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Abstract

This paper investigates the effects of consistent and inconsistent long-run variance estimation on
a unit root test based on the generalization of the von Neumann ratio. The results from the Monte
Carlo experiments suggest that the tests based on an inconsistent estimator have less size distortion
and more stability of size across different autocorrelation speciÞcations as compared to the tests based
on a consistent estimator. This improvement in size property, however, comes at the cost of a loss in
power. The Þnite sample power, as well as the local asymptotic power, of the tests with an inconsistent
estimator is shown to be much lower than that of conventional tests. This Þnding resembles the case
of the autocorrelation robust test in the standard regression context. The paper also points out that
combining consistent and inconsistent estimators in the long-run variance ratio test for a unit root is
one possibility of balancing the size and power.
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1 Introduction

Conventionally, the autocorrelation robust inference relies on the consistent estimation of the long-run

variance of the data. In the regression context, such an estimator based on the nonparametric kernel

method is often referred to as the heteroskedasticity autocorrelation consistent (HAC) estimator and is

frequently employed to construct standard errors or the Wald type test statistics in the presence of serial

correlation of unknown form (see Newey and West, 1987, and Andrews, 1991, for example). HAC esti-

mation, however, is known to suffer from the small sample bias that results in size distortion of the test

statistics. Kiefer, Vogelsang, and Bunzel (2000) have recently proposed the autocorrelation robust test sta-

tistics standardized by an inconsistent long-run variance estimator instead of a consistent estimator. Their

alternative asymptotic approximation to the distribution of the test statistic incorporates the randomness

of the (inconsistent) long-run variance estimator and is considered to have some advantages in improving

the size properties compared to the conventional approach.

Since Phillips� (1987) inßuential paper, nonparametric long-run variance estimation has also played an

important role in the unit root/nonstationary literature. The nonparametric or semiparametric unit root

test designed to incorporate general serial correlation, however, is known to suffer from some size distortion

for the same reason as the test with HAC estimation in the standard regression model. Therefore, it seems

reasonable to investigate whether the inconsistent estimation of the long-run variance provides a useful

alternative approach in the unit root test as well as in the tests in the regression model. In this paper, we

conduct theoretical and simulation analyses on the effect of consistent and inconsistent long-run variance

estimation in testing for a unit root. In particular, we focus on a class of nonparametric tests based

on the generalization of the von Neumann (VN) ratio. This class of the unit root test includes the test

considered by Sargan and Bhargava (1983), Bhargava (1986), the class of the locally best invariant (LBI)

test considered by Nabeya and Tanaka (1990), the Lagrange multiplier (LM) test of Schmidt and Phillips

(1992), the modiÞed Sargan-Bhargava (MSB) test considered by Stock (1994, 1999) and Perron and Ng

(1996), and a nonparametric unit root test of Breitung (2002). Its multivariate extension includes the
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cointegration tests considered by Phillips and Ouliaris (1990), Shintani (2001), and Harris and Poskitt

(2004).

The main reason for the choice of the VN ratio test in our analysis, rather than the more commonly

used nonparametric variation of the Dickey-Fuller type test proposed by Phillips (1987) and Phillips and

Perron (1988), is its convenience in considering the properties of the long-run variance estimation under

the null and alternative hypotheses. In a typical regression framework, the true long-run variance used

to standardize the Wald test statistic is common under both null and alternative hypotheses. In the

test for a unit root, this is not the case. To be more speciÞc, estimation of a positive long-run variance

of the Þrst differenced observation (or the error term) is often required for the test statistic to have a

nuisance parameter free limiting distribution under the null hypothesis of a unit root. Under the alternative

hypothesis of a stationary root, however, the long-run variance of the same variable becomes zero because

of over-differencing. In contrast, the long-run variance of the variable in level is positive and Þnite under

the alternative, while the corresponding long-run variance cannot be deÞned under the null hypothesis.

The unit root test statistic we consider is constructed using the ratio of the long-run variance estimator

of the Þrst differenced series to that of the series in levels. Since the growth rate of the bandwidth in

the kernel estimator is the key to distinguishing the consistent estimator from the inconsistent estimator,

the various combinations of the bandwidths in the numerator and denominator in the long-run variance

ratio offer a systematic way to investigate the effect of new approach under both the null and alternative

hypotheses.

The remainder of the paper is organized as follows: Section 2 introduces the long-run variance ratio

test for a unit root and derives its limiting distribution under different assumptions on the growth rate

of bandwidths. The Þnite sample size properties of each test is investigated by a Monte Carlo simulation

in Section 3. The power of the test is studied in Section 4. Some extensions, including the analysis of

cointegration, are considered in Section 5. Finally, concluding remarks are made in Section 6. Throughout

this paper, we use the symbols �⇒� and � p→� to signify weak convergence and convergence in probability,
respectively. All the limits are taken as the sample size T →∞.
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2 The test statistics

Let {yt}Tt=1 be a univariate time series generated by

yt = αyt−1 + ut (1)

where ut is a weakly stationary zero-mean error with a strictly positive long-run variance deÞned by

ω2 ≡P∞
j=−∞ γj where γj = E (utut−j). For simplicity, the initial condition is set to y0 = 0. We consider

a test for the null hypothesis of α = 1 against the alternative hypothesis of |α| < 1. Therefore, under the
alternative hypothesis, yt is the zero-mean stationary process with the long-run variance ω2y = (1−α)−2ω2.

Throughout this paper, the long-run variance of the zero-mean series xt is estimated by a nonparametric

kernel estimator with the Bartlett kernel,

bω2(xt,K) = K−1X
j=−(K−1)

(1− |j/K|)T−1
TX

t=|j|+1
xtxt−|j| (2)

whereK is the bandwidth/lag truncation parameter. As emphasized in Newey and West (1987), this choice

of the kernel function ensures nonnegative estimates, and thus the long-run variance ratio test statistic

deÞned below will always be nonnegative. In addition, this long-run variance estimator is known to be

consistent when bandwidth K grows at a rate slower than T 1/2, with an optimal growth rate being T 1/3

under some moment conditions (Andrews, 1991). When xt has a non-zero mean, bω2(xt − x,K) where
x = T−1

PT
t=1 xt will provide the consistent estimator. This estimator, however, becomes inconsistent if

K grows too fast, for example, at the rate T . Below we have a convenient shortcut formula for the Bartlett

kernel estimator when its bandwidth equals the sample size.

Lemma 1. Let St =
Pt
j=1 xj . Then, (2) with K = T can be written as

bω2(xt, T ) = 2T−2 TX
t=1

S2t + T
−1S2T − 2T−2ST

TX
t=1

St. (3)
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This lemma generalizes the equation (1) of Kiefer and Vogelsang (2002) to the case when ST 6= 0 and
will be used to derive main theoretical results of our paper.

The VN ratio is usually deÞned as the ratio of the sample variances of the Þrst differences and the

levels of a time series. The ratio is often applied to regression residuals to conduct the Durbin-Watson

test for serial correlation. As a test statistic for a unit root hypothesis, however, we utilize the following

generalization of VN ratio,

R =MT
bω2(∆yt,K)bω2(yt,M) (4)

where ∆yt = yt − yt−1 for t = 1, ..., T. This ratio replaces the sample variances in the original VN ratio

with the sample long-run variances. If ut is iid, the ratio with the choice of K = M = 1 can be used to

test the null hypothesis of a unit root. But for the serially correlated ut, it does not provide the nuisance

parameter free distribution under the null. We consider the following combinations of growth rates of K

and M that provide asymptotically pivotal test statistics in the presence of serially correlated error, ut.

