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Abstract

In this paper, we address two important issues in survival model selection for cen-
sored data generated by the Archimedean copula family; method of estimating the
parametric copulas and data reuse. We demonstrate that for model selection, esti-
mators of the parametric copulas based on minimizing the selection criterion function
may be preferred to other estimators. To handle the issue of data reuse, we put model
selection in the context of hypothesis testing and propose a simple test for model se-
lection from a ¯nite number of parametric copulas. Results from a simulation study
and two empirical applications provide strong support to our theoretical ¯ndings.
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1 Introduction

Let (X;Y ) be the lifetime variables of interest with joint survival function F o(x; y) = Pr(X >

x; Y > y) and marginal survival functions F oj (¢) (j = 1; 2). Assume that F o1 and F o2 are con-
tinuous. By the Sklar's (1959) theorem, there exists a unique copula function Co such

that F o(x; y) ´ Co(F o1 (x); F
o
2 (y)). This decomposition of the joint survival function leads

naturally to the class of semiparametric survival functions in which the marginal survival

functions are unspeci¯ed, but the copula function is parameterized: Co(u; v) = C o(u; v;®o)

for some parametric copula function C o(u; v;®) and some ®o 2 A. This class of semipara-
metric survival functions has been used widely in survival analysis, where modeling and

estimating the dependence structure between lifetime variables is of interest, see Joe (1997),

Nelsen (1999), Clayton (1978) and Oakes (1982) for examples of applications.

One important issue that an applied researcher faces in applying this class of semipara-

metric survival functions to a given data set is how to choose an appropriate parametric

copula. E®ort has been made to resolve this issue. For complete data, Chen, et al. (2003),

Fermanian (2003), and Genest, et al. (2003), among others, develop goodness-of-¯t tests for

the correct speci¯cation of a parametric copula. For censored data, Wang and Wells (2000)

propose a goodness-of-¯t test for the correct speci¯cation of a parametric copula, extending

existing results for complete data to censored data. One drawback of these tests is that if

the null hypothesis of correct parametric speci¯cation is rejected, they provide no guidance

as to which copula model to use.

In addition to the goodness-of-¯t test, Wang and Wells (2000) also propose a model

selection procedure based on comparing estimates of the integrated square di®erence between

the true copula and a parametric copula for di®erent parametric copula models; the one with

the smallest value of the integrated square di®erence is chosen over the rest of the models. For

example, Wang and Wells (2000) ¯t the Clayton, Gumbel, Frank, and Log-copula models to

the data set in McGilchrist and Aisbett (1991) from a study of the recurrence time of infection

in kidney patients using a portable dialysis machine. They ¯nd that the corresponding values

(£10¡4) of the integrated square di®erence are 21.72, 11.23, 12.44, and 16.14 and conclude
that the Gumbel model provides the best ¯t to the data. Note that to compute the values

of the integrated square di®erence, we need to estimate the parametric copulas. In the

above application, Wang and Wells (2000) estimate the parametric copulas by inverting

Kendall's ¿ instead of minimizing the integrated square di®erence over all possible values
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of the parameter. As such, the corresponding estimates of the parametric copulas may not

estimate the closest copulas from each parametric family to the true data generating process

and the values of the integrated square di®erence being compared may not estimate the

distance between each parametric copula family to the true copula. Moreover, because of

data reuse, it is not clear if the Gumbel model provides a signi¯cantly better ¯t to the data

than the rest of the copulas.

The purpose of this paper is two-fold: First, we demonstrate that for model selection,

estimators of the parametric copulas based on minimizing the selection criterion function

may be preferred to other estimators, since the former consistently estimate the copulas

in each parametric family least distant to the true copula. This ensures that the copulas

being compared in the selection process are indeed the closest members from each parametric

family to the true copula, consistent with the statement that Wang and Well made in their

Rejoinder to the Comment of Pena on their original article: \Our speci¯c focus on an

information-based criterion leads directly to a sensible de¯nition of a best model as the

model that minimizes a distance between itself and the underlying data-generating process."

Second, we provide a formal statistical test for copula model selection to address the issue

of data reuse as raised by Pena in his Comment on Wang and Wells (2000). Our test draws

on the reality check for data snooping in White (2000).

The remainder of this paper is organized as follows. Section 2 provides a rigorous treat-

ment of the estimation of the criterion function. In Section 3, we put copula model selection

in the context of hypothesis testing and develop a test for model selection. Section 4 presents

results based on a simulation experiment and two real data sets. Section 5 concludes. All

the proofs are gathered to Appendix B.

2 Model Selection

We build on the recent work of Wang and Wells (2000). Our notation will be similar.

Let (C1; C2) be the nuisance censoring variables. With right-censored data, one observes

( eX; eY ) = (X ^ C1; Y ^ C2) and a pair of indicators, (±1; ±2) = fI(X · C1); I(Y · C2)g,
where X ^ C1 = min(X;C1) and I(¢) is the indicator function. Suppose n i.i.d. observa-
tions f( eXi; eYi; ±1i; ±2i)gni=1 are available, where ( eXi; eYi) = (Xi ^ C1i; Yi ^C2i) and (±1i; ±2i) =
fI(Xi · C1i); I(Yi · C2i)g.
For each i = 1; 2; : : : ;M , let Mi = fCi(u1; u2;®i) : ®i 2 Ai ½ Raig be a class of
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parametric Archimedean copulas. Wang and Wells (2000) propose a copula model selection

procedure given a ¯nite number of models fMigMi=1. In particular, they build their model
selection procedure on the integrated square di®erence between fKi(v;®i) : ®i 2 Aig and
Ko(v), where Ko(v) is de¯ned as Ko(v) ´ Pr(F o(X;Y ) · v), the distribution function of

the random variable F o(X;Y ), and Ki(v ;®i) is the analogue of Ko(v) associated with model

class Mi. The justi¯cation for using the functions fKi(v;®i)gMi=1 and Ko(v) is that they

uniquely determine the corresponding copulas in the Archimedean family, see Genest and

Rivest (1993).

Following Wang and Wells (2000), we de¯ne

Si(®i) =

Z 1

&

[Ko(v) ¡Ki(v;®i)]2dv for i = 1; :::;M;

where & is introduced in Wang and Wells (2000), see Lemma A.1 in Appendix A. Let ®¤i =

arg min®i Si(®i). Then Ki(v;®
¤
i ) corresponds to the copula in fCi(u1; u2;®i) : ®i 2 Aig

closest to the true copula according to the integrated square di®erence criterion and the

distance from the i-th model class to the true copula is Si(®¤i ) (i = 1; : : : ;M ).

