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1. Introduction

John Harsanyi’s 1953 and 1955 articles in the Journal of Political Economy
[Harsanyi (1953, 1955)] are among the most important and influential con-
tributions to social choice theory and welfare economics. In these articles,
Harsanyi offered a rational choice foundation for utilitarianism. Specifically,
Harsanyi used the recently developed expected utility theory of von Neumann
and Morgenstern (1944) to provide two axiomatizations of utilitarianism. In
Weymark (1991), I referred to these results as Harsanyi’s Aggregation and
Impartial Observer Theorems.

In Harsanyi’s Aggregation Theorem, individual and social preferences on
the set of lotteries generated by a finite set of sure outcomes are assumed
to satisfy the axioms of expected utility theory. Furthermore, two lotteries
are socially indifferent if every individual is indifferent between them—the
familiar Pareto Indifference condition. With these assumptions, Harsanyi has
shown that if the preferences are represented by von Neumann–Morgenstern
utility functions, then the social utility function is an affine function of the
individual utility functions. Hence, lotteries are socially ranked according to
a “weighted utilitarian” rule.

In Harsanyi’s Impartial Observer Theorem, a hypothetical impartial ob-
server determines a social ranking of the alternatives by imagining himself
as having an equal chance of being any individual in society. The individual
preferences over lotteries are assumed to satisfy the expected utility axioms,
as are the observer’s preferences over the extended lotteries in which both
his identity and the outcome of the actual lottery are uncertain. Provided
that the observer is sympathetic to the interests of the individuals and that
his preferences over extended lotteries are represented by a von Neumann–
Morgenstern utility function, lotteries are socially ranked according to their
average utility; i.e., by an “average utilitarian” rule.

Sen (1976) has argued that neither of Harsanyi’s theorems are axioma-
tizations of utilitarian rules because he has misapplied expected utility the-
ory. In particular, Sen has argued that, contrary to what many believe,
von Neumann–Morgenstern expected utility theory is an ordinal theory and,
therefore, any increasing transform of a von Neumann–Morgenstern utility
function is a satisfactory representation of an individual’s preference relation.
However, utilitarianism requires a cardinal theory of utility and so, according
to Sen, Harsanyi was not justified in giving his theorems utilitarian interpre-
tations. Sen’s informal discussion of these issues has been formalized by Wey-
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mark (1991). Broome (1997) calls this argument the “standard objection”
to Harsanyi’s theorems. A particularly clear presentation of this objection
from someone who endorses its conclusions may be found in Roemer (1996b,
Chapter 4).

In the Sen–Weymark critique of Harsanyi, von Neumann–Morgenstern
utility theory is identified with the utility representation of a binary prefer-
ence relation over lotteries satisfying the expected utility axioms. However,
as Risse (2002) has recently reminded us, von Neumann and Morgenstern
(1944, Chapter 1, Section 3) regard their main contribution to utility the-
ory to be the “discovery” of a “natural” operation (the convex combination
operator used to form a probability distribution over outcomes) that allows
them to put the measurement of utility on as firm a foundation as the mea-
surement of, say, heat. It is this operation in conjunction with the preference
relation that makes utility cardinally measurable.

Von Neumann and Morgenstern’s axiomatization of “measurable” utility
is now regarded as being one of the pioneering contributions to what has
come to be known as the representational theory of measurement.1 Broome
(1991, 1997) and Risse (2002) have in various ways made use of measurement
theory in order to evaluate the extent to which Harsanyi’s theorems can be
used to provide support for some form of utilitarianism. Broome (1997) and
Risse (2002) have argued that the Sen–Weymark objection to Harsanyi can
be overcome by taking proper account of von Neumann and Morgenstern’s
convex combination operator. Broome (1991), and latter Risse (2002), invoke
arguments concerning the weighing of goods across states of nature to help
justify the use of von Neumann–Morgenstern representations in Harsanyi’s
theorems.

In this article, I argue that even if full account is taken of the role that
convex combination operators play in von Neumann and Morgenstern’s the-
ory, the sense in which von Neumann–Morgenstern utility is cardinal is not a
sense that has normative content. Rather, the selection of a von Neumann–
Morgenstern representation of an individual’s preference (instead of some
non-affine transform of this function) is based on pragmatic considerations
that may be compelling when describing choice behaviour in the presence
of uncertainty, but that are not compelling when the objective is to mea-

1See, for example, Krantz, Luce, Suppes, and Tversky (1971) or Roberts (1979) for
introductions to measurement theory. Ellingsen (1994) provides an insightful account of
the history of cardinal utility from a measurement-theoretic perspective.
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sure an individual’s well-being, as is required by normative theories such as
utilitarianism. I also argue that the way in which Broome (1991) circum-
vents this problem is by implicitly supplementing the preference relation of
von Neumann and Morgenstern with a second relation that quantitatively
measures utility differences. I therefore conclude that the “standard objec-
tion” to Harsanyi, while employing an incomplete account of von Neumann–
Morgenstern expected utility theory, can be extended to take the complete
description of their utility theory into account. The cardinality of utility
necessary for Harsanyi’s utilitarian interpretation of his theorems to be jus-
tifiable must be found elsewhere. My arguments apply to both of Harsanyi’s
theorems, so, for concreteness, I focus my discussion on his Aggregation The-
orem.

In his theorems, Harsanyi uses the axiomatization of expected utility
theory due to Marschak (1950), rather than the original axiomatization of von
Neumann and Morgenstern (1944). Marschak’s version of expected utility
theory is described in Section 2. In Section 3, I discuss how Harsanyi’s
1953 and 1955 articles provided a connection between expected utility theory
and welfare economics. I also formally state his Aggregation Theorem. In
Section 4, I present a summary of the Sen–Weymark critique of Harsanyi.
An introduction to the representational theory of measurement is provided
in Section 5. In Section 6, I describe how expected utility theory can be
formalized using the kinds of structures employed in measurement theory
and argue that this formalization does not provide a normatively compelling
justification for the cardinality of utility. I then consider Broome’s and Risse’s
arguments in Section 7. I close with some concluding remarks in Section 8.