C0: K = kT 1/3 for some k > 0 and M = 1.

CC: K = kT 1/3 and M = mT 1/3 for some k,m > 0.

CI: K = kT 1/3 for some k > 0 and M = T .

II: K = T and M = T .

The choice of C0 is a combination of the bandwidth growth rates that ensures the numerator providing a

consistent estimator of ω2 under the null, and the denominator providing a consistent estimator of variance

of yt (or the autocovariance of order zero) under the alternative. With the choice of CC, the numerator

provides a consistent estimator of ω2 under the null, and the denominator provides a consistent estimator

of ω2y under the alternative. CI is the case of the denominator being an inconsistent estimator of ω
2
y under

the alternative, while the numerator is still the consistent estimator of ω2 under the null. Finally, II is

the combination in which both the numerator and denominator are inconsistent estimators under the null
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and alternative, respectively. The relationship between our assumptions on bandwidth and the asymptotic

properties of the long-run variance estimators is summarized in Table 1. Note that employing a rate other

than T 1/3 is also possible in C0, CC, and CI, and theoretical results will not be affected as long as it

provides a consistent estimator. The T 1/3 rate is employed here simply because it is the optimal rate and

this particular rate will be used in the simulation in the next section.

When non-zero mean stationarity or trend stationarity is allowed as an alternative hypothesis, a de-

meaned and detrended version of the unit root test is often employed in practice. The long-run variance

ratio test can be also extended to these more empirically relevant cases. Suppose y = T−1
PT
t=1 yt,

∆y = T−1
PT
t=1∆yt, eyt = Pt

j=1

¡
∆yj −∆y

¢
and ey = T−1

PT
t=1 eyt. The demeaned and detrended test

statistics are given by

Rµ =MT
bω2(∆yt,K)bω2(yt − y,M) (5)

and

Rτ =MT
bω2(∆yt −∆y,K)bω2(eyt − ey,M) . (6)

When K =M = 1, Rµ corresponds to the test of Sargan and Bhargava (1983) and Rτ corresponds to

the R2 test proposed by Bhargava (1986). Note that Rτ is based on a detrending procedure that is efficient

under the null. Schmidt and Phillips (1992) also showed that, for a Gaussian likelihood, the LM principle

leads to these tests. With the choice of C0, the test is equivalent to the nonparametric extension of the VN

ratio test considered by Nabeya and Tanaka (1990) and Schmidt and Phillips (1992). It is also equivalent

to the MSB test considered by Stock (1994, 1999) and Perron and Ng (1996). The one-dimensional case of

the cointegration tests considered by Phillips and Ouliaris (1990), Shintani (2001), and Harris and Poskitt

(2004) reduces to the same unit root test under C0. R and Rµ under CC are equivalent to P ∗(1, 0) and

P ∗µ(1, 0) of Shintani (2001), respectively. For II, Rµ is somewhat similar to Breitung�s (2002) test based

on the variance ratio BR = T 2
PT
t=1(yt − y)2/

PT
t=1 S

2
t where St =

Pt
j=1(yj − y). Note that BR can be
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rewritten as

BR = T 2
2
PT
t=1 y

2
t − 2Ty2

2
PT
t=1 S

2
t

. (7)

Applying Lemma 1 to (5) under II yields

Rµ = T
2 2
PT
t=1 y

2
t + Ty

2
T − 2yTTy

2
PT
t=1 S

2
t

. (8)

Therefore, the Þrst term is common between the two test statistics. Nevertheless, two statistics are different

with their own limiting distribution as the remaining terms are not negligible. In the simulation, we will

also consider BR for the purpose of comparison.1

We now introduce the following assumption on the error term.

Assumption 1. (a) ut = C(L)εt =
P∞
j=0 cjεt−j, c0 = 1, |C(1)| > δ > 0 and

P∞
j=0 j|cj| < B < ∞

where δ and B are some positive constants.

(b) εt is iid with zero mean, variance σ2, and Þnite fourth cumulants, and εs = 0 for s ≤ 0.

Under Assumption 1, we have ω2 = C(1)2σ2 and T−1/2
P[Ts]
t=1 ut ⇒ ωW (s) where [Ts] signiÞes the inte-

ger part of Ts and W (s) denotes a standard Brownian motion deÞned on C[0, 1]. The limiting distribution

of the long-run variance ratio test is given in the following theorem.

1Recently, Müller (2005) also considered the effect of an inconsistent long-run variance estimator in his analysis of the test
of stationarity. We do not consider his test here because its null hypothesis is not a unit root.
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Theorem 1. Suppose that {yt}Tt=1 is generated by (1) with α = 1 and assumption 1 is satisÞed. Then,
(a) (Standard test)

R⇒



nR 1
0 W (r)

2dr
o−1

for C0 and CC,½
2
R 1
0 W (r)

2dr +
³R 1
0 W (r)dr

´2 − 2³R 10 W (r)dr´³R 10 W (r)dr´¾−1 for CI,n
2
R 1
0 W (r)

2dr +W (1)2 − 2W (1) R 10 W (r)dro
×
½
2
R 1
0 W (r)

2dr +
³R 1
0 W (r)dr

´2 − 2³R 10 W (r)dr´³R 10 W (r)dr´¾−1 for II,

where W (r) =
R r
0 W (s)ds.

(b) (Demeaned test)

Rµ ⇒



nR 1
0 Wµ(r)

2dr
o−1

for C0 and CC,n
2
R 1
0 Wµ(r)

2dr
o−1

for CI,n
2
R 1
0 W (r)

2dr +W (1)2 − 2W (1) R 10 W (r)droÁ2 R 10 Wµ(r)2dr for II,

where Wµ(r) =W (r)−
R 1
0 W (s)ds and Wµ(r) =

R r
0 Wµ(s)ds.

(c) (Detrended test)

Rτ ⇒



nR 1
0 Vµ(r)

2dr
o−1

for C0 and CC,n
2
R 1
0 V µ(r)

2dr
o−1

for CI,R 1
0 Vµ(r)

2drÁ
R 1
0 V µ(r)

2dr for II,

where Vµ(r) = V (r)−
R 1
0 V (s)ds, V (r) =W (r)− rW (1) and V µ(r) =

R r
0 Vµ(s)ds.

The limiting distribution of each test statistic is a function of a Brownian motion or a Brownian

bridge. Evidently, this contrasts to the autocorrelation robust test in regression where only the test with

an inconsistent long-run variance estimator has a nonstandard limiting distribution. Critical values for

the limiting distribution of the long-run variance ratio tests with all the combination of bandwidth growth
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rates are provided in Table 2. Numbers are obtained by simulation using an approximation of Brownian

motion by partial sums of standard normal random variables with 10,000 steps and 107 iterations. In the

following section, we evaluate the Þnite sample size property of each test using these asymptotic critical

values. Note that the test rejects the null hypothesis for large values of the long-run variance ratio and

the critical region is constructed accordingly. The consistency of the tests is also provided in the following

theorem.

