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1 Introduction

Economic and financial multivariate time series are typically nonlinear, non-normally distributed,

and have nonlinear co-movements beyond the first two conditional moments. Granger (2002) points

out that the classical linear multivariate modelling (based on the Gaussian distribution assumption)

clearly fails to explain the stylized facts observed in economic and financial time series and that

it is highly undesirable to perform various economic policy evaluations, financial forecasts, and

risk managements based on the classical conditional (or unconditional) Gaussian modelling. The

knowledge of the multivariate conditional distribution (especially fat-tails, asymmetry, positive

or negative dependence) is essential in many important financial applications, including portfolio

selection, option pricing, asset pricing models, Value-at-Risk (market risk, credit risk, liquidity

risk) calculations and forecasting. Thus the entire conditional distribution of multivariate nonlinear

economic and financial time series should be studied, see Granger (2002).

Recently Chen and Fan (2003a) introduce a new class of semiparametric copula-based mul-

tivariate dynamic (hereafter SCOMDY) models. A SCOMDY model specifies the multivariate

conditional mean and conditional variance parametrically, but specifies the distribution of the (stan-

dardized) innovations semiparametrically as a parametric copula1 evaluated at the nonparametric

univariate marginals, where the copula function captures the concurrent dependence between the

components of the multivariate innovation and the marginal distributions characterize their individ-

ual behaviors. Chen and Fan (2003a) demonstrate via examples the flexibility of SCOMDY models

in capturing a wide range of nonlinear, asymmetric dependence structures and of the marginal

behavior of a multivariate time series. In addition, a SCOMDY model allows for the estimation of

multivariate conditional distribution semiparametrically, which, according to Granger (2002), is an

important feature of a multivariate time series model.

There are three sets of unknown parameters associated with a SCOMDY model: the dynamic

parameters (i.e., the finite-dimensional parameters of the conditional mean and conditional vari-

ance); the copula dependence parameters (i.e., the finite-dimensional parameters of the copula

function of the standardized multivariate innovation); and the infinite-dimensional marginal distri-

butions of individual components of the standardized innovation. Chen and Fan (2003a) provide

simple estimators of the parameters in a correctly specified SCOMDY model and establish their

asymptotic properties.

In this paper, we first study asymptotic properties of the estimators of the three sets of para-

meters associated with a SCOMDY model under a possibly misspecified parametric copula of the

standardized innovation. This is motivated by the facts that financial theory and economic theory

often shed little light on the specification of a parametric copula of the innovation and that the

1A copula is simply a multivariate probability distribution function with uniform marginals.
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existing applications have typically used multiple choices of parametric copulas. While the true

unknown dynamic parameters and the marginal distributions are still estimated consistently (at

a root-n rate, n is the sample size), the estimator of the copula dependence parameter will con-

verge to the pseudo true value of the copula dependence parameter defined as the minimizer of the

Kullback-Leibler Information Criterion (KLIC) between the candidate parametric copula density

and the true unknown copula density. Interestingly, the limiting distribution of the estimator of

the pseudo true value of the copula dependence parameters is not affected by the estimation of the

dynamic parameters, albeit it does depend on the estimation of unknown marginal distributions.

As commonly used parametric copulas such as the Gaussian copula, the Gumbel copula, and the

Clayton copula lead to SCOMDY models that may have very different dependence properties, one

important issue in empirical implementation of any SCOMDY model is the choice of an appropriate

parametric copula. Several papers have attempted to provide formal statistical model selection

procedures for special cases of SCOMDYmodels. In modelling the dependence structure of bivariate

high-frequency exchange rates data, Breymann, et al. (2003) and Dias and Embrechts (2004)

applied the Akaike Information Criterion (AIC) to several parametric copulas and selected the

one with the smallest AIC value. In modelling the dependence structure between risk factors in a

portfolio, Junker and May (2002) applied a χ2 goodness-of-fit test to each parametric copula and

selected the one with smallest value of the test statistic. However, the important issue of data reuse

has not been addressed in the context of copula model selection for general SCOMDY models.2

In this paper, we attempt to bridge this gap. In the case with only two models, we extend the

likelihood ratio tests for model selection of parametric models in Vuong (1989) to SCOMDYmodels.

Unlike Vuong (1989), the null hypothesis we entertain in this paper is: one copula model performs

at least as well as the other in terms of KLIC, while in Vuong (1989), the null hypothesis is: the two

models perform equally well. Our testing procedure is general, allowing both competing parametric

copula models to be misspecified under the null and the alternative. Although our testing approach

is similar to those in Vuong (1989), Sin and White (1996), Rivers and Vuong (2002), Marcellino

(2002) and other work following Vuong (1989), we allow for infinite-dimensional nuisance parameters

(marginal distributions) in our model selection criterion. Hence our test is really a pseudo- (or quasi-

) likelihood ratio (hereafter PLR) test,3 and the limiting distributions of our test statistics depend

on the estimates of the unknown marginal distributions of the standardized innovations.

As we noted earlier, in empirical applications of copulas, it is more common to use several

parametric copulas to fit the data and compare the results obtained from different models. To

2 In Chen, et al. (2003) and Fermanian (2003), they respectively establish tests for the correct specification of a
parametric copula for specific members of SCOMDY models. One drawback of these tests is that if the null hypothesis
of correct specification is rejected, they provide no guidance as to which copula model to choose.

3Patton (2002) has applied Vuong (1989)’s likelihood ratio test in his study of purely parametric copula-based
dynamic models. Our study differs from his since we do not specify marginal distributions of the standardized
innovations.
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address the model selection issue in this case, we extend the PLR test developed for two competing

models to more than two models along the lines of the reality check of White (2000). In this

case, one copula is taken as the benchmark copula and the rest candidate copulas: if no candidate

model is closer to the true model (according to the KLIC distance) than the benchmark model, the

benchmark model is chosen; otherwise, the candidate model that is closest to the true model will

be selected. White (2000) proposes the reality check test for the superior predictive accuracy of at

least one candidate parametric model over the benchmark parametric model.4 Since the asymptotic

null limiting distribution of the reality check test is complicated, White (2000) recommends to use

either Monte Carlo simulation or bootstrap to compute the p-values. Although our PLR model

selection tests involve the estimation of unknown marginal distributions of innovations, they have

standard parametric rates and the limiting null distributions are very easy to simulate, thanks to

the fact that the asymptotic distributions of the estimators of the pseudo true copula parameters

are not affected by the estimation of the dynamic parameters in a SCOMDY model. To illustrate

the simplicity and usefulness of our tests, we apply SCOMDY models and the model selection tests

to a number of multivariate daily exchange rate series with dimensions 2, 3, and 10 respectively.

Although a SCOMDY model with Gaussian copula might be a reasonable model for some (but

not all) bivariate FX series, but a SCOMDY model with a copula which has (asymmetric) tail-

dependence is generally preferred for three and ten dimensional FX series.

The rest of this paper is organized as follows. Section 2 briefly reviews the SCOMDY models. In

Section 3, we study the large sample properties of the estimators of the SCOMDYmodel parameters

proposed in Chen and Fan (2003a) under a possibly misspecified parametric copula. It is very inter-

esting to note that the limiting distribution of the estimate of the copula dependence parameters is

not affected by the estimation of the dynamic parameters of the conditional mean and conditional

variance, although it does depend on the estimation of the unknown marginal distributions of the

standardized innovations. This result is not only important in its own right, but also useful in

establishing the asymptotic distribution of the PLR statistic under possibly misspecified copulas.

In Section 4, we first present the null hypothesis and the PLR statistic for the model comparison

of two SCOMDY models and then provide the limiting distributions of the PLR test statistics.

Like the limiting distribution of the estimator of the copula dependence parameter, the limiting

distribution of the PLR statistic does not depend on the dynamic parameter estimation, although

it does depend on the estimation of marginal distributions of the standardized innovations of the

SCOMDY models. Section 5 extends the above results to more than two competing SCOMDY

models. Section 6 provides an empirical application and the last section briefly concludes. All

technical proofs are gathered into the Appendix.

4Corradi and Swanson (2003, 2004), Su and White (2003) and Hansen (2003), among others, extend the reality
check of White (2000) to different contexts.
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2 Semiparametric Copula-based Multivariate Dynamic Models

Let {(Y 0t ,X 0
t)}nt=1 be a vector stochastic process in which Yt is of dimension d, and Xt is a vector

of predetermined or exogenous variables distinct from the Y ’s. Let It−1 denote the information set
at time t, the sigma-field generated by {Yt−1, Yt−2, ...;Xt,Xt−1, ...}. In Chen and Fan (2003a), they
specify the class of SCOMDY models as follows:

Yt = µt(θo1) +
p
Ht(θo)�t, (2.1)

where

µt(θo1) =
¡
µ1,t(θo1), ..., µd,t(θo1)

¢0
= E{Yt|It−1}

is the true conditional mean of Yt given It−1, and is correctly parameterized up to a finite-
dimensional unknown parameter θo1; and

Ht(θo) = diag.(h1,t(θo), ..., hd,t(θo)),

in which

hj,t(θo) = hj,t(θo1, θo2) = E[(Yjt − µt(θo1))
2|It−1], j = 1, ..., d,

is the true conditional variance of Yjt given It−1, and is correctly parameterized up to a finite-
dimensional unknown parameter θo = (θ0o1, θ

0
o2)

0, where θo1 and θo2 do not have common elements.