2. Expected Utility Theory

Harsanyi (1955) models uncertainty using lotteries over a finite set of sure
outcomes. Formally, the set of sure outcomes is X = {x1, . . . , xM), where
M ≥ 2. A (simple) lottery p = (p1, . . . , pM) specifies, for each outcome
xm ∈ X, the probability pm of obtaining this outcome. The set of all lotteries
L on X is the (M − 1)-dimensional unit simplex; i.e., the set of all p ∈ R

M
+

for which
∑M

m=1 pm = 1. Letting em = (em
1 , . . . , e

m
M), where em

i = 1 if i = m
and em

i = 0 otherwise, the sure outcome xm can be equivalently described by
the lottery em that assigns probability one to the outcome xm.

A weak preference relation is a binary relation � on L. The corresponding
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strict preference � and indifference ∼ relations are defined by setting, for
all p, q ∈ L, p � q ↔ [p � q and ¬(q � p)] and p ∼ q ↔ [p � q and q � p].
The binary relation � is complete if for all p, q ∈ L, p � q or q � p and it
is transitive if for all p, q, r ∈ L, [p � q and q � r] → p � r.

For all p, q ∈ L and all α ∈ [0, 1], the convex combination [αp+ (1−α)q]
defines a new lottery. This lottery can be given two interpretations. First,
because [αp + (1 − α)q] is simply a vector in the (M − 1)-dimensional unit
simplex, it can be interpreted as being a simple lottery. Second, it can be
interpreted as being a two-stage compound lottery. A compound lottery is
a lottery that has lotteries as prizes. In the case of [αp + (1 − α)q], in the
first stage, with probability α the outcome is the simple lottery p and with
probability 1 − α the outcome is the simple lottery q.2

There are many essentially equivalent ways of axiomatizing expected util-
ity theory when the set of alternatives are lotteries. The first, of course, is the
axiomatization of von Neumann and Morgenstern (1944). Harsanyi (1955)
uses Axioms I, II, III′, and IV of Marschak (1950), rather than the axioms
originally proposed by von Neumann and Morgenstern. These four Marschak
axioms are: Ordering, Continuity, Nondegeneracy, and Independence.

Ordering. � is complete and transitive.

Continuity. For all p, q, r ∈ L for which p � q � r, there exists an α ∈ (0, 1)
such that [αp + (1 − α)r] ∼ q.

Nondegeneracy. There exist four distinct lotteries in L that are mutually
nonindifferent.

Independence. (i) For all p, q ∈ L and all α ∈ (0, 1), if p ∼ q, then p ∼
[αp + (1 − α)q]. (ii) For all distinct p, q, r ∈ L and all α ∈ (0, 1), if p ∼ q,
then [αp + (1 − α)r] ∼ [αq + (1 − α)r].

2Strictly speaking, a compound lottery is not in L, so when the compound lottery
interpretation of [αp + (1 − α)q] is adopted, preferences need to be defined on the set
of lotteries, both simple and compound, that can be generated by the set of outcomes
X. Versions of expected utility theory that employ compound lotteries assume that any
compound lottery is indifferent to the simple lottery that assigns the same probability to
each of the outcomes in X as does the compound lottery. With this assumption, there is
no loss of generality in simply defining preferences on L, as is done here. Note that this
“reduction of compound lotteries” assumption rules out the possibility that an individual
has an intrinsic taste for gambling. See, for example, Harsanyi (1987).
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Ordering says (i) that the decision-maker is able to compare any two
lotteries and either say that they are indifferent to each other or that one
is strictly preferred to the second and (ii) that the preference � does not
exhibit a cycle over any triple of lotteries unless these alternatives are all
indifferent to each other. Continuity says that if three lotteries can be strictly
ranked, then the middle-ranked lottery is indifferent to some probability
mixture of the other two lotteries. Nondegeneracy requires that there be
at least four distinct indifference classes of lotteries. In combination with
the other axioms, Nondegeneracy implies that there are in fact a infinite
number of indifference classes. Independence says that if two lotteries p and
q are indifferent to each other, then (i) so are all the lotteries on the line
segment joining them and (ii) any probability mixture between p and some
third lottery r is indifferent to the same probability mixture betwen q and
r.3

The axioms of expected utility theory are usually interpreted as being nec-
essary conditions for a preference over risky alternatives to qualify as being
rational. In behavioural intepretations of the theory, preferences are defined
from choice. For example, the statement that p � q is taken to mean that
only p is chosen when confronted with a choice from the set {p, q}. With
this interpretation, the choices made from pairs of lotteries are not neces-
sarily meant to be descriptive of a decision-maker’s actual behaviour when
confronted with these options; it could instead correspond to the behaviour
of an ideally rational decision-maker. Regardless of whether preferences are
a primitive of the model or are defined from choice, the axioms of expected
utility theory need to be provided with some justification as to why rational
preferences must satisfy them. Detailed discussions of some of the justifica-
tions that have been offered in support of expected utility axioms may be
found in Luce and Raiffa (1957, Chapter 2) and Broome (1991, Chapter 5).