For i = 1; : : : ;M, the value ®¤i is referred to as the pseudo-true value, as it leads to the

copula function in the i-th model class that best approximates the true copula. Obviously

if the copula Ci(u1; u2;®i) correctly speci¯es the true copula in the sense that there exists

®io such that Ko(v) = Ki(v;®io), then ®¤i = ®io and Si(®¤i ) = 0. In general, however, all

the parametric copulas being entertained may misspecify the true copula and the M best

copulas Ki(v;®¤i ), one from each class Mi, i = 1; : : : ;M , are compared with each other in

the selection process. The class Mi is selected if Si(®¤i ) < Sj(®
¤
j) for all j = 1; : : : ;M and

j 6= i. In practice, neither Ko(v) nor ®¤i is known. Any model selection procedure will then

be based on estimates of Ko(v) and ®¤i or equivalently of Si(®
¤
i ), i = 1; : : : ;M .

2.1 Estimation of Ko(v) and ®¤
i

When complete observations on (X;Y ); f(Xi; Yi)gni=1, are available, Genest and Rivest (1993)
propose to estimate Ko(v) by Kn(v) =

1
n

Pn
i=1 I(Fn(Xi; Yi) · v), where Fn(x; y) is the

empirical distribution function of f(Xi; Yi)gni=1: Barbe, et al. (1996) establish the weak
convergence of the process fKn(¢)g to a Gaussian process, see also Ghoudi and Remillard
(1998, 2003).
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For censored data, Wang and Wells (2000) propose a consistent estimator of Ko(v):

eK(v) = 1¡
nX

i=1

nX

j=1

I( bF ( eX(i); eY(j)) > v) bF (¢ eX(i);¢eY(j));

where eX(1) · eX(2) · ::: · eX(n) and eY(1) · eY(2) · ::: · eY(n) are ordered observations
of f( eXi; eYi)gni=1 and bF (¢ eX(i);¢eY(j)) = bF ( eX(i); eY(j)) ¡ bF ( eX(i¡1); eY(j)) ¡ bF ( eX(i); eY(j¡1)) ¡
bF ( eX(i¡1); eY(j¡1)) is the estimated mass at ( eX(i); eY(j)) in which bF (x; y) is a nonparametric
estimate of F (x;y).

Lemma A.1 in Appendix A restates asymptotic properties of the estimator eK(v) estab-
lished in Wang and Wells (2000). Conditions under which the results hold are satis¯ed by

existing estimators bF (x; y) under di®erent censoring schemes, see Wang and Wells (2000) for
references. For independent censoring, the bivariate Kaplan-Meier estimator introduced in

Dabrowska (1988) satis¯es B1 and B2, see Dabrowska (1989). In addition to weak conver-

gence of the bivariate Kaplan-Meier estimator, Dabrowska (1989) also establishes the law of

iterated logarithm and the validity of the bootstrap version of the bivariate Kaplan-Meier

estimator. This estimator will be used in the numerical studies in this paper.

The choice of an appropriate estimator of ®¤i is a delicate issue and deserves a rigorous

treatment. Several consistent estimators of ®¤i , when Mi correctly speci¯es the true model,

are available in the literature, including the two-step estimator1 of Shih and Louis (1995),

the minimum distance estimator proposed in Wang and Wells (2000), and the estimator

based on Kendall's ¿ . In this subsection, we study asymptotic properties of the minimum

distance estimator in the general case that Mi misspeci¯es the true model and discuss the

pros and cons of basing model selection on other estimators in the next subsection.

Let ~Si(®i) =
R 1
&
[ eK(v) ¡Ki(v;®i)]

2dv. The minimum distance estimator is de¯ned as

®̂i = arg min
®i

Z 1

&

[ eK(v)¡Ki(v;®i)]
2dv ´ arg min

®i

~Si(®i):

Wang and Wells (2000) establish the asymptotic properties of ®̂i when the copula class

Mi correctly speci¯es the true copula of (X;Y ). In this case, ®¤i = ®io. In general, since

®¤i = arg min®i
R 1
&
[Ko(v) ¡ Ki(v;®i)]2dv and ~K(v) is a consistent estimator of Ko(v), we

expect ®̂i to be a consistent estimator of ®¤i regardless of whetherMi correctly speci¯es the

true copula.

1This is the same as the two-step estimator in Genest, et al. (1995) for complete data.
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Proposition 2.1 Suppose Ai is a compact subset of Rai with non-empty interior and ®¤i

is the unique minimizer of Si(®i) over Ai. Moreover, Ki(v;®i) is twice di®erentiable with

respect to ®i with bounded derivatives.

(i) ®̂i is consistent for ®¤i ;

(ii) Let ®¤i be an interior point of Ai. Under A1-A2 and B1-B2,
p
n(®̂i ¡ ®¤i ) converges in

distribution to Qi, where

Qi = f
Z 1

&

[D®Ki(v;®
¤
i )D

0
®Ki(v;®

¤
i )] dv ¡

Z 1

&

[Ko(v) ¡Ki(v;®¤i )]D2®Ki(v;®
¤
i )dvg¡1 £

Z 1

&

X(v)D®Ki(v;®
¤
i )dv;

in which X(v) is de¯ned in Lemma A.1 in Appendix A;

(iii) ~Si(®̂i) is a consistent estimator of Si(®¤i );

(iv) If Mi misspeci¯es the true copula, then

p
n[ ~Si(®̂i) ¡ Si(®¤i )] !

Z 1

³

X(v)[Ko(v)¡Ki(v;®
¤
i )]dv in distribution.

On the other hand, ifMi correctly speci¯es the true copula, then n ~Si(®̂i) ! R 1
³
X̂2
i (v)dv,

where X̂i(v) = X(v) ¡D®Ki(v ;®¤i )Qi.

Proposition 2.1 shows that in general ®̂i consistently estimates the pseudo-true value ®¤i ,

extending the consistency result of Wang and Wells (2000) for ®io when the i-th model class

correctly speci¯es the true model. Moreover ~Si(®̂i) consistently estimates Si(®¤i ), justifying

the use of ~Si(®̂i) for model selection based on minimizing Si(®¤i ) over i = 1; : : : ;M . Propo-

sition 2.1 (iv) also implies that the limiting distribution of
p
n[ ~Si(®̂i) ¡ Si(®¤i )] is the same

as that of
p
n[ ~Si(®¤i )¡Si(®¤i )] irrespective of whether Mi correctly speci¯es the true model.

