000, 2001) and the uncertain and sequential trade (UST) models of the type studied by Eden $(1990,1994)$, Lucas and Woodford (1994), Williamson (1996), Woodford (1996) and Bental and Eden (1996, 2002).

In the simple version of the staggered price setting model a fraction $1 / N$ of the firms change their nominal price every period and each firm changes its nominal price every N periods. In this model prices are rigid in the sense that sellers would choose to change their nominal price during the N periods in which the price is fixed if they could costlessly do it.

In a simple version of the UST model there is price dispersion and sellers' price target is a range rather than a point. Within the equilibrium range, sellers are indifferent between quoting a relatively high price and quoting a low price because the low price implies a higher probability of making a sale. In these models a seller may not change his nominal price when inflation erodes his real price even if he could costlessly do so.

The observation that sellers change their nominal prices in unsynchronized jumps is consistent with both the staggered price setting model and the UST model. But the policy implications of the two models are very different. The staggered price setting model tends to support policies that are designed to improve the working of the market. The sequential trading model tends to support neo-classical policies. It is therefore important to see if prices are really rigid as in the

```
staggered price setting model or seemingly rigid as in the sequential
trade model. Here we attempt to distinguish between the two models by
the behavior of relative price variability.
    In the staggered price setting model, deviations from the law of
one price occurs because of price rigidity. (If all stores were allowed
to change their nominal price every month they will always quote the
same price.) We may therefore expect that products which change their
prices less often will exhibit more relative price variability.
    The staggered price setting model has also a strong prediction
about the response of relative price variability to a shock that leads
to a change in the desired nominal price. To build some intuition we
start from an equilibrium in which all sellers post the same price. We
then hit the system with a shock. Since only a fraction 1/N of the
sellers can change their price immediately after the shock, the shock
will create a price difference between sellers who could change their
nominal price to sellers who could not. The standard deviation of prices
will gradually go back to zero as all sellers adjust their prices and
the economy reaches the new steady state equilibrium.
    In the UST model prices are flexible and therefore the economy
will reach the new equilibrium immediately after the shock. If the shock
is monetary there may be no effect on relative price variability. If the
shock is real there may be a permanent effect on relative price
variability and the full effect of the shock is realized immediately
after the shock.
    We find that (a) products that change their prices less often do
not exhibit more relative price variability and (b) a shock to prices
does not have a positive effect on relative price variability. These
```

findings are not consistent with the predictions of the simple version of the staggered price setting model but are consistent with the UST model.
2. DATA

We use monthly data collected by Israel's Central Bureau of Statistics as inputs for computing the CPI. These are prices actually quoted to the surveyor when visiting the store (not scanner data). We use mainly the 1991-1992 sample described in Eden (2001). For the sake of comparison we also use in some of the analysis, the Lach and Tsiddon (1992) earlier samples from 1978-79 and 1981-82. The average monthly inflation rate was 4.3\% in 1978-79, 6.3\% in 1981-82 and 0.8\% in 1991-92.

The data from 1991-92 contain 115,394 monthly observations of prices by stores and products, collected from 458 stores which sold 390 different products over 24 months. We eliminated all products and stores with incomplete information. This led to a sample of 62,629 observations about the price changes of 381 products for 23 months. The number of stores per product is 7 on average. For some of the analysis we use only 371 products for which there are direct observations about the length of the period between two consecutive nominal price changes.

The distribution of products by the fraction of stores which changed their nominal prices in an average month is in Figure 1. This distribution is similar to the distribution in Figure 1 of Bills and Klenow (2001, hereafter BK) who study a US sample of 350 product categories. Their reported statistics are almost identical to the statistics reported in Figure 1.

Figure 1: The distribution of 371 products by the average (per month) fraction of stores that changed their nominal price.

For the median product the length of the period between two consecutive nominal price changes (the length of the period for short) is often calculated by $1 / 0.21=4.7$ months. The average length of the period is often calculated by $1 / 0.24=4.1$ months. We now argue that these calculations may be downward biased.

```
Aggregation bias: Let xit denote the fraction of stores that changed the
price of product i in month t and let Eit(xit) denote the average
fraction over products (i) and time (t). Since Jensen's inequality
implies Eit (1/ xit ) \geq 1/E Eit (xit), the average length of the period per
store is underestimated if we use l/Eit(xit) instead of Eit(1/Xit).
    To examine whether the aggregation over products bias is large we
computed in Table 1 the average (over time) fraction for each product
```

$E_{t}\left(x_{i t}\right)$. We use $1 / E_{t}\left(x_{i t}\right)$ as an estimate for the length of the period for product i and average over products to get: $\mathrm{E}_{\mathrm{i}}\left(1 / \mathrm{E}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{it}}\right)\right)=5.7$ months. If we use the average fraction $E_{i t}\left(x_{i t}\right)=0.245$ to compute the length of the product we get: $1 / 0.245=4.1$ which is about 30% less than 5.7 .

A similar problem arises when we aggregate over time. To illustrate, we assume two stores selling the same product. One store changes its price every month; the other every two months. We will observe $x=1,1 / 2,1,1 / 2 \ldots$ and on average $E x=3 / 4$. The average length of the period estimated by $1 / E x$ is: $4 / 3$. But the true average is: 1.5 . This can be obtained by calculating $1 / x$ first ($1 / \mathrm{x}=1,2,1,2 \ldots$) and then taking the average.

To estimate the bias due to time aggregation we computed $E_{t}\left(1 / x_{i t}\right)$ for products with strictly positive $x_{i t}$ for all t. There were 54 products for which this statistic could be computed. The average length of the period for these products was $E_{i t}\left(1 / x_{i t}\right)=3.48$. If we first compute the average frequency per product $\mathrm{E}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{it}}\right)$ and then take the average over products we get: $E_{i}\left(1 / E_{t}\left(x_{i t}\right)\right)=2.66$. The bias due to time aggregation is thus also about 30\%.

Assuming that time aggregation leads to a 30\% bias in all the products we may correct for the time aggregation bias. This leads to (5.7)(1.3) $=7.5$ months which is 80% higher than the estimate of 4.1 obtained as 1 over $E_{i t}\left(\mathrm{X}_{i t}\right)$. The estimate of 7.5 months may still be downward biased if the length of the period varies within stores.

We also have 13770 direct observations about the length of the period between two consecutive nominal price changes, $\Delta t .{ }^{1}$ The (unweighted) average and the standard deviation of Δt are reported in Table 1 for each product. Products with higher mean of Δt tends to have higher standard deviation measured across stores (the correlation between the standard deviation and the mean is 0.78).

The average Δt per price is 5.26 months. The average of Δt per spell is 2.7 months. The first is computed by taking a weighted average of Δt where the weights are the observations Δt themselves. The second is an unweighted average. To understand the difference between the two it may be useful to go back to our two stores example: One changes its price every month and the other every two months. The average duration per price is 1.5 months. But if we have a sample of 100 observations we will get 100 spells of one month and 50 spells of 2 months. The unweighted average is $200 / 150=4 / 3$. This is the average per spell which is less than the average per price. The average per price can be computed by computing a weighted average that gives the 2 months spells

[^1]a weight of 2 and the one month spells a weight of 1 . This leads to $[100(1)+50(2)(2)] / 200=3 / 2 .{ }^{2}$

```
    The direct measure of \Deltat suffers from a selection (censoring)
bias because long time periods are more likely not to be in our sample.
(For example, a 24 months time period will not make our 23 months
sample). To get a sense of how serious is the bias we computed the
weighted average for all observations of \Deltat in the first 19 months.
This yields a weighted average of 4.66 which is 11% less than the 5.26
estimate that we get for }24\mathrm{ months.
    We now turn to use the direct measure \Deltat to examine some
hypotheses about the length of the period.
```

What determines $\underline{\Delta t ?}$

```
    Bills and Klenow (2001) explain variations in the length of the
period by product characteristics. They find that variables that capture
volatility of market supply and demand are the robust factors in
explaining a good's frequency of price change.
    Here we ask whether it is the product or the store characteristics
that matter. To examine this question we use the prediction of sticky
price models about the relationship between \Deltat and the size of the
"jump" in the nominal price (\Deltap):
```

```
(1)
\Deltap}=\pi\Deltat
```

[^2]where π denotes the relevant inflation rate. Equation (1) says that the nominal price jump covers the real price erosion, $\pi \Delta t$, due to inflation which occurred since the last nominal price change.

The relationship (1) requires the assumption that firms change their nominal prices to meet a price target. For example, in Dotsey, King and Wolman (1999) firms follow a state dependent strategy. In their model the fixed cost of changing nominal price is an i.i.d random variable. After drawing the fixed cost the firm decides whether or not it wants to change its nominal price to the target price which is common to all firms. The length of the period in this model may vary across stores and products but firms that did not adjust their nominal price for a relatively long time will make a relatively large nominal price change.

In the time dependent model suggested by Calvo (1983) the store gets an opportunity to adjust its nominal price at random and exogenous time intervals. Also in this case, the target price is common to all firms that get the opportunity to make a price change and therefore (1) holds.

In the UST model the price target is a range rather than a point. Therefore the UST alternative does not lead to (1). Eden (2001) finds no support for (1) even after allowing for product and store specific inflation rates.

We may expect however that (1) should hold in some average sense. Assuming no trend in relative prices a store that increases its price by large jumps on average must do it relatively rarely because otherwise it will become more expensive over time. The same argument applies for

Abstract

products. We therefore use the average of $\Delta \mathrm{p}$ computed for the product as a proxy for the product characteristics and the average of $\Delta \mathrm{p}$ computed for the store as a proxy for the store characteristics. We ran an OLS regression of Δt on the current nominal price change ($\Delta \mathrm{p}$), the average of Δp for the product, the average of Δp for the store, a constant and monthly dummies. The regression results are reported in Table 2 (first line). This regression suggests that both store and product characteristics are important for predicting the length of the period but $\Delta \mathrm{p}$ is not important. Because of a possible selection problem we split the sample and ran this regression for products with high and low frequencies of price change. The results were very similar.

We also computed the correlation between Δt and two averages of Δt. The correlation of Δt with the average of Δt for the store is 0.46 . The correlation of Δt with the average of Δt for the product is 0.51. This together with the above regression suggests that the store characteristics are as important as the product characteristics.

Price rigidity and steady state relative price variability:

```
The staggered price setting model attributes the departure from the law of one price to price rigidities. This suggests a positive relationship between the steady state relative price variability and price rigidity. We now illustrate this proposition for a deterministic steady state.
```

```
    We assume that the typical store changes its nominal price every N
periods by N\pi percent so that the rate of inflation is \pi percent per
period. The distribution of the log of prices at time t is uniform:
```

At time $t+1$ the stores that quotes the lowest price will change it by $N \pi$ percent to $(N+1) \pi$ and as a result the price distribution will change to:

```
lnpt+1 = {i\pi with probability 1/N where i = 2,\ldots,N + 1}.
```

The range of the price distribution does not change over time and is given by: (N - 1) π. Since the \log price distribution is uniform the variance of lnp is $\pi^{2}\left(N^{2}-1\right) / 12$. It follows that:

Claim 1: The steady state standard deviation of lnp increases with the rate of inflation π and the length of the contract N.

Eden (2001) examined the first prediction about the relationship between π and the variance of lnp and rejected it. ${ }^{3}$ To test the second prediction we computed the standard deviation $S D\left(\right.$ lnP $\left._{i t}\right)$ for each product i and month t (across stores) and correlated it with a measure of the length of the period for this month and product $1 / x_{i t}$. This correlation was computed for 381 products for all months with strictly positive $\mathrm{x}_{\text {it }}$. The correlation coefficient is -0.02 .