The standardized multivariate innovations {�t ≡ (�1t, . . . , �dt)0 : t ≥ 1} in (2.1) are independent
of It−1, and are i.i.d. distributed with E(�jt) = 0 and E(�2jt) = 1 for j = 1, . . . , d. Moreover,

�t = (�1t, . . . , �dt)
0 has a distribution function F o(�) = Co(F o

1 (�1), . . . , F
o
d (�d)), where F

o
j (·) is the

true but unknown continuous marginal of �jt, j = 1, . . . , d, and Co(u1, . . . , ud) = Co(u1, . . . , ud;αo) :

[0, 1]d → [0, 1] is the true copula function with unknown finite dimensional copula parameter αo.

Chen and Fan (2003a) provide many examples of SCOMDY models by combining different

specifications of µt(θo1), Ht(θo) with Co(u1, . . . , ud;αo). Basically, µt(θo1) and Ht(θo) can be any

commonly used conditional mean and conditional variance specifications such as ARCH, GARCH,

VAR, Markov switching, etc., see Granger and Teräsvirta (1993), Hamilton (1994), Tsay (2002),

and chapters on dependent processes in the Handbook of Econometrics, Vol. 4, edited by Engle and

McFadden (1994). Similarly, Co(u1, . . . , ud;αo) can be any parametric copula function such as the

Normal (or Gaussian) copula, the Student’s t-copula, the Frank copula, the Gumbel copula, and

the Clayton copula, see Joe (1997) and Nelsen (1999) for examples and properties of copulas.

To illustrate, we present the following examples of SCOMDY models.

Example 1 (GARCH(1,1)+Normal copula): For j = 1, ..., d,

Yjt = X 0
jtδj +

p
hjt�jt,

hjt = κj + βjhj,t−1 + γj(Yj,t−1 −X 0
j,t−1δj)

2, (2.2)
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where

κj > 0, βj ≥ 0, γj ≥ 0, and βj + γj < 1, j = 1, . . . , d.

In terms of our notation, θ1 = (δ1, ..., δd)0, θ2 = (κ1, ..., κd;β1, ..., βd; γ1, ..., γd)0, µt = (X
0
1tδ1, ...,X

0
dtδd)

and Ht = diag{h1t, ..., hdt}. The standardized multivariate innovations {�t ≡ (�1t, . . . , �dt)0 : t ≥ 1}
are independent of It−1, and are i.i.d. distributed with E(�jt) = 0 and E(�2jt) = 1 for j = 1, . . . , d.

The copula of �t = (�1t, . . . , �dt)0 is assumed to be the normal copula with unknown correlation

matrix Σ. Let Φ denote the univariate standard normal distribution and ΦΣ,d the d−dimensional
normal distribution with correlation matrix Σ. Then the d−dimensional normal copula with cor-
relation matrix Σ is

C (u;Σ) = ΦΣ,d(Φ
−1(u1), ...,Φ−1(ud)),

whose copula density is

c (u;Σ) =
1p
det(Σ)

exp

(
−
¡
Φ−1(u1), ...,Φ−1(ud)

¢0 ¡
Σ−1 − Id

¢ ¡
Φ−1(u1), ...,Φ−1(ud)

¢
2

)
.

The copula dependence parameter α is the collection of all the unknown correlation coefficients

in Σ. If α 6= 0, then the corresponding Normal copula generates joint symmetric dependence, but
no tail dependence (i.e., there is no joint extreme events).

Example 2 (GARCH(1,1)+Student’s t-copula): The conditional mean and conditional

variance of Yjt, j = 1, ..., d, are specified in the same way as those in Example 1.

The copula of �t = (�1t, . . . , �dt)0 is assumed to be a Student’s t-copula with unknown correlation

matrix Σ. Let Tν be the univariate Student’s t distribution with ν degrees of freedom, and TΣ,ν

be the d−dimensional standardized Student’s t distribution with ν degrees of freedom and the

correlation matrix Σ. Then the d−dimensional Student’s t-copula with correlation matrix Σ is

C (u;Σ, ν) = TΣ,ν(T
−1
ν (u1), ..., T

−1
ν (ud)).

The Student’s t copula density is:

c (u;Σ, ν) =
Γ(ν+d2 )[Γ(

ν
2 )]

d−1p
det(Σ)[Γ(ν+12 )]

d

µ
1 +

x0Σ−1x
ν

¶− ν+d
2

dY
i=1

µ
1 +

x2i
ν

¶ ν+1
2

,

where x = (x1, ..., xd)
0, xi = T−1ν (ui) .

Let α be the collection of correlation coefficients in Σ. For ν <∞, the Student’s t copula with
α 6= 0 can generate joint symmetric tail dependence, hence allow for joint fat tails (i.e., an increased
probability of joint extreme events).

Example 3 (GARCH(1,1)+Clayton copula): The conditional mean and conditional

variance of Yjt, j = 1, ..., d, are specified in the same way as those in Example 1.
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The copula of �t = (�1t, . . . , �dt)0 is assumed to be the Clayton copula:

C(u1, . . . , ud;α) = [u
−α
1 + . . .+ u−αd − d+ 1]−1/α, where α > 0. (2.3)

The copula density of the Clayton copula is given by

c(u1, . . . , ud;α) = {Πdj=1[1+ (j− 1)α]}{Πdj=1u−(α+1)j }[
dX

j=1

u−αj − d+1]−(α
−1+d), where α > 0.

Unlike the Gaussian and Student’s t copulas, the Clayton copula can generate asymmetric

dependence and lower tail dependence, but no upper tail dependence.

Example 4 (GARCH(1,1)+Mixture copula): The conditional mean and conditional

variance of Yjt, j = 1, ..., d, are specified in the same way as those in Example 1.

The copula of �t = (�1t, . . . , �dt)0 is assumed to be a mixture copula:

C(u1, . . . , ud;α) = λC1(u1, . . . , ud;α1) + (1− λ)C2(u1, . . . , ud;α2), λ ∈ [0, 1], (2.4)

where Ci(u1, . . . , ud;αi), i = 1, 2, are any two copula functions. For example, if we let C1(·;α1) be
the Clayton copula, and C2(·;α2) be the Gumbel copula:

C2(u1, . . . , ud;α2) = exp

−
 dX
j=1

(− lnuj)α2
1/α2

 , where α2 > 1,

then the mixture copula (2.4) will generate asymmetric lower and upper tail dependence when

λ ∈ (0, 1), lower tail dependence when λ = 1 (Clayton copula), and upper tail dependence when

λ = 0 (Gumbel copula).

All four examples have been applied in empirical finance. For instance, Example 1 has been used

in Hull and White (1998) for value-at-risk calculations for asset returns and exchange rates. It can

be regarded as a special case of the DCC model proposed in Engle (2002) and Engle and Sheppard

(2001). Examples 2 and 3 have been used in Breymann, et al. (2003) and Junker and May (2002),

and Examples 2, 3 and 4 are used in Dias and Embrechts (2004) for joint tail dependence and risk

management modelling for multivariate high frequency data.

3 Estimation Under Copula Misspecification

In this section, we first review the simple estimators of parameters in a SCOMDY model proposed

in Chen and Fan (2003a) and then establish their large sample properties when the copula is

misspecified.

6



3.1 Estimation of model parameters

Let �t(θ) ≡ [Ht(θ)]
−1/2(Yt−µt(θ1)) be the innovation function. The log-likelihood function for the

SCOMDY model with a candidate copula function C(u1, . . . , ud;α) is, (up to a constant term)

Ln(θ, f ;α) =
1

n

nX
t=1

lt(θ, f ;α)

=
1

n

nX
t=1

− log |Ht(θ)|
2

+
dX

j=1

log fj(�jt(θ)) + log c(F1(�1t(θ)), . . . , Fd(�dt(θ));α)


where |Ht(θ)| denotes the determinant of Ht(θ), c(u1, . . . , ud;α) is the copula density function

associated with the copula function C(u1, . . . , ud;α), and f = (f1, ..., fd) with fj being the unknown

probability density function (pdf) of Fj , j = 1, ..., d. As the marginal distributions Fj are completely

unspecified, we normalize the mean and variance of the innovation �jt such that E[�jt(θ)] = 0 and

V ar[�jt(θ)] = 1 for j = 1, . . . , d.

Throughout this paper, we let E0[·] denote the expectation of · taken with respect to the true
distribution Co(F o

1 (·), . . . , F o
d (·);αo). We need to estimate three sets of parameters θo, (F o

1 , . . . , F
o
d )

and α∗, where α∗ is defined as

α∗ ≡ argmax
α∈A

E0[log c(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α)]

= argmax
α∈A

Z
[0,1]d

log c(u1, . . . , ud;α)c
o(u1, . . . , ud;αo)du1 · · · dud,

where co(u1, . . . , ud;αo) is the true copula density. If the copula density c(u1, . . . , ud;α) correctly

specifies the true copula density up to the copula parameter α, then α∗ equals the true value αo.