The only di®erence is that whenMi correctly speci¯es the true model,
p
n[ ~Si(®

¤
i )¡ Si(®¤i )]

has a degenerate limiting distribution.

2.2 Which Parametric Estimator to Use?

Many estimators, including the two-step estimator of Shih and Louis (1995), share the con-

sistency property of ®̂i for ®io when the i-th model correctly speci¯es the true model, but
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may not share the consistency property for the pseudo-true value ®¤i in general. The reason

is that unlike the true value ®io when the i-th copula class correctly speci¯es the true copula,

the pseudo-true value ®¤i when the i-the copula class misspeci¯es the true copula may change

if a di®erent distance measure is used.

To be more speci¯c, let ~®i be a parametric estimator other than ®̂i. Examples include

the estimator based on inverting Kendall's ¿ used in the numerical studies in Wang and

Wells (2000) and the two-step estimator in Shih and Louis (1995). Most of these estimators

are optimization estimators in the sense that they can be obtained by minimizing some

criterion function, say, ~Li(®i). For example, for an Archimedean copula, the estimator based

on inverting Kendall's tau can be obtained by minimizing ~Li(®i) = j
R 1
0
[ ~K(v)¡Ki(v;®i)]dvj,

since ¿ = 4
R 1
0 [v ¡K(v)]dv +1. The two-step estimator of Shih and Louis (1995) minimizes

the pseudo-likelihood function. Under regularity conditions, ~®i = ®¤iL + op(1), where ®
¤
iL =

argmin®i [plim
~Li(®i)]. For example, for the estimator based on inverting Kendall's ¿, ®¤iL =

argmin®i j
R 1
0
[Ko(v)¡Ki(v;®i)]dvj, while for the two-step estimator in Shih and Louis (1995),

®¤iL minimizes the Kullback-Leibler Information Criterion. In general, ®
¤
iL di®ers from ®¤i

unless Mi correctly speci¯es the true copula in which case both ®¤iL and ®
¤
i equal the true

value of the parameter ®io.

Proposition 2.2 SupposeAi is a compact subset of Rai with non-empty interior and Ki(v;®i)

is twice di®erentiable with respect to ®i with bounded derivatives. In addition, assume the

estimator ~®i satis¯es: ~®i = ®¤iL + op(1) and
p
n[~®i ¡ ®¤iL] ! QiL in distribution for some

®¤iL 2 Ai and a non-degenerate distribution QiL.

(i) ~Si(~®i) is a consistent estimator of Si(®¤Li);

(ii) If Mi misspeci¯es the true copula, then

p
n[ ~Si(~®i) ¡ Si(®¤iL)] !

Z 1

³

X̂iL(v)[K
o(v)¡Ki(v;®¤iL)]dv in distribution ;

where X̂iL(v) =X (v)¡D®Ki(v;®
¤
iL)QiL.

(iii) If Mi correctly speci¯es the true copula, then n ~Si(~®i) ! R 1
³
X̂ 2
iL(v)dv.

Given that in general ®¤iL 6= ®¤i unless copula classMi correctly speci¯es the true copula,

Proposition 2.2 shows that ~Si(~®i) is in general an inconsistent estimator of Si(®¤i ). Any model

selection procedure based on ~Si(~®i) (i = 1; : : : ;M ) may thus lead to incorrect inferences
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unless the ranking of the M models based on Si(®¤iL) is the same as that based on Si(®
¤
i ), or

at the very least, the model that minimizes Si(®¤iL) over i = 1; : : : ;M also minimizes Si(®¤i )

over i = 1; : : : ;M . Another di®erence between using ~®i and ®̂i in model selection is that

the limiting distribution of
p
n[ ~Si(~®i) ¡ Si(®¤iL)] is not the same as that of

p
n[ ~Si(®¤iL) ¡

Si(®¤iL)] unless Mi correctly speci¯es the true model in which case the limiting distribution

is degenerate. As Wang and Wells argue in their Rejoinder to the comment of Pena on their

paper: \in practice, only best approximating models exist," it is an exception rather than

the rule that any simple statistical model is able to characterize the true data generating

process correctly. As a result, properties of ~Si(®̂i) or ~Si(~®i) when Mi misspeci¯es the true

model are most relevant to model selection.

3 A Model Selection Test

Results in the previous section suggest the use of ~Si(®̂i) in model selection. Two drawbacks

of basing model selection on point estimates ~Si(®̂i) only are: First, the limiting distribution

of
p
n[ ~Si(®̂i)¡Si(®¤i )] depends on model i under misspeci¯cation, even though it is the same

as that of
p
n[ ~Si(®¤i ) ¡ Si(®¤i )]; Second, the same data is used twice in obtaining ~Si(®̂i),

see Pena for more discussion on both issues in his Comment on Wang and Wells (2000). A

procedure for assessing the signi¯cance of the selection result is called for. In this section, we

provide a formal statistical procedure to address this issue by putting copula model selection

in the context of hypothesis testing along the lines of Vuong (1989) and White (2000).

To clarify the underlying idea, consider the case where only two models are being selected

(M = 2). The relevant null and alternative hypotheses are:

H0 : S1(®
¤
1) · S2(®

¤
2) and H1 : S1(®

¤
1) > S2(®

¤
2):

So under H0, M1 will be selected and under H1, M2 will be selected. We will construct a

test for H0 based on [eS1(®̂1) ¡ eS2(®̂2)].
For more than two models, we will formulate the testing problem in the same way as

White (2000). Let C1(u1; u2;®1) be the benchmark copula and fCi(u1; u2;®i)gMi=2 be the
candidate copulas. The null and alternative hypotheses of interest are expressed as

H0 : max
i=2;:::;M

[S1(®
¤
1) ¡Si(®¤i )] · 0 and H1 : max

i=2;:::;M
[S1(®

¤
1)¡ Si(®¤i )] > 0:

Under H0, M1 will be selected and under H1, the model minimizing ~Si(®̂i) for i = 2; : : : ;M

will be selected.
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In contrast to goodness-of-¯t tests developed in Genest, et al. (2003) and Wang and

Wells (2000), our model selection test does not require any of the parametric copulas to

correctly specify the true copula under H0. In practical applications this is most likely to

be the case and the best one can do is to select the model that best approximates the true

model according to some criterion such as the integrated square di®erence.

Let Tin = eS1(®̂1)¡ eSi(®̂i), where recall eSi(®̂i) =
R 1
³ [

eK(v)¡Ki(v; b®i)]2dv for i = 1; :::;M .
The following proposition provides the basis for our test.