Theorem 2. Suppose that {yt}Tt=1 is generated by (1) with |α| < 1 and assumption 1 is satisÞed.

Then, for any bandwidth growth rate combinations C0, CC, CI, or II,

P [R > c∗] , P [Rµ > c∗] , P [Rτ > c∗]→ 1

for any Þxed constant c∗.

In practice, the OLS residuals from the regression model (1) are often used to estimate the long-run

variance of ut to ensure the consistency of the unit root test. Theorem 2, however, shows that the long-

run variance estimator, using the over-differenced series ∆yt under the Þxed alternative, still provides

the consistency of the long-run variance ratio tests. This result is based on the fact that the long-run

variance estimator based on ∆yt converges to zero from a positive value at a sufficiently slow rate under

the alternative. In the simulation below, we focus on the case with the long-run variance estimator using

∆yt rather than using the quasi-differenced series from the OLS residuals. Nevertheless, the residual-based

long-run variance ratio test seems to be a reasonable alternative to our test.

3 Finite sample size of the tests

In this section, the Þnite sample size properties of each test introduced in the previous section are

investigated by a Monte Carlo simulation. We follow previous experimental studies in the unit root

testing literature and consider the autoregressive (AR) and moving-average (MA) models to introduce
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serial correlation in the error term. In particular, our data generating process is (1) with α = 1 using the

following three different error structures

ut =


εt (iid error)

ρut−1 + εt (AR(1) error)

εt + θεt−1 (MA(1) error)

where εt is an iid standard normal random variable, ρ = −0.8,−0.5, 0.5, 0.8 and θ = −0.8,−0.5, 0.5, 0.8.
Initial values y0, u0 and ε0 are set to 0. In all cases we use 10,000 replications. There is fairly general

agreement that the data-based bandwidth selection method in the long-run variance estimation have very

important effects on improving the Þnite sample performance of the semiparametric and nonparametric

unit root tests (e.g., see Stock, 1994, Phillips and Xiao, 1998). For this reason, we use Andrews� (1991)

automatic bandwidth selection procedure (designed for the Bartlett kernel) to select K when tests based

on C0, CC and CI are applied to AR(1) and MA(1) errors. For the test with CC, the value of the automatic

bandwidth selected for K is also used for M . For iid errors, we simply use K = 1.

Table 3 reports the rejection frequency of the standard long-run variance ratio test, R, with an as-

ymptotic level of 5% for the sample of Þve different sizes, T =25, 50, 100, 200, and 500. For each pair of

bandwidth growth rates, the Þrst column shows the empirical size when the unit root process has an iid

error. With the exception of a slight under-rejection for the C0/CI case when T = 25, the empirical size

of the long-run variance ratio tests is very close to the asymptotic level for all combinations of bandwidth

growth rates. The difference among the various choices of bandwidth, however, becomes more evident

when the error terms are serially correlated.

Consistent with the Þnding by Schwert (1989) for the semiparametric unit root tests, the long-run

variance ratio tests suffer from size distortion mostly in the case of the near MA unit root (θ = −0.8). Over-
rejection is observed for all tests, which implies that the tests are too liberal. However, when inconsistent

asymptotics are used for both the numerator and the denominator (II), the size distortion becomes smaller
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and the empirical size approaches the asymptotic level as sample size increases. In contrast, the size

distortion of other tests for the near MA unit root case do not disappear, even for T = 500. The size

distortion appears to be largest when the test is based on CC. The problem seems to be less severe when

the combination of the consistent and inconsistent estimators (CI) is employed in comparison with the

conventional case (C0 and CC) when the sample size increases. For the positively correlated MA error

(θ = 0.5, 0.8), the tests based on CC, CI, and II have their empirical size quite close to the nominal size.

In this case, only the test with C0 has a noticeable size distortion that results in the conservative test.

On the whole, the size distortion seems to be somewhat less severe for the AR errors compared to the

MA errors. The empirical size of the test with C0 is smaller than the nominal size for the entire range of

AR parameters, which suggests that the test is too conservative. The largest deviation from the nominal

size is observed in the test with CC when AR errors are positively correlated (ρ = 0.5, 0.8). In contrast

to the C0 case that under-rejects for all the cases, the test with CC over-rejects when AR parameters are

positive (ρ = 0.5, 0.8), but under-rejects when AR parameters are negative (ρ = −0.8,−0.5). As in the
MA error results, the AR error results again favor the tests that involve inconsistent estimators, namely,

CI and II cases. When the sample size increases, both tests have a size that is very close to the asymptotic

level for all different values of AR parameters.

Tables 4 and 5 report the same results for Rµ and Rτ , respectively. For the iid error and positively

correlated error, the size performance of the demeaned and detrended tests is very similar to that of the

standard case except for a very small sample (T = 25). For the negatively correlated case, the problem

of size distortion becomes more severe in general. In particular, rejection frequency increases substantially

with CC for the negatively correlated MA error. When II is used, however, stability of size remains for

θ = −0.5, and increases in the rejection frequency seems to be very modest, even for θ = −0.8, compared
to the other choice of bandwidths. The size performance of BR test is somewhat similar to that of the

demeaned test with II.

In summary, consistent with the previous Þndings in the literature, the test based on a consistent

nonparametric long-run variance estimator suffers from substantial size distortion when the errors are
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negatively correlated. In contrast, the empirical size of the test using a pair of inconsistent estimators seems

to be very close to nominal size on the whole regardless of the serial correlation structure. Therefore, in

terms of the stability and accuracy of size, this choice of bandwidth growth seems to be the most effective

one, with the combination of consistent and inconsistent estimators the second best.

4 Power of the tests

In the previous section, we found that it was possible to improve the size of the long-run variance ratio

test for a unit root by introducing inconsistent long-run variance estimators. This section investigates the

power properties of the same tests.

First, we consider the limiting distribution under the local alternative α = 1 + T−1c for a particular

value of c < 0. As in the case of other unit root tests, the limiting distribution involves the functional

of a diffusion Jc(r) ≡
R r
0 exp{(r − s)c}dW (s). Under this local alternative, all the asymptotic results in

Theorem 1 hold by replacingW (r) with Jc(r). This can be shown by using the argument similar to Stock�s

(1999) in his analysis of the local asymptotic power of the MSB test. The local asymptotic power functions

of R,Rµ, and Rτ for various bandwidth growth rates based on the 5 percent level are plotted in Figures

1, 2 and 3, respectively. They are approximated by discrete Gaussian random walks with 500 steps with

10,000 replications. For the standard test (R) in Figure 1, C0/CC and CI cases have similar power when

c is close to zero. The difference between their power and that of the II case is evident even if c is close to

zero. While the power of the CI case becomes slightly below the C0/CC power function for the moderate

value of c, both power functions become 1.00 relatively fast for distant alternatives. In contrast, the power

for the II case is considerably lower for the entire range of local alternative parameter c. It becomes only

about 0.5 even if the c is as small as −24. The local asymptotic power functions of the demeaned and
detrended tests (Rµ and Rτ in Figures 2 and 3) show the reduction of the local power by detrending the

data compared to their corresponding power for the standard test. However, in terms of the ranking and

pattern among the different choices of bandwidth, they are very similar to those of the standard tests.
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Figure 2 also contains the local asymptotic power of the BR test, which shows higher power relative to II

case but lower power relative to the other cases. In summary, the asymptotic power function of the tests

based on the pair of inconsistent estimators (II) is well below other power functions for the entire range of

c for all cases.