Otherwise, the copula density function c(u1, . . . , ud;α
∗) is the closest in the family of parametric

copula densities {c(u1, . . . , ud;α) : α ∈ A} to the true copula density in terms of the KLIC.
We first consider the estimation of θo and (F o

1 , . . . , F
o
d ). The following estimators are proposed

in Chen and Fan (2003a). The parameter θo1 is estimated by OLS:

eθ1 = arg max
θ1∈Θ1

{−1
2n

nX
t=1

[Yt − µt(θ1)]
0[Yt − µt(θ1)]};

and the parameter θo2 is estimated by QMLE:

eθ2 = arg max
θ2∈Θ2

−1
2n

nX
t=1

dX
j=1

(
(Yjt − µt(

eθ1))2
hj,t(eθ1, θ2) + log hj,t(eθ1, θ2)) .

Given the estimator θ̃ = (θ̃1, θ̃2), one can estimate F o
j using the rescaled empirical distribution

of {�jt(θ̃)}nt=1:

eFnj(x) = 1

n+ 1

nX
t=1

1(�jt(θ̃) ≤ x), j = 1, ..., d. (3.1)
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Since the estimators θ̃ and ( eFn1, ..., eFnd) do not depend on the parametric copula specification,
their asymptotic properties established in Chen and Fan (2003a) still hold. In particular, under mild

regularity conditions, eθ is a √n−consistent estimator for θo and ( eFn1, ..., eFnd) is a √n−consistent
estimator of (F o

1 , . . . , F
o
d ).

Given (θ̃, eFn1, ... eFnd), α∗ can be estimated by α̂:
α̂ = argmax

α∈A
1

n

nX
t=1

log c( eFn1(�1t(θ̃)), . . . , eFnd(�dt(θ̃));α). (3.2)

Chen and Fan (2003a) establish the asymptotic properties of α̂ when the parametric copula

C(u1, . . . , ud;α) correctly specifies the true copula. One surprising finding in Chen and Fan (2003a)

is that the asymptotic distribution of α̂ is not affected by the estimation of θo, i.e., it is the same

as that established in Genest, et al. (1995) for the case where {�t}nt=1 is observable.

3.2 Asymptotic properties of α̂ under copula misspecification

The difficulty in establishing the asymptotic properties of the estimator α̂ arises from the fact that

for many widely used copula functions including the Gaussian copula, the t-copula and the Clayton

copula, the score function and its derivatives blow up to infinity. To handle this difficulty, Chen and

Fan (2003a) first establish a weighted uniform CLT for the empirical process
√
n( eFnj(·) − F o

j (·))
based on pseudo-observations {�jt(eθ)} and then use it to prove the √n−consistency of α̂ under
the correct specification of parametric copula. In this section we modify their result to obtain the
√
n−consistent estimation of α∗ under misspecified copula.5
Let A be the parameter space, a compact subset of Ra. For α ∈ A, we use ||α− α∗|| to denote

the usual Euclidean metric.

Proposition 3.1 Under Assumptions D and C stated in the Appendix, we have: ||bα−α∗|| = op(1).

Proposition 3.1 states that the estimator α̂ is a consistent estimator of the pseudo true value

α∗. If the parametric copula correctly specifies the true copula, then α∗ = αo and α̂ consistently

estimate αo.

In the following we denote l(v1, . . . , vd, α) = log c(v1, . . . , vd, α), lα(v1, . . . , vd, α) =
∂l(v1,...,vd,α)

∂α ,

lj(v1, . . . , vd, α) =
∂l(v1,...,vd,α)

∂vj
, lαα(v1, . . . , vd;α) =

∂2l(v1,...,vd;α)
∂α∂α0 and lαj(v1, . . . , vd;α) =

∂2l(v1,...,vd;α)
∂vj∂α

for j = 1, . . . , d. Define Ujt ≡ F o
j (�jt(θo)) for j = 1, . . . , d and Ut = (U1t, . . . , Udt)

0. Denote

A∗n ≡
1

n

nX
s=1

{lα(U1s, . . . , Uds, α
∗) +

dX
j=1

Qαj(Ujs;α
∗)},

5Although White (1982) established the asymptotic properties of the maximum likelihood estimator under mis-
specified parametric models, his results are not directly applicable here since the estimation of the copula dependence
parameter in a SCOMDY model under copula misspecification depends on the estimates of the unknown marginal
distributions.
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where

Qαj(Ujs;α
∗) ≡ E0{lαj(Ut;α

∗)[I{Ujs ≤ Ujt}− Ujt]|Ujs}.

We also denote B ≡ −E0[lαα(Ut;α
∗)] and Σ ≡ V ar0[lα(Us;α

∗) +
Pd

j=1Qαj(Ujs;α
∗)], and assume

that both B and Σ are finite, positive definite.

Proposition 3.2 Let α∗ ∈ int(A). Under Assumptions D and N stated in the Appendix, we have:
(1) bα− α∗ = B−1A∗n + op(n

−1/2); (2)
√
n(bα− α∗)→ N (0, B−1ΣB−1) in distribution.

The additional terms Qαj(Ujs;α
∗) in A∗n are introduced by the need to estimate the marginal

distribution functions F o
j (·) (j = 1, . . . , d). In the case where the distributions F o

j (·) (j = 1, . . . , d)
are completely known, these terms will disappear from A∗n. It is interesting to note that the

asymptotic distribution of bα is not affected by the estimation of the dynamic parameters θo and
its asymptotic variance does not depend on the functional forms of the marginal distributions F o

j

(j = 1, . . . , d).

Remark: Let Ũt = (Ũ1t, . . . , Ũdt)
0 = (F̃n1(�1t(eθ)), ..., F̃nd(�1t(eθ)))0. The asymptotic vari-

ance of bα can be consistently estimated by bB−bΣ bB−, where bB− is the generalized inverse ofbB = −n−1Pn
t=1 lαα(Ũt; α̂), where

bΣ = 1

n

nX
t=1

[lα(Ũt; α̂) +
dX

j=1

bQαj(eUjt; α̂)][lα(Ũt; α̂) +
dX

j=1

bQαj(eUjt; α̂)]
0,

with

bQαj(Ujt; α̂) =
1

n

nX
s=1,s6=t

³
lαj(Us; α̂){I{Ujt≤Ujs} − Ujs}

´
.

Any inference drawn based on α̂ and the variance estimator bB−bΣ bB− would still be valid except
that it is on the pseudo true value α∗ and the estimated parametric copula estimates the closest

copula in the parametric family to the true copula in terms of the KLIC.

4 Model Selection Between Two SCOMDY Models

In this section we first introduce the appropriate PLR statistic for testing model selection between

two SCOMDY models along the lines of Vuong (1989). We then establish the limiting distribution

of the PLR statistic.

4.1 The PLR statistic and its Asymptotic Properties

For each i = 1, 2, let {Ci(u1, . . . , ud;αi) : αi ∈ Ai ⊂ Rai} be a class of parametric copulas.
Assuming that the conditional mean µt and the conditional variance Ht are correctly specified, we
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are interested in selecting a parametric copula such that the resulting SCOMDY model is closer to

the true data generating process. Let

ct,i(α) = −1
2
log |Ht(θo)|+

dX
j=1

log foj (�jt(θo)) + log ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));αi),

in which ci(·;αi) is the density function of the copula Ci(·;αi), and foj (·) is the density function
of the true marginal cdf F o

j (·) of �jt(θo), j = 1, ..., d. Denote α∗i = argmaxαi∈Ai E
0[ct,i(αi)] as the

pseudo true value associated with the copula model i = 1, 2. It depends on both the parametric

copula ci(u1, . . . , ud;α) and the true copula co(u1, . . . , ud).

Following Vuong (1989), we measure the closeness of a SCOMDY model to the true model

by the minimum of the KLIC over the distributions in the copula model or equivalently by the

maximum of E0[ct,i(αi)]. Since only the third term in the expression for ct,i(αi) depends on the

copula, an equivalent measure of the closeness of the i-th copula model to the true copula model is

E0 log [ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )], i = 1, 2; the largerE

0 log [ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )],

the closer is the model to the true model. This motivates the following hypotheses: For pseudo

true values α∗1 and α∗2, the null hypothesis is

H0 : E0
½
log

c2(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

¾
≤ 0,

meaning that the copula model with the copula C1(·;α1) is not worse than the copula model with
the copula C2(·;α2), and the alternative hypothesis is

H1 : E0
½
log

c2(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

¾
> 0,

meaning that the copula model with C1(·;α1) is worse than the copula model with C2(·;α2).
In the above formulation, one can take the copula model C1(·;α1) as the benchmark model and

the model C2(·;α2) as a candidate model. Given the prevalence of the Gaussian distribution in
multivariate financial time series modelling, it is natural to take the Gaussian copula model as the

benchmark model; the Gaussian copula model will be retained unless the test strongly suggests

that the candidate model outperforms the Gaussian copula model. In Junker and May (2002), the

benchmark model is either the Student’s t-copula or the Cook-Johnson copula.

Define

LRn(θo, F
o
1 , . . . , F

o
d ;α

∗
2, α

∗
1) =

1

n

nX
t=1

½
log

c2(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

¾
.

Let α̂i denote the two-step estimator of α∗i for the SCOMDYmodel with copula Ci(u1, . . . , ud;αi),

i = 1, 2. Our tests will be based on the following PLR statistic:

LRn(θ̃, eFn1, . . . , eFnd; α̂2, α̂1) = 1

n

nX
t=1

(
log

c2( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂2)
c1( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂1)

)
.