[^3]We also computed the correlations between the average standard deviation $E_{t}\left[S D\left(l n P_{i t}\right)\right]$ and the average per product measures of price rigidity in Table 1. These correlations are tiny. They are: -0.13 with the average frequency $\mathrm{E}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{it}}\right), 0.05$ with the average direct observation of the length of the period $\Delta t_{i}, 0.03$ with $1 / E_{t}\left(x_{i t}\right)$ and 0.11 with $E_{t}\left(1 / x_{i t}\right)$. These correlations are based on $381,371,381$ and 54 observations (products) respectively.

Finally, we ran the direct observation of the length of the period, Δt, on the average standard deviation for the product, $\mathrm{E}_{\mathrm{t}}\left[\mathrm{SD}\left(\ln \mathrm{P}_{\mathrm{it}}\right)\right]$, and the product specific inflation rate. The results are reported in Table 2. According to Claim 1 the coefficient of $E_{t}\left[S D\left(l n P_{i t}\right)\right]$ should be positive and the coefficient of π should be negative. The regression results suggest no clear relationship between the length of the period, the rate of inflation and price dispersion. The UST model is silent about the steady state relationship between price dispersion and the average length of the period. The two models have however different predictions about the responses to shocks. We now turn to exploint this difference.

3. THEORETICAL IMPULSE RESPONSE ANALYSIS

What happens to price dispersion after a shock that leads to a change in prices? To build some intuition, we start from a steady state equilibrium in which all sellers post the same price. The industry then experiences a change in demand and supply conditions and as a result sellers want to change their price. After the shock only a fraction $1 / \mathrm{N}$ of the sellers can change their price and therefore there is a price
difference between sellers who could change their nominal prices to sellers who could not. Thus a shock that leads to a change in prices has an effect on price dispersion. This conclusion does not depend on the source of the shock (it can be monetary or real) or whether the shock is transitory or permanent in nature.

For the sake of concreteness, we assume that at the initial steady state all sellers post the price of 1 and immediately after the change a fraction $1 / \mathrm{N}$ of the sellers change their price by Δ percent. The rate of inflation immediately after the change is the weighted average: $\mathrm{DP}_{\mathrm{t}}=\Delta(1 / \mathrm{N})+0[(\mathrm{~N}-1) / \mathrm{N}]=\Delta / \mathrm{N}$. The variance of the \log of prices is ${ }^{4}$:
$\operatorname{VAR}_{\mathrm{t}}=(\mathrm{DP})^{2}+\Delta^{2}[1-(2 / \mathrm{N})](1 / \mathrm{N})$. It follows that when $\mathrm{N} \geq 2$,

Claim 2: A shock that affect the rate of inflation at time $t\left(\mathrm{DP}_{\mathrm{t}}\right)$ also affect the standard deviation of the \log of prices at time $t\left(S D_{t}\right)$. The effect on the standard deviation is larger: ${S D_{t}}>\mathrm{DP}_{\mathrm{t}}$.

4 The derivation is as follows. A fraction $1 / N$ post P. A fraction ($\mathrm{N}-1$) / N post 1. $\Delta=\ln$. The average of the log of prices is: $(1 / N) \operatorname{lnP}=\Delta / N$. The variance of the \log of prices is:
$\operatorname{VAR}_{\mathrm{t}}=(\Delta / \mathrm{N})^{2}[(\mathrm{~N}-1) / \mathrm{N}]+(\Delta-\Delta / \mathrm{N})^{2}(1 / \mathrm{N})$
$=(\mathrm{DP})^{2}[(\mathrm{~N}-1) / \mathrm{N}]+(\Delta-\mathrm{DP})^{2}(1 / \mathrm{N})$
$=(\mathrm{DP})^{2}[(\mathrm{~N}-1) / \mathrm{N}]+\left[\Delta^{2}-2 \Delta \mathrm{DP}+(\mathrm{DP})^{2}\right](1 / \mathrm{N})$
$=(D P)^{2}+\left(\Delta^{2}-2 \Delta D P\right)(1 / N)$
$=(\mathrm{DP})^{2}+\Delta^{2}(1-2 / \mathrm{N})(1 / \mathrm{N})$.

This claim derives the impact effect of a shock. We expect that after the initial impact both $D P$ and $S D$ will gradually go back to the baseline. Figure 2 illustrates this possibility by plotting a theoretical impulse response functions to a shock of $D P$ in a vector auto regression (VAR) with two variables: DP and SD.

Figure 2: Possible responses to a DP shock under the staggered price setting model.

We now generalize Claim 2 to the case of a deterministic steady state with non-zero inflation rate and then to the case of a stochastic steady state.

A deterministic steady state with strictly positive inflation rate: We now start from a steady state with a positive inflation rate of π per period. At time t the economy experiences a shock that disturbs the initial steady state equilibrium. After experiencing the shock firms
that change their price at time t change it by $N(\pi+\Delta)$ percent instead of just by $N \pi$ percent. The distribution of lnpt is now:

```
lnpt = {i\pi with probability 1/N for i = 1,...,N-1
    and N(\pi + \Delta) with probability 1/N},
```

instead of (2). Using $\operatorname{Var}(x)=E x^{2}-(E x)^{2}$ to compute the variance of (4) we get:
(5) $\quad \operatorname{Var}(\operatorname{lnp} t)=(1 / N)\left[\pi^{2} \Sigma_{i=1}^{N-1} i^{2}+(\pi+\Delta)^{2} N^{2}\right]-[\pi N / 2+(\pi+\Delta)]^{2}$

$$
=\mathrm{C}+\Delta(\mathrm{N}-2) \pi+\Delta^{2}(\mathrm{~N}-1)
$$

where $C=(1 / N) \pi^{2} \sum_{i=1}^{N-1} i^{2}-(\pi N / 2)^{2}-\pi^{2}$. Since $N \geq 2$, also in this case a shock to the inflation rate increases relative price variability and the increase in the standard deviation is larger than the shock to the inflation rate Δ. We can therefore generalize Claim 2 to the case in which the initial steady state inflation rate is positive.

Starting from a stochastic steady state equilibrium: We now assume that the rate of inflation flucuates in a stochastic manner in the positive range. When the realization of $1 n p$ for stores that changed their prices at time t - i is z_{t-i} the expected log price of the stores that change their nominal price at time t is z_{t}. Since the inflation rate is always positive we assume: $z_{t}>z_{t-1}>\ldots .>z_{t+1-N}$. In the absence of a shock the distribution of log prices is:

```
        lnpt = {zt-i with probability 1/N where i = 1,...,N-1
    and }\mp@subsup{z}{t}{}\mathrm{ with probability 1/N}.
```

We consider now a shock at time t. As a result of the shock the stores that change their price at time t change it to $z_{t}+\varepsilon$ instead of z_{t}. The distribution of $l n p_{t}$ after the shock is:

```
lnpt = {zt-i with probability 1/N where i = 1,...,N-1 and
    zt + \varepsilon with probability 1/N}.
```

The variance of lnp after the shock is:
(8)

$$
\begin{gathered}
\operatorname{Var}\left(\operatorname{lnp} p_{t}\right)=(1 / \mathrm{N}) \Sigma_{i=1}^{\mathrm{N}-1}\left(z_{\mathrm{t}-\mathrm{i}}\right)^{2}+(1 / \mathrm{N})\left(\mathrm{z}_{\mathrm{t}}+\varepsilon\right)^{2} \\
\quad-\left[(1 / \mathrm{N}) \Sigma_{\mathrm{i}=1}^{\mathrm{N}-1} \mathrm{z}_{\mathrm{t}-\mathrm{i}}+(1 / \mathrm{N})\left(\mathrm{z}_{\mathrm{t}}+\varepsilon\right)\right]^{2} \\
=\mathrm{C}+(2 / \mathrm{N})\left(\mathrm{z}_{\mathrm{t}}-\mathrm{A}\right) \varepsilon+(1 / \mathrm{N})[1-(1 / \mathrm{N})] \varepsilon^{2},
\end{gathered}
$$

where $A=(1 / N) \Sigma_{i=1}^{N} \quad z_{t-i}, \quad a=(1 / N) \Sigma_{i=1}^{N-1} \quad z_{t-i}$ and $C=(1 / N)\left(z_{t}\right)^{2}-a^{2}-2 a(1 / N) z_{t}-(1 / N)^{2}\left(z_{t}\right)^{2}$. Since $z_{t}>z_{t-i}, z_{t} \geq A$ and the coefficient of ε is positive. Since $N \geq 2$, the coefficient of ε^{2} is also positive. Therefore, a positive shock to the inflation rate increases relative price variability. Thus we can generalize the first part of Claim 2 to the case in which the rate of inflation fluctuates over time.

The UST alternative: Unlike the staggered price setting model, the effect of a shock to prices in the UST model depends on the nature of the shock. A purely monetary shock to the rate of inflation will have no effect on price dispersion while a real shock may affect price dispersion.

We start with the case of a pure monetary shock in Eden (1994). Money follows a random walk (the rate of change in the money supply is i.i.d). There is uncertainty about the amount of transfer payment that buyers will receive during trade and about the nominal amount that they will spend. The transfer process is like rain: Everyone observes the amount of transfers (helicopter money) as they occur but no one knows when it will stop. It is assumed that money arrives in batches and each batch of dollars that arrives opens a new Walrasian market.

There are thus many potential markets that open sequentially and sellers allocate their output across one or more of these potential markets. Equilibrium prices are proportional to the beginning of period money supply:

$$
\begin{equation*}
P_{s t}=p_{s} M_{t}, \tag{9}
\end{equation*}
$$

where $\mathrm{P}_{\text {st }}$ is the dollar price in market s and p_{s} is the normalized price in market s. The rate of inflation is the same for all markets and is given by:

$$
\begin{equation*}
D P_{t}=l n P_{s t}-\ln P_{s t-1}=l n M_{t}-l n M_{t-1} \text { for all } \mathrm{s} . \tag{10}
\end{equation*}
$$

Note that since M_{t} is the beginning of period money supply, prices adjust with a one period lag to changes in the money supply.

The average quoted price is given by:

$$
\begin{equation*}
P_{t}=\Sigma_{s} \psi_{s} P_{s t}, \tag{11}
\end{equation*}
$$

where ψ_{s} is the fraction of output allocated to market s. The variance of the \log of prices is defined by:

$$
\begin{equation*}
\operatorname{VAR}\left(\ln P_{t}\right)=\Sigma \psi_{\mathrm{s}}\left(\ln P_{\mathrm{ts}}-\ln P_{t}\right)^{2} \tag{12}
\end{equation*}
$$

We define the stationary mean and variance of normalized prices by: $\operatorname{lnp}=\Sigma \psi_{\mathrm{S}} \operatorname{lnp}_{\mathrm{s}}$ and $\operatorname{VAR}(\operatorname{lnp})=\Sigma \psi_{\mathrm{S}}\left(\operatorname{lnp_{S}}-\operatorname{lnp}\right)^{2}$. Since M_{t} is common across all markets we may use (9) to write:

This says that a shock to the money supply does not affect the variance of the log of dollar prices. Therefore, in response to a money supply shock we should observe an increase in the inflation rate (10) but no effect on the variance. Figure 3 illustrates.

Figure 3: The response to a high realization of the money supply

When we allow for storage as in Bental and Eden (1996) we get a negative relationship between normalized prices and the beginning of period inventories. A high realization of the money supply leads to low inventories in the beginning of next period and high prices. The effect on inventories and prices dies out gradually. But there is no prediction about the relationship between inventories and price dispersion.

When i.i.d productivity shocks are added to the Bental and Eden (1996) model, equilibrium prices are a decreasing function of both the beginning of period inventories and the realization of the productivity shock (see Eden [forthcoming, chapter 17]). In this case a low realization of productivity leads to high prices but there is no prediction about the effect of productivity on price dispersion.