Second, we investigate the Þnite sample power properties using the simulation design similar to the

one used in the previous section. We Þrst obtain small sample size-adjusted critical values based on the

results in Tables 3 to 5. Note that the size-adjusted critical values are computed for all combinations of

data generating process and sample size. We then generate the data from (1) with α = 0.9 using the same

values of the error term used for α = 1 case and apply the unit root test to the data. The frequencies

of the rejection of the null hypothesis using the size-adjusted critical value are reported in Tables 6 to 8.

The four main Þndings from the tables are as follows. First, in agreement with the local asymptotic power

result, the Þnite sample size-adjusted power of the test with II is much lower than that of the tests with

C0, CC, and CI. For example, when the error is iid, the power of standard, demeaned and detrended tests

is only 0.76, 0.53 and 0.25, respectively, even for the large sample with T = 500. For the same sample size,

the power of other tests is 1.00 or at least close to 1.00. Second, the difference among the size-adjusted

power of tests with C0, CC, and CI is modest compared to the much lower power of II case. Among the

group of C0, CC, and CI, the test with CC performs somewhat better than the other two when the error

is negatively correlated, namely, AR(1) error with ρ = −0.8,−0.5 and MA(1) errors with θ = −0.8,−0.5.
Third, with the exception of the detrended test with a large sample (T = 250, 500), the test based on CI

shows reasonably good Þnite sample power very close to the power of the tests based on C0 and CC. This

fact is interesting given the Þnding of the previous section that the test with CI has a much better size

property than tests based on C0 and CC. Fourth, for a large sample, the power of BR test is higher than

the power of the demeaned test with II, but is lower than the power of the other demeaned tests.

The summary of this section follows. Both the local asymptotic power and the size-adjusted Þnite

sample power of the long-run variance ratio tests based on the pair of inconsistent estimators (II) are

found to be dramatically lower than those of the test based on the pair of consistent estimators (C0 and
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CC). This suggests that the stability of size in the II case seems to be too costly to justify the usefulness

of the inconsistent long-run variance estimator in the long-run variance ratio test for a unit root. However,

at the same time, the tests based on the combination of consistent and inconsistent long-run variance

estimators (CI) are found to have reasonable power as well as a good size. Therefore, among the various

pairs of bandwidth growth rates in the long-run variance ratio, the choice of CI may have some practical

use in testing for a unit root.

5 Extensions

5.1 Response Surface Analysis

In the previous section, some speciÞc rates of the bandwidth growth were chosen to represent the tests

with consistent and inconsistent long-run variance estimators. For the case of the numerator of the test

statistics, the bandwidth can be generally written as

K = kT δ (9)

where k > 0 and 0 < δ ≤ 1. In particular, δ = 1/3 is used in C0, CC and CI to represent the rate

for the consistent estimator. This rate is known to minimize the MSE of the long-run variance estimator

when k = 1.1447×(f (1)/f (0))2 where f (i) is the i-th derivative of the spectral density of ut at frequency
zero (Andrews, 1991). Theoretically, as long as the selected growth rate of the bandwidth provides the

consistent long-run variance estimator, the limiting distribution of the test statistic under the null and its

local asymptotic power do not depend on the rate or the choice of a constant k. Even so, the choice may

have some effects on the small sample performance of the test. For the case of the inconsistent long-run

variance estimator in II, the choice of δ = 1 and k = 1 (K = T ) is used because it has the simplest form

in the sense that it does not require any truncation in the kernel estimation. Unlike the consistent case,

however, even with a common growth rate T , the test statistics based on K = kT , with 0 < k < 1, will
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have different limiting distribution (and thus the local asymptotic power) depending on the choice of a

constant k. For these reasons it is of interest to see the sensitivity of the simulation results to the choice

of parameters δ and k in (9). A similar argument can also be made with the choice of bandwidth M in

the denominator of the test statistics. Here we conduct a simple response surface analysis of the (Þnite

sample) power of the test with various bandwidths that includes the cases of CC and II.

The simulation design is identical to the one used for the analysis of the Þnite sample power in section

4. For simplicity, we use the same bandwidth for the numerator and denominator (K = M) and report

only the results for the demeaned test in the case of T = 100 and iid error. Both parameters, δ and k, are

varying from 0.05 to 1.0. Figure 4 shows the size-adjusted power of the test as a function of δ and k.

The power turns out to be the lowest at 0.11 when both δ and k, are the largest (δ = 1 and k = 1).

Note that this number corresponds to the case of II with T = 100 and iid error in Table 6. For a Þxed value

of δ, the power increases as k decreases. Similarly, for a Þxed value of k, the power increases monotonically

as δ decreases. Finally, it also shows that no combination of δ and k provides a power higher than 0.52,

the value obtained in Table 7 for the case of CC.

5.2 Cointegration

The long-run variance ratio test for a unit root can be generalized to test the number of cointegration

(cointegrating rank) in a multivariate system. Let bΩ(xt,K) be the long-run variance covariance matrix
of n dimensional vector xt, a multivariate generalization of (2). The test statistic for the null hypothesis

of r cointegration in n × 1 vector of time series yt can be then constructed by using the sum of (n − r)
smallest eigenvalues of MT

hbΩ(∆yt,K)bΩ(yt,M)−1i. With the bandwidth growth rate that provides the
consistent long-run covariance matrix estimator, both theoretical and small sample properties of the test

are already considered in several studies, including Shintani (2001) and Harris and Poskitt (2004). Limiting

distribution of the test based on the inconsistent long-run covariance matrix estimator can also be obtained

as a multivariate generalization of Theorem 1. In this subsection, we investigate how the Þndings for

the univariate case obtained in the previous sections can be generalized to the multivariate case. In
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particular, we are interested in the effect of introducing the inconsistent estimator on the determination of

the cointegrating rank in Þnite samples.

We follow Harris and Poskitt (2004) in simulation design and generate Þve dimensional vector series

yt = (y1t, y2t, y3t, y4t, y5t)
0 from a vector autoregressive (VAR) model,

A(L)yt = εt (10)

where A(L) =diag[1− αL, 1− αL, 1− αL, 1− L, 1− L] with |α| ≤ 1, and εt = (ε1t, ε2t, ε3t, ε4t, ε5t)0 is an
iid multivariate normal random variable. An equicorrelation matrix with the correlation coefficient 0.8 is

used as a variance covariance matrix of εt and a vector of 0s is used as an initial value y0. Since all the

test statistics we consider here are invariant to any transformation of the form Byt where B is any 5× 5
nonsingular matrix, the simulation results based on (10) cover a fairly general case of cointegration, includ-

ing a linear transformation considered by Harris and Poskitt (2004). However, in general, the bandwidth

selected by the automatic procedure is not invariant to a linear transformation. For this reason, we employ

here a Þxed rule for selecting bandwidth in the long-run covariance matrix estimation. In particular, we

follow Schwert (1989) and use K = [4(T/100)1/3] where [x] is an integer part of x. The sample size T varies

from 25 to 500 as in the univariate case. The cointegrating rank is determined by successively testing from

the hypothesis of r = 0 to the hypothesis of r = 4 in case each hypothesis is not rejected. The asymptotic

critical values for the multivariate version of the demeaned tests based on C0, CC, CI, II, and BR are

obtained by approximating the limiting distribution using a multivariate normal random variable with

1,000 steps and 105 iterations.