We first obtain the probability limit of the PLR statistic:
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Proposition 4.1 Suppose for i = 1, 2, the copula model i satisfies assumptions of Proposition 3.1

and C6 in the Appendix. Then: LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0
h
log

c2(U1t,...,Udt;α
∗
2)

c1(U1t,...,Udt;α
∗
1)

i
= op(1).

As will be shown later, the asymptotic distribution of the PLR statistic takes different form de-

pending on whether the two closest parametric copulas to the true copula are equal. To distinguish

between these two cases, we introduce the concept of generalized non-nested and of generalized

nested copula models.

Definition 1 (i) Two models are generalized non-nested if the set {(v1, . . . , vd) : c1(v1, . . . , vd;α∗1) 6=
c2(v1, . . . , vd;α

∗
2)} has positive Lebesgue measure;

(ii) Two models are generalized nested if c1(v1, . . . , vd;α∗1) = c2(v1, . . . , vd;α
∗
2) for almost all (v1, . . . , vd) ∈

(0, 1)d.

It is important to note that as the closest copula in a parametric class of copulas depends on

the true copula, it is not obvious a priori whether two parametric classes of copulas are generalized

non-nested or generalized nested. However commonly used parametric classes of copulas such as

the Clayton copula, the Gumbel copula, and the Gaussian copula can be shown to be generalized

non-nested unless the closest member to the true copula in each class is the independence copula.

In the following, we adopt the convention that all the notations involving the copula function

C(u1, . . . , ud;α) introduced in Section 3 are now indexed by a subscript i for i = 1, 2 to make

explicit their dependence on the specific parametric copula model i. In addition, we define

Σ12 = Cov0[l1,α(Us;α
∗
1) +

dX
j=1

Q1,αj(Ujs;α
∗
1), l2,α(Us;α

∗
2) +

dX
j=1

Q2,αj(Ujs;α
∗
2)],

and

σ2 = V ar0

log c2(U1t, . . . , Udt;α
∗
2)

c1(U1t, . . . , Udt;α
∗
1)
+

dX
j=1

{Q2,j(Ujt;α
∗
2)−Q1,j(Ujt;α

∗
1)}
 (4.1)

where for i = 1, 2,

Qi,j(Ujs, α
∗
i ) ≡ E0{li,j(Ut;α

∗
i )[I{Ujs ≤ Ujt}− Ujt]|Ujs} for j = 1, ..., d. (4.2)

Theorem 4.2 Suppose for i = 1, 2, the copula model i satisfies assumptions of Proposition 3.2.

Then:

(1) for the generalized non-nested case,

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0

·
log

c2(U1t, . . . , Udt;α
∗
2)

c1(U1t, . . . , Udt;α
∗
1)

¸¾
→ N (0, σ2);
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(2) for the generalized nested case,

2nLRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1) = n(α∗2 − α̂2)
0B2(α∗2 − α̂2)− n(α∗1 − α̂1)

0B1(α∗1 − α̂1) + op(1)

→ Ma1+a2(·;λ∗),

where Ma1+a2(·;λ∗) is the distribution of a weighted sum of independent χ2[1] random variables in

which the weight λ∗ = (λ∗1, . . . , λ
∗
a1+a2)

0 is the (a1 + a2)× 1 vector of eigenvalues of the matrix W
defined as

W =

·
Σ2B

−1
2 −Σ012B−11

Σ12B
−1
2 −Σ1B−11

¸
.

Compared with Theorem 3.3 in Vuong (1989), the variance of the asymptotic distribution of the

PLR statistic for generalized non-nested models has the additional term due to
Pd

j=1{Q2,j(Ujt;α
∗
2)−

Q1,j(Ujt;α
∗
1)}. These are introduced by the first step estimation of the unknown marginal distribu-

tions F o
j , j = 1, . . . , d. However, like the asymptotic distribution of α̂, the asymptotic distribution

of the PLR statistic depends neither on the functional forms of the unknown marginal distributions

F o
j , j = 1, . . . , d, nor on the estimation of the dynamic parameters θo.

The following proposition shows that σ2 > 0 if and only if the two copula models are generalized

non-nested. Consequently, for generalized non-nested models, the null limiting distribution of

n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1) is a normal distribution with a positive variance. This is the basis
for the PLR test for model selection in generalized non-nested case developed in this paper.

Proposition 4.3 Let σ2a = V ar0[log
c2(U1t,...,Udt;α

∗
2)

c1(U1t,...,Udt;α
∗
1)
] and σ2 be given by (4.1). Under conditions of

Theorem 4.2, σ2 = 0 if and only if σ2a = 0; and σ2a = 0 if and only if the two copula models under

selection are generalized nested.

4.2 PLR Tests

Unlike Vuong (1989), for generalized non-nested models, the null hypothesis in our paper is a

composite hypothesis. As a result, the asymptotic distribution of the PLR statistic under the null

is not uniquely determined, see Theorem 4.2(1). The usual approach to handling this problem is

based on the Least Favorable Configuration (hereafter LFC) which is the point least favorable to the

alternative. In our case, the LFC satisfies E0
h
log

c2(U1t,...,Udt;α
∗
2)

c1(U1t,...,Udt;α
∗
1)

i
= 0. Under the LFC, Theorem

4.2(1) implies that n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1) → N (0, σ2). Moreover, σ2 > 0 by Proposition

4.3. We now provide a consistent estimator of σ2.

First, by the definition of Qi,j(Ujs;α
∗
i ) in (4.2), we have E

0{Qi,j(Ujs;α
∗
i )} = 0 for i = 1, 2 and

j = 1, ..., d. Moreover given Ujs, Qi,j(Ujs;α
∗
i ) can be estimated by

bQi,j(Ujs, α̂i) =
1

n

nX
t=1,t6=s

[li,j(Ut; α̂i){I{Ujs≤Ujt} − Ujt}]. (4.3)
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Then a consistent estimator of σ2 is given by σ̂2 =

1

n

nX
t=1

log c2(Ũt; α̂2)

c1(Ũt; α̂1)
− 1

n

nX
s=1

log
c2(Ũs; α̂2)

c1(Ũs; α̂1)
+

dX
j=1

{ bQ2,j(eUjt; α̂2)− bQ1,j(eUjt; α̂1)}
2 . (4.4)

Define the PLR statistic for the selection of generalized non-nested models as

TN
n =

n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)
σ̂

, (4.5)

where the superscript “N” in TN
n is meant for non-nested models and normal limiting distributions.

Theorem 4.4 Suppose the conditions of Proposition 4.1 and Theorem 4.2 hold and the two models

are generalized non-nested. Then under the LFC, TN
n → N (0, 1).

Proposition 4.1 and Theorem 4.4 suggest the following directional test: Given a significance

level α, reject H0 in favor of H1 if TN
n > Zα, where Zα is the upper α-percentile of the standard

normal distribution (i.e., Zα is the value of the inverse standard normal distribution evaluated at

1− α).

We now consider the case where under H0, the two models are generalized nested. In this case,

the null hypothesis becomes a simple hypothesis. Define the test statistic:

TQ
n = 2nLRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1), (4.6)

where the superscript “Q” in TQ
n is meant for nested models and quadratic limiting statistics.

Theorem 4.2(2) implies that in this case the null limiting distribution of the PLR statistic TQ
n is

not distribution-free; it depends on both the parametric copulas and the true distribution function.

However, similar to the estimation of the asymptotic variance of α̂, one can easily estimate the

matrix W and hence its eigenvalues to get asymptotic critical values. Alternatively, one can use

the method of bootstrap to approximate the critical values of the test. Typically, in order for

a bootstrap test to work, the bootstrap sample must satisfy the null model. In our case, both

parametric copulas can be misspecified and hence the null hypothesis does not specify a complete

null model. In the case where the �t’s are observable, Chen and Fan (2003b) propose to bootstrap

2nDn instead of T
Q
n via Efron’s naive bootstrap, where

Dn =
1

2
(α̂2 − α∗2)

0B2(α̂2 − α∗2)−
1

2
(α̂1 − α∗1)

0B1(α̂1 − α∗1).

We will explore this possibility in the current setting in future work.

The tests we have proposed so far are general in the sense that they apply to cases where both

parametric copula models could be misspecified.6 However, one needs to know whether the two
6Our test procedure follows the approach of Vuong (1989) and Rivers and Vuong (2002), which contrasts with

Cox’s (1962) non-nested testing procedure by not requiring one of the competing models to be correct under the null
hypothesis.
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models are generalized non-nested. As the pseudo-values α∗1 and α∗2 are unknown, it is unknown a

priori if this is the case. Vuong (1989) suggests a sequential test in which one first tests if the two

models are generalized non-nested and then determines which test to use based on the result of the

pre-test.

The null hypothesis of generalized nested models can be tested by testing the null hypothesis

σ2a = 0. A consistent estimator of σ
2
a is given by

σ̂2a =
1

n

nX
t=1

"
log

(
c2(Ũt; α̂2)

c1(Ũt; α̂1)

)
− 1

n

nX
s=1

log

(
c2(Ũs; α̂2)

c1(Ũs; α̂1)

)#2
. (4.7)

Let λ∗2 = (λ∗21 , ..., λ∗2a1+a2)
0, the vector of squares of λ∗ = (λ∗1, ..., λ

∗
a1+a2)

0, the eigenvalue weights in

Theorem 4.2(2).