We may also consider the possibility of a permanent real shock. The effect of such a shock on the equilibrium relative price variability may be either positive or negative. It is possible for example that the real demand for a certain product went up and became more predictable. This will lead to an increase in the product specific inflation rate and to a decrease in relative price variability. Figure 4 illustrates the

```
impulse response functions for this case. Note that the new equilibrium
```

is achieved immediately after the shock.

Figure 4: Possible responses to a permanent increase in demand

To sum up, we may say that to get a prediction about the response to an inflation shock we must make a stand about the nature of the shock. Since in our sample the rate of inflation is high we may expect that monetary shocks dominates at least in the earlier Lach and Tsiddon samples. We will therefore examine the hypothesis that the shock to inflation is due to a purely monetary shock as in Eden (1994).

5. VECTOR AUTO REGRESSION ANALYSIS

Figures 2-3 illustrate the difference in the predictions of the two models about the response to a shock to the inflation rate DP on DP itself and our measure of relative price variability, SD. In the

```
staggered price setting model a shock to DP is expected to have a
persistent effect on both DP and SD. The impact effect on SD is positive
and this effect dies out when the effect on DP dies out.
    In a simple monetary version of the UST model in Eden (1994) a
shock to DP does not have a persistent effect on DP and has no effect on
SD.
We now test these predictions by running a VAR with two variables:
DP and SD (in that order). We first allow for product specific
coefficients and then impose the same coefficients on all products.
```

Allowing for product specific coefficients:
We start by running vector auto regressions for each product
separately, allowing for four lags. We do this for the two high
inflation periods in the Lach and Tsiddon (1992) data and for 21
products in the $91-92$ moderate inflation sample. The 21 products which
were chosen are a subset of the 26 products studied by Lach and Tsiddon.
The typical VAR had 23 observations (months). In Figures $5-7$ we
compute the average impulse response (AV) across all the products in the
sample. 5 We also calculated the standard deviation (STD) across
products. The bounds in the Figures are: AV + STD (the average plus the
standard deviation) and AV - STD. In all the samples the average DP
returns to the baseline in the month following the shock. The average

[^4]effect of a shock to $D P$ on $S D$ is close to zero. These findings are consistent with the theoretical impulse response functions from the UST model (Figure 3) but not with the staggered price setting model.

Figure 5: Average (across products) impulse response functions for the 1978-79 sample

Figure 6: Average (across products) impulse response functions for the 1981-82 sample

Figure 7: Average (across products) impulse response functions for the 1991-92 sample

Imposing the same coefficients on all products:

```
We now impose the same VAR coefficients across products. We may think of an hypothetical overlapping generations economy that lives for GT periods, where \(G\) is the number of products in the sample (about 25 goods per sample) and \(T\) is the number of months (23). In this hypothetical economy each generation lives for \(T\) periods and consume one product only where the product changes every \(T\) periods.
```

We created an artificial time series of about (23)(25) = 575 periods per sample and estimated two impulse response functions per sample. ${ }^{6}$ The results of this excercise are not reported here but the impulse response functions look very much like the average computed in Figures 5 - 7 and may serve as a test for robustness.

The 91-92 sample:

We created an artificial time series of the type described above for 371 products in the 91-92 sample for which we have at least two observations about the direct measure of the length of the period Δt. The VAR regressions are:

```
DP = c - 0.14* DP -1 - 0.10* DP_2 - 0.07* DP -3 - 0.07* DP -4
    + 0.06* SD-1 - 0.03* SD-2 - 0.03* SD-3 + 0.004 SD-4;
Adj.R2 = 0.035
SD = c + 0.02 DP-1 + 0.01 DP-2 + 0.01 DP -3 + 0.02 DP -4
    + 0.67* SD-1 + 0.16* SD-2 + 0.10* SD-3 + 0.07* SD-4;
```

Number of observations $=6897$, Adj. $R^{2}=0.988$

The coefficients with an astrik are significant (t values over 2). Note that individual lags of $D P$ are not significant in the $S D$ equation. Note also that the coefficients of the lag DP in the DP equation are all

[^5]
Abstract

negative. Finally, we note the difference in the R^{2}. It is almost unity in the $S D$ equation and almost zero in the $D P$ equation.

The impulse response functions are in Figure 8. A shock in DP has a small persistent negative effect on DP that lasts for 4 months. 7 It also has a small negative effect on $S D$. This strongly contradicts the implications of the staggered price setting model. The estimated impulse response functions are also not consistent with the UST model because of the persistent negative effect of the shock on the inflation rate.

We now split the sample into two according to a measure of price rigidity $1 / E_{t}\left(x_{i t}\right)$. In Figure 9 we used an artificial time series which is made from the less "rigid" products (with lower $1 / E_{t}\left(x_{i t}\right)$). In Figure 10 we used the more "rigid" products. A shock to the inflation rate has a persistent effect on the inflation rate for the less "rigid" products but no persistent effect on the inflation rate for the more "rigid" products. The estimated impulse responses for more "rigid" products are consistent with the UST predictions.

6. CONCLUSIONS

We used monthly Israeli data about price changes by product and stores for 381 products over 23 months (February 1991 to December 1992). The estimated average length of the period (spell of unchanged price) is 4.1 months when using the average frequency and more than 7.5 months