Proposition 3.1 Suppose that for i = 1; 2; : : : ;M , the copula model i satis¯es the conditions

of Proposition 2.1. Then jointly n1=2 fTin ¡ [S1(®¤1)¡ Si(®¤i )]gi=2;:::;M ! (Z2; ¢ ¢ ¢; ZM)0 in
distribution, where

0
B@
Z2
...
ZM

1
CA » 2

0
B@

R 1
³
X(v)[K2(v;®

¤
2)¡K1(v;®¤1)]dv
...R 1

³
X (v)[KM(v;®

¤
M)¡K1(v;®

¤
1)]dv

1
CA :

Moreover, let ¾ii denote the variance of Zi. Then ¾ii = 0 if and only if model i and the

benchmark model 1 are generalized nested in the sense that Ki(v;®
¤
i ) = K1(v;®

¤
1) for almost

all v 2 [0; 1].

Proposition 3.1 and the continuous mapping theorem imply

max
i=2;:::;M

n1=2 fTin ¡ [S1(®¤1) ¡ Si(®¤i )]g ! max
i=2;:::;M

Zi in distribution.

Hence under the Least Favorable Con¯guration (i.e., Si(®¤i ) = S1(®¤1) for i = 2; :::;M ),

maxi=2;:::;M [
p
nTin] ! maxi=2;:::;M Zi in distribution. This allows us to construct a test for

H0.

Let Tn = maxi=2;:::;M[
p
nTin]. Suppose ¾ii > 0 for at least one i = 2; : : : ;M, then we will

reject H0 if Tn > Z®, where Z® is the upper ®-percentile of the distribution of maxi=2;:::;M Zi.

In general, the distribution of maxi=2;:::;M Zi is unknown, depending on the true distribution

function F o(x; y) and the pseudo-true values ®¤i . To circumvent this di±culty, we propose

to use the naive bootstrap to approximate the null distribution of Tn. Bootstrap is also used

in Wang and Wells (2000) to approximate the null limiting distribution of their goodness-

of-¯t test. However, since in Wang and Wells (2000) the parametric copula model being

tested correctly speci¯es the true copula under the null hypothesis, they suggest the use of a

parametric bootstrap procedure based on the estimated null model Ki(v ; b®i). This approach
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will not work in our context, as all the parametric copula models may misspecify the true

copula. The naive bootstrap, on the other hand, provides a valid procedure.

Step 1. Let f( eX ¤
i ; eY ¤i ; ±¤1i; ±¤2i)gni=1 be a random sample with replacement from the original

data f( eXi; eYi; ±1i; ±2i)gni=1 and let bF ¤(x; y); eK¤(v); and ®̂¤i be the bootstrapped counter-

parts of bF (x; y); eK(v); and ®̂i:

Step 2. Let T ¤in be the bootstrapped value of Tin and de¯ne its recentered value as:

T ¤inC = T
¤
in ¡ Tin; i = 2; :::;M:

Step 3. Repeat Steps 1-2 for a large number of times and de¯ne the bootstrap value of Tn

as T ¤n = maxi=2;:::;M
£
n1=2T ¤inC

¤
:

Step 4. Use the empirical distribution function of the resulting values T ¤n to approximate

the null distribution of Tn.

We show in Appendix B that the above bootstrap works for Tn.

THEOREM 3.2 Under the conditions of Proposition 3.1,

sup
z2R

jP ¤(T ¤n · z)¡ P ( max
i=2;:::;M

[n1=2Tin ¡ fS1(®¤1) ¡ Si(®¤i )g] · z)j = op(1);

where P ¤(T ¤n · z) is the conditional distribution of T ¤n given the original sample.

4 Numerical Studies

FollowingWang andWells (2000), we use ¯ve copulas from the Archimedean family: Clayton,

Frank, Gumbel, Log-copula and I-Gaussian. The expressions for K(v) are given in Table 1.

Clayton K(v) = v(1 + 1¡v®
® ) ® > 0

Frank K(v) = v+
¡
log

£ 1¡exp(¡®)
1¡exp(¡®v)

¤1¡exp(¡®v)
®exp(¡®v)

¢
® 2 R

Gumbel K(v) = v
¡
1 ¡ log(v)

®+1

¢
® ¸ 0

Log-copula K(v) = v
¡
1 ¡ 1¡(1¡log(v))®+1

(®+1)(1¡log(v))®
¢

® > 0

I-Gaussian K(v) = v(1¡ log(v)(log(v)¡2®)
2(log(v)¡®) ) ® > 0

Table 1: Expressions for K(v)
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4.1 Simulation Results

The simulation design is the same as that of Wang and Wells (2000) except that we included

the I-Gaussian copula in the experiment. In all cases, (C1; C2) were generated from Clayton

copula with ¿ = 0:3, and the censoring rates in both components were controlled to be

between 10 and 20%. The sample size was n = 250. The number of simulation repetitions

was 200 and the number of bootstrap repetitions was 100. All the computations were done

in Fortran.2

4.1.1 Results Based on ~Si(®̂i)

In this section we examine performance of the model selection procedure based on the mini-

mum value of ~Si(®̂i). For comparison purposes, we also report results based on ~Si(~®i), where

~®i is the estimator based on Kendall's ¿ used in Wang and Wells (2000).

We used Clayton copula and Frank copula as the true copula respectively. For each true

copula, we calculated the percentage of times that each copula is selected based on having

the minimum value ~Si(®̂i) ( ~Si(~®i)) in two cases: i) the true copula is included in the family

of copula models to be selected (M = 5); ii) the true copula is not included in the family

of copula models to be selected (M = 4). As we argued earlier, case ii) is most likely to

characterize real applications. As the results for Clayton and Frank copulas are very close,

we report results for Clayton copula only in Tables 2 and 3.

In addition to the percentage of times that each copula is selected, we also reported the

mean and standard error of ~Si(®̂i) ( ~Si(~®i)). To fully understand the results in Tables 2

and 3, we provide the ranking of the remaining 4 copulas in terms of their distance to the

true Clayton copula Si(®¤i ) and their ranking based on Si(®
¤
iL) in Table 4, where ®

¤
iL is the

probability limit of ~®i, i.e., ®
¤
iL = argmin®i j

R 1
0
Ko(v)dv ¡

R 1
0
Ki(v;®i)j in which Ko(v) is

the K function for Clayton copula and fKi(v : ®i)g4i=1 are associated with the remaining
copulas in Table 1. In all cases considered (¿ = 0:3; 0:5; 0:7), the ranking of the remaining 4

copulas is the same regardless of whether Si(®¤i ) is used or Si(®
¤
iL) is used. Moreover, in most

of the cases, the respective values of Si(®¤i ) and Si(®
¤
iL) are very close, although they are

clearly di®erent. Our theoretical results in Section 2 predict that the selection results based

on ~Si(®̂i) and ~Si(~®i) should be similar. Indeed, Tables 2 and 3 provide an overwhelming

amount of evidence supporting this prediction.