Theorem 4.5 Under the conditions of Proposition 4.1 and Theorem 4.2, we have:

(1) σ̂2a given in (4.7) is a consistent estimator of σ
2
a;

(2) When σ2a = 0, nσ̂
2
a →Ma1+a2(·;λ∗2) in distribution.

Theorem 4.5 and Proposition 4.3 suggest that a sequential test can be constructed in our case

as well. First, tests the null hypothesis that the two copula models are generalized nested by using

the test statistic nσ̂2a; if the pretest suggests that the two models are generalized nested, then stop;

otherwise proceed to use the test TN
n for H0.

Like the null limiting distribution of TQ
n , that of nσ̂2a is not distribution-free. Estimates of the

eigenvalues of the matrix W or a bootstrap procedure can be used to implement the test.

5 Multiple SCOMDY Models

In empirical applications of copulas, several parametric copulas are often used to fit the data and

the results from models based on these copulas are then compared, see e.g. Breymann et al. (2003),

Junker and May (2002) and Dias and Embrechts (2004). The PLR tests developed in the previous

sections can be extended to the comparison of more than two copulas along the lines of White

(2000). In this case, all the candidate copula models are compared with a benchmark copula

model. If no candidate model is closer to the true model than the benchmark model according to

the KLIC distance, the benchmark model is chosen; otherwise, the candidate model that is closest

to the true model will be selected. As mentioned earlier, one natural benchmark model is the

Gaussian copula model, although the test applies to any benchmark model.

Let {Ci(u1, . . . , ud;αi) : αi ∈ Ai ⊂ Rai} be a class of parametric copulas with i = 1, 2, . . . ,M .

As in the previous sections, we are interested in selecting a parametric copula such that the resulting

SCOMDYmodel with copula Ci(u1, . . . , ud;αi) is closest to the true SCOMDYmodel with unknown

copula Co(u1, . . . , ud). This can be formulated as follows. Let C1(u1, . . . , ud;α1) be the benchmark
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model and {Ci(u1, . . . , ud;αi)}Mi=2 be the candidate models. We are interested in testing if the best
candidate model outperforms the benchmark model according to the KLIC distance. Hence, for

pseudo true values α∗i , i = 1, . . . ,M , the null hypothesis is

HM
0 : max

i=2,...,M
E0
½
log

ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

¾
≤ 0,

meaning that no candidate copula model is closer to the true model than the benchmark model,

and the alternative hypothesis is

HM
1 : max

i=2,...,M
E0
½
log

ci(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

¾
> 0,

meaning that there exists a candidate copula model that is closer to the true model than the

benchmark model.

Our test will be based on the following PLR statistics (i = 2, . . . ,M):

LRn(eθ, eFn1, . . . , eFnd; α̂i, α̂1) = 1

n

nX
t=1

(
log

ci( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i)
c1( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂1)

)
.

In the following we denote Ω = (σik)
M
i,k=2 in which

σik = Cov0

log ci(U1t, . . . , Udt;α
∗
i )

c1(U1t, . . . , Udt;α
∗
1)
+

dX
j=1

{Qi,j(Ujt;α
∗
i )−Q1,j(Ujt;α

∗
1)},

log
ck(U1t, . . . , Udt;α

∗
k)

c1(U1t, . . . , Udt;α
∗
1)
+

dX
j=1

{Qk,j(Ujt;α
∗
k)−Q1,j(Ujt;α

∗
1)}
 ,

where for i = 1, 2, ...,M and j = 1, ..., d,

Qi,j(Ujt, α
∗
i ) ≡ E0{li,j(Us;α

∗
i )[I{Ujt ≤ Ujs}− Ujs]|Ujt}.

Proposition 5.1 Suppose that for i = 1, 2, . . . ,M , the copula model i satisfies conditions of The-

orem 4.2. Suppose that Ω is positive semi-definite and its largest eigenvalue is positive. Then

jointly

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)−E0

·
log

ci(U1t, . . . , Udt;α
∗
i )

c1(U1t, . . . , Udt;α
∗
1)

¸¾
i=2,...,M

→ (Z2, . . . , ZM)
0,

in distribution, where (Z2, . . . , ZM)
0 ∼ N (0,Ω). Hence

max
i=2,...,M

n1/2
½
LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)−E0

·
log

ci(Ut;α
∗
i )

c1(Ut;α∗1)

¸¾
→ max

i=2,...,M
Zi in dist.

Define

TM
n = max

i=2,...,M
[n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂i, α̂1)].
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Proposition 5.1 implies that under the LFC (i.e., E0
n
log

ci(U1t,...,Udt;α
∗
i )

c1(U1t,...,Udt;α
∗
1)

o
= 0 for i = 2, ...,M),

TM
n → maxi=2,...,M Zi in distribution. Since the asymptotic variance Ω of (Z2, . . . , ZM) depends on

α∗1, . . . , α∗M , the distribution of maxi Zi is unknown. Following White (2000), one can use either

“Monte Carlo RC” p-value or “bootstrap RC” p-value to implement the test. In this paper, we use

the Monte Carlo p-value approach. Let bΩ = (bσik)Mi,k=2 where
bσik = 1

n

nX
t=1

 ³
log ci(Ũt;α̂i)

c1(Ũt;α̂1)
− 1

n

Pn
s=1 log

ci(Ũs;α̂i)

c1(Ũs;α̂1)
+
Pd

j=1{ bQi,j(eUjt; α̂i)− bQ1,j(eUjt; α̂1)}
´

×
³
log ck(Ũt;α̂k)

c1(Ũt;α̂1)
− 1

n

Pn
s=1 log

ck(Ũs;α̂k)

c1(Ũs;α̂1)
+
Pd

j=1{ bQk,j(eUjt; α̂k)− bQ1,j(eUjt; α̂1)}
´ 

where bQi,j is a consistent estimator of Qi,j and is computed the same way as in (4.3). Then it

is easy to show that bΩ = Ω + op(1). Next we compute the Cholesky decomposition of bΩ = bC bC 0,
and form bZt = ( bZt,2, ..., bZt,M )

0 = bCηt where ηt = N(0, IM−1) is a (M − 1)-dimensional standard
normal. Then compute the largest order statistics ζt,M−1 = maxk=2,...,M bZt,k. Repeat this for a

large number of times (say 100,000) and compute the Monte Carlo p-value from the largest order

statistics ζt,M−1.

Remark: In the context of observable �t’s, Chen and Fan (2003b) show the validity of a

bootstrap procedure for tests closely related to the above test.

6 Empirical Applications

In this section, we estimate SCOMDY models and apply our copula model selection tests to nu-

merous daily exchange rate data. We have considered SCOMDY models of dimensions 2, 3 and

10 respectively. Throughout this section, the benchmark model is taken as the normal copula, and

the Monte Carlo p-values are determined by 100,000 simulations,7 unless otherwise stated.

For all cases, we used an AR(p)-GARCH(r,s) model for the conditional mean and the conditional

variance of each series. Specifically, for j = 1, . . . , d, let Yjt be the logarithm difference of the jth

exchange rate between t and t+ 1. The AR(p)-GARCH(r,s) model is given by

Yjt = cj +Θ1j(L)Yjt−1 + σj,tεj,t,

σ2j,t = ωj +Θ2j(L)σ
2
j,t−1 +Θ3j(L)σ

2
j,t−1ε

2
j,t−1,

where Θ1j(L),Θ2j(L),Θ3j(L) are autoregressive lag polynomials of orders p, r, s respectively.

The basic findings are as follows: (1) for two series cases, although AIC selects t-copula, but

our model selection test cannot reject normal benchmark for some bivariate series; (2) for three

series and ten series cases, our model selection tests strongly reject normal benchmark in favor of

the copulas which have (asymmetric) tail dependence.

7The critical values of the tests are all determined by 100,000 simulations and are available upon request.
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6.1 Two Series Case

We worked with two groups of daily exchange rates from 28-Apr-1986 to 26-Oct-1998. The first

group consists in data from Japan/USA(JAP), Germany/USA(DEM), while the second group con-

sists in data from Germany/USA and France/USA(FRA). Data are gathered from the Fed. We

worked with seasonal adjusted data (using moving average filters). Table 1 summarizes the estima-

tion results of an AR(1)−GARCH(1, 1) model for each of the three different series, where numbers
with a ∗∗ means they are significant at 1%, numbers with a ∗ means they are significant at 5%,
and those with no ∗ means they are not significant at 10%.

c× 10−5 θ1 ω × 10−7 θ2 θ3

DEM −5.04 0.04∗ 11.00∗∗ 0.06∗∗ 0.92∗∗
JAP −7.07 0.05∗∗ 17.50∗∗ 0.07∗∗ 0.90∗∗
FRA −7.18 0.04∗ 9.80∗∗ 0.06∗∗ 0.91∗∗

Table 1: Summary of AR−GARCH coefficients

Following Dias and Embreschts (2004) we considered the following ten copula functions: Clay-

ton, Frank, Plackett, Gumbel, t-copula, Gaussian, mixture of Gumbel and Clayton, mixture of

Clayton and Survival Clayton, mixture of Survival Clayton and Survival Gumbel, and mixture of

Gumbel and Survival Gumbel. The estimates of the copula parameters are presented in Table 2,

where α̂1 corresponds to the parameter in the first copula of the mixture (or the copula if there is

no mixture) and α̂2 corresponds to the second copula of the mixture, and λ̂ is the weight of the

first copula with the exception of the t-copula for which α̂1 corresponds to the degree of freedom

and α̂2 corresponds to the correlation coefficient.