Table 9 reports the relative frequencies of selected cointegrating ranks by sequentially applying the

asymptotic 5% level tests in 10,000 replications. The left block of the table shows the result with α = 1,

the case of no cointegration (r = 0). The right block of the table shows the result with α = 0.8, the

case when the cointegrating rank is three (r = 3). The asymptotic theory predicts that the probability

of selecting true cointegrating rank converges to 95% while the probability of selecting the smaller rank
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converges to zero.

When α = 1, all the tests, except the one based on CC, select the true cointegrating rank (r = 0) with

a very high frequency for all the sample sizes under consideration. Among all the tests, the one based on II

stands out as the frequency of selecting rank zero is closest to the theoretical value 95% even if the sample

size is as small as T = 25 or 50. The BR test shows the second best Þnite sample performance. The test

based on CC often selects r = 1 for the sample sizes of T = 25 and 50, but the frequency of selecting r = 0

dramatically increases for a larger sample size. The notable difference in the Þnite sample performance

reveals the fact that the good size property of the test based on an inconsistent estimator (II) and size

distortion in the test based on a consistent estimator (CC) observed in the univariate case are also present

in the Þve dimensional case.

When α = 0.8, no test selects true cointegrating rank r = 3, when sample size is less than T = 100.

The frequencies of selecting r = 3 increase as the sample size increases. In particular, the tests based on

C0, CC, and CI perform reasonably well when sample size becomes as large as T = 500. Among these

three tests, the one based on CC dominates the other two in Þnite sample and selects true rank more

than three times as many as other tests when T = 250. In contrast, the test based on II selects a smaller

cointegrating rank for almost all the cases. This poor performance of the test based on II can be explained

by its low power to reject the hypothesis of a cointegrating rank smaller than the true value, in the early

stage of the sequential cointegrating rank selection procedure. The BR test performs better than the II

case but is dominated by other tests.

From this additional experiment on cointegration, we Þnd that the better Þnite sample property associ-

ated with lower Þnite sample power in the unit root test using an inconsistent long-run variance estimator

can be well generalized to the multivariate case.
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6 Conclusion

In this paper, we investigated the properties of the long-run variance ratio tests for a unit root, a

generalization of a test based on the von Neumann ratio. Our main interest was in evaluating the effect of

introducing the inconsistent long-run variance estimation on the size and power of the unit root tests.

Based on the results of the Monte Carlo simulation designed to evaluate the Þnite sample property,

the unit root tests with an inconsistent long-run variance estimator were found to have much less size

distortion compared to the tests with conventional asymptotics that provide a consistent long-run variance

estimator. This Þnite sample size improvement, however, came at the cost of a loss in power. The Þnite

sample power, as well as the local asymptotic power, of the tests with an inconsistent long-run variance

estimator was shown to be much lower than that of conventional tests. This Þnding resembles the case

of the autocorrelation robust test in the standard regression context, where the test with a better size

property proposed by Kiefer, Vogelsang, and Bunzel (2000) has a lower power compared to the test based

on the conventional HAC asymptotics. In the autocorrelation robust inference literature, some efforts have

recently been made to improve the power while maintaining the good size property of the inconsistent

asymptotic-based test (e.g., Jansson, 2004). In the context of the long-run variance ratio test for a unit

root, a test that combines consistent and inconsistent estimators was found to provide similar size to the

test based only on inconsistent estimators, without suffering much from loss of power. Alternatively, while

not pursued in this paper, (i) the introduction of GLS detrending (Elliott, Rothenberg, and Stock, 1996),

and (ii) the use of an autoregressive spectral density estimator instead of a kernel-based estimator (Berk,

1974), seems to be a promising direction in which to extend the analysis of size and power of the long-run

variance ratio test with (or without) an inconsistent long-run variance estimator.
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Appendix : Proofs

Proof of Lemma 1.
By using a similar argument as in the derivation of equation (1) of Kiefer and Vogelsang

(2002), we have

bω2(xt, T ) = T−1
TX
i=1

TX
j=1

µ
1− |i− j|

T

¶
xixj = T

−1
TX
i=1

xi

TX
j=1

µ
1− |i− j|

T

¶
xj

= T−1
TX
i=1

xi


T−1X
j=1

|i− j − 1|− |i− j|
T

Sj +
i

T
ST


= T−1

TX
i=1

xi


TX
j=1

2× 1{i≥j} − 1
T

Sj − 1

T
ST +

i

T
ST


= T−2

TX
j=1

Sj

TX
i=1

xi(2× 1{i≥j} − 1)− T−2S2T + T−2ST
TX
i=1

ixi

= T−2
TX
j=1

Sj(2Sj − ST )− T−2S2T + T−2ST
TX
i=1

ixi

= 2T−2
TX
j=1

S2j − T−2S2T + T−2ST
 TX
i=1

ixi −
TX
j=1

Sj


= 2T−2

TX
j=1

S2j − T−2S2T + T−2ST
(T + 1)ST − 2 TX

j=1

Sj


= 2T−2

TX
j=1

S2j + T
−1S2T − 2T−2ST

TX
j=1

Sj

where 1A is an indicator function which takes one when A is true and zero otherwise.

Proof of Theorem 1. In the proof, the limits on integrals over the unit interval is
omitted. For example,

R 1
0 W (r)

2dr is written as
R
W 2. For the proof of part (a), we

Þrst investigate the asymptotic properties of the numerator of the long-run variance ratio.
Under assumption 1, we have bω2(4yt, kT 1/3) p→ ω2. For the case of the inconsistent rate
K = T , applying Lemma 1 to xt = ∆yt and St =

Pt
j=1∆yj = yt yields

bω2(∆yt, T ) = 2T−2 TX
t=1

y2t + T
−1y2T − 2T−2yT

TX
t=1

yt (A.1)

⇒ ω2
½
2

Z
W 2 +W (1)2 − 2W (1)

Z
W

¾
where the joint weak convergence results T−2

PT
t=1 y

2
t ⇒ ω2

R
W 2, yT /

√
T ⇒ ωW (1) and

T−3/2
PT
t=1 yt ⇒ ω

R
W follow from Lemma 2.1 of Park and Phillips (1988). For the
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asymptotic properties of the denominator, Þrst note that T−1bω2(yt, 1) = T−2PT
t=1 y

2
t ⇒

ω2
R 1
0
W2. For bω2(yt,M) with M/T → 0, we have

(MT )−1bω2(yt,M) = M−1
M−1X

j=−(M−1)
(1− |j/M |)T−2

TX
t=|j|+1

ytyt−|j|

= M−1
M−1X

j=−(M−1)
(1− |j/M |)T−2

TX
t=1

y2t +Op(M/T )