2Fortran code is available from the authors upon request.
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Minimum Distance ®̂i Kendall's Tau ~®i
¿ = 0:3 ¿ = 0:5 ¿ = 0:7 ¿ = 0:3 ¿ = 0:5 ¿ = 0:7

Percentage
Clayton 0.72 0.79 0.80 0.76 0.80 0.78
Frank 0 0 0 0.01 0 0
Gumbel 0 0 0 0 0 0
Log-copula 0.23 0.21 0.20 0.17 0.20 0.22
I-Gaussian 0.05 0 0 0.07 0 0
Mean£104
Clayton 2.70 2.58 2.24 3.30 3.01 2.74
Frank 8.51 12.30 10.58 15.41 16.29 12.13
Gumbel 13.37 20.02 17.05 70.14 36.40 18.54
Log-copula 3.90 4.30 3.71 4.81 4.82 4.15
I-Gaussian 5.30 17.63 53.75 5.78 18.47 53.75

Std. Error£104
Clayton 1.59 1.34 1.06 2.09 1.75 1.46
Frank 4.25 4.84 3.87 8.60 20.18 16.87
Gumbel 5.62 6.45 5.19 15.48 8.70 5.43
Log-copula 2.37 2.40 1.90 2.89 2.81 2.14
I-Gaussian 3.23 6.99 12.38 3.42 7.18 12.38

Table 2: The true copula is Clayton, included in the selection

Minimum Distance ®̂i Kendall's Tau ~®i
¿ = 0:3 ¿ = 0:5 ¿ = 0:7 ¿ = 0:3 ¿ = 0:5 ¿ = 0:7

Percentage
Frank 0.01 0 0 0.01 0 0
Gumbel 0 0 0 0 0 0
Log-copula 0.87 1 1 0.76 1 1
I-Gaussian 0.12 0 0 0.23 0 0
Mean£104
Frank 8.12 12.74 10.65 14.50 20.65 12.36
Gumbel 12.98 20.61 17.14 72.25 37.44 18.70
Log-copula 3.74 4.49 3.77 4.61 5.02 4.08
I-Gaussian 5.06 17.86 52.99 5.50 18.71 52.99

Std. Error£104
Frank 3.68 4.94 4.27 9.25 28.59 21.10
Gumbel 5.10 6.29 5.40 16.44 9.05 5.42
Log-copula 1.89 2.44 2.14 2.63 2.80 2.35
I-Gaussian 2.66 6.88 12.21 2.99 7.11 12.21

Table 3: The true copula is Clayton, excluded from the selection
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Ranking Based on Si(®
¤
i )

¿ = 0:3 Log-copula I-Gaussian Frank Gumbel
Si(®

¤
i ) £ 104 1.6765 3.1612 6.7928 12.5798

¿ = 0:5 Log-copula Frank I-Gaussian Gumbel
Si(®

¤
i ) £ 104 2.3559 11.2060 16.9010 19.8090

¿ = 0:7 Log-copula Frank Gumbel I-Gaussian
Si(®¤i ) £ 104 1.7295 8.8827 15.6128 50.0980

Ranking Based on Si(®¤iL)
¿ = 0:3 Log-copula I-Gaussian Frank Gumbel
Si(®¤iL) £ 104 1.6766 3.2540 6.8211 12.5798
¿ = 0:5 Log-copula Frank I-Gaussian Gumbel
Si(®¤iL) £ 104 2.3560 11.2540 20.0106 20.0106
¿ = 0:7 Log-copula Frank Gumbel I-Gaussian
Si(®¤iL) £ 104 1.7429 8.9097 16.2396 54.0411

Table 4: Rankings from the least distant to most distant to Clayton copula

Table 2 reveals that when the true Clayton copula is included, it always has the highest

probability of being selected based on the minimum value criterion regardless of whether

®̂i or ~®i is being used and the value of ¿. The copula with the second highest probability

of being selected is the Log-copula, the closest to the true copula, although its probability

of being selected is much smaller than that of the Clayton copula. In all cases, the mean

and standard error of ~Si(®̂i) are smaller than the mean and standard error of ~Si(~®i). What

is more important and reassuring is the fact that based on ~S(®̂i), when the true copula is

not included which is typically the case in empirical applications, the Log-copula, being the

closest to the true Clayton copula, has the highest probability of being selected and as the

value of ¿ exceeds 0.3, the probability of selecting the Log-copula reaches 1, see Table 4. Only

when ¿ = 0:3, the probability that the Log-copula is being selected decreases slightly and

the I-Gaussian copula being the second closest to the true copula gains a small probability

of being chosen. The corresponding results based on ~®i reveal similar patterns qualitatively,

although for ¿ = 0:3, the probability of selecting the Log-copula using ~®i is smaller than

using ®̂i. In all cases, the mean and standard error of ~Si(®̂i) are smaller than the mean and

standard error of ~Si(~®i).

4.1.2 Results Based on the Model Selection Test

In this section, we applied the model selection test proposed in Section 3 to the same data

sets generated in the previous subsection. When Clayton copula is included, H0 holds with
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Clayton being the benchmark and H1 holds when any other copula is used as the benchmark.

When Clayton copula is excluded, H0 holds with Log-copula being the benchmark. The

rejection rates are reported in Tables 5 and 6.