Copula JAP-DEM FRA-DEM

α̂1 α̂2 λ̂ α̂1 α̂2 λ̂

t-copula 6.761 0.609 2.114 0.975
Gaussian 0.604 0.965
Clayton 0.961 7.786
Gumbel 1.663 6.713
Frank -4.471 -26.111
Plackett 7.473 243.620

Mix. Clay and Gumb 1.574 1.681 0.284 10.976 7.234 0.278
Mix. Clay and S-Clay 1.374 1.300 0.466 10.510 9.699 0.515

Mix. S-Gumb and S-Clay 1.724 1.351 0.628 8.092 6.964 0.798
Mix. S-Gumb and Gumb 1.545 1.663 0.000 9.914 4.976 0.628

Table 2: Estimates of Copula Parameters

Table 3 shows the value of the AIC for each copula. For JAP-DEM, AIC clearly chose t-copula

followed by the mixture of Clayton and Gumbel. Gaussian copula is ranked fifth according to AIC,
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but the difference between the value of AIC for Gaussian copula and for the mixture of Clayton

and Gumbel is not as big as the difference between the value of AIC for Gaussian and for t-copula.

For FRA-DEM, again AIC chose t-copula. Gaussian copula is ranked the 8-th for this case and it

results in a value of the AIC that differs from the AIC for t-copula by a much larger amount than

for JAP-DEM. This difference in the values of the AIC for Gaussian and t-copulas for the two cases

JAP-DEM and FRA-DEM is picked up by the model selection test proposed in this paper. The

values of the test statistic are 0.561 and 8.859 respectively for JAP-DEM and FRA-DEM resulting

in Monte Carlo p-values 0.491 and 0.022 for JAP-DEM and FRA-DEM respectively. Hence the

null hypothesis of the Gaussian copula is not rejected for JAP-DEM but rejected for FRA-DEM (in

favor of the t-copula), even though AIC chose t-copula for both cases. The estimates of parameters

of the t-copula for JAP-DEM and FRA-DEM also reveal much stronger tail dependence for FRA-

DEM than for JAP-DEM as reflected in the estimates of the degree-of-freedom parameter, see

Table 2.

Copula AIC (JAP-DEM) AIC (FRA-DEM)
t-copula -1502.094 -9727.016
Gaussian -1441.278 -8766.322
Clayton -1100.545 -7839.061
Gumbel -1409.238 -9136.888
Frank -1327.923 -8539.438
Plackett -1407.887 -9464.102

Mix Clay and Gumb -1485.133 -9471.528
Mix Clay and S-Clay -1443.325 -9130.872

Mix S-Gumb and S-Clay -1480.082 -9468.231
Mix S-Gumb and Gumb -1405.239 -9581.344

Table 3: AIC

6.2 Three Series Case

Data are again gathered from the Fed. We worked with three groups of daily exchange rates from

28-Apr-1986 to 26-Oct-1998.. The first group consists in data from Japan/USA, Germany/USA and

France/USA used in the two series case. The second one is formed by Japan/USA, Germany/USA

and Canada/USA(CAN). The third group is Germany/USA, Italy/USA(ITA) and France/USA.

We worked with seasonal adjusted data (using moving average filters). Since the results for all

three groups are very similar, we will only report them for the first group (Jap-Dem-Fra).

The estimation results for the conditional mean and the conditional variance for each series are

reported in Table 1. The estimates of the copula parameters are presented in Table 4 except the
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correlation matrix for t-copula and Gaussian copula. They are respectively
1.000 0.609 0.975
0.609 1.000 0.593
0.975 0.593 1.000

 and


0.998 0.604 0.965
0.604 0.998 0.590
0.965 0.590 0.998

 .

Copula α̂1 α̂2 λ̂

Clayton 1.489
Gumbel 1.998
Frank 6.319
t-copula 4.168

Mix. Clay and Gumbel 0.774 3.431 0.426
Mix. Clay and Surv. Clay. 2.643 2.203 0.498

Mix. Surv. Gumbel and Surv. Clay. 1.805 3.963 0.610
Mix. Surv. Gumbel and Gumbel 1.669 3.408 0.501

Table 4: Estimates of Copula parameters

Table 5 shows the value of the AIC for each copula. The value of the test statistic is 7.418

with p-value 0.0947. Thus we strongly reject the null hypothesis of Gaussian copula in favor of the

student’s t-copula.

Copula AIC
t-copula -11039.808
Gaussian -10210.469
Clayton -4421.678
Gumbel -5145.609
Frank -4951.188

Mix. Clay and Gumbel -5836.897
Mix. Clay and Surv. Clay. -6096.045

Mix. Surv. Gumbel and Surv. Clay. -5838.349
Mix. Surv. Gumbel and Gumbel -6062.988

Table 5: AIC

6.3 Ten Series Case

We gathered the data from Hull’s homepage. The data consist of 10 exchange rate against the US

Dollar from: Australia (AUD), Belgium (BEF), Switzerland (CHF), Germany (DEM), Denmark

(DKK), Spain (ESP), France (FRF), Great Britain (GBP), Holland (NLG) and Sweden (SEK).

The dataset ranges from 04-Jan-94 to 15-Aug-97, daily frequency.

To save space, we omit the estimation results for the conditional mean and conditional variance

of each series. We also omit the estimation of correlation matrix for t-copula and normal copula,

and only report results for the rest of copula parameter estimation in Table 6.
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Copula α̂1 α̂2 λ̂

Clayton 0.612
Gumbel 1.385
t-Copula 7.885

Mix. Clayton and Gumbel 1.299 1.096 0.686
Mix. t-copula and Clayton 9.656 0.204 0.984
Mix. t-copula and Gumbel 9.634 1.323 0.983

Table 6: Estimates of Copula Parameters

Copula AIC
t-copula -12576.168
Gaussian -11580.732
Clayton -3661.3712
Gumbel -3287.8690

Mixture Clayton and Gumbel -4527.1653
Mixture Clayton and t-student -12706.728
Mixture Gumbel and t-student -12713.121

Table 7: AIC

The values of AIC in Table 7 show strong dominance of t-copula over Gaussian copula indicating

the presence of joint tail dependence in the data and t-copula is slightly dominated by the mixture

of Clayton and t-copula and the mixture of Gumbel and t-copula implying that in addition to joint

tail dependence, the data may exhibit asymmetric dependence. Not surprisingly, the Gaussian

copula is rejected by our model selection test (the value of the test statistic is 18.931 with a p-value

0.06).

7 Conclusion

In this paper, we establish the large sample properties of the estimators of SCOMDY model para-

meters proposed in Chen and Fan (2003a) under copula misspecification. One interesting finding

is that the limiting distribution of the estimator of the pseudo true value of the copula dependence

parameter is not affected by the estimation of the dynamic parameters, albeit it does depend on

the estimation of unknown marginal distributions. Therefore, the common practice in empirical

finance of ignoring the estimation error of the dynamic parameters is theoretically justified by our

first order large sample theory. Nevertheless, our results show that the statistical uncertainty of

the goodness-of-fit model selection criterion cannot be ignored. We then establish PLR tests for

model selection of two SCOMDY models with possibly misspecified parametric copulas for both

generalized nonnested copulas and generalized nested copulas. Finally we consider the PLR test

for model selection between more than two SCOMDY models in which one is the benchmark model

and the rest are candidate models. Here we assume that the benchmark and at least one of the
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candidate models are generalized nonnested.

We are currently working on several extensions of the results reported in this paper. First,

instead of the in-sample PLR model comparison, we could consider out-of-sample PLR model

comparison. Second, we could follow the encompassing approach to perform in-sample and/or

out-of-sample multiple SCOMDY model comparison. See Hendry and Richard (1982), Mizon and

Richard (1986), Diebold (1989), White (1994), Clements and Hendry (1998), West (2001) and many

others for the encompassing tests of model comparison. Third, since some of the copula applications

are in terms of portfolio value-at-risk calculation, option pricing and forecasting, we could consider

alternative loss functions instead of the KLIC, see e.g. Machina and Granger (2000), Elliott and

Timmermann (2002) and Su and White (2003). In particular, we could follow the idea in Patton

(2004) and use some economic measure to distinguish between competing copula models that may

all be possibly misspecified. Third, we could consider the misspecification and model comparison of

conditional mean, conditional variance, and copula specifications jointly. This will be related to the

model comparison of semiparametric multivariate conditional distributions. The ideas in Diebold,

et al. (1999), Giacomini and White (2004), and Corradi and Swanson (2004) might be useful here.