However, in order for expected utility theory to provide a normative foun-
dation for utilitarianism (or, at least, for weighted utilitarianism), a different
justification for the axioms of expected utility theory is needed. Broome
(1991) and Risse (2002) have argued that the requisite justification has been
provided if it can be shown that the concept of well-being (or goodness)
that constitutes the “utility” that enters into utilitarian calculations entails
a betterness binary relation on the set of alternatives that conforms to the

3By not requiring r to be distinct from p, part (i) of this axiom can be subsumed in
part (ii).
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axioms of expected utility theory. This betterness relation is defined by say-
ing that alternative a is weakly better than alternative b if and only if the
well-being associated with a is at least as great as that associated with b.
Risse models uncertainty using lotteries, as is done here, and has an idealized
desire satisfaction account of well-being. Broome, on the other hand, uses
the state-contingent alternatives approach to uncertainty and identifies util-
ity with goodness.4 Both Broome and Risse, in the context of their respective
theories, argue that the betterness relation described above should conform
to the axioms of expected utility theory, or at least that these axioms are
reasonable constraints on this relation.

A function U : L → R is a utility function representing � if

U(p) ≥ U(q) ↔ p � q, ∀p, q ∈ L. (1)

A function f : R → R is an increasing transform if f(s) ≥ f(t) for all s, t ∈ R.
If U is a utility function representing �, then so is any increasing transform
of U . A utility function that is unique up to an increasing transform is said
to be ordinal.

A function U : L → R is a von Neumann–Morgenstern utility function
representing � if (1) is satisfied and if

U(p) =
M∑

m=1

pmU(em), ∀p ∈ L. (2)

A von Neumann–Morgenstern utility function is a linear function on the set
of lotteries L. Because the lottery em corresponds to receiving the outcome
xm for certain, the utility assigned to any lottery p by a von Neumann–
Morgenstern utility function is the expected value of the utilities assigned to
the sure outcomes in the set X.

A function f : R → R is an increasing affine transform if there exist real
numbers a and b with b > 0 such that f(t) = a+bt for all t ∈ R. If the image
U(L) of the von Neumann–Morgenstern utility function U is a nondegenerate
interval, then V : L → R is also a von Neumann–Morgenstern utility function
if and only if V is an increasing affine transform of U .5 In other words, the

4In the state-contingent alternative approach to uncertainty, alternatives are acts that
map states of nature into consequences. The best-known formalization of this approach is
due to Savage (1954).

5The image of U is the set U(L) = {t ∈ R|U(p) = t for some p ∈ L}. If all lotteries
are indifferent to each other, then any utility function representing � is trivially a von
Neumann–Morgenstern utility function.
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utility function U is unique up to an increasing affine transform. A utility
function that is unique up to an increasing affine transform or any smaller
set of transforms is said to be cardinal.

Theorem 1 is the version of the Expected Utility Theorem used by Harsanyi
(1955).6

Theorem 1. If a binary relation � on L satisfies Ordering, Continuity, and
Independence, then it can be represented by a von Neumann–Morgenstern
utility function U . If, in addition, � satisifies Nondegeneracy, then the func-
tional form of a von Neumann–Morgenstern utility function representing �
is unique up to an increasing affine transform.7

Theorem 1 does not say that in order for a utility function to represent a
preference relation � that satisfies Ordering, Continuity, and Independence,
it must be a von Neumann–Morgenstern utility function. A utility represen-
tation only needs to satisfy (1), not both (1) and (2). As a consequence, any
increasing transform of a von Neumann–Morgenstern utility function also
represents �.

This point has been poorly understood in spite of the fact that many
of the early discussions of von Neumann and Morgenstern’s theory, such as
those of Arrow (1951) and Baumol (1951, 1958), explictly noted this fact.
For example, Arrow (1951, p. 10) says that “ . . . instead of using the utility
scale found by von Neumann and Morgenstern, we could use the square of
that scale; then behavior is described by saying that the individual seeks to
maximize the expected value of the square root of his utility.”8

What justifications have been offered for singling out von Neumann–
Morgenstern utility functions from the class of all representations of �? The
main justification has been that of convenience. It is simply more convenient

6Harsanyi (1955) does not explicitly state this theorem. He instead refers the reader
to Marschak (1950). In my statement of the Expected Utility Theorem, I have clarifed
the fact that Nondegeneracy is not needed to establish the existence of a von Neumann–
Morgenstern utility function.

7The only role of the nondegeneracy axiom in Theorem 1 is to rule out the case in
which all lotteries are indifferent to each other. Thus, this axiom can be weakened so
that it only requires the existence of two nonindifferent lotteries. In the version of the
expected utility theorem presented in Weymark (1991), I neglected to explicitly rule out
the possibility of universal indifference when considering the uniqueness properties of von
Neumann–Morgenstern utility functions. I also used stronger forms of the continuity and
independence axioms.

8Arrow is implicitly assuming that utility is always nonnegative in his example.
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to describe an individual’s preferences using an expected utility representa-
tion than by some non-affine transform of such a function. For example,
calculations are simpler when a von Neumann–Morgenstern utility function
is used rather than a utility function of the form described by Arrow. This
rationale for the use of von Neumann–Morgenstern representations has been
offered by Marschak (1950, pp. 131–132), Arrow (1951, p. 10), Friedman and
Savage (1952, pp. 471–472), and Alchian (1953, p. 39), among others.

Another justification for the use of a von Neumann–Morgenstern repre-
sentation is that it provides a parsimonious description of preferences. By
simply knowing the values assigned by a von Neumann–Morgenstern utility
function to the sure outcomes, using (2) it is possible to infer how all of
the lotteries in L are ranked. This advantage of von Neumann–Morgenstern
representations has been noted by, for example, Friedman and Savage (1948,
p. 292), Ellsberg (1954, p. 537), and Baumol (1958, p. 668). However, this
parsimony property is not unique to von Neumann–Morgenstern utility func-
tions, as Arrow’s example demonstrates.