[^6]```
when attempting to correct for an aggregation bias which is due to
Jensen's inequality. Thus, estimates of the length of the period (spell
of unchanged prices) which use the average frequency of price change may
be seriously downward biased.
 We also looked at direct measures of the length of the period \Deltat.
We find that store characteristics are as important as product
characteristics in determining the length of the period. When we control
for the average jump in the price (average for the store and for the
product) we do not find a positive relationship between the size of the
current jump to the time since the last jump. This is surprising because
most sticky price models assume that stores change their price by the
real price depreciation since the last price change episode.
 Finally we ask whether prices are realy rigid as in the staggered
price setting litarature or just seemingly rigid as in the uncertain and
sequential trade literature. We find no support for the real rigidity
hypothesis. There is no clear relationship between the average frequency
of nominal price changes and price dispersion. And the estimated effect
of a shock to the inflation rate does not look like the prediction from
the staggered price setting model.
 The estimated effect of a shock to the inflation rate does not
look very different from the predicted effect of a monetary shock in the
UST model (Figure 3). For the earlier high inflation periods and for the
comparable sample of goods in the moderate inflation period the
estimated effect is very close to the prediction. For the 1991-92 sample
as a whole, a shock to the inflation rate seems to have a persistent
small negative effect on price dispersion.
```

Figure 8: Impulse response to an inflation shock for 371 products in the 1991-92 sample

Response to One S.D. Innov ations $\pm 2$ S.E.
Response of DP to DP


Response of SD to DP


Figure 9: The impulse response for the "less rigid" product in the 1991-92 sample

Response to One S.D. Innovations $\pm 2$ S.E.


Response of SD to DP


Figure 10: Impulse response function for the more "rigid" products in the 1991-92 sample

Response to One S.D. Innovations $\pm 2$ S.E.
Response of DP to DP


Response of SD to DP


## Notes:

1. The product name was translated from hebrew and is abbreviated here. For example, product 105 in the original description is: Citrus fruit drink, pasteurized, does not include pure fruit juice. We abbreviated and wrote citrus fruit drink.
2. The product number was given by the Israeli central bureau of statistic.
3. \# of stores is the number of stores which reported their price for the product.
4. freq $=E_{t}\left(x_{i t}\right)$ is the average number of stores that changed their nominal price (for product i) per month.
5. SD (lnp) is the average (over months) standard deviation of lnp. We computed the standard deviation of $\operatorname{lnp}$ across stores for each month and then took the average over 23 months.
6. \# obser of $\Delta t$ is the number of direct observation about the length of the period.
7. $A V \Delta t$ is the average of the direct observation about the length of the period.
8. $S D(\Delta t)$ is the standard deviation of $\Delta t$.
9. $1 /$ freq $=1 / E_{t}\left(x_{i t}\right)$ is an estimate of the length of the period obtain as one over the average computed in 4.
10. $E_{t}\left(1 / x_{i t}\right)$ is the average (over months) of 1 over the monthly frequency. This measure was computed only for products with strictly positive $x_{i t}$ for all $t$.
11. The product inflation rate (percent per month).

|  | Prod. | \# of | freq $=$ | SD | \# obs. | av. | SD | $1 / f r e q=$ | $E_{t}$ | av. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Product name (abb.) | $\#$ | stores | $E_{t}\left(x_{i t}\right)$ | $(\operatorname{lnp})$ | of dt | $d t$ | $(\mathrm{dt})$ | $1 / E t\left(x_{i t}\right)$ | $\left(1 / x_{i t}\right)$ | inflation |


| AVERAGE |  | 7.1 | 0.24 | 0.27 | 37.1 | 4.0 | 2.8 | 5.8 | 3.5 | 0.79 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDARD DEVIATION |  | 5.0 | 0.15 | 0.26 | 49.5 | 2.1 | 1.4 | 3.8 | 1.3 | 0.44 |
| MEDIAN |  | 5 | 0.20 | 0.18 | 21 | 3.3 | 2.5 | 4.6 | 3.4 | 0.78 |
| Gasoline 91 octane | 31001 | 12 | 0.92 | 0.01 | 241 | 1.1 | 0.3 | 1.1 |  | 1.04 |
| Gasoline 96 octane | 31002 | 12 | 0.87 | 0.01 | 229 | 1.1 | 0.3 | 1.1 |  | 0.96 |
| Kerosene, home use | 31004 | 6 | 0.83 | 0.01 | 108 | 1.2 | 0.4 | 1.2 |  | -0.09 |
| Fresh chicken | 3002 | 21 | 0.68 | 0.16 | 308 | 1.4 | 0.9 | 1.5 | 1.6 | 0.95 |
| Frozen chicken | 3001 | 23 | 0.68 | 0.07 | 337 | 1.4 | 0.8 | 1.5 | 1.6 | 0.62 |
| Tylenol | 24001 | 1 | 0.65 |  | 14 | 1.5 | 0.7 | 1.5 |  | 0.79 |
| Chicken parts | 3006 | 28 | 0.65 | 0.14 | 391 | 1.4 | 0.8 | 1.5 | 1.7 | 0.79 |
| Turkey | 3009 | 15 | 0.62 | 0.14 | 199 | 1.5 | 1.3 | 1.6 | 1.8 | -0.25 |
| Frozen vegetables | 2011 | 2 | 0.61 | 0.17 | 26 | 1.5 | 1.1 | 1.6 |  | 0.14 |
| Carbonated drink | 108 | 5 | 0.60 | 0.11 | 64 | 1.6 | 1.1 | 1.7 | 2.1 | 1.70 |
| Corn, Israeli | 125 | 3 | 0.59 | 0.12 | 38 | 1.7 | 1.3 | 1.7 |  | -0.18 |
| Chicken breasts | 3003 | 28 | 0.59 | 0.18 | 349 | 1.6 | 1.0 | 1.7 | 1.9 | 0.30 |
| Liquid detergent | 10028 | 7 | 0.57 | 0.15 | 85 | 1.7 | 1.2 | 1.8 | 1.9 | 0.58 |
| Coca Cola | 107 | 13 | 0.55 | 0.08 | 150 | 1.8 | 1.4 | 1.8 | 2.3 | 1.26 |
| Jam | 133 | 11 | 0.53 | 0.07 | 124 | 1.8 | 1.7 | 1.9 | 2.2 | 1.28 |
| Wine | 6007 | 9 | 0.52 | 0.11 | 99 | 1.9 | 2.1 | 1.9 | 2.3 | 0.71 |
| Toilet paper | 10017 | 12 | 0.52 | 0.87 | 131 | 1.6 | 1.5 | 1.9 | 2.3 | 0.23 |
| Sweetened drink | 109 | 15 | 0.51 | 0.12 | 162 | 1.7 | 1.1 | 1.9 | 2.1 | 1.23 |
| Chocolate milk | 5511 | 6 | 0.51 | 0.15 | 64 | 1.8 | 1.1 | 2.0 |  | 1.71 |
| Chicken liver | 3004 | 18 | 0.50 | 0.10 | 191 | 1.8 | 1.3 | 2.0 | 2.5 | 1.10 |
| Turkey thighs | 3008 | 16 | 0.50 | 0.20 | 168 | 1.7 | 1.5 | 2.0 | 2.2 | 0.67 |
| Acne medication | 24020 | 2 | 0.50 | 0.02 | 21 | 2.0 | 1.1 | 2.0 |  | 0.85 |
| Instant coffee | 6505 | 15 | 0.50 | 0.34 | 156 | 2.0 | 1.5 | 2.0 | 2.3 | 0.74 |
| Honey | 101 | 3 | 0.49 | 0.07 | 31 | 1.8 | 1.3 | 2.0 |  | 2.94 |
| Carbonated water | 110 | 11 | 0.49 | 0.08 | 112 | 1.9 | 1.5 | 2.1 | 2.4 | 1.33 |
| Birth control pills | 24009 | 2 | 0.48 | 0.01 | 20 | 1.9 | 1.5 | 2.1 |  | 0.59 |
| Tranquilizers | 24010 | 2 | 0.48 | 0.88 | 20 | 2.0 | 1.3 | 2.1 |  | 0.78 |
| Nasal decongestant | 24023 | 2 | 0.48 | 0.01 | 20 | 1.9 | 1.2 | 2.1 |  | 0.98 |
| Chocolate milk, Israeli | 5510 | 13 | 0.47 | 0.05 | 129 | 1.9 | 1.2 | 2.1 | 3.0 | 1.23 |
| Ketchup | 120 | 11 | 0.47 | 0.22 | 107 | 2.0 | 1.5 | 2.1 | 2.6 | 0.70 |
| Detergent | 10009 | 8 | 0.46 | 0.24 | 77 | 1.9 | 1.7 | 2.2 | 2.5 | 0.25 |
| Refrigerator, imported | 14012 | 2 | 0.46 | 0.54 | 19 | 1.9 | 1.9 | 2.2 |  | 0.95 |
| Citrus fruit drink | 105 | 7 | 0.45 | 0.34 | 65 | 2.2 | 1.5 | 2.2 | 3.4 | 1.68 |
| Chocolate milk | 5512 | 11 | 0.45 | 0.04 | 102 | 2.1 | 1.3 | 2.2 |  | 1.48 |
| Snacks | 5509 | 6 | 0.44 | 0.35 | 55 | 1.9 | 1.2 | 2.3 |  | 1.25 |
| Fruit jam | 102 | 7 | 0.44 | 0.07 | 64 | 2.2 | 2.0 | 2.3 |  | 0.77 |
| Chicken parts | 3005 | 15 | 0.44 | 0.48 | 136 | 2.0 | 2.0 | 2.3 | 2.6 | 0.15 |
| fish | 4002 | 2 | 0.43 | 0.01 | 18 | 2.0 | 1.5 | 2.3 |  | 1.58 |
| Waffle | 5507 | 1 | 0.43 |  | 9 | 1.6 | 0.8 | 2.3 |  | 0.88 |
| Antibiotic | 24007 | 2 | 0.43 | 0.01 | 18 | 2.1 | 1.2 | 2.3 |  | 0.66 |
| Insecticide | 10013 | 15 | 0.43 | 0.15 | 132 | 2.0 | 1.8 | 2.3 | 2.8 | 0.41 |
| Biscuits | 5506 | 7 | 0.42 | 0.38 | 61 | 2.0 | 1.2 | 2.4 |  | 1.14 |
| Frozen French fries | 2013 | 3 | 0.42 | 0.06 | 26 | 2.3 | 2.2 | 2.4 |  | 0.85 |
| Detergent | 10010 | 2 | 0.41 | 0.21 | 17 | 2.0 | 1.7 | 2.4 |  | 0.80 |
| Toothpaste | 10024 | 4 | 0.41 | 0.22 | 34 | 2.4 | 2.4 | 2.4 |  | 0.81 |
| Frozen soup | 2010 | 5 | 0.41 | 0.05 | 42 | 2.3 | 1.8 | 2.4 | . | 0.66 |
| Iced cream | 4526 | 3 | 0.41 | 0.36 | 25 | 2.0 | 1.8 | 2.5 | . | 0.60 |


| Brandy | 6009 | 9 | 0.41 | 0.15 | 75 | 1.9 | 1.9 | 2.5 | 3.8 | 0.75 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crackers | 5508 | 7 | 0.40 | 0.12 | 58 | 2.2 | 1.2 | 2.5 |  | 0.94 |
| Instant cocoa | 6502 | 7 | 0.40 | 0.25 | 58 | 2.2 | 2.2 | 2.5 | 3.0 | 0.52 |
| Canned baby food, Gerber | 131 | 8 | 0.40 | 0.11 | 66 | 2.1 | 1.4 | 2.5 | 3.4 | 0.40 |
| Sugar substitutes | 6702 | 4 | 0.40 | 0.23 | 33 | 2.5 | 2.3 | 2.5 |  | 0.54 |
| Green olives | 113 | 5 | 0.40 | 0.21 | 41 | 2.2 | 1.7 | 2.5 | . | 0.92 |
| Frozen fish | 4008 | 10 | 0.40 | 0.09 | 82 | 2.2 | 2.6 | 2.5 | . | 0.16 |