One limitation of the class of SCOMDY models arises from the assumption of a parametric

copula specification where the copula parameters are constant. In the case of fully parametric

models, Granger, et al. (2003) and Patton (2002) allow the copula parameters to change over

time. We will explore the possibility of extending the results in this paper to allow for time varying

copulas in future work.
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Appendix: Assumptions and Proofs
The following Assumption D is on the dynamic part of the SCOMDY model.
Assumption D:

D1: {(Y 0t ,X 0
t)
0}nt=1 satisfies the SCOMDY specification, and is stationary beta-mixing with decay

rate βt such that
P∞

t=1 βt <∞;
D2:

√
n(eθ − θo) =

1√
n

Pn
t=1 ψt(θo) + op(1) → Z∗ in distribution, where Z∗ = N (0, Vθ) is a

multivariate normal random variable with mean zero and variance Vθ;
D3: for j = 1, ..., d, (i) �jt(θ) ≡ [hjt(θ)]

−1/2(Yjt − µjt(θ1)) is continuously differentiable at the

neighborhood of θo for all t ≥ 1; (ii) E0{∇θµjt(θo1)√
hjt(θo)

} <∞ and E0{∇θhjt(θo)
hjt(θo)

} <∞.

In the following we denote the infeasible estimator of F o
j as Fnj , which is the rescaled empirical

distributions of �jt(θo) as if θo were known:

Fnj(x) =
1

n+ 1

nX
t=1

1(�jt(θo) ≤ x), j = 1, ..., d.

Also denote hojt = hjt(θo), ∇θµ
o
jt = ∇θµjt(θo1), ∇θh

o
jt = ∇θhjt(θo).

Lemma 5.2 (Chen and Fan 2003a, theorem 3.1) Let w(·) be a positive continuous weight function
on (0, 1), symmetric at v = 1/2 and increasing on (0, 1/2]. Under Assumption D, we have:

(1) If βt = O(t−b) for some b > 0 and
R 1
0

1
w(v) log(1 +

1
w(v))dv <∞, then

sup
yj∈R

¯̄̄̄
¯ eFnj(yj)− F o

j (yj)

w(F o
j (yj))

¯̄̄̄
¯ = oa.s.(1).

(2) If either (i) βt = O(t−b) for some b > γ/(γ − 1) with γ > 1 and
R 1
0 (

1
w(v))

2γdv <∞; or (ii)
βt = O(b−t) for some b > 1 and

R 1
0 (

1
w(v))

2 log(1 + 1
w(v))dv <∞, then

√
n sup
yj∈R

¯̄̄̄
¯ eFnj(yj)− F o

j (yj)

w(F o
j (yj))

¯̄̄̄
¯ = Op(1).

(3) uniformly over x ∈ R,
eFnj(x)− F o

j (x)

= Fnj(x)− F o
j (x) + foj (x)

E0{∇θµ
o
jtq

hojt

}+ xE0{∇θh
o
jt

2hojt
}
0 (eθ − θo) + op(n

−1/2).

Lemma 5.3 (Chen and Fan 2003a) For a square integrable function g of Ut, we have:

E0{g(Ut)[ eFnj(�jt(eθ))− F 0j (�jt(θo))]}

=
1

n

nX
s=1

E0{g(Ut)[1{Ujs ≤ Ujt}− Ujt] | Ujs}+ op(n
−1/2).
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The following Assumption C is sufficient to ensure the consistency of α̂ to α∗. First we define Fj

as the space of probability distributions over the support of �jt(θo) [say R]. For any Fj ∈ Fj we let
||Fj − F o

j ||Fj = supy |[Fj(y)− F o
j (y)]/w(F

o
j (y))| with w(v) ≡ [v(1− v)]1−ξ for all v ∈ (0, 1) and for

some ξ ∈ (0, 1). Let Fjδ = {Fj ∈ Fj : ||Fj −F o
j ||Fj ≤ δ} for a small δ > 0. Obviously F o

j ∈ Fj , andeFnj given in (3.1) will belong to Fj with probability approaching one. Let Fδ = {F = (F1, ..., Fd) :
Fj ∈ Fjδ, j = 1, ..., d}. We also use the short-hand notation F (�t(θ)) = (F1(�1t(θ)), ..., Fd(�dt(θ))).
Let No denote a small compact neighborhood of θo.

Assumption C:
C1. There exists α∗ ∈ A, a compact subset of Ra, such that E0[lα(F o(�t(θo));α)] = 0 if and only
if α = α∗;
C2. (i) lα(v1, . . . , vd;α) is well-defined and is Lipschitz continuous in (v1, . . . , vd, α) ∈ (0, 1)d ×A;
(ii) lαj(v1, . . . , vd;α), j = 1, . . . , d, are well-defined and continuous in (v1, . . . , vd, α) ∈ (0, 1)d ×A;
C3. {(Yt,Xt) : t ≥ 1} is stationary β-mixing with the mixing decay rate βt = O(t−b) for some
b > 0;
C4. E{supα∈A,θ∈No

||lα(F o(�t(θ));α)|| log+ ||lα(F o(�t(θ)), α)||} <∞;
C5. E0{supα∈A,F∈Fδ,θ∈No

||lαj(F (�t(θ));α)||w(F o
j (�jt(θ)))} <∞ for j = 1, . . . , d, where w(·) satis-

fies the condition in Lemma A.1(1).

Proof. (Proposition 3.1) can be proved in the same way as that for Theorem 3.2 in Chen and
Fan (2003a), except to replace their true copula parameter value αo by the pseudo-true value α∗.

¤

The following Assumption N is sufficient to ensure the
√
n -asymptotic normality of α̂. First

we denote Gδ = {(α,F ) ∈ A× Fδ : ||α − α∗|| ≤ δ} for a small δ > 0. Let {(αη, F1η, . . . , Fdη) : η ∈
[0, 1]} ⊂ Gδ be an one-dimensional smooth path in Gδ with (αη, F1η, . . . , Fdη)|η=0 = (α∗, F o

1 , . . . , F
o
d ).

Assumption N:
N1. (i) C1 holds with α∗ ∈ int(A); (ii) ||α̂ − α∗|| = op(1); (iii) B ≡ −E0[lαα(Ut;α

∗)] is positive
definite; (iv) Σ ≡ V ar0[

√
nA∗n] is finite positive definite; (v) for j = 1, ..., d, supx |{ eFnj(x) −

F o
j (x)}/w2(F o

j (x))| = Op(n
−1/2), where w2(·) satisfies the condition in Lemma A.1(2);

N2. lαα(v;α) is well-defined and continuous in (v, α) ∈ (0, 1)d × int(A);
N3. the interchange of differentiation and integration of lα(F1η(x1), . . . , Fdη(xd), αη) with respect
to η ∈ (0, 1) is valid;
N4. (i) {(Yt,Xt) : t ≥ 1} is stationary β-mixing with the mixing decay rate βt = O(t−b) for some
b > γ/(γ − 1), in which γ > 1; (ii) E{||Pd

j=1Qαj(Ujs;α
∗)||2γ} <∞ for some γ > 1;

(iii) E{sup(α,F )∈Gδ,θ∈No
||lα(F (�t(θ)), α)||}2γ <∞ for some γ > 1;

N4’. (i) {(Yt,Xt) : t ≥ 1} is stationary β-mixing with the mixing decay rate βt = O(b−t) for some
b > 1; (ii) E{||Pd

j=1Qαj(Ujs;α
∗)||2 log[1 + ||Pd

j=1Qαj(Ujs;α
∗)||]} <∞;

(iii) E{sup(α,F )∈Gδ,θ∈No
||lα(F (�t(θ)), α)||2 log[1 + ||lα(F (�t(θ)), α)||]} <∞;

N5. E{sup(α,F )∈Gδ,θ∈No
||lαα(F (�t(θ)), α)||}2 <∞;

N6. E{sup(α,F )∈Gδ,θ∈No
||lαj(F (�t(θ)), α)||w(F o

j (�t(θ)))}2 < ∞ for j = 1, ..., d, where w(·) satisfies
the condition in Lemma A.1(1) and E{supθ∈No

[
w2(F o

j (�t(θ)))

w(Fo
j (�t(θ)))

]2} <∞.
Proof. (Proposition 3.2) can be proved in the same way as that for Theorem 3.3 in Chen and
Fan (2003a), except to replace their true copula parameter value αo by the pseudo-true value α∗.
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¤

Assumption C6: E0{sup(α,F )∈Gδ,θ∈No
||lj(F (�t(θ));α)||w(F o

j (�jt(θ)))} <∞ for j = 1, . . . , d, where
w(·) satisfies the condition in Lemma A.1(1).
Proof. (Proposition 4.1) Directly follows from Lemma A.1(1), Proposition 3.1, Assumptions D2
and C6.

¤

Proof. (Theorem 4.2): Let li( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i) = log ci( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i)
for i = 1, 2. By the definition of bαi, we have Pn

t=1 li,α(
eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i) = 0. Hence,

nX
t=1

li( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ));α∗i )− nX
t=1

li( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i)
=

(α∗i − α̂i)
0Pn

t=1 li,αα(
eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); ᾱi)(α∗i − α̂i)

2
,

where ᾱi is between α∗i and α̂i. By conditions of Proposition 3.2, we have:

(α∗i − α̂i)
0Pn

t=1 li,αα(
eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); ᾱi)(α∗i − α̂i)

2n

= −(α
∗
i − α̂i)

0Bi(α
∗
i − α̂i)

2
+ op(

1

n
).