3. Harsanyi’s Linking of Expected Utility Theory and
Welfare Economics

In the decade following the publication of the first edition of von Neumann
and Morgenstern’s monograph, many commentators considered whether von
Neumann–Morgenstern utility functions had any relevance for welfare eco-
nomics. The discussion of this issue was often linked to the related question
of how, if at all, von Neumann and Morgenstern’s “cardinal” utility functions
differed from the cardinal utility functions of neoclassical economists such as
Jevons. A distinguishing feature of a neoclassical utility function is that the
marginal utility of income decreases with an increase in income.9

There was widespread, but not universal, agreement that von Neumann
and Morgenstern’s expected utility theory has little or no welfare significance.

9Mandler (1999) provides an illuminating discussion of the history of utility theory that
focuses on the ordinalist-cardinalist controversy. As Ellingsen (1994) has documented, a
great deal of confusion has resulted from the failure to distinguish between conceptually
distinct methods for constructing a utility index. For example, while both Edgeworth
(1881) and Pareto (1906) have cardinal theories of utility, Edgeworth regards a unit of
utility as being a just perceptible increment of pleasure, whereas Pareto’s theory is based
on directly comparing differences in pleasure (ofelimità), as in the statement that the
increase in pleasure from substituting a for b exceeds that from substituting c for d.
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For example, Friedman and Savage (1952, p. 473) said that simply because
individuals “. . . act as if they are maximizing the expected value of a function
unique except for origin and unit of measurement has, in and of itself, no
welfare implications at all . . . ”. Similarly, Arrow (1951, p. 10) said that the
expected utility theorem “. . . has nothing to do with welfare considerations,
particularly if we are interested primarily in making a social choice among
alternative policies in which no random elements enter.”

The same view was expressed in widely-read and influential articles by
Alchian (1953) and Ellsberg (1954) that attempted to convey the essentials
of von Neumann–Morgenstern expected utility theory and its implications
for the measurability of utility to the typical economist of the time who did
not have the mathematical skills to follow the rather technical arguments in
von Neumann and Morgenstern (1944) and Marschak (1950). Ellsberg (1954,
p. 556) asserted that a von Neumann–Morgenstern utility index (function)
does not “. . . seem to be of any relevance to welfare evaluations (whereas a
Jevonsian index might be).” Alchian (1953, p. 50) is even more emphatic,
saying that von Neumann–Morgenstern expected utility “. . . has literally
nothing to do with individual, social or group welfare, whatever the latter is
supposed to mean.”

Moreover, Friedman and Savage (1948) had argued that (in the words
of Harsanyi (1953, p. 434)) “[i]n the theory of risk-taking . . . , increasing
marginal utility is to be assumed to prevail over a considerable range, in
view of people’s willingness in the case of gambling to pay a price far above
the actuarial value for a small chance of a large gain.” Thus, von Neumann–
Morgenstern utility should not be equated with the utility of the neoclassical
school.

Harsanyi’s objective in Harsanyi (1953) was to dispute the claim that von
Neumann–Morgenstern expected utility theory had no relevance for welfare
economics while at the same time allowing for the possibility that Friedman
and Savage were correct about how marginal utility varies with income. For
Harsanyi, welfare judgments are the impersonal preferences expressed by an
impartial observer who orders social alternatives based on a sympathetic but
impartial concern for the interests of everyone in society. Specifically, the
impartial observer engages in a thought experiment in which he imagines
having an equal chance of being anyone in society, complete with that per-
son’s preferences and objective circumstances. It then follows, or so Harsanyi
(1955, p. 316) argued, that “. . . without any additional ethical postulates
that an individual’s impersonal preferences, if they are rational, must satisfy

9



Marschak’s axioms and consequently must define a cardinal social welfare
function equal to the arithmetic mean of the utilities of all individuals in the
society . . . ”.10 In Weymark (1991), I called this result Harsanyi’s Impartial
Observer Theorem.11

The original discussions of the Impartial Observer Theorem in Harsanyi
(1953, 1955) are quite informal. The first formal presentation of this result
appears in Harsanyi (1977b, Chapter 4), although even here, Harsanyi glosses
over some of the details. In Weymark (1991), I provided what I believe is
a complete formal statement of Harsanyi’s Impartial Observer Theorem and
its proof.

In Harsanyi (1955), a way of linking expected utility theory with welfare
economics was introduced that is conceptually distinct from his Impartial
Observer Theorem, what in Weymark (1991) I have called Harsanyi’s Aggre-
gation Theorem. In this theorem, Harsanyi assumes that every individual in
society has preferences on L that satisfy Marschak’s version of the expected
utility axioms. There is also a social preference on L that satisfies these
axioms. In Harsanyi’s favoured interpretation, a social (or moral) preference
is the preference of one of the members of society when he evaluates the
alternatives in L from an impersonal perspective. Social and individual pref-
erences are related by the requirement that if everyone is indifferent between
two lotteries, then they are also socially indifferent. This is simply the famil-
iar Pareto Indifference axiom of welfare economics. Harsanyi’s Aggregation
Theorem shows that if these assumptions are satisfied and if the individual
and social preferences are represented by von Neumann–Morgenstern util-
ity functions, then the social utility function is an affine combination of the
individual utility functions.

Harsanyi has interpreted both the Impartial Observer Theorem and the
Aggregation Theorem as being theorems about (weighted) utilitarianism.

10I have suppressed a footnote in which Harsanyi notes that computing the average
of utilities yields the same ranking of social alternatives as taking the sum (when the
population is fixed). By “a social welfare function,” Harsanyi means a utility function
representing the impartial observer’s preferences.

11Although implicit, the Impartial Oberver Theorem is not stated explicitly in Harsanyi
(1953). In that article, the social alternatives are distributions of income, although in the
later formulations of the Impartial Oberver Theorem in Harsanyi (1955, 1977b), alterna-
tives are given broader interpretations. A version of the Impartial Observer Theorem for
income distributions had previously appeared in Vickrey (1945), but, according to a 1996
interview with Harsanyi, he was unaware of this fact until he went to Stanford in 1956.
See d’Aspremont and Hammond (2001, pp. 392–393).
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Some of the criticisms that have been levelled against these interpretations
will be taken up in the next section. For concreteness, and because it is
simpler to state formally, I will focus on the Aggregation Theorem, although
the main points I am making apply to both results. In order to evaluate
the validity of Harsanyi’s interpetation of the Aggregation Theorem, it is
necessary to state it formally.