⇒
µZ 1

−1
(1− |x|)dx

¶
ω2
Z 1

0

W 2 = ω2
Z 1

0

W 2

where the second equality follows from

T−2
TX

t=j+1

ytyt−j = T−2
T−jX
t=1

ytyt+j = T
−2

T−jX
t=1

y2t + T
−2

T−jX
t=1

yt

jX
s=1

ut+s = T
−2

T−jX
t=1

y2t +Op(M/T )

for any j = 1, ...,M−1, since T−1PT−j
t=1 ytut+j ⇒ (ω2/2)

©
W (1)2 − 1ª−Pj

s=1 γs for any
j = 1, ...,M − 1. Finally, for bω2(yt, T ), applying Lemma 1 to xt = yt and St =Pt

j=1 yj
yields

T−2bω2(yt, T ) = 2T−4
TX
t=1

S2t + T
−3S2T − 2T−4ST

TX
t=1

St

⇒ ω2

(
2

Z
W

2
+

µZ
W

¶2
− 2

µZ
W

¶µZ
W

¶)

where the joint weak convergence results for the I(2) process T−4
PT
t=1 S

2
t ⇒ ω2

R
W

2

and T−5/2
PT
t=1 St ⇒ ω

R
W are from Lemma 2.1 of Park and Phillips (1989) and

T−3/2ST = T−3/2
PT
t=1 yt ⇒ ω

R
W . The required results for part (a) can be obtained by

combining the appropriate results under C0, CC, CI, and II, because the convergence of
the numerator and the denominator holds jointly and the nuisance parameter ω2 cancels
out for any combination.
For the proof of part (b), let us Þrst note that the numerator of the demeaned test

statistic Rµ is identical to that of the standard test statistic R, and thus its asymptotic
property is already provided in the proof of part (a) above. For the denominator of Rµ
with M = T , the formula in Lemma 1 simpliÞes to 2T−2

PT
t=1 S

2
t since ST = 0 for the

demeaned series xt = yt−y. The rest of the proof is similar to part (a) with the standard
Brownian motion replaced by the demeaned Brownian motion. The proof of (c) is entirely
analogous to that of parts (a) and (b) except for the use of the demeaned Brownian bridge.

Proof of Theorem 2. We show only the consistency of the R test since the results for Rµ
and Rτ can obtained using a similar argument. Let us write bγy(j) = T−1PT

t=|j|+1 ytyt−|j|
and maintain the assumption on the initial value y0 = 0. Then, under the Þxed alternative,
the limiting behavior of the numerator for the over-differenced series when K/T → 0 is
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given by

Kbω2(∆yt,K) =
K−1X
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p→ 2σ2y > 0

where σ2y =
P∞
i=0

³Pi
j=0 α

i−jcj
´2
σ2. For the inconsistent rate with K = T , (A.1) in the

proof of Theorem 1 can be also used to obtain

T bω2(∆yt, T ) = 2T−1 TX
t=1

y2t + y
2
T − 2yTy p→ 2σ2y + y

2
∞ > 0

For the denominator, since yt is stationary, we have bω2(yt, 1) p→ σ2y and bω2(yt,mT 1/3) p→
ω2y. Finally, for the inconsistent rate with M = T , applying Lemma 1 to xt = yt yields

bω2(yt, T ) = 2T−2
TX
t=1

S2t + T
−1S2T − 2T−2ST

TX
t=1

St

⇒ ω2y

½
2

Z
W 2 +W (1)2 − 2W (1)

Z
W

¾
since St =

Pt
j=1 yj is an I(1) process. Combining the all the results yields

T−2/3R p→ 2k−1 > 0 for C0,

T−1R p→ 2mk−1σ2yω
−2
y > 0 for CC,

T−5/3R⇒ 2k−1σ2yω
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½
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Z
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> 0 for CI and

T−1R⇒ ¡
2σ2y + y

2
∞
¢½
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Z
W 2 +W (1)2 − 2W (1)

Z
W

¾−1
> 0 for II.

Therefore, all the test statistics diverge in the positive direction as required.
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Table 1. Bandwidth and the long-run variance estimator

Numerator Denominatorbω2(∆yt,K) bω2(yt,M)
Bandwidth under H0 : α = 1 under H1 : |α| < 1
C0 Consistent for ω2 Consistent for σ2y
CC Consistent for ω2 Consistent for ω2y
CI Consistent for ω2 Inconsistent for ω2y
II Inconsistent for ω2 Inconsistent for ω2y

Note: ω2: Long-run variance of ut; σ2y: Variance of yt; ω
2
y: Long-run variance of yt.

Table 2. Critical values

Level
Test Bandwidth 10% 5% 1%
Standard C0/CC 13.1 17.8 29.1

CI 88.1 174 586
II 31.7 52.7 136

Demeaned C0/CC 21.8 27.5 40.5
CI 643 1.10×103 2.79×103
II 213 317 657

Detrended C0/CC 30.3 36.6 51.0
CI 1.34×103 2.10×103 4.76×103
II 237 339 680

Note: Results are based on discrete approximation to the Brownian motion by partial
sums of a standard normal random variable with 10,000 steps and 107 replications.
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Table 3. Empirical size of the standard test with 5% level

Band- iid AR(1) error MA(1) error
T width error ρ =-0.8 -0.5 0.5 0.8 θ =-0.8 -0.5 0.5 0.8
25 C0 0.03 0.0 0.01 0.0 0.0 0.09 0.05 0.01 0.01

CC 0.03 0.19 0.11 0.02 0.04 0.46 0.21 0.04 0.04
CI 0.04 0.04 0.05 0.02 0.01 0.18 0.08 0.03 0.03
II 0.04 0.08 0.05 0.03 0.03 0.14 0.07 0.04 0.04

50 C0 0.04 0.0 0.02 0.01 0.0 0.17 0.08 0.02 0.02
CC 0.04 0.14 0.10 0.03 0.02 0.51 0.20 0.05 0.05
CI 0.05 0.05 0.05 0.03 0.01 0.21 0.09 0.04 0.04
II 0.05 0.07 0.05 0.04 0.04 0.13 0.06 0.04 0.04

100 C0 0.05 0.01 0.04 0.02 0.0 0.32 0.09 0.03 0.02
CC 0.05 0.12 0.09 0.03 0.02 0.52 0.17 0.05 0.04
CI 0.05 0.05 0.05 0.03 0.02 0.21 0.08 0.04 0.04
II 0.05 0.06 0.05 0.05 0.04 0.10 0.06 0.05 0.05

250 C0 0.04 0.03 0.05 0.02 0.01 0.39 0.10 0.03 0.03
CC 0.04 0.09 0.07 0.03 0.02 0.49 0.13 0.04 0.04
CI 0.05 0.05 0.05 0.04 0.03 0.21 0.08 0.04 0.04
II 0.05 0.05 0.05 0.05 0.05 0.08 0.05 0.05 0.05

500 C0 0.05 0.04 0.05 0.03 0.02 0.40 0.10 0.04 0.04
CC 0.05 0.08 0.07 0.04 0.03 0.45 0.12 0.05 0.05
CI 0.05 0.05 0.05 0.04 0.04 0.19 0.07 0.04 0.04
II 0.05 0.05 0.05 0.05 0.05 0.07 0.05 0.05 0.05