| Soup mix | 6707 | 10 | 0.40 | 0.61 | 81 | 2.2 | 1.7 | 2.5 | 3.3 | 0.80 |
| Instant pudding | 525 | 11 | 0.40 | 0.05 | 89 | 2.1 | 1.5 | 2.5 | 3.8 | 1.41 |
| Pickles, canned | 115 | 4 | 0.39 | 0.18 | 32 | 2.1 | 2.0 | 2.6 | . | 0.82 |
| Frozen pizza | 2007 | 3 | 0.39 | 0.32 | 24 | 2.3 | 1.8 | 2.6 | . | -0.02 |
| Chocolate milk | 5513 | 12 | 0.39 | 0.08 | 96 | 2.3 | 1.5 | 2.6 | . | 1.44 |
| Microwave | 14020 | 2 | 0.39 | 0.20 | 16 | 2.4 | 1.7 | 2.6 | . | 0.34 |
| Disposable diapers | 10021 | 8 | 0.39 | 0.07 | 63 | 2.1 | 1.3 | 2.6 | 3.6 | 0.35 |
| Liver, beef | 1505 | 9 | 0.38 | 0.08 | 70 | 2.2 | 1.6 | 2.6 | . | 1.90 |
| Dried rice | 523 | 6 | 0.38 | 0.05 | 46 | 2.1 | 1.4 | 2.7 |  | 1.40 |
| Cookies | 5504 | 2 | 0.37 | 0.01 | 15 | 2.4 | 2.0 | 2.7 |  | 0.96 |
| Turkey breasts | 3007 | 15 | 0.37 | 0.18 | 112 | 2.2 | 2.1 | 2.7 | 2.9 | 0.57 |
| Cornflakes | 536 | 5 | 0.37 | 0.12 | 37 | 2.6 | 2.1 | 2.7 |  | 1.20 |
| Noodles | 531 | 9 | 0.36 | 0.21 | 66 | 2.7 | 1.8 | 2.8 | 3.8 | 1.35 |
| Deodorizer | 10014 | 9 | 0.36 | 0.16 | 67 | 2.0 | 1.3 | 2.8 | 3.6 | -0.11 |
| Plastic paint | 11001 | 3 | 0.36 | 0.08 | 22 | 2.6 | 1.7 | 2.8 |  | 0.39 |
| Floor cleaner | 10007 | 7 | 0.36 | 0.32 | 51 | 2.6 | 2.2 | 2.8 |  | 0.47 |
| Vinegar | 6712 | 8 | 0.36 | 0.06 | 58 | 2.6 | 1.8 | 2.8 |  | 1.43 |
| Washing machine | 14008 | 4 | 0.36 | 0.14 | 29 | 2.8 | 2.0 | 2.8 | . | 1.17 |
| Toilettes | 10019 | 9 | 0.36 | 0.56 | 66 | 1.9 | 1.2 | 2.8 | 3.4 | 0.27 |
| Frozen vegetables | 2012 | 5 | 0.36 | 0.27 | 36 | 2.8 | 2.7 | 2.8 | . | 0.57 |
| Filet | 4006 | 11 | 0.36 | 0.23 | 79 | 2.8 | 3.2 | 2.8 | . | 0.59 |
| Dish cleaner, liquid | 10002 | 11 | 0.36 | 0.39 | 79 | 2.2 | 1.9 | 2.8 | 3.1 | 0.52 |
| Toothpaste, Israeli | 10023 | 22 | 0.35 | 0.28 | 155 | 2.3 | 2.0 | 2.9 | 3.7 | 0.82 |
| Natural fruit juice | 106 | 6 | 0.35 | 0.09 | 42 | 2.1 | 1.6 | 2.9 | . | 1.13 |
| Beer | 6014 | 5 | 0.35 | 0.17 | 35 | 2.1 | 1.3 | 2.9 | . | 0.90 |
| Superlack | 11002 | 3 | 0.35 | 0.05 | 21 | 2.5 | 1.7 | 2.9 | . | 0.88 |
| Moisturizer | 32503 | 3 | 0.35 | 0.54 | 21 | 2.0 | 1.6 | 2.9 | . | 1.01 |
| Detergent | 10012 | 11 | 0.34 | 0.31 | 76 | 2.8 | 1.9 | 2.9 | . | 1.08 |
| Cookies | 5505 | 10 | 0.34 | 0.03 | 69 | 2.7 | 2.1 | 2.9 | . | 0.87 |
| Pudding | 524 | 9 | 0.34 | 0.12 | 62 | 2.3 | 2.1 | 2.9 | . | 1.04 |
| Jam, Israeli | 103 | 13 | 0.34 | 0.18 | 89 | 2.6 | 1.9 | 2.9 |  | 0.62 |
| Granola | 537 | 5 | 0.34 | 0.08 | 34 | 3.0 | 2.1 | 2.9 | . | 0.75 |
| Cleaning agents | 10006 | 10 | 0.34 | 0.13 | 68 | 2.3 | 1.4 | 2.9 |  | 1.15 |
| TV set | 14006 | 4 | 0.34 | 0.10 | 27 | 3.0 | 2.3 | 3.0 | . | 0.97 |
| Dough | 532 | 9 | 0.33 | 0.28 | 60 | 2.8 | 2.2 | 3.0 | 3.7 | 1.13 |
| Macaroni | 530 | 8 | 0.33 | 0.32 | 53 | 2.7 | 1.8 | 3.0 |  | 1.01 |
| Soup mix | 6708 | 9 | 0.33 | 0.85 | 59 | 2.2 | 1.9 | 3.0 | 4.4 | 0.65 |
| Aluminum foil | 10020 | 9 | 0.33 | 0.34 | 59 | 2.0 | 1.6 | 3.0 |  | 0.37 |
| Refrigerator | 14010 | 15 | 0.32 | 0.05 | 97 | 2.9 | 2.2 | 3.1 | 4.3 | 0.56 |
| Eggs | 5006 | 5 | 0.32 | 1.40 | 32 | 2.7 | 1.5 | 3.1 | . | 1.41 |
| Fish | 4001 | 8 | 0.32 | 0.08 | 51 | 2.5 | 1.8 | 3.1 | 4.6 | 1.18 |
| Shoe polish | 10025 | 16 | 0.32 | 0.30 | 102 | 2.8 | 2.8 | 3.1 | . | 1.56 |
| Detergent | 10008 | 14 | 0.32 | 0.27 | 89 | 2.5 | 1.4 | 3.1 | . | 1.12 |
| Iced cream | 4527 | 3 | 0.32 | 0.26 | 19 | 2.3 | 1.9 | 3.1 | . | 0.87 |
| Chrysanthemum | 17003 | 3 | 0.32 | 0.36 | 18 | 1.2 | 0.5 | 3.1 | . | 1.00 |
| Soup nuts | 514 | 10 | 0.32 | 0.57 | 63 | 2.9 | 2.4 | 3.2 | 4.1 | 0.92 |
| Tomato paste | 119 | 14 | 0.32 | 0.45 | 88 | 2.0 | 2.0 | 3.2 | 4.2 | 1.03 |


| Soy oil | 5001 | 8 | 0.32 | 0.13 | 50 | 2.8 | 2.2 | 3.2 |  | 0.98 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TV set | 14005 | 8 | 0.32 | 0.16 | 50 | 2.8 | 2.3 | 3.2 | 4.2 | 0.59 |
| Mayonnaise | 5011 | 8 | 0.31 | 0.04 | 49 | 2.7 | 2.1 | 3.2 | 4.8 | 0.50 |
| Scotch bright | 10004 | 18 | 0.31 | 0.78 | 111 | 2.3 | 2.0 | 3.2 | 4.9 | 0.79 |
| Candy | 5520 | 5 | 0.30 | 0.15 | 30 | 2.9 | 2.1 | 3.3 |  | 1.10 |
| Sauce | 6711 | 8 | 0.30 | 0.12 | 48 | 2.8 | 2.2 | 3.3 |  | 1.11 |
| Nose drops | 24004 | 2 | 0.30 | 0.01 | 12 | 2.6 | 1.4 | 3.3 |  | 0.80 |
| Medication for indigestion | 24025 | 2 | 0.30 | 0.28 | 12 | 2.7 | 1.9 | 3.3 |  | 0.63 |
| Bleach | 10005 | 14 | 0.30 | 0.42 | 82 | 2.7 | 2.5 | 3.4 |  | 0.42 |
| Washing machine | 14007 | 13 | 0.30 | 0.05 | 76 | 3.3 | 2.5 | 3.4 | 5.0 | 0.96 |
| Tehina | 5012 | 10 | 0.30 | 0.17 | 58 | 2.3 | 1.9 | 3.4 | 4.6 | 0.50 |
| Coffee | 6503 | 13 | 0.29 | 0.63 | 76 | 2.5 | 2.9 | 3.4 |  | 0.82 |
| Refrigerator | 14009 | 11 | 0.29 | 0.05 | 63 | 3.3 | 2.9 | 3.4 |  | 0.65 |
| Sardines | 121 | 6 | 0.29 | 0.09 | 35 | 2.8 | 2.6 | 3.5 |  | 0.52 |
| Flour | 516 | 12 | 0.29 | 0.33 | 68 | 2.5 | 1.9 | 3.5 |  | 1.10 |
| Floor cleaner | 11003 | 3 | 0.29 | 0.06 | 17 | 2.7 | 2.1 | 3.5 |  | 1.07 |
| Refrigerator | 14011 | 12 | 0.29 | 0.04 | 68 | 3.0 | 2.6 | 3.5 |  | 0.54 |
| Soap | 10022 | 28 | 0.29 | 0.09 | 160 | 2.6 | 2.8 | 3.5 | 4.1 | 0.20 |
| Baby food | 129 | 10 | 0.29 | 0.24 | 57 | 3.0 | 2.3 | 3.5 |  | 1.02 |
| Sauce mix | 6710 | 5 | 0.29 | 0.43 | 28 | 3.2 | 2.1 | 3.5 |  | 1.10 |
| Canned food | 126 | 2 | 0.28 | 0.92 | 11 | 3.6 | 4.6 | 3.5 |  | 0.52 |
| Apple sauce, canned, Israeli | 132 | 2 | 0.28 | 0.06 | 11 | 3.0 | 3.0 | 3.5 |  | 0.38 |
| Pork chops | 2501 | 4 | 0.28 | 0.28 | 22 | 2.9 | 2.1 | 3.5 |  | 1.17 |
| Pork steak | 2502 | 4 | 0.28 | 0.21 | 22 | 2.4 | 1.8 | 3.5 |  | 1.20 |
| Tuna, frozen | 4010 | 2 | 0.28 | 0.10 | 11 | 2.6 | 2.8 | 3.5 |  | -0.13 |
| Red sweet wine, Israeli | 6002 | 8 | 0.28 | 0.42 | 44 | 2.7 | 2.1 | 3.5 |  | 0.91 |
| Video recorder | 14018 | 4 | 0.28 | 0.12 | 22 | 2.2 | 2.6 | 3.5 |  | 0.39 |
| Soap, medicated, acne | 24021 | 2 | 0.28 | 1.35 | 11 | 3.2 | 1.5 | 3.5 |  | 0.54 |
| oil | 5002 | 7 | 0.28 | 0.32 | 38 | 2.2 | 2.1 | 3.6 |  | 0.42 |
| Food processor | 14016 | 7 | 0.28 | 0.36 | 38 | 3.4 | 2.7 | 3.6 |  | 1.23 |
| Frozen dough | 2005 | 5 | 0.28 | 0.10 | 27 | 2.9 | 2.9 | 3.6 |  | 0.48 |
| Beer, black | 6017 | 5 | 0.28 | 0.22 | 27 | 2.3 | 1.9 | 3.6 |  | 1.31 |
| Eggs | 5005 | 8 | 0.28 | 1.17 | 43 | 3.0 | 1.9 | 3.6 |  | 1.36 |
| Diet bread | 511 | 3 | 0.28 | 0.25 | 16 | 2.9 | 3.2 | 3.6 |  | 0.97 |
| Whipped topping | 526 | 9 | 0.28 | 0.12 | 49 | 2.4 | 1.8 | 3.6 | 4.5 | 0.61 |
| Dish cleaner, non-liquid | 10001 | 18 | 0.28 | 0.29 | 96 | 3.3 | 3.5 | 3.6 | 4.9 | 0.55 |
| Waffles | 5501 | 5 | 0.27 | 0.03 | 26 | 2.0 | 2.1 | 3.7 |  | 0.65 |
| Oven | 14001 | 5 | 0.27 | 0.33 | 26 | 2.4 | 2.4 | 3.7 |  | 1.16 |
| Cocoa | 6501 | 13 | 0.27 | 0.08 | 67 | 3.6 | 2.5 | 3.7 |  | 0.96 |
| Plastic tablecloths | 10018 | 13 | 0.27 | 0.44 | 70 | 2.0 | 1.5 | 3.7 | 5.0 | 0.82 |
| Beef steak | 1503 | 11 | 0.26 | 0.27 | 56 | 2.2 | 2.2 | 3.8 | 4.9 | 0.49 |
| Whole wheat bread | 519 | 4 | 0.26 | 0.07 | 20 | 2.9 | 1.8 | 3.8 |  | 0.65 |
| Pastrami, smoked turkey | 3506 | 5 | 0.26 | 0.95 | 25 | 2.8 | 2.6 | 3.8 |  | 0.41 |
| Mayonnaise | 5010 | 13 | 0.26 | 0.25 | 65 | 3.2 | 3.4 | 3.8 | 4.8 | 0.40 |
| Wine, white dry | 6005 | 5 | 0.26 | 0.56 | 25 | 2.8 | 2.1 | 3.8 |  | 0.82 |
| Skin cream, antibiotic | 24005 | 2 | 0.26 | 0.15 | 10 | 3.2 | 1.2 | 3.8 |  | 0.49 |
| Solution for contact lenses | 24026 | 2 | 0.26 | 0.09 | 10 | 3.6 | 4.6 | 3.8 |  | 0.40 |
| Moisturizer | 32504 | 5 | 0.26 | 0.39 | 25 | 2.8 | 1.7 | 3.8 |  | 1.22 |
| Chopped chicken/turkey | 3010 | 14 | 0.26 | 0.43 | 69 | 2.4 | 2.3 | 3.9 |  | 0.24 |
| Decaffeinated coffee | 6509 | 8 | 0.26 | 0.55 | 39 | 3.7 | 2.3 | 3.9 |  | 0.81 |
| Dishwasher | 14019 | 7 | 0.25 | 0.41 | 34 | 3.2 | 3.0 | 3.9 |  | 0.94 |
| Beef, ribs | 1508 | 13 | 0.25 | 0.15 | 63 | 2.8 | 2.3 | 3.9 |  | 1.36 |
| Franks | 3509 | 5 | 0.25 | 0.27 | 24 | 3.3 | 3.1 | 4.0 |  | 0.75 |
| Champagne | 6008 | 5 | 0.25 | 0.05 | 24 | 3.6 | 2.7 | 4.0 | . | 0.87 |


| Liquor | 6013 | 5 | 0.25 | 0.17 | 24 | 2.7 | 2.0 | 4.0 |  | 0.15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Baking soda | 111 | 8 | 0.25 | 0.02 | 38 | 2.7 | 1.9 | 4.0 |  | 1.55 |
| Black olives, canned | 112 | 4 | 0.25 | 0.11 | 19 | 2.3 | 1.8 | 4.0 |  | 0.64 |
| Waffles | 5503 | 4 | 0.25 | 0.07 | 19 | 3.2 | 2.9 | 4.0 |  | 0.52 |
| Electric mixer, imported | 14015 | 4 | 0.25 | 0.05 | 19 | 4.1 | 2.7 | 4.0 |  | 0.98 |
| Beef | 1507 | 19 | 0.25 | 0.20 | 91 | 3.2 | 2.6 | 4.0 | 7.1 | 1.29 |
| Baby food | 130 | 6 | 0.25 | 0.38 | 28 | 3.3 | 2.0 | 4.1 |  | 1.09 |
| Humus, canned | 5013 | 6 | 0.25 | 0.36 | 28 | 3.5 | 2.5 | 4.1 |  | 1.08 |
| Detergent, hand wash | 10011 | 12 | 0.25 | 0.09 | 56 | 3.4 | 2.0 | 4.1 | 6.1 | 0.79 |