There are n individuals, indexed by i = 1, . . . , n. Individual i has a
preference relation �i on L. There is also a social preference relation � on
L. The only link between the individual and social preferences is provided
by the Pareto Indifference condition.

Pareto Indifference. For all p, q ∈ L, if p ∼i q for all i = 1, . . . , n, then
p ∼ q.

Theorem 2 is a formal statement of Harsanyi’s Aggregation Theorem
without his redundant Nondegeneracy axiom.

Theorem 2. Suppose that �i, i = 1, . . . , n, and � are binary relations on
L that satisfy Ordering, Continuity, and Independence and also suppose that
Pareto Indifference is satisfied by these relations. Let Ui be a von Neumann–
Morgenstern utility representation of �i, i = 1, . . . , n, and U be a von
Neumann–Morgenstern utility representation of �. Then, there exist real
numbers ai, i = 1, . . . , n, and b such that

U(p) =
n∑

i=1

aiUi(p) + b, ∀p ∈ L. (3)

An implication of (3) is that

U(p) ≥ U(q) ↔
n∑

i=1

aiUi(p) ≥
n∑

i=1

aiUi(q), ∀p, q ∈ L. (4)

Thus, p is socially weakly preferred to q if and only if a weighted sum of the
individual von Neumann–Morgenstern utilities associated with p is at least as
great as the corresponding sum for q. The conclusion Harsanyi draws from
this observation is that alternatives are socially ranked using a weighted
utilitarian rule.
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The assumptions of Theorem 2 do not guarantee that there is only one
vector (a1, . . . , an, b) for which (3) is satisfied. Uniqueness of these coeffi-
cients obtains if it is further assumed that for each individual i, there is a
pair of lotteries for which i is not indifferent, but every other individual is.12

In Weymark (1991), this assumption is called Independent Prospects.

Independent Prospects. For all i = 1, . . . , n, there exist lotteries pi, qi ∈
L such that ¬[pi ∼i qi] and pi ∼j qi for all j �= i.

Note that if Independent Prospects is satisfied and �i can be represented by
a von Neumann–Morgenstern utility function, then �i must satisfy Nonde-
generacy.

Furthermore, the assumptions of Theorem 2 do not imply that the weights
ai can all be chosen to be positive or even nonnegative. These sign restric-
tions can be satisfied if stronger forms of the Pareto condition are invoked.
For an extended discussion of these variant forms of Harsanyi’s Aggregation
Theorem, see Weymark (1991).

4. The Harsanyi–Sen Debate

The debate carried out in Harsanyi (1975, 1977a) and Sen (1970, 1976, 1977,
1986) about the ethical significance of Harsanyi’s theorems and their rela-
tionship to utilitarianism raised many issues. Here, I shall consider Sen’s
argument that Harsanyi is not justified in giving his theorems a utilitarian
interpretation. The material in this section draws upon Weymark (1991), to
which the reader is referred for more detail.13

As in the previous section, the individual and social preference relations
�i, i = 1, . . . , n, and � on L are fixed. A profile of utility functions is an
n-tuple U = (U1, . . . , Un) of individual utility functions Ui, i = 1, . . . , n,
where each Ui is defined on L. Let U denote the set of all profiles of utility
functions for which for all U ∈ U and all i = 1, . . . , n, Ui is a representation
of �i. Further restrictions may be placed on the set of admissible utility

12Harsanyi (1955) implicitly made this assumption in his proof of the Aggregation The-
orem. The first proof of this theorem without this implicit assumption was by Domotor
(1979).

13See also the discussion of Harsanyi’s theorems in Mongin and d’Aspremont (1998) and
Roemer (1996b).
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representations. For example, only von Neumann–Morgenstern utility rep-
resentations may be admissible. Let Ua ⊆ U denote the set of admissible
profiles of utility functions.

Weighted utilitarianism for profiles in Ua requires lottery p to be socially
ranked at least as good as lottery q if and only if the weighted sum of the
utilities obtained from p is at least as large as the weighted sum of the utilities
obtained from q, where the weights are profile independent. In Harsanyi’s
Aggregation Theorem, there is only one social preference relation �. Thus,
� is weighted utilitarian if there exists a weight vector a = (a1, . . . , an) ∈ R

n

for which for all U ∈ Ua,

p � q ↔
n∑

i=1

aiUi(p) ≥
n∑

i=1

aiUi(q), ∀p, q ∈ L. (5)

Classical utilitarianism corresponds to the case in which all the weights are
equal.14

In the context of the problem being considered by Harsanyi (fixed indi-
vidual and social preference relations), Sen, in the references cited above, has
argued that utility is only used to represent preferences in Harsanyi’s Impar-
tial Observer and Aggregation theorems, and this is an inadequate basis on
which to to construct an axiomatic foundation for (weighted) utilitarianism.
As noted above, I restrict attention to Harsanyi’s Aggregation Theorem, as
the basic point that Sen has raised applies to both of Harsanyi’s theorems.15

Consider a profile U of von Neumann–Morgenstern utility functions and
suppose that this profile is in Ua. By Theorem 2, we know that there exists
a weight vector a such that (5) holds for the profile U. In order to focus
on the essentials of the argument, let me further suppose that Independent
Prospects is satisfied, so that a is the only weight vector for which (5) is true
for this profile.