Hence,

1

n

nX
t=1

li( eFn1(�1t(eθ)), . . . , eFnd(�dt(eθ)); α̂i)− 1
n

nX
t=1

li(F
o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
i )

=
(α∗i − α̂i)

0Bi(α
∗
i − α̂i)

2
+ op(

1

n
) +

1

n

nX
t=1

dX
j=1

li,j(Ut;α
∗
i )[ eFnj(�jt(eθ))− F o

j (�jt(θo))]

+
1

n

nX
t=1

dX
j=1

{li,j(F̄1(�1t(θ)), . . . , F̄d(�dt(θ));α∗i )− li,j(Ut;α
∗
i )}[ eFnj(�jt(eθ))− F o

j (�jt(θo))],

where F̄k(�kt(θ)) is some random value between F̃nk(�kt(eθ)) and F o
k (�kt(θo)) for k = 1, . . . , d.

As a result, we get

LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0[LRn(θo, F
o
1 , . . . , F

o
d ;α

∗
2, α

∗
1)]

= D1n +D2n +D3n +Dn + op(
1

n
),
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where

D1n ≡ LRn(θo, F
o
1 , . . . , F

o
d ;α

∗
2, α

∗
1)−E0[LRn(θo, F

o
1 , . . . , F

o
d ;α

∗
2, α

∗
1)]

D2n ≡ 1

n

nX
t=1

dX
j=1

[l2,j(Ut;α
∗
2)− l1,j(Ut;α

∗
1)] [ eFnj(�jt(eθ))− F o

j (�jt(θo))]

D3n ≡ 1

n

nX
t=1

dX
j=1

{l2,j(F̄1(�1t(θ)), . . . , F̄d(�dt(θ));α∗2)− l2,j(Ut;α
∗
2)}[ eFnj(�jt(eθ))− F o

j (�jt(θo))]

− 1
n

nX
t=1

dX
j=1

{l1,j(F̄1(�1t(θ)), . . . , F̄d(�dt(θ));α∗1)− l1,j(Ut;α
∗
1)}[ eFnj(�jt(eθ))− F o

j (�jt(θo))]

Dn ≡ 1

2
(α̂2 − α∗2)

0B2(α̂2 − α∗2)−
1

2
(α̂1 − α∗1)

0B1(α̂1 − α∗1).

(1) For generalized non-nested models, the terms D1n and D2n are of the order Op(n
−1/2),

while D3n = op(n
−1/2) by Lemma A.1(2) and conditions C2(ii) and C5, and Dn = Op(n

−1) by
Proposition 3.2. Thus

LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0[LRn(θo, F
o
1 , . . . , F

o
d ;α

∗
2, α

∗
1)] = D1n +D2n + op(

1√
n
).

Further by the same proof as that for Proposition 3.2, and applying Lemma A.2 with g(Ut) =

l2,j(Ut;α
∗
2)− l1,j(Ut;α

∗
1), we have

D2n = E0{
dX

j=1

[l2,j(Ut;α
∗
2)− l1,j(Ut;α

∗
1)][ eFnj(�jt(eθ))− F o

j (�jt(θo))]}+ op(
1√
n
)

=
dX

j=1

1

n

nX
s=1

E0{[l2,j(Ut;α
∗
2)− l1,j(Ut;α

∗
1)][1{Ujs ≤ Ujt}− Ujt]|Ujs}+ op(

1√
n
)

≡ 1

n

nX
s=1

dX
j=1

[Q2,j(Ujs;α
∗
2)−Q1,j(Ujs;α

∗
1)] + op(

1√
n
).

Hence

LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0 log

½
c2(F

o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
2)

c1(F o
1 (�1t(θo)), . . . , F

o
d (�dt(θo));α

∗
1)

¾
=

1

n

nX
s=1

{log c2(Us;α
∗
2)

c1(Us;α∗1)
−E0 log

c2(Us;α
∗
2)

c1(Us;α∗1)
+

dX
j=1

[Q2,j(Ujs;α
∗
2)−Q1,j(Ujs;α

∗
1)]}+ op(

1√
n
).

(2) For generalized nested models, the terms D1n, D2n and D3n become zero almost surely,
we have

LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)−E0[LRn(θo, F
o
1 , . . . , F

o
d ;α

∗
2, α

∗
1)] = Dn + op(

1

n
),

where by Proposition 3.2, Dn = Op(n
−1) and

2nDn = nA∗
0
n2B

−1
2 A∗n2 − nA∗

0
n1B

−1
1 A∗n1

=

µ √
nA∗n2√
nA∗n1

¶0µ
B−12 0

0 −B−11

¶µ √
nA∗n2√
nA∗n1

¶
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is distributed as the weighted chi-squares as stated in the Proposition in which

W =

·
Σ2 Σ012
Σ12 Σ1

¸ ·
B−12 0

0 −B−11

¸
.

¤

Proof. (Proposition 4.3) It is obviously true that the generalized nested copula models imply
σ2 = 0 and σ2a = 0. It remains to show that σ

2 = 0 implies σ2a = 0, which in turn implies the two
copula models are generalized nested. (i) Define

a∗ = E0
·
log

c2(U1t, . . . , Udt;α
∗
2)

c1(U1t, . . . , Udt;α
∗
1)

¸
=

Z
[0,1]d

log
c2(u1, . . . , ud;α

∗
2)

c1(u1, . . . , ud;α
∗
1)
dCo(u1, . . . , ud).

Then it is a smooth functional of the unknown true copula function Co(u1, . . . , ud). If we could
observe an i.i.d. random sample {Ut = (U1t, . . . , Udt)}nt=1 where Ut is distributed according to
Co(u1, . . . , ud), then an efficient estimator of a∗ will simply be

an =

Z
[0,1]d

log
c2(u1, . . . , ud;α

∗
2)

c1(u1, . . . , ud;α
∗
1)
dCn(u1, . . . , ud)

=
1

n

nX
t=1

log
c2(U1t, . . . , Udt;α

∗
2)

c1(U1t, . . . , Udt;α
∗
1)
,

where Cn(u1, . . . , ud) is the empirical cdf estimator of the true copula function Co(u1, . . . , ud). It
is obvious that

√
n(an − a∗)→ N (0, σ2a) with σ2a = V ar0

·
log

c2(U1t, . . . , Udt;α
∗
2)

c1(U1t, . . . , Udt;α
∗
1)

¸
.

Now suppose that we do not observe an i.i.d. random sample {Ut = (U1t, . . . , Udt)}nt=1, instead
we observe an i.i.d. random sample {�ot = (�o1t, . . . , �

o
dt)}nt=1 where �ot is distributed according to

the unknown true multivariate cdf function F o(�) = Co(F o
1 (�1), . . . , F

o
d (�d)), with F o

j (·) being the
unknown marginal cdf of �o1t. Let Fnj(x) = 1

n+1

Pn
t=1 1(�

o
jt ≤ x), j = 1, ..., d be the rescaled

empirical cdf estimator of F o
j (·). Then

ea = 1

n

nX
t=1

log
c2(Fn1(�

o
1t), . . . , Fnd(�

o
dt);α

∗
2)

c1(Fn1(�o1t), . . . , Fnd(�
o
dt);α

∗
1)

will be another estimator of a∗, moreover

√
n(ea− a∗)→ N (0, σ2) with σ2 given in (4.1).

Hence σ2 ≥ σ2a. Since σ
2
a ≥ 0, we have that σ2 = 0 implies σ2a = 0.

(ii) Next, σ2a = 0 implies log
n
c2(U1t,...,Udt;α

∗
2)

c1(U1t,...,Udt;α
∗
1)

o
= K almost surely for some constant K. As both

c1 and c2 are density functions, we have K = 0, hence both copula models are generalized nested.

¤
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Proof. (Theorem 4.4) Theorem 4.2(1) and Proposition 4.3 imply that σ > 0 and

n1/2LRn(eθ, F̃n1, . . . , F̃nd; α̂2, α̂1)
σ

→ N (0, 1).

Now under the conditions of Proposition 4.1 and Theorem 4.2(1), we have bσ2 = σ2 + op(1).

¤

Proof. (Theorem 4.5) (1) trivially true under the conditions of Proposition 4.1 and Theorem
4.2. (2) By Theorem 4.2(2) and Proposition 4.3, Taylor series expansion and the fact that C1 and
C2 are generalized nested copula models, we get

nσ̂2a =
nX
t=1

[l2,α(Ũt;α
∗
2)(α̂2 − α∗2)− l1,α(Ũt;α

∗
1)(α̂1 − α∗1)] + op(1) = nVd + op(1),

where Vd =·
α̂2 − α∗2
α̂1 − α∗1

¸0 ·
E0l2,α(Ut;α

∗
2)
0l2,α(Ut;α

∗
2) −E0l2,α(Ut;α

∗
2)
0l1,α(Ut;α

∗
1)

−E0l1,α(Ut;α
∗
1)
0l2,α(Ut;α

∗
2) E0l1,α(Ut;α

∗
1)
0l1,α(Ut;α

∗
1)

¸ ·
α̂2 − α∗2
α̂1 − α∗1

¸
The result now follows.

¤

Proof. (Proposition 5.1) Essentially the same proof as that for Theorem 4.2(1).

¤
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