| Baby care book | 25508 | 3 | 0.25 | 0.15 | 14 | 2.6 | 2.1 | 4.1 |  | 1.28 |
| Body lotion | 32507 | 3 | 0.25 | 0.15 | 14 | 3.8 | 2.2 | 4.1 |  | 1.39 |
| Wooden chair | 12004 | 5 | 0.24 | 0.42 | 23 | 3.2 | 2.5 | 4.1 |  | 1.34 |
| Pliers | 11006 | 2 | 0.24 | 0.77 | 9 | 2.0 | 1.3 | 4.2 |  | 0.00 |
| Desk | 12015 | 6 | 0.24 | 0.42 | 27 | 3.5 | 2.1 | 4.2 |  | 1.06 |
| Cognac Franks | 3508 | 5 | 0.23 | 0.65 | 22 | 2.7 | 2.2 | 4.3 |  | 0.62 |
| Beef | 1509 | 13 | 0.23 | 0.23 | 58 | 3.3 | 3.0 | 4.3 |  | 1.31 |
| Jam, Imported | 104 | 8 | 0.23 | 0.39 | 35 | 3.7 | 3.0 | 4.3 |  | 0.60 |
| Metal scrubber pad | 10003 | 11 | 0.23 | 0.75 | 48 | 3.4 | 3.3 | 4.3 |  | 1.14 |
| Frozen egg rolls | 2009 | 4 | 0.23 | 0.04 | 17 | 3.0 | 2.1 | 4.4 |  | 0.61 |
| Tehina mix | 6709 | 4 | 0.23 | 0.18 | 17 | 3.1 | 1.8 | 4.4 | . | 1.01 |
| Cookbook | 25504 | 4 | 0.23 | 0.11 | 17 | 3.6 | 2.6 | 4.4 | . | 0.79 |
| Candy | 5516 | 8 | 0.22 | 0.02 | 33 | 2.9 | 1.9 | 4.5 | . | 0.73 |
| Garden peas, canned | 124 | 7 | 0.22 | 0.16 | 29 | 2.4 | 2.3 | 4.6 | . | 0.60 |
| Lamb | 1506 | 6 | 0.22 | 0.33 | 25 | 3.0 | 2.0 | 4.6 | . | 1.08 |
| Frozen Bourikas | 2008 | 1 | 0.22 |  | 4 | 4.5 | 3.6 | 4.6 | . | 1.17 |
| Salami | 3511 | 4 | 0.22 | 0.66 | 16 | 4.3 | 3.2 | 4.6 | . | 0.31 |
| Shampoo | 32502 | 4 | 0.22 | 0.45 | 16 | 3.4 | 3.6 | 4.6 | . | 0.94 |
| Toothbrush | 32521 | 3 | 0.22 | 0.05 | 12 | 4.3 | 4.3 | 4.6 | . | 1.45 |
| Deodorant | 32522 | 3 | 0.22 | 0.33 | 12 | 4.7 | 3.4 | 4.6 | . | 1.06 |
| Marriage band, gold | 33001 | 1 | 0.22 |  | 4 | 5.0 | 4.7 | 4.6 |  | 0.21 |
| Necklace, gold | 33002 | 2 | 0.22 | 0.92 | 8 | 4.8 | 4.7 | 4.6 |  | 0.67 |
| Beef | 1510 | 14 | 0.21 | 0.17 | 56 | 3.0 | 2.5 | 4.7 |  | 1.38 |
| Garbage bags | 10016 | 14 | 0.21 | 0.40 | 53 | 3.2 | 3.7 | 4.8 |  | 0.33 |
| Rag for floor | 10015 | 12 | 0.21 | 0.23 | 47 | 2.8 | 2.7 | 4.8 |  | 0.68 |
| Mushrooms, canned | 127 | 7 | 0.20 | 0.31 | 26 | 2.3 | 1.7 | 4.9 |  | -0.01 |
| Beans | 520 | 10 | 0.20 | 0.17 | 39 | 2.5 | 1.9 | 4.9 | 6.0 | -0.02 |
| Salami | 2504 | 3 | 0.20 | 0.10 | 11 | 4.5 | 1.7 | 4.9 |  | 1.08 |
| Walnuts | 9506 | 3 | 0.20 | 0.16 | 11 | 3.4 | 2.4 | 4.9 |  | 0.87 |
| Salami | 3501 | 5 | 0.20 | 0.91 | 18 | 3.9 | 3.5 | 5.0 |  | 0.61 |
| White flour | 515 | 14 | 0.20 | 0.07 | 50 | 3.2 | 2.4 | 5.0 |  | 0.75 |
| Beef | 1513 | 8 | 0.20 | 0.34 | 28 | 3.3 | 2.2 | 5.1 |  | 1.08 |
| Eggs | 5004 | 6 | 0.20 | 1.36 | 21 | 4.0 | 2.8 | 5.1 |  | 0.81 |
| Herbal tea bags | 6508 | 6 | 0.20 | 0.04 | 21 | 4.7 | 4.5 | 5.1 |  | 0.96 |
| Pendant, gold | 33003 | 2 | 0.20 | 1.03 | 7 | 5.6 | 6.1 | 5.1 |  | 1.08 |
| Bracelet, gold | 33004 | 2 | 0.20 | 0.16 | 7 | 5.9 | 6.0 | 5.1 |  | 1.10 |
| Hallah bread | 507 | 7 | 0.19 | 0.01 | 24 | 4.8 | 2.7 | 5.2 |  | 1.12 |
| Book shelves | 12009 | 7 | 0.19 | 0.50 | 24 | 4.7 | 3.4 | 5.2 |  | 0.83 |
| Tuna, canned | 122 | 6 | 0.19 | 0.23 | 20 | 4.5 | 3.3 | 5.3 |  | 0.73 |
| White bread | 502 | 9 | 0.19 | 0.01 | 30 | 4.8 | 2.7 | 5.3 |  | 0.94 |
| Bread crumbs | 534 | 6 | 0.19 | 0.35 | 20 | 3.5 | 3.0 | 5.3 |  | 0.71 |
| Salami | 3503 | 3 | 0.19 | 0.85 | 10 | 3.0 | 2.1 | 5.3 |  | 0.07 |
| Halva, sesame | 5515 | 3 | 0.19 | 0.19 | 10 | 4.3 | 2.4 | 5.3 |  | 0.93 |
| Candy | 5522 | 9 | 0.19 | 0.17 | 30 | 3.3 | 2.5 | 5.3 |  | 0.56 |
| Vodka | 6011 | 6 | 0.19 | 0.19 | 20 | 3.9 | 3.0 | 5.3 |  | 0.37 |


| Black bread | 501 | 10 | 0.19 | 0.01 | 33 | 5.2 | 2.5 | 5.3 | 0.90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rice | 522 | 4 | 0.18 | 0.07 | 13 | 3.1 | 3.7 | 5.4 | 0.30 |
| Popcorn | 538 | 4 | 0.18 | 0.30 | 13 | 4.7 | 3.5 | 5.4 | 2.25 |
| Almonds | 9507 | 4 | 0.18 | 0.10 | 13 | 4.1 | 4.5 | 5.4 | 1.05 |
| Birdcage | 29510 | 4 | 0.18 | 0.13 | 12 | 2.5 | 2.2 | 5.4 | 1.08 |
| Mint or hard candies | 5518 | 9 | 0.18 | 0.50 | 29 | 3.6 | 2.3 | 5.4 | 0.82 |
| Closet | 12001 | 5 | 0.18 | 0.47 | 17 | 4.1 | 3.1 | 5.5 | 0.70 |
| Rolls | 509 | 6 | 0.18 | 0.11 | 19 | 4.9 | 3.7 | 5.5 | 0.66 |
| Tea, packaged | 6506 | 7 | 0.18 | 0.35 | 22 | 5.0 | 3.7 | 5.6 | 0.84 |
| Lentils | 5517 | 10 | 0.18 | 0.07 | 31 | 3.5 | 1.7 | 5.6 | 0.73 |
| Salami | 2505 | 3 | 0.17 | 0.08 | 9 | 5.3 | 4.0 | 5.8 | 1.21 |
| Stuffed vegetables | 7003 | 3 | 0.17 | 0.51 | 9 | 2.8 | 2.3 | 5.8 | 0.43 |
| Wooden table | 12003 | 6 | 0.17 | 0.62 | 18 | 4.3 | 3.1 | 5.8 | 1.15 |
| Vacuum cleaner | 14014 | 2 | 0.17 | 0.11 | 6 | 5.7 | 3.1 | 5.8 | 1.76 |
| Electric kettle | 14509 | 2 | 0.17 | 0.69 | 6 | 4.5 | 2.6 | 5.8 | 1.15 |
| Bible | 25022 | 1 | 0.17 |  | 3 | 5.0 | 1.4 | 5.8 | 1.31 |
| Lipstick | 32509 | 2 | 0.17 | 1.26 | 6 | 6.3 | 3.2 | 5.8 | 1.61 |
| Gold bracelet | 33005 | 1 | 0.17 |  | 3 | 7.0 | 7.1 | 5.8 | 2.14 |
| Sugar | 6701 | 15 | 0.17 | 0.08 | 46 | 3.3 | 3.6 | 5.8 | 0.15 |
| Chocolate spread | 5514 | 10 | 0.17 | 0.16 | 29 | 3.3 | 2.9 | 5.9 | 0.37 |
| Pita bread | 510 | 9 | 0.17 | 0.91 | 27 | 3.6 | 2.5 | 5.9 | 0.68 |
| Fish | 7007 | 8 | 0.17 | 0.60 | 22 | 5.1 | 4.8 | 5.9 | 0.95 |
| Beef, liver | 1512 | 6 | 0.17 | 0.10 | 17 | 4.1 | 2.7 | 6.0 | 1.06 |
| Salad | 5007 | 6 | 0.17 | 0.55 | 17 | 4.1 | 3.6 | 6.0 | 0.79 |
| Youth bed | 12018 | 5 | 0.17 | 0.45 | 14 | 3.9 | 2.1 | 6.1 | 0.66 |
| Beef, rib | 1501 | 16 | 0.16 | 0.07 | 44 | 4.1 | 5.3 | 6.1 | 0.65 |
| Textbook on Israeli literature | 25001 | 4 | 0.16 | 0.01 | 11 | 5.2 | 5.0 | 6.1 | 1.10 |
| Flour | 535 | 6 | 0.16 | 0.05 | 16 | 2.9 | 2.5 | 6.3 | 0.60 |
| Ham | 2506 | 3 | 0.16 | 0.22 | 8 | 4.1 | 2.0 | 6.3 | 1.00 |
| Tea | 6507 | 9 | 0.16 | 0.68 | 24 | 3.5 | 2.8 | 6.3 | 0.58 |
| Sandwich | 7502 | 3 | 0.16 | 0.71 | 8 | 4.9 | 2.0 | 6.3 | 1.56 |
| Living room set | 12006 | 3 | 0.16 | 0.65 | 8 | 3.1 | 1.8 | 6.3 | 0.79 |
| Mattress | 12501 | 3 | 0.16 | 0.51 | 8 | 3.6 | 2.5 | 6.3 | 0.88 |
| Beef, chopped | 1511 | 15 | 0.15 | 0.36 | 39 | 3.7 | 3.6 | 6.5 | 0.86 |
| Fish, canned | 123 | 2 | 0.15 | 0.30 | 5 | 3.8 | 3.4 | 6.6 | 0.51 |
| Black bread | 503 | 4 | 0.15 | 0.41 | 10 | 4.1 | 3.1 | 6.6 | 0.65 |
| Tea | 7509 | 2 | 0.15 | 0.69 | 5 | 4.4 | 1.7 | 6.6 | 0.96 |
| Plants of Israel (book) | 25023 | 4 | 0.15 | 0.04 | 10 | 4.8 | 3.2 | 6.6 | 1.03 |
| Color picture | 28501 | 6 | 0.15 | 0.12 | 15 | 5.6 | 4.3 | 6.6 | 1.22 |
| Film, 35 mm camera | 28502 | 6 | 0.15 | 0.13 | 15 | 6.1 | 4.9 | 6.6 | 1.02 |
| Rice | 521 | 7 | 0.15 | 0.15 | 17 | 4.1 | 3.4 | 6.7 | 0.73 |
| Syrup | 5519 | 5 | 0.15 | 0.04 | 12 | 6.7 | 4.0 | 6.8 | 1.12 |
| Green olives | 114 | 6 | 0.14 | 0.30 | 15 | 4.3 | 3.7 | 6.9 | 0.73 |
| Cocktail franks | 3510 | 3 | 0.14 | 0.33 | 7 | 3.6 | 2.4 | 6.9 | 0.34 |
| Hammer | 11005 | 3 | 0.14 | 0.39 | 7 | 2.3 | 2.0 | 6.9 | 0.30 |
| Screwdriver | 11009 | 3 | 0.14 | 0.24 | 7 | 1.9 | 1.0 | 6.9 | -0.37 |
| Twin bed | 12016 | 3 | 0.14 | 0.49 | 7 | 7.1 | 4.1 | 6.9 | 1.02 |
| Reader, E.M.T. | 25014 | 3 | 0.14 | 0.05 | 7 | 6.0 | 4.8 | 6.9 | 1.23 |
| After shave lotion | 32516 | 3 | 0.14 | 0.43 | 7 | 6.0 | 2.4 | 6.9 | 1.46 |
| Beef, roast | 1502 | 20 | 0.14 | 0.10 | 46 | 4.3 | 4.8 | 7.0 | 0.60 |
| Pliers | 11007 | 4 | 0.14 | 0.26 | 9 | 3.9 | 2.9 | 7.1 | -1.12 |
| Textbook | 25006 | 4 | 0.14 | 0.14 | 9 | 7.2 | 5.5 | 7.1 | 0.88 |
| Geography book | 25016 | 4 | 0.14 | 0.03 | 9 | 6.1 | 4.5 | 7.1 | 0.81 |
| Shaving cream | 32517 | 4 | 0.14 | 0.22 | 9 | 3.7 | 2.3 | 7.1 | 1.12 |


| Margarine | 4521 | 18 | 0.14 | 0.01 | 40 | 3.4 | 2.0 | 7.1 | 0.73 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cheese triangles | 4511 | 18 | 0.14 | 0.01 | 39 | 5.5 | 3.5 | 7.3 | 0.58 |
| Beef | 7004 | 12 | 0.14 | 0.79 | 26 | 5.4 | 3.8 | 7.3 | 0.92 |
| Film, 35 mm camera | 28503 | 7 | 0.14 | 0.12 | 16 | 4.9 | 4.9 | 7.3 | 0.86 |
| Wax, car | 32008 | 9 | 0.14 | 0.12 | 20 | 4.7 | 4.3 | 7.4 | 0.66 |
| Pickles | 116 | 6 | 0.13 | 0.12 | 12 | 3.6 | 2.7 | 7.7 | 0.53 |
| White bread | 504 | 3 | 0.13 | 0.11 | 6 | 6.2 | 4.5 | 7.7 | 0.80 |
| Hallah bread | 506 | 2 | 0.13 | 0.41 | 4 | 4.0 | 1.9 | 7.7 | 0.53 |
| Matza bread | 512 | 2 | 0.13 | 0.10 | 4 | 2.5 | 1.7 | 7.7 | 1.09 |
| Franks | 2503 | 3 | 0.13 | 1.37 | 6 | 5.5 | 2.2 | 7.7 | 0.17 |
| Yellow Cheese | 4517 | 4 | 0.13 | 0.08 | 8 | 5.3 | 2.5 | 7.7 | 0.73 |
| Table salt | 6703 | 14 | 0.13 | 0.07 | 28 | 6.4 | 3.0 | 7.7 | 0.94 |
| Coffee | 7510 | 2 | 0.13 | 0.66 | 4 | 3.8 | 2.2 | 7.7 | 0.96 |
| Raisins | 9508 | 4 | 0.13 | 0.33 | 8 | 5.0 | 2.8 | 7.7 | 0.55 |
| Nails | 11011 | 3 | 0.13 | 0.72 | 6 | 4.7 | 2.8 | 7.7 | -0.20 |
| Wooden table | 12007 | 5 | 0.13 | 0.84 | 10 | 5.8 | 3.7 | 7.7 | 1.29 |
| Pot | 15513 | 2 | 0.13 | 0.08 | 4 | 5.5 | 3.0 | 7.7 | 1.62 |
| Language book | 25002 | 2 | 0.13 | 0.09 | 4 | 4.8 | 4.1 | 7.7 | 0.70 |