¿ = 0:3 ¿ = 0:5 ¿ = 0:7
Benchmark Clayton (H0 holds)

5% 0 0 0
10% 0 0 0

Benchmark Log-copula (H1 holds)
5% 0 0 0
10% 0.02 0.02 0

Benchmark I-Gaussian (H1 holds)
5% 0.03 0.63 0.95
10% 0.10 0.81 0.99

Benchmark Frank (H1 holds)
5% 0.41 0.61 0.04
10% 0.55 0.74 0.13

Benchmark Gumbel (H1 holds)
5% 0.67 0.92 0.46
10% 0.82 0.99 0.58

Table 5: Rejection Rates: Clayton included

Both tables indicate that the test is under-sized regardless of whether the true copula is

included in the selection and the true value of ¿. In the ¯rst case, when the copula other

than the Clayton is used as the benchmark, the rejection rates start to increase. Since for

all values of ¿, the Log-copula is the closest to the true copula and the distance between

the Log-copula and the true copula is small, the rejection rate for the null hypothesis with

Log-copula the benchmark is very low. But as the benchmark copula moves away from the

true copula, the rejection rate of the test increases quickly. For example, when ¿ = 0:5 and

the Gumbel is used as the benchmark, the rejection rate exceeds 0.9. By comparing the

rejection rates in Tables 5 and 6 with the distance of each copula to the true copula reported

in Table 4, we conclude that the rejection rate of the test mainly depends on the distance

of the benchmark to the true copula instead of the value of ¿ . When the true copula is

excluded from the selection, the same general conclusion carries over, see Table 6. In this

case, all the copulas misspecify the true copula. But when the Log-copula is used as the

benchmark, the null hypothesis holds. When I-Gaussian, Frank, or Gumbel is used as the

benchmark, the null hypothesis fails and the power of the test increases as the distance of
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¿ = 0:3 ¿ = 0:5 ¿ = 0:7
Benchmark Log-copula (H0 holds)

5% 0 0 0
10% 0 0 0

Benchmark I-Gaussian (H1 holds)
5% 0.005 0.61 0.94
10% 0.015 0.85 0.98

Benchmark Frank (H1 holds)
5% 0.49 0.73 0.02
10% 0.61 0.79 0.06

Benchmark Gumbel (H1 holds)
5% 0.84 0.96 0.29
10% 0.91 0.99 0.53

Table 6: Rejection Rates: Clayton excluded

the benchmark copula to the true copula increases. In summary, besides Clayton copula,

the only copula that the model selection test fails to reject as the benchmark model for all

values of ¿ considered is the Log-copula, supporting the selection result based on values of

~S(®̂i).

4.2 Real Data Examples

In this section, we applied the proposed test to the two data sets studied in Wang and Wells

(2000); the data set in Danahy, et al. (1977) and the data set in McGilchrist and Aisbett

(1991). We suggest the readers to consult the original papers or Wang and Wells (2000)

for backgrounds on these data sets. Based on the value of ~Si(~®i), Wang and Wells (2000)

recommend the choice of Clayton or Log-copula for the ¯rst data set and Gumbel for the

second data set. In Table 7, we report p-values of the model selection test, values of ~Si(~®i)

and ~Si(®̂i).

Danahy, et al. (1977) (¿ = 0:41) McGilchrist and Aisbett (1991)(¿ = 0:19)

Benchmark p-value ~Si(®̂i) £ 103 ~Si(~®i) £ 103 p-value ~Si(®̂i) £ 103 ~Si(~®i)£ 103
Log-copula 0.32 1.99 2.20 0.42 1.81 1.81
Clayton 0.08 2.95 3.38 0.09 2.41 2.49
Frank 0.72 1.34 1.60 0.56 1.36 1.42
Gumbel 0.91 1.08 1.17 0.60 1.24 1.28

Table 7: p-values of the test

Based on the p-values of the test, Clayton copula is clearly rejected for both data sets and
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none of the other three copulas is rejected. This is consistent with the values of ~Si(®̂i); they

are small for Log-copula, Frank, and Gumbel compared with the value for Clayton copula.

Based on the minimum value criterion, the Gumbel copula is selected for both data sets.3

In addition to using the values of ~Si(®̂i) for copula model selection, Table 7 indicates that

p-values of the test provide an alternative model selection criterion. For both data sets, all

three criteria ~Si(®̂i), ~Si(~®i), and the p-value select the same copula class.

5 Conclusions

This paper makes two contributions to copula model selection for bivariate failure-time data.

First, we provide a rigorous discussion on the appropriate choice of a parametric estimator

of the copula parameter in model selection. In fact, this applies to not only copula model

selection, but model selection in general. Second, we address the issue of data reuse in

copula model selection pointed out by Pena in his Comment on Wang and Wells (2000)

by establishing a formal statistical test for copula model selection for bivariate failure-time

data. This draws on the literature on the selection of forecasting models, see White (2000).

Extension of our model selection test to multivariate failure-time data is straightforward.

As the test is based on comparing Ko(v) with Ki(v;®¤i ), it is consistent for Archimedean

copulas. For selection of general parametric copulas for censored data, one may develop

pseudo-likelihood ratio procedures using the two-step estimator of Shih and Louis (1995). For

complete data, goodness-of-¯t statistics such as those in Chen, et al. (2003) and Fermanian

(2003) may also be adopted.

3The values of ~Si(~®i) we obtained for the ¯rst data set lead to a di®erent ranking of the copulas from
that of Wang and Wells (2000), although they lead to the same ranking as that in Wang and Wells (2000)
for the second data set. They also lead to the same ranking of the copulas as ~Si(®̂i) for both data sets.
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Appendix A: Asymptotic Properties of ~K(v)

For the paper to be self-contained, we restate the conditions and asymptotic properties

of ~K(v) established in Wang and Wells (2000) in this appendix.

A1. The distribution function Ko(v) admits a continuous density ko(v):

A2. Let T denote the support of ( eX; eY ): Given F o(x; y) = v, there exists a version of the
conditional distribution of (X;Y ) and a countable family P of partition C on T into

a ¯nite number of Borel sets satisfying infC2PmaxC2Cdiam(C) = 0; such that for all

C 2 C, the mapping v ! ¹v(C) = ko(v) Prf(X;Y ) 2 CjF o(X;Y ) = vg, is continuous.

B1. bF (x; y) is a uniformly and strongly consistent estimator of F o(x; y) for (x; y) 2 T .

B2. n1=2f bF (x; y) ¡ F o(x; y)g converges weakly to W (x; y), where W (x; y) is a continuous
mean-zero Gaussian process on D(T ).

The following lemma summarizes the results of Theorem 1 in Wang and Wells (2000).

Lemma A.1 Under B1, for 0 < & = F o(¿1; ¿2) · v · 1 with (¿1; ¿2) 2 T , eK(v)¡Ko(v) =

op(1). Furthermore, if A1, A2, and B2 hold, then on D[&; 1],

n1=2f eK(v)¡Ko(v)g ) X(v) = ¡
Z Z

I(F o(x; y) > v)W (dx; dy)¡
Z Z

W (x; y)¹v(dx; dy):

Appendix B: Technical Proofs

Proof of Proposition 2.1. Recall that ®̂i = argmin®i
~Si(®i), where eSi(®i) =

R 1
& [

eK(v)¡
Ki(v;®i)]2dv: One can apply Theorems 3.4 and 6.2 in White (1994) to prove (i) and (ii).