Even if we restrict attention to von Neumann–Morgenstern utility rep-
resentations of the individual preferences, Theorem 2 does not permit us to
interpret � as being a weighted utilitarian social preference relation. To see

14Harsanyi’s objective was to provide a choice-theoretic foundation for classical utilitar-
ianism. However, as Mongin and d’Aspremont (1998) have argued, the kind of symmetry
condition needed to justify the use of the same weight for all individuals in (5) requires
a multi-profile framework in which different profiles of individual preferences and their
corresponding social preferences are considered.

15See Weymark (1991) and Roemer (1996a,b) for discussions of Sen’s critique of
Harsanyi’s Impartial Observer Theorem.
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why, suppose that Ua contains all profiles of von Neumann–Morgenstern
representations of (�1, . . . ,�n). Consider the profile of von Neumann–
Morgenstern utility functions U′ for which U ′

1 = 2U1 and U ′
i = Ui for all

i �= 1. Using U′ instead of U in Theorem 2, it follows that there exist
weights ā = (ā1, . . . , ān) such that

p � q ↔ ā12U1(p) +
n∑

i=2

āiUi(p) ≥ ā12U1(p) +
n∑

i=2

āiUi(q), ∀p, q ∈ L. (6)

Because the image of U1 is a nondegenerate interval, in order for (5) and (6)
to describe the same social preference, we must have ā1 = a1/2 and āi = ai

for all i �= 1. Hence, the weights that need to be used to represent the
social preference relation � as a weighted sum of individual utilities is profile
dependent. However, weighted utilitarianism requires the same weights (up
to a common factor of proportionality) to be used for all admissible profiles.

As discussed in Section 2, any increasing transform of a von Neumann–
Morgenstern utility function represents the same preference. As Sen has
noted, if we subject the individual utility functions in U to non-affine trans-
forms, then we can represent the social preference relation by a nonlinear
function of the individual utilities. Hence, the social objective function ap-
pears to be weighted utilitarian with one representation of the individual
preferences and non-utilitarian with another.16

In order to illustrate this objection to Harsanyi’s utilitarian interpreta-
tion of his Aggregation Theorem, I employ a variant of the example used in
Weymark (1991, Section 4). Let V be the profile that is obtained by subject-
ing each of the individual utility functions in U to an exponential transform.
Thus, Vi = exp(Ui) for i = 1, . . . , n. Recall that each of the functions Ui are
von Neumann–Morgenstern utility functions whose images are nondegenerate
intervals. Thus, none of the Vi are von Neumann–Morgenstern representa-
tions. Nevertheless, both Ui and Vi represent �i. For this reason, or so Sen
would argue, V is an admissible profile of utility functions. Because the ex-

16See, for example, Sen (1986, pp. 1123–1124) where this point is made in the context of
Harsanyi’s Impartial Observer Theorem. Harsanyi (1955, 1977b) regards his Aggregation
and Impartial Observer Theorems, as well as a third theorem due to Fleming (1952), as
providing independent justifications for utilitarianism. However, Blackorby, Donaldson,
and Weymark (1980) have argued that Harsanyi has offered no argument as to why the
same representations of individual preferences must be used in each of these theorems, and
so has failed to establish that they even lead to the same social rankings of the alternatives,
let alone to some form of utilitarianism.
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ponential function is increasing, it can be inverted. Thus, Ui = ln(Vi) for
i = 1, . . . , n. Substituting these expressions into (5), we obtain

p � q ↔
n∑

i=1

ai ln(Vi(p)) ≥
n∑

i=1

ai ln(Vi(q))

↔
n∏

i=1

Vi(p)
ai ≥

n∏

i=1

Vi(q)
ai , ∀p, q ∈ L.

(7)

Therefore, using the utility representations in U, it appears that the social
ranking � of L is obtained using a weighted sum of the individual utilities,
whereas using the utility representations in V, it appears that � is obtained
using a Cobb–Douglas function of these utilities.

The underlying reason for the problems identified by Sen is that in order
for utilitarianism, either in its weighted or classical form, to be meaningful,
it must be possible to compare utility differences (gains and losses) both
intrapersonally and interpersonally. However, if the only information about
individuals that is available is their orderings of the set of alternatives, it is
not possible to make such comparisons. The need for difference comparability
can be seen most clearly by rewriting (5) as

p � q ↔
n∑

i=1

ai[Ui(p) − Ui(q)] ≥ 0, ∀p, q ∈ L. (8)

The sum in (8) is not, in general, invariant to independent increasing trans-
forms of the individual utility functions, even if these transforms are re-
stricted to be affine.

In order for (8) to hold for all U ∈ Ua, the transforms that are applied to
the individual utility functions cannot be chosen independently. Suppose, as
above, that the weights in (5), and hence in (8), are obtained from Theorem
2 using the profile U of von Neumann–Morgenstern utility functions and
that Independent Prospects is satisfied. Consider the n-tuple of tranforms
F = (f1, . . . , fn), where for all i = 1, . . . , n, fi(t) = ai + bt for all t ∈ R for
some real numbers (a1, . . . , an, b) with b > 0. Such an n-tuple of transforms is
called co-cardinal. It is clear that the utility sum in (8) does not change if the
utility profile U is replaced by the profile V = F ◦U := (f1 ◦U1, . . . , fn ◦Un)
for some co-cardinal n-tuple of transforms F . Let U c denote the set of such
profiles of utility functions. Because the images of the utility functions in
U are nondegenerate intervals, the profiles in U c are the only profiles that
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preserve the utility sum in (8).17 Hence, if the set of admissible profiles of
utility functions Ua is a subset of U c, then it is legitimate to say that � is a
weighted utilitarian social preference.

In Harsanyi (1977b, p. 293) and Harsanyi (1979, pp. 296–297), an argu-
ment is presented that appears to demonstrate that if an individual’s prefer-
ences conform to the axioms of expected utility theory, then it is meaningful
to make intrapersonal comparisons of utility differences. As discussed above,
the possibility of making such comparisons is a necessary (but not sufficient)
condition for utilitarianism to be meaningful. It is therefore instructive to
sketch this argument.