Note: Empirical rejection rate of 5% level tests based on asymptotic critical values
when data are generated by (1) with α = 1. The data-based bandwidth selection
method of Andrews (1991) is applied to the Þrst differenced series for C0, CC and
CI. Results are based on 10,000 replications.
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Table 4. Empirical size of the demeaned test with 5% level

Band- iid AR(1) error MA(1) error
T width error ρ =-0.8 -0.5 0.5 0.8 θ =-0.8 -0.5 0.5 0.8
25 C0 0.03 0.0 0.01 0.0 0.0 0.09 0.04 0.01 0.0

CC 0.03 0.46 0.23 0.05 0.13 0.83 0.37 0.06 0.08
CI 0.04 0.04 0.05 0.01 0.0 0.34 0.11 0.02 0.02
II 0.05 0.12 0.07 0.03 0.02 0.30 0.10 0.04 0.04
BR 0.05 0.19 0.10 0.02 0.0 0.47 0.16 0.03 0.03

50 C0 0.04 0.0 0.01 0.0 0.0 0.12 0.06 0.01 0.01
CC 0.04 0.32 0.17 0.04 0.06 0.86 0.33 0.06 0.07
CI 0.05 0.05 0.05 0.02 0.0 0.39 0.11 0.03 0.03
II 0.05 0.10 0.07 0.04 0.02 0.29 0.09 0.05 0.05
BR 0.05 0.14 0.08 0.03 0.01 0.42 0.12 0.04 0.04

100 C0 0.04 0.0 0.02 0.01 0.0 0.33 0.08 0.02 0.01
CC 0.04 0.22 0.13 0.03 0.04 0.84 0.27 0.05 0.06
CI 0.05 0.05 0.06 0.03 0.01 0.37 0.10 0.04 0.03
II 0.05 0.07 0.06 0.04 0.03 0.22 0.07 0.05 0.05
BR 0.05 0.10 0.07 0.04 0.02 0.33 0.09 0.05 0.05

250 C0 0.05 0.01 0.04 0.02 0.0 0.55 0.11 0.03 0.02
CC 0.05 0.14 0.09 0.03 0.03 0.76 0.19 0.05 0.05
CI 0.05 0.05 0.05 0.03 0.02 0.31 0.08 0.04 0.04
II 0.04 0.05 0.05 0.04 0.04 0.13 0.06 0.04 0.04
BR 0.05 0.07 0.05 0.04 0.03 0.19 0.07 0.05 0.05

500 C0 0.05 0.03 0.05 0.02 0.01 0.56 0.11 0.03 0.03
CC 0.05 0.11 0.08 0.04 0.03 0.69 0.16 0.05 0.05
CI 0.05 0.06 0.06 0.04 0.03 0.28 0.08 0.04 0.04
II 0.05 0.05 0.05 0.05 0.04 0.09 0.05 0.05 0.05
BR 0.05 0.06 0.05 0.05 0.04 0.13 0.06 0.05 0.05

Note: See the note to Table 3.
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Table 5. Empirical size of the detrended test with 5% level

Band- iid AR(1) error MA(1) error
T width error ρ =-0.8 -0.5 0.5 0.8 θ =-0.8 -0.5 0.5 0.8
25 C0 0.02 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0

CC 0.02 0.49 0.23 0.02 0.07 0.65 0.34 0.03 0.05
CI 0.04 0.01 0.02 0.0 0.0 0.14 0.06 0.01 0.01
II 0.05 0.13 0.07 0.03 0.02 0.18 0.09 0.04 0.04

50 C0 0.03 0.0 0.0 0.0 0.0 0.03 0.03 0.01 0.0
CC 0.03 0.35 0.18 0.02 0.03 0.79 0.36 0.05 0.05
CI 0.05 0.03 0.04 0.01 0.0 0.24 0.10 0.02 0.02
II 0.05 0.10 0.06 0.04 0.03 0.21 0.09 0.04 0.04

100 C0 0.04 0.0 0.0 0.0 0.0 0.08 0.04 0.01 0.0
CC 0.04 0.25 0.14 0.02 0.02 0.86 0.30 0.04 0.04
CI 0.05 0.03 0.05 0.02 0.01 0.30 0.09 0.03 0.03
II 0.05 0.07 0.06 0.04 0.03 0.20 0.07 0.05 0.05

250 C0 0.05 0.0 0.03 0.01 0.0 0.49 0.09 0.02 0.02
CC 0.05 0.16 0.10 0.03 0.02 0.86 0.24 0.05 0.05
CI 0.05 0.05 0.05 0.03 0.01 0.32 0.09 0.04 0.04
II 0.05 0.06 0.05 0.05 0.04 0.14 0.06 0.05 0.05

500 C0 0.05 0.01 0.04 0.02 0.0 0.62 0.10 0.03 0.02
CC 0.05 0.12 0.09 0.03 0.03 0.82 0.19 0.05 0.05
CI 0.05 0.05 0.05 0.03 0.02 0.30 0.08 0.04 0.04
II 0.05 0.06 0.05 0.05 0.04 0.10 0.05 0.05 0.05

Note: See the note to Table 3.
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Table 6. Size-adjusted power of the standard test with 5% level

Band- iid AR(1) error MA(1) error
T width error ρ =-0.8 -0.5 0.5 0.8 θ =-0.8 -0.5 0.5 0.8
25 C0 0.15 0.11 0.13 0.14 0.10 0.12 0.13 0.14 0.14

CC 0.15 0.13 0.15 0.12 0.05 0.14 0.14 0.13 0.13
CI 0.13 0.13 0.13 0.12 0.09 0.14 0.13 0.14 0.13
II 0.10 0.11 0.11 0.09 0.07 0.15 0.11 0.09 0.10

50 C0 0.30 0.21 0.27 0.26 0.19 0.18 0.25 0.28 0.28
CC 0.30 0.27 0.29 0.25 0.15 0.31 0.29 0.27 0.27
CI 0.27 0.24 0.25 0.23 0.18 0.30 0.26 0.25 0.25
II 0.15 0.20 0.17 0.13 0.09 0.27 0.19 0.14 0.14

100 C0 0.75 0.45 0.65 0.63 0.47 0.46 0.65 0.68 0.66
CC 0.75 0.65 0.68 0.61 0.43 0.76 0.70 0.67 0.65
CI 0.58 0.49 0.52 0.48 0.38 0.65 0.57 0.51 0.51
II 0.26 0.34 0.28 0.24 0.18 0.55 0.33 0.26 0.25

250 C0 1.0 0.97 1.0 1.0 0.97 0.98 1.0 1.0 1.0
CC 1.0 1.0 1.0 1.0 0.97 1.0 1.0 1.0 1.0
CI 0.98 0.92 0.95 0.94 0.84 0.99 0.97 0.96 0.95
II 0.54 0.67 0.59 0.49 0.40 0.91 0.66 0.51 0.52

500 C0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CI 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0
II 0.76 0.86 0.80 0.72 0.63 0.99 0.85 0.75 0.75

Note: Empirical rejection rate of 5% level tests based on size-adjusted critical values
when data are generated by (1) with α = 0.9. The data-based bandwidth selection
method of Andrews (1991) is applied to the Þrst differenced series for C0, CC and
CI. Results are based on 10,000 replications.
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Table 7. Size-adjusted power of the demeaned test with 5% level