(i) Given the conditions of Proposition 2.1, we only need to show the uniform convergence

of ~Si(®i) to Si(®i) over Ai in probability, see Theorem 3.4 in White (1994). This follows

from consistency of ~K(v), the fact thatKo(v) and Ki(v ;®i) are bounded, and the inequality

below:

j ~Si(®i)¡ Si(®i)j ·
Z 1

&

j ~K(v)¡Ko(v)jj ~K(v) +Ko(v) ¡ 2Ki(v;®i)jdv:

(ii) By Theorem 6.2 in White (1994), it su±ces to show that

a) n1=2D®eSi(®¤i ) ! ¡2
R 1
&
X(v)D®Ki(v;®¤i )dv in distribution, and

b) D2®eSi(®i) = 2
R 1
& [D®Ki(v;®i)D

0
®Ki(v;®i)] dv¡

R 1
& [K

o(v)¡Ki(v;®i)]D2®Ki(v;®i)dv+op(1)
uniformly in ®i 2 Ai.
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Using the fact that D®Si(®¤i ) = 0, one can easily show that

D®eSi(®¤i ) = ¡2
Z 1

&

[ eK(v)¡Ko(v)]D®Ki(v;®
¤
i )dv: (B.1)

a) follows from (B.1) and Lemma A.1, while b) follows from Lemma A.1 and the following

equation:

D2
®
eSi(®i) = 2

Z 1

&

[D®Ki(v ;®i)D
0
®Ki(v;®i)] dv¡

Z 1

&

[ eK(v)¡Ki(v;®i)]D2®Ki(v;®i)dv: (B.2)

(iii) It is straightforward and omitted.

(iv) As in Wang and Wells (2000), we decompose eSi(®̂i) as follows:

eSi(®̂i) =

Z 1

³

[ eK(v)¡Ki(v; b®i)]2dv

=

Z 1

³

[ eK(v)¡Ko(v)]2dv+

Z 1

³

[Ko(v) ¡Ki(v;®¤i )]2dv +
Z 1

³

[Ki(v;®
¤
i ) ¡Ki(v; b®i)]2dv

+2

Z 1

³

[ eK(v) ¡Ko(v)][Ko(v) ¡Ki(v;®
¤
i )]dv

+2

Z 1

³

[ eK(v) ¡Ko(v)][Ki(v;®
¤
i )¡Ki(v; b®i)]dv

+2

Z 1

³

[Ko(v) ¡Ki(v;®¤i )][Ki(v;®¤i ) ¡Ki(v; b®i)]dv

= A1 + A2 + A3+ 2B1 +2B2 +2B3:

Lemma A.1 and Proposition 2.1 (ii) imply A1 = Op(n¡1), A3 = Op(n¡1); and B2 =

Op(n
¡1): By Taylor series expansion,

B3 =

Z 1

³

[Ko(v)¡Ki(v;®¤i )]D®Ki(v ;®¤i )dv(®¤i ¡ b®i)

+(®¤i ¡ b®i)0
Z 1

³

[Ko(v) ¡Ki(v;®¤i )]D2
®Ki(v;®

¤
i )dv(®

¤
i ¡ b®i)

= (®¤i ¡ b®i)0
Z 1

³

[Ko(v)¡Ki(v;®
¤
i )]D

2
®Ki(v;®

¤
i )dv(®

¤
i ¡ b®i)

= Op(n¡1)

where ®¤i lies between ®
¤
i and b®i, the second equality follows from the fact that D®Si(®¤i ) = 0

and the last from Proposition 2.1 (i) (ii). Consequently, we have

~Si(®̂i)¡ Si(®¤i ) = 2B1 + Op(n¡1): (B.3)
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The limiting distribution of
p
n[ ~Si(®̂i)¡ Si(®¤i )] for the case whereMi misspeci¯es the true

copula follows from Lemma A.1, the continuous mapping theorem, and (B.3). For the correct

speci¯cation case, see Theorem 3 in Wang and Wells (2000).

¤

Proof of Proposition 2.2. (i) is straightforward and omitted.

(ii) A similar proof to that of Proposition 2.1 (iv) suggests that

~Si(~®i)¡ Si(®¤iL)

= 2

Z 1

³

[ eK(v) ¡Ko(v)][Ko(v)¡Ki(v;®
¤
iL)]dv

+ 2

Z 1

³

[Ko(v) ¡Ki(v;®¤iL)][Ki(v;®
¤
iL) ¡Ki(v; ~®i)]dv +Op(n¡1)

= 2

Z 1

³

f[ eK(v) ¡Ko(v)]¡D®Ki(v;®¤iL)(~®i ¡ ®¤iL)g[Ko(v) ¡Ki(v;®¤iL)]dv + Op(n¡1):(B.4)

The result follows from Lemma A.1, the assumption on ~®i, the above equation, and the

continuous mapping theorem.

(iii) Theorem 3 in Wang and Wells (2000).

¤

Proof of Proposition 3.1. Equation (B.3) implies that

p
nfTin¡[S1(®¤1)¡Si(®¤i )]g = 2

Z 1

³

fp
n[ eK(v)¡Ko(v)]g[Ki(v;®¤i )¡K1(v;®¤1)]dv+Op(n¡1=2):

The conclusion follows immediately from Lemma A.1 and the continuous mapping theorem.

¤

To prove Theorem 3.2, we ¯rst verify the consistency of the proposed bootstrap procedure

for n1=2[ eK(v)¡Ko(v)] and n1=2[b®i¡ ®¤i ]: The results are stated in the following lemma. For
compactness, we borrow the notation op¤ (1) pr-P and Op¤ (1) pr-P from Goncalves and White

(2004): W ¤
n = op¤ (1) pr-P ifW

¤
n approaches zero in P

¤ probability conditional on the original

data and for all samples except a set of measure approaching zero, whereW ¤
n = Op¤ (1) pr-P

ifW ¤
n is bounded in P

¤ probability conditional on the original data and for all samples except

a set of measure approaching zero.

Lemma B.1 Under the conditions of Proposition 2.1,
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i) the limit process of n1=2[ eK¤(¢) ¡ eK(¢)] conditional on the original data converges to the
limit process of n1=2[ eK(¢) ¡Ko(¢)] in probability;

ii) the conditional distribution of n1=2[b®¤ ¡ b®] given the original data converges to the dis-
tribution of n1=2[b® ¡®¤] in probability.