Suppose that individual i is asked to rank the lotteries A = [0.5p + 0.5q]
and B = [0.5r+0.5s], where p, q, r, s ∈ L. Without loss of generality, suppose
that A �i B. If �i is represented by the von Neumann–Morgenstern utility
function Ui, it follows from the Expected Utility Theorem that

0.5Ui(p) + 0.5Ui(q) ≥ 0.5Ui(r) + 0.5Ui(s) (9)

or, equivalently, that

Ui(p) − Ui(s) ≥ Ui(r) − Ui(q). (10)

Furthermore, the inequality in (10) is preserved if Ui is subjected to any
increasing affine transform. Suppose that only von Neumann–Morgenstern
utility functions are legitimate representations of a preference that satisfies
the expected utility theory axioms discussed in Section 2. If this were true, it
would then follow from Theorem 1 that it is meaningful to make intrapersonal
comparisons of utility differences.18 But, as we have seen, nothing in the
version of expected utility theory that Harsanyi employed in his theorems

17In the absence of the nondegeneracy assumption, the set of profiles of utility functions
in Uc is a strict subset of the set of profiles of utility functions that preserve the utility
difference comparisons exhibited by U. See Ellingsen (1994) or Bossert and Weymark
(2004).

18In a letter to the author dated October 29th, 1990, Harsanyi has informed me that the
choice of a von Neumann–Morgenstern representation is only required if “we want a utility
function representing both the ordinal and the cardinal properties of his preferences and of
his satisfactions.” As best as I can determine from this letter, Harsanyi is supposing that
the individual in question also has a preference over pairs of alternatives, which permits
him to make meaningful statements about the strength of preference for, say, A over B
relative to C over D. If this is correct, Harsanyi’s views are similar to those of Broome
(1991) discussed in Section 7.1 below.
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rules out the use of a non-affine, increasing transform of Ui. Provided that
none of the lotteries p, q, r, and s are indifferent to each other, it is always
possible to find such a transform for which the inequality in (10) does not
hold. Thus, it appears that expected utility theory does not permit one to
make intrapersonal comparisons of utility differences.19

Recall that an impartial observer considers lotteries in which not only the
physical outcome, but also his identity, is uncertain. Provided that the im-
partial observer’s preferences over such extended lotteries satisfy the expected
utility axioms and provided that only von Neumann–Morgenstern represen-
tations of these preferences are admissible, the argument presented in the
preceding paragraph can be extended to show that interpersonal utility com-
parisons are meaningful. The details of this argument may be found in Wey-
mark (1991, p. 306). However, as above, it does not follow from the version
of expected utility theory considered in Section 2 that only von Neumann–
Morgenstern utility representations of the impartial observer’s preferences
are permissible, and so it is illegitimate to use this argument to conclude
that interpersonal comparisons of utility differences are meaningful.

It should be stressed that nothing in the preceding discussion permits
one to conclude that it is impossible to make interpersonal comparisons of
utility differences. Indeed, Harsanyi has made fundamental contributions
to our understanding of the logical basis for making interpersonal utility
comparisons. See, for example, Harsanyi (1955, 1977b). Harsanyi clearly
thinks of utility as being more than just a representation of a preference and
there is considerable textual evidence to suggest that Harsanyi’s arguments
in support of utilitarianism are based, in part, on a non-representational
concept of utility, even though it is not employed in his formal theorems.20

5. Measurement Theory

In their discussions of the cardinality of von Neumann–Morgenstern utility
functions, suitably reinterpreted as representations of well-being, Broome
(1991, 1997) and Risse (2002) have either explicitly or implicitly made use
of results in formal measurement theory. In order to evaluate their argu-
ments and their relevance for utilitarianism, it is first necessary to review the

19The belief that such comparisons are meaningful was so widespread that Luce and
Raiffa (1957, p. 32) cite it as being one of the common fallacies of expected utility theory.

20See Weymark (1991, Section 6) for a detailed discussion of this issue.
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relevant parts of measurement theory.
The early analyses of the nature of measurement, such as that of Campbell

(1920), were concerned with measurement in the physical sciences. While
there were important contributions to the theory of measurement in the social
sciences prior to the mid-1950s, of which von Neumann and Morgenstern’s
axiomatization of expected utility theory is a prominent example, it was
not until the seminal work of Scott and Suppes (1958), Pfanzagl (1959a),
and Suppes and Zinnes (1963) that the modern representational theory of
measurement was first systematized. This approach to measurement is broad
enough to encompass the measurement issues that arise in both the physical
and social sciences. Good introductions to measurement theory may be found
in Krantz, Luce, Suppes, and Tversky (1971) and Roberts (1979).21

In measurement theory, a relational structure is a set S together with one
or more relations on S. There are two kinds of relational structures, empirical
and numerical. In an empirical relational structure, the set S is the set of
objects to be measured, whereas in a numerical relational structure, the set
S is a set of numbers. A measurement involves constructing a mapping h,
called a homomorphism, between an empirical relational structure E and
a numerical relational structure N that preserves all of the relations in E.
The triple (E,N, h) is called a scale.22 This formalization of measurement
is general enough to encompass binary operators on S × S because such an
operator can be equivalently thought of as being a ternary relation on S.23

These concepts can be illustrated with the measurement of weight. The
empirical relational structure is W = 〈S;�; ◦〉, where S is the set of objects to
be weighed, � is a binary relation on S that is interpreted as “weighs at least
as much as,” and ◦ is a concatenation operator that combines the ordered pair
of objects (x, y) ∈ S×S to produce a new object x ◦ y ∈ S.24 The relational

21There is some dispute about what phenomena are quantitatively measurable. Berka
(1983, p. 63), for one, argues that quantitative measurement presupposes that it is possible
to perform “operations of measurement with the help of standard measuring instruments
which must be constant, easily reproducible and suitably precise (emphasis in the origi-
nal).” He questions whether this is possible for extraphysical phenomena such as utility.
See Berka (1983, Sections 7.2 and 8.2) for an elaboration of this argument that specifically
considers von Neumann–Morgenstern utility theory.