| History Lessons | 25004 | 5 | 0.13 | 0.16 | 10 | 5.7 | 4.5 | 7.7 | 0.99 |
| History book | 25005 | 3 | 0.13 | 0.17 | 6 | 7.2 | 5.0 | 7.7 | 1.58 |
| Geometry book | 25007 | 4 | 0.13 | 0.03 | 8 | 5.9 | 4.1 | 7.7 | 0.93 |
| Language book | 25017 | 1 | 0.13 |  | 2 | 9.5 | 7.5 | 7.7 | 0.94 |
| Pen | 26007 | 4 | 0.13 | 0.15 | 8 | 7.8 | 5.5 | 7.7 | 1.12 |
| Game | 30004 | 1 | 0.13 |  | 2 | 3.5 | 1.5 | 7.7 | 2.04 |
| Car oil | 31003 | 8 | 0.13 | 0.03 | 16 | 7.5 | 5.8 | 7.7 | 0.73 |
| Car mirror | 32006 | 7 | 0.13 | 0.20 | 15 | 3.8 | 2.9 | 7.7 | 0.64 |
| Margarine | 4522 | 14 | 0.13 | 0.02 | 27 | 3.4 | 1.6 | 7.9 | 0.57 |
| Flavorings | 528 | 12 | 0.13 | 0.17 | 24 | 4.5 | 2.3 | 7.9 | 0.80 |
| Beef | 1504 | 23 | 0.13 | 0.39 | 44 | 5.5 | 5.8 | 7.9 | 0.67 |
| Long-life milk | 4502 | 16 | 0.13 | 0.02 | 30 | 5.9 | 3.1 | 8.0 | 0.71 |
| Upholstery covers | 32001 | 12 | 0.12 | 0.16 | 21 | 4.9 | 3.3 | 8.1 | 0.77 |
| Television stand | 12012 | 5 | 0.12 | 0.20 | 9 | 3.4 | 2.6 | 8.2 | 0.55 |
| Pudding | 4510 | 14 | 0.12 | 0.10 | 25 | 6.4 | 3.4 | 8.3 | 0.44 |
| Chicken | 7006 | 9 | 0.12 | 0.49 | 16 | 5.9 | 4.5 | 8.3 | 0.73 |
| Baking powder | 527 | 8 | 0.12 | 0.93 | 15 | 5.3 | 2.8 | 8.4 | 0.97 |
| Yellow Cheese | 4516 | 12 | 0.12 | 0.03 | 21 | 6.8 | 3.0 | 8.4 | 0.67 |
| Razor blade | 32518 | 4 | 0.12 | 0.37 | 8 | 7.3 | 5.3 | 8.4 | 0.69 |
| Corn flour | 518 | 3 | 0.12 | 0.51 | 6 | 7.2 | 4.3 | 8.6 | 0.53 |
| Yogurt | 4507 | 6 | 0.12 | 0.02 | 10 | 5.9 | 3.7 | 8.6 | 0.73 |
| Cheese | 4515 | 9 | 0.12 | 0.20 | 15 | 6.1 | 3.5 | 8.6 | 0.56 |
| Lamb | 7005 | 3 | 0.12 | 0.50 | 4 | 6.3 | 3.8 | 8.6 | 0.67 |
| Alcoholic beverage (Arrack) | 6012 | 5 | 0.11 | 0.18 | 8 | 6.5 | 2.4 | 8.8 | 0.33 |
| Pistachio nuts | 9505 | 5 | 0.11 | 0.60 | 8 | 7.0 | 4.6 | 8.8 | 0.78 |
| History book | 25015 | 5 | 0.11 | 0.07 | 8 | 6.5 | 5.2 | 8.8 | 1.32 |
| Yellow Cheese | 4518 | 16 | 0.11 | 0.01 | 25 | 6.9 | 3.0 | 9.0 | 0.64 |
| Sweet paprika | 6705 | 10 | 0.11 | 0.42 | 18 | 4.2 | 4.3 | 9.2 | 0.47 |
| Dictionary | 25020 | 4 | 0.11 | 0.14 | 6 | 4.2 | 2.2 | 9.2 | 0.36 |
| Song book | 25512 | 4 | 0.11 | 0.21 | 6 | 5.0 | 3.8 | 9.2 | 0.76 |
| Newspaper | 25517 | 2 | 0.11 | 0.02 | 3 | 13.0 | 8.6 | 9.2 | 1.02 |
| Children's game | 30009 | 2 | 0.11 | 0.16 | 3 | 6.0 | 2.9 | 9.2 | 1.30 |
| Chocolate pudding | 4504 | 13 | 0.11 | 0.23 | 19 | 6.7 | 3.2 | 9.3 | 0.72 |
| Matches | 10027 | 26 | 0.11 | 0.06 | 38 | 4.2 | 3.1 | 9.3 | 0.72 |
| Steering wheel cover | 32007 | 14 | 0.11 | 0.16 | 20 | 6.6 | 5.1 | 9.5 | 1.34 |
| Sour cream | 4514 | 12 | 0.11 | 0.07 | 17 | 8.1 | 2.7 | 9.5 | 0.00 |


| Candles | 10026 | 18 | 0.10 | 0.19 | 26 | 4.4 | 3.0 | 9.6 | 0.46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Black pepper dispenser | 6704 | 11 | 0.10 | 0.11 | 17 | 3.2 | 3.0 | 9.7 | 0.33 |
| Canned meat | 128 | 6 | 0.10 | 0.52 | 8 | 5.6 | 3.3 | 9.9 | 0.94 |
| Bourikas | 1011 | 3 | 0.10 | 0.44 | 3 | 3.0 | 1.6 | 9.9 | 0.66 |
| Cheese | 4520 | 6 | 0.10 | 0.36 | 8 | 4.6 | 3.4 | 9.9 | 0.60 |
| Kitchen table | 12014 | 3 | 0.10 | 0.24 | 5 | 6.6 | 4.2 | 9.9 | 1.15 |
| Night tables | 12017 | 3 | 0.10 | 0.56 | 5 | 4.0 | 2.1 | 9.9 | 0.46 |
| Tape recorder | 14017 | 3 | 0.10 | 0.30 | 5 | 2.6 | 2.2 | 9.9 | 0.12 |
| Language book | 25003 | 3 | 0.10 | 0.08 | 5 | 3.6 | 3.3 | 9.9 | 0.42 |
| Language book | 25013 | 3 | 0.10 | 0.02 | 4 | 8.0 | 4.1 | 9.9 | 0.92 |
| Geography book | 25018 | 3 | 0.10 | 0.28 | 4 | 9.3 | 4.5 | 9.9 | 0.80 |
| Dictionary | 25019 | 3 | 0.10 | 0.08 | 4 | 8.8 | 3.6 | 9.9 | 1.14 |
| Milk | 4501 | 19 | 0.10 | 0.00 | 24 | 7.8 | 2.8 | 10.2 | 0.56 |
| White cheese | 4512 | 8 | 0.10 | 0.09 | 10 | 7.6 | 2.9 | 10.2 | 0.69 |
| Dessert | 7008 | 4 | 0.10 | 0.57 | 5 | 7.8 | 5.6 | 10.2 | 1.00 |
| Cottage cheese | 4513 | 17 | 0.10 | 0.01 | 21 | 8.0 | 2.9 | 10.3 | 0.58 |
| Salted cheese | 4519 | 9 | 0.10 | 0.45 | 11 | 7.7 | 2.8 | 10.4 | 0.62 |
| Notebook | 26002 | 5 | 0.10 | 0.13 | 5 | 3.4 | 3.2 | 10.5 | 0.45 |
| Film for camera | 28505 | 5 | 0.10 | 0.16 | 7 | 5.1 | 5.4 | 10.5 | 0.87 |
| Car carpet | 32005 | 10 | 0.10 | 0.17 | 14 | 5.6 | 4.6 | 10.5 | 0.54 |
| Journal | 25519 | 6 | 0.09 | 0.00 | 7 | 7.6 | 7.3 | 10.6 | 0.32 |
| Entr e | 7001 | 11 | 0.09 | 0.48 | 14 | 5.6 | 3.2 | 11.0 | 0.87 |
| Cleaner | 32009 | 11 | 0.09 | 0.16 | 14 | 4.7 | 3.2 | 11.0 | 0.99 |
| Matzo meal | 517 | 2 | 0.09 | 0.59 | 2 | 9.5 | 4.5 | 11.5 | 1.79 |
| Fish | 4003 | 1 | 0.09 |  |  |  |  | 11.5 | 0.00 |
| Drink | 7507 | 3 | 0.09 | 0.58 | 4 | 3.5 | 1.7 | 11.5 | 0.61 |
| Peanuts | 9503 | 4 | 0.09 | 0.14 | 4 | 8.8 | 4.8 | 11.5 | 0.80 |
| Wooden chair | 12005 | 5 | 0.09 | 0.31 | 6 | 6.2 | 5.5 | 11.5 | 0.65 |
| Couch | 12019 | 2 | 0.09 | 1.29 | 2 | 9.5 | 7.5 | 11.5 | 0.74 |
| Plastic lenses | 24504 | 3 | 0.09 | 0.21 | 2 | 8.0 | 7.0 | 11.5 | 1.47 |
| Physics book | 25008 | 3 | 0.09 | 0.05 | 3 | 5.7 | 3.1 | 11.5 | 0.76 |
| Paper | 26004 | 5 | 0.09 | 0.37 | 7 | 4.6 | 3.2 | 11.5 | 0.17 |
| Cassette tape | 28007 | 3 | 0.09 | 0.19 | 2 | 11.0 | 9.0 | 11.5 | 0.57 |
| Soap | 32512 | 3 | 0.09 | 0.30 | 4 | 7.5 | 5.9 | 11.5 | 0.41 |
| Wrist watch strap | 33011 | 3 | 0.09 | 0.31 | 2 | 10.5 | 4.5 | 11.5 | 0.66 |
| Chocolate drink | 4503 | 15 | 0.08 | 0.37 | 14 | 4.9 | 3.3 | 11.9 | 0.46 |
| Butter | 4524 | 16 | 0.08 | 0.01 | 13 | 5.5 | 3.2 | 13.1 | 0.26 |
| Soup | 7002 | 8 | 0.08 | 0.24 | 8 | 7.8 | 3.0 | 13.1 | 0.74 |
| Nails | 11012 | 4 | 0.08 | 0.30 | 4 | 7.0 | 3.5 | 13.1 | -1.02 |
| Roll | 508 | 6 | 0.07 | 0.01 | 4 | 6.5 | 3.8 | 13.8 | 0.62 |
| Tweezers | 32520 | 3 | 0.07 | 0.28 | 3 | 6.3 | 3.3 | 13.8 | 0.76 |
| Pen | 26006 | 5 | 0.07 | 0.13 | 5 | 7.4 | 5.3 | 14.4 | 0.99 |
| Markers | 26009 | 5 | 0.07 | 0.33 | 4 | 2.8 | 1.3 | 14.4 | 0.94 |
| Crayons | 26016 | 5 | 0.07 | 0.49 | 4 | 11.5 | 4.2 | 14.4 | 1.02 |
| Car wash | 31005 | 5 | 0.07 | 0.10 | 3 | 13.7 | 5.4 | 14.4 | 1.09 |
| Butter | 4523 | 18 | 0.07 | 0.01 | 9 | 6.2 | 3.6 | 15.3 | 0.26 |
| Spices | 6706 | 10 | 0.07 | 0.32 | 9 | 3.9 | 2.3 | 15.3 | 0.05 |
| Sunflower seeds | 9501 | 4 | 0.07 | 0.17 | 3 | 13.0 | 4.9 | 15.3 | 0.56 |
| Youth bed | 12020 | 2 | 0.07 | 0.23 | 2 | 4.5 | 0.5 | 15.3 | 0.41 |
| Paints | 26010 | 4 | 0.07 | 0.19 | 2 | 10.0 | 5.0 | 15.3 | -0.16 |
| Notebook | 26003 | 5 | 0.06 | 0.36 | 3 | 5.3 | 1.2 | 16.4 | 0.12 |
| Cellophane tape | 26017 | 5 | 0.06 | 0.34 | 2 | 3.5 | 2.5 | 16.4 | 0.76 |
| Glass lenses | 24501 | 3 | 0.06 | 0.18 |  |  |  |  | 1.48 |
| Time magazine | 25516 | 4 | 0.05 | 0.00 |  |  |  |  | 0.88 |


| Speakers | 32004 | 4 | 0.05 | 0.70 | 3 | 12.0 | 4.9 | 18.4 | . | 0.73 |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Batteries | 14506 | 3 | 0.04 | 0.20 |  |  |  |  |  | 0.17 |
| Tennis balls | 29004 | 4 | 0.04 | 0.40 |  |  |  |  |  | 0.11 |
| Pencil | 26015 | 6 | 0.04 | 0.12 | 2 | 6.5 | 5.5 | 27.6 | . | 0.59 |
| Haircut, men's | 33501 | 6 | 0.04 | 0.43 |  |  |  |  | . | 0.60 |
| Whipped topping | 4525 | 13 | 0.03 | 0.14 | 4 | 7.3 | 3.6 | 29.9 | . | 0.15 |
| Glue | 26014 | 4 | 0.03 | 0.55 |  |  |  |  | . | 0.20 |
| Brush | 26013 | 3 | 0.03 | 0.20 |  |  |  |  | . | 0.91 |
| Haircut, children's | 33503 | 5 | 0.03 | 0.30 |  |  |  |  | . | 0.44 |
| Ruler, 30 cm | 26008 | 5 | 0.01 | 0.15 |  |  |  |  | . | -0.12 |

Table 2*: Predicting the length of the period; Dependent variable $=\Delta t$

| N | $\Delta \mathrm{p}$ | av. $\Delta \mathrm{p}$ <br> for prod. | av. $\Delta \mathrm{p}$ <br> for store | av. inflation <br> for prod. | SD(lnp) <br> for prod. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| 13770 | -0.3 | 22.9 | 27.3 |  |  |
|  | $(-1.7)$ | $(21.3)$ | $(22.6)$ |  |  |
| 13770 |  |  |  | 10.25 | 0.45 |
|  |  |  |  | $(1.96)$ | $(3.77)$ |
|  |  |  |  |  |  |
|  |  |  | 25.2 | -118.9 | 0.06 |
|  | -0.3 | $(-1.5)$ | $(28.9)$ | $(21.0)$ | $(-19.8)$ |

Regression based on half of the observations with the least frequent changes (low $\mathrm{E}_{\mathrm{t}}\left(\mathrm{x}_{\mathrm{it}}\right)$ )

| 6885 | -0.21 | 13.7 |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $(-0.6)$ | $(8.5)$ | 24.8 <br> $(14.3)$ |  |  |
| 6885 |  |  | 14.53 | -0.84 |
|  |  |  |  | $(1.38)$ |

Regression based on half of the observations with the most frequent changes (high $\mathrm{E}_{\mathfrak{t}}\left(\mathrm{x}_{\mathrm{i}}\right)$ )

| 6885 | -0.27 | 4.37 | 24.7 |  |
| :--- | :--- | :--- | ---: | :--- |
| $(-1.9)$ | $(2.9)$ | $(16.8)$ |  |  |
|  |  |  |  | 15.12 |
| 6885 |  |  | $(3.88)$ | 0.64 |
|  |  |  |  |  |
| 6885 | -0.27 | 21.4 | 24.2 | -46.2 |
|  | $(-1.9)$ | $(7.5)$ | $(16.5)$ | $(-6.4)$ |