Band- iid AR(1) error MA(1) error
T width error ρ =-0.8 -0.5 0.5 0.8 θ =-0.8 -0.5 0.5 0.8
25 C0 0.12 0.05 0.07 0.09 0.09 0.04 0.07 0.10 0.10

CC 0.12 0.08 0.09 0.06 0.03 0.05 0.08 0.08 0.07
CI 0.11 0.08 0.09 0.10 0.10 0.05 0.09 0.10 0.10
II 0.06 0.07 0.07 0.06 0.08 0.02 0.06 0.06 0.06
BR 0.10 0.10 0.11 0.10 0.11 0.07 0.10 0.10 0.10

50 C0 0.22 0.08 0.14 0.18 0.15 0.05 0.12 0.20 0.19
CC 0.22 0.14 0.17 0.15 0.07 0.09 0.15 0.19 0.17
CI 0.19 0.15 0.17 0.17 0.15 0.11 0.15 0.17 0.17
II 0.07 0.09 0.08 0.07 0.08 0.05 0.08 0.07 0.07
BR 0.17 0.17 0.17 0.15 0.14 0.12 0.16 0.16 0.16

100 C0 0.52 0.17 0.37 0.41 0.31 0.15 0.35 0.46 0.44
CC 0.52 0.38 0.44 0.38 0.21 0.32 0.45 0.44 0.41
CI 0.41 0.33 0.36 0.35 0.27 0.30 0.37 0.37 0.37
II 0.11 0.17 0.12 0.10 0.09 0.17 0.14 0.10 0.10
BR 0.30 0.34 0.32 0.28 0.24 0.31 0.34 0.29 0.29

250 C0 1.0 0.72 0.97 0.97 0.87 0.72 0.98 0.98 0.98
CC 1.0 0.96 0.98 0.97 0.82 0.98 0.99 0.98 0.98
CI 0.92 0.79 0.85 0.82 0.68 0.88 0.88 0.86 0.84
II 0.30 0.43 0.34 0.26 0.20 0.62 0.40 0.28 0.28
BR 0.64 0.74 0.68 0.59 0.52 0.84 0.73 0.62 0.62

500 C0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
CI 1.0 0.98 0.99 0.99 0.95 1.0 1.0 1.0 0.99
II 0.53 0.68 0.58 0.48 0.39 0.91 0.66 0.51 0.51
BR 0.86 0.93 0.89 0.83 0.77 0.99 0.92 0.85 0.85

Note: See the note to Table 6.
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Table 8. Size-adjusted power of the detrended test with 5% level

Band- iid AR(1) error MA(1) error
T width error ρ =-0.8 -0.5 0.5 0.8 θ =-0.8 -0.5 0.5 0.8
25 C0 0.07 0.05 0.06 0.06 0.06 0.05 0.06 0.06 0.06

CC 0.07 0.06 0.06 0.05 0.03 0.06 0.06 0.06 0.05
CI 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07
II 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05

50 C0 0.11 0.06 0.08 0.10 0.08 0.05 0.07 0.10 0.10
CC 0.11 0.08 0.10 0.09 0.06 0.08 0.10 0.10 0.09
CI 0.10 0.08 0.09 0.09 0.08 0.08 0.09 0.10 0.09
II 0.05 0.07 0.06 0.05 0.05 0.05 0.06 0.05 0.05

100 C0 0.27 0.09 0.18 0.23 0.17 0.09 0.17 0.24 0.24
CC 0.27 0.20 0.23 0.20 0.12 0.18 0.23 0.23 0.22
CI 0.21 0.16 0.17 0.17 0.14 0.14 0.19 0.18 0.18
II 0.06 0.09 0.07 0.05 0.05 0.08 0.08 0.06 0.06

250 C0 0.91 0.37 0.75 0.79 0.63 0.40 0.76 0.84 0.81
CC 0.91 0.73 0.82 0.78 0.56 0.71 0.83 0.83 0.80
CI 0.58 0.41 0.49 0.50 0.39 0.36 0.50 0.52 0.51
II 0.13 0.19 0.15 0.10 0.08 0.22 0.18 0.12 0.12

500 C0 1.0 0.88 1.0 1.0 0.97 0.91 1.0 1.0 1.0
CC 1.0 0.98 1.0 1.0 0.97 0.96 1.0 1.0 1.0
CI 0.86 0.62 0.74 0.78 0.67 0.55 0.74 0.79 0.77
II 0.25 0.30 0.27 0.23 0.18 0.34 0.29 0.24 0.25

Note: See the note to Table 6.
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Table 9. Cointegrating rank selection using the demeaned test with 5% level

Band- α = 1.0 α = 0.8
T width r = 0 1 2 3 4 5 r = 0 1 2 3 4 5
25 C0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

CC 0.55 0.43 0.02 0.0 0.0 0.0 0.51 0.45 0.04 0.0 0.0 0.0
CI 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
II 0.96 0.04 0.0 0.0 0.0 0.0 0.97 0.03 0.0 0.0 0.0 0.0
BR 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

50 C0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
CC 0.72 0.27 0.01 0.0 0.0 0.0 0.44 0.48 0.08 0.0 0.0 0.0
CI 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
II 0.95 0.05 0.0 0.0 0.0 0.0 0.97 0.03 0.0 0.0 0.0 0.0
BR 0.98 0.02 0.0 0.0 0.0 0.0 0.93 0.06 0.0 0.0 0.0 0.0

100 C0 1.0 0.0 0.0 0.0 0.0 0.0 0.99 0.01 0.0 0.0 0.0 0.0
CC 0.88 0.12 0.0 0.0 0.0 0.0 0.13 0.53 0.31 0.03 0.0 0.0
CI 0.99 0.01 0.0 0.0 0.0 0.0 0.92 0.07 0.01 0.0 0.0 0.0
II 0.95 0.05 0.0 0.0 0.0 0.0 0.95 0.05 0.0 0.0 0.0 0.0
BR 0.96 0.04 0.0 0.0 0.0 0.0 0.65 0.30 0.04 0.0 0.0 0.0

250 C0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.14 0.71 0.15 0.0 0.0
CC 0.91 0.09 0.0 0.0 0.0 0.0 0.0 0.0 0.21 0.78 0.01 0.0
CI 0.98 0.02 0.0 0.0 0.0 0.0 0.06 0.28 0.41 0.24 0.01 0.0
II 0.95 0.05 0.0 0.0 0.0 0.0 0.77 0.23 0.01 0.0 0.0 0.0
BR 0.95 0.05 0.0 0.0 0.0 0.0 0.03 0.31 0.49 0.16 0.01 0.0

500 C0 0.99 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.01 0.0
CC 0.93 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.02 0.0
CI 0.97 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.91 0.02 0.0
II 0.95 0.05 0.0 0.0 0.0 0.0 0.28 0.54 0.17 0.02 0.0 0.0
BR 0.95 0.05 0.0 0.0 0.0 0.0 0.0 0.02 0.35 0.62 0.02 0.0

Note: The relative frequencies of the selected cointegrating rank using sequential
procedure. Frequencies of selecting the true cointegrating rank are shown in bold
font. Results are based on 10,000 replications.
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