Proof of Theorem 3.2. It su±ces to show that

sup
z2RM¡1

jP ¤(

0
B@
n1=2T ¤2nC

...
n1=2T ¤MnC

1
CA · z)¡P (

0
B@

n1=2(T2n ¡ [S1(®¤1)¡ S2(®¤2)])
...

n1=2(TMn ¡ [S1(®¤1)¡ SM(®¤M)])

1
CA · z)j = op(1):

(B.5)

Similar to the decomposition of eSi(®̂i), we get

eS¤i (®̂¤i ) =

Z 1

³

[ eK¤(v)¡Ki(v; b®¤i )]2dv

=

Z 1

³

[ eK¤(v)¡ eK(v)]2dv+
Z 1

³

[ eK(v) ¡Ki(v ; b®i)]2dv+
Z 1

³

[Ki(v; b®i) ¡Ki(v; b®¤i )]2dv

+2

Z 1

³

[ eK¤(v) ¡ eK(v)][ eK(v)¡Ki(v; b®i)]dv

+2

Z 1

³

[ eK¤(v) ¡ eK(v)][Ki(v; b®i) ¡Ki(v; b®¤i )]dv

+2

Z 1

³

[ eK(v)¡Ki(v; b®i)][Ki(v; b®i) ¡Ki(v; b®¤i )]dv

= A¤1 + eSi(®̂i) + A¤3 +2B¤1 +2B¤2 +2B¤3
By Lemma B.1, we get A¤1 = Op¤(n

¡1) pr-P, A¤3 = Op¤ (n
¡1) pr-P, and B¤2 = Op¤ (n

¡1) pr-P.

By Taylor series expansion,

B¤3 =
Z 1

³

[ eK(v) ¡Ki(v; b®i)]D®Ki(v; b®i)dv(b®i ¡ b®¤i )

+(b®i ¡ b®¤i )0
Z 1

³

[ eK(v)¡Ki(v; b®i)]D2
®Ki(v;®

¤
i )dv(b®i ¡ b®¤i )

= (b®i ¡ b®¤i )0
Z 1

³

[ eK(v)¡Ki(v; b®i)]D2®Ki(v;®¤i )dv(b®i ¡ b®¤i )

= Op¤ (n
¡1) pr-P

where ®¤i lies between b®¤i and b®i, the second equality follows from the fact that D®eSi(b®i) = 0
and the last from Lemma B.1. Consequently, we have

p
nfT ¤in ¡ Ting = 2

Z 1

³

f
p
n[ eK¤(v)¡ eK(v)]g[Ki(v; b®i)¡K1(v; b®1)]dv + op¤ (1):
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The conclusion follows from Lemmas A.1, B.1, and Proposition 2.1.

¤

Proof of Lemma B.1. i) By Theorem 3.9.11 in Van der Vaart and Wellner (1996)

and Corollary 2.2 in Dabrowska (1989), it su±ces to show that the map ¹K(F )(¢): D[0; ¿1]£
[0; ¿2] ! l1([0; 1]) is Hadamard di®erentiable at F tangentially to C[0; ¿1] £ [0; ¿2], where

¹K(F )(¢) = E [I(F (X;Y ) > ¢)]. In fact for H 2 C[0; ¿1]£ [0; ¿2], its Hadamard derivative at
F is given by

¹KF(H)(v) =

Z Z
H(x; y)¹v(dx; dy) +

Z Z
I(F (x; y) > v)H(dx; dy):

Let tn ! 0 and Hn ! H 2 C[0; ¿1]£ [0; ¿2]. We need to show that
¹K(F + tnHn) ¡ ¹K(F )

tn
! ¹KF (H): (B.6)

The left hand side of (B.6) can be decomposed as follows:

¹K(F + tnHn) ¡ ¹K(F )

tn
(v)

= t¡1n

½Z Z
I(F (x; y) + tnHn(x; y) > v)(F + tnHn)(dx; dy) ¡

Z Z
I(F (x; y) > v)F (dx; dy)

¾

= t¡1n

Z Z
[I(F (x; y) + tnHn(x; y) > v)¡ I (F (x; y) > v)]F (dx; dy)

+

Z Z
I(F (x; y) > v)Hn(dx; dy)

+

Z Z
[I(F (x; y) + tnHn(x; y) > v) ¡ I(F (x; y) > v)]Hn(dx; dy)

´ An(v) + Bn(v) + Cn(v): (B.7)

Noting the similarity between An(v), Bn(v), and Cn(v) and ®̂(v), ^̄(v), and °̂(v) respectively

in the proof of Theorem 1 in Wang and Wells (2000), one can follow their proof to verify

(B.6) by replacing weak convergence and tightness in their proof with uniform convergence

and equicontinuity for the relevant functions in our case. For example, Hn plays the role of
p
n[F̂ ¡ F ] and tn that of n¡1=2 in Wang and Wells (2000).
ii) First, we show that [b®¤i ¡b®i] = op¤(1) pr-P. Using Lemma A.2 in Goncalves and White

(2004), it su±ces to show that sup®i jeS¤i (®i)¡ eSi(®i)j = op¤ (1) pr-P. It follows from i) of this
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Lemma, since

sup
®i

jeS¤i (®i) ¡ eSi(®i)j (B.8)

= sup
®i

j
Z 1

³

f[ eK¤(v)¡Ki(v;®i)]
2 ¡ [ eK(v)¡Ki(v;®i)]

2gdv

·
Z 1

³

j eK¤(v) ¡ eK(v)j[ eK¤(v) + eK(v) + 2 sup
®i

Ki(v;®i)]dv: (B.9)

Now we can apply Lemma A.3 in Goncalves and White (2004) to show ii). It su±ces to

verify conditions (b3) and (b4) of Lemma A.3 in Goncalves and White (2004). They are:

(b3) The conditional distribution of n1=2D®eS¤i (b®i) converges to ¡2
R 1
& X (v)D®Ki(v;®

¤
i )dv in

probability,

(b4) sup®i jD2® eS¤i (®i)¡D2
®
eSi(®i)j = op¤ (1) pr-P.

Using the fact that D®eSi(b®i) = 0, one can show that

n1=2D®eS¤i (b®i) = ¡2
Z 1

&

fn1=2[ eK¤(v) ¡ eK(v)]gD®Ki(v; b®i)dv: (B.10)

(b3) follows from (B.10) and i) of this Lemma. Similar to (B.2), one can show that

sup
®i

jD2®eS¤i (®i)¡D2
®
eSi(®i)j · 2

Z 1

&

j eK¤(v) ¡ eK(v)] sup
®i

¯̄
D2®Ki(v ;®i)

¯̄
dv

= op¤(1)pr-P

by part i) of this Lemma, Lemma A.1, and boundedness of D2
®Ki(v;®i).

¤
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