```
* This Table reports OLS regression results. t statistics are in
 parentheses. The dependent variable is the direct observation of the
 length of the period (\Deltat). The explanatory variables are the size of
 the jump (\Deltap), the average size of the jump for the product (av.\Deltap for
 prod.), the average size of the jump for the store (av.\Deltap for store),
 the average inflation rate for the product (average over both zero and
```

non-zero price changes) and the average standard deviation of lnp for the product. All regressions include monthly dummies.

Note that the average size of the jump (for the product or for the store) is the average over all observations of non-zero nominal price changes. The average inflation rate includes observations of zero nominal price changes.

The first three regressions were run for the entire sample of 13,770 direct observations about the length of the period. We then split the sample by the frequency of price changes. Observations for products with low frequency (low $E_{t}\left(x_{i t}\right)$ ) were included in the first half.

Bental, Benjamin, and Eden Benjamin. "Money and Inventories in an Economy with Uncertain and Sequential Trade" Journal of Monetary Economics, 37 (1996) 445-459.
$\qquad$ "Reserve requirements and output fluctuations" Journal of Monetary Economics, 49 (2002) 1597-1620.

Bils, Mark and Peter J. Klenow "Some Evidence on the Importance of Sticky Prices" Mimeo, June 2002.

Calvo, Guillermo A., "Staggered Prices in a Utility-Maximizing Framework" Journal of Monetary Economics, XII (1983),383-398.

Carlton, D.W. "The Rigidity of Prices" American Economic Review, 76, 637-658 (1986).

Cecchetti, S.G., "The Frequency of Price Adjustment - A Study of the Newsstand Prices of Magazines" Journal of Econometrics, 31, 255274 (1986).
Chari, V.V., Patrick J. Kehoe and Ellen McGrattan. "Sticky Price Models of the Business Cycle: Can the Contract Multiplier Solve the Persistence Problem?" Econometrica, Vol. 68, No. 5 (September 2000), 1151-1179.

Crucini Mario J. and Mototsugu Shintani "Persistence in Law-of-One-Price Deviations: Evidence from Micro-Data" Department of Economics, Vanderbilt University, W.P.\#02-W22, December 2002.

Dotsey, M., R. G. King and Wolman A.L., "State-Dependent Pricing and the General Equilibrium Dynamics of Money and Output" Quarterly Journal of Economics, May 1999, 655-690.

Eden, B. "The Adjustment of Prices to Monetary Shocks When Trade is Uncertain and Sequential" Journal of Political Economy, Vol. 102, No. 3, pp. 493-509, June 1994.
$\qquad$ "Inflation and Price Adjustment: An analysis of Microdata" Review of Economic Dynamics, 4, 607-636, July 2001.
_ـ Sequential Trade, Money and Uncertainty, to be published by Blackwell in 2004.

Kashyap, Anil K. "Sticky Prices: New Evidence from Retail Catalogs" Quarterly Journal of Economics, 110, 1995, 245-274.

Lach, S. "Existence and Persistence of Price Dispersion: An Empirical Analysis" mimeo, March 2002.
$\qquad$ and Tsiddon, D. "The Behavior of Prices and Inflation: an Empirical Analysis of Disaggregated Price Data" Journal of Political Economy, Vol.100, No.2, April 1992, 349-89.

Lucas, Robert. E., Jr. and Michael Woodford "Real Effects of Monetary Shocks In an Economy With Sequential Purchases" Preliminary draft, The University of Chicago, April 1994.

Taylor, John B. "Aggregate Dynamics and Staggered Contracts" Journal of Political Economy, 88 (1980), 1 - 23.
"Staggered Price and Wage Setting in Macroeconomics" Chapter 15 in Handbook of Macroeconomics, John B. Taylor and Michael Woodford, eds. Elsevier, New York, 1999.

Williamson, Stephen D. "Sequential Markets and the Suboptimality of the Friedman rule" Journal of Monetary Economics; 37(3), June 1996.

Woodford, Michael "Loan Commitments and Optimal Monetary Policy" Journal of Monetary Economics; 37(3), June 1996, 573-605.


[^0]:    * This paper benefited from comments provided by the participants of the workshop at the Chicago Fed and by comments provided by Jeff Campbell.

[^1]:    1 The observations about $\Delta t$ are obtained in the following way. For each price change observation we have a code for the product, a code for the store and a time index which goes from 1 to 23. We sort the data by product and then by store and then by time index. After doing it we can read the price changes of a given product in a given store in all the 23 months for which we have observations. We then eliminated observations with no change in nominal price (dp $=0$ ). After doing it, the lag time index observation is the last time that a nominal price change was made. We compute $\Delta t$ as the difference between the current and the lag time index.

[^2]:    2 We thanks Jeff Campbell for the distinction between the average per price and the average per spell.

[^3]:    3 This is different from the so called stylized fact because most of the literature uses the standard deviation of nominal price changes (dp) which is not a good proxy for the standard deviation of lnp.

[^4]:    5 This average was computed by obtaining the impulse response function in a Table form for each product and taking the average (AV) in each period across products.

[^5]:    6 We separate each good by blanks so that the lags of product i will not be taken as observations from product i-1.

[^6]:    7 The average $S D$ reported in Table 1 is 0.27 . The permanent effect of the shock on $S D$ is about 0.0025 which is close to $1 \%$ of the average SD.