22For given relational structures E and N, it is common to simply refer to h as the scale.
When there is no ambiguity, I shall follow this practice in the subsequent discussion.

23See Krantz, Luce, Suppes, and Tversky (1971, p. 8).
24When considering binary operators, it is always assumed that the set S is closed under

this operation; i.e., that the object obtained by applying the operator to any (x, y) ∈ S×S
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structure W is the formal expression of the empirical procedure used to weigh
objects using a two-pan balancing scale. If object x is put in one pan and
object y in the other, then x � y if the height of the pan containing x does
not exceed the height of the pan containing y. The concatentation x ◦ y
corresponds to putting both x and y in the same pan of the scale, say x on
top of y.

The usual practice in the theory of weight is to associate the numerical
structure N1 = 〈R+;≥; +〉 with W. For each x ∈ S, the homomorphism
w : W → N1 assigns the weight w(x) ≥ 0 to x. The ordering � is preserved
by requiring that

w(x) ≥ w(y) ↔ x � y, ∀x, y ∈ S, (11)

and the concatenation operator ◦ is preserved by requiring that

w(x ◦ y) = w(x) + w(y), ∀(x, y) ∈ S × S. (12)

In other words, the numerical relation “greater than or equal to” corresponds
to the empirical relation “weighs at least as much as” and the weight of a
pair of objects is simply the sum of their individual weights.

The standard way of measuring length has the same formal structure as
that of measuring weight, so we simply need to reinterpret the components
of (W,N1, w) in order to obtain a measurement scale for length. In this new
interpretation, S is the set of one-dimensional objects (rods) whose lengths
are to be determined, � is interpreted as “is at least as long as,” and ◦ is
again a concatenation operator that combines the ordered pair of objects
(x, y) to produce a new object x ◦ y. One possible physical interpetation of
� is that x � y if the rods x and y are aligned side by side with one end
of x adjacent to one end of y and the other end of y does not extend past
the other end of x. The operator ◦ could correspond to placing two rods
end to end. The function w now assigns a length to each rod in such a way
that the ordering of the lengths is preserved and such that the length of a
concatenated rod is the sum of the lengths of the two rods that were used to
construct it.

Two basic problems that a satisfactory theory of measurement must solve
are the representation and uniqueness problems. Given an empirical rela-
tional structure E and a numerical relational structure N, the representation

is also in S.

19



problem is to find sufficient (and, ideally, necessary) conditions on E for the
existence of a homomorphism h from E to N that preserves the relations in
E. For example, in the case of the measurement of weight or length, the
requisite homomorphism exists if W is what is known as a closed extensive
structure when the numerical relational structure is N1.25

The uniqueness problem is concerned with determining the class of trans-
formations that when applied to a homomorphism h that solves the repre-
sentation problem (given E and N) yields another homomorphism that also
solves this problem. A uniqueness theorem identifies the kind of scale h is
(i.e., the group structure of the class of transformations that may be applied
to h).26 For example, in the case of weight or length, the homomorphism is
unique up to a similarity transform. A function f : R → R is a similarity
transform if there exists a real number a > 0 such that f(t) = at for all t ∈ R.
Representations that are unique up to a similarity transform are called ratio
scales.27

There is a further problem that needs to be addressed that has received
much less attention in the literature. Given the empirical relational structure
E, on what basis should we choose the numerical relational structure N that
E is to be mapped into? Roberts (1979, p. 54) refers to this issue as being a
“difficult philosophical question—not a mathematical question.”

The nature of this problem can be illustrated by reconsidering the mea-
surement of weight and length. Following standard practice, in the preceding
discussion, I have mapped the empirical relational structure W into the nu-
merical relational structure N1. Another possibility, which is considered by
Krantz, Luce, Suppes, and Tversky (1971, Sections 1.2.3 and 3.9), is to re-
place N1 with N2 = 〈R+;≥;×〉 and instead of requiring the homomorphism
w to satisfy (12), require that

w(x ◦ y) = w(x) × w(y), ∀(x, y) ∈ S × S. (13)

In other words, the weight (or length) of the concatenated object x ◦ y is
given by the product of the weights (or lengths) of x and y. Thus, instead of

25See Krantz, Luce, Suppes, and Tversky (1971, p. 73) for the definition of this structure.
26More precisely, the set of admissible tranformations together with the function com-

position operator form an algebraic group. See Bossert and Weymark (2004) for a detailed
discussion of groups of transformations.

27The importance of identifying the scale type in a measurement exercise was stressed
by Stevens (1946), who also identified many of the scale types commonly encountered in
measurement theory.
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seeking an additive representation of W, we require the representation to be
multiplicative.

Note that if w : S → R+ satisfies (11) and (12), then w̄ : S → R+ defined
by setting w̄(x) = exp(w(x)) for all x ∈ S satisfies (11) and (13). As is the
case with the additive representation w, the multiplicative representation w̄
is unique up to a one-parameter class of transforms. Either w or w̄ could
serve as a measure of weight, length, or any other closed extensive structure.
Furthermore, N1 and N2 are just two of the infinite number of possible choices
for the numerical relational structure. In other words,

. . . despite its great appeal and universal acceptance, the ad-
ditive representation is just one of the infinitely many, equally
adequate representations [of an extensive structure] . . . . The
essential fact about the uniqueness of the representation is not
the particular group of admissible transformations, but that all
groups are isomorphic and, in the case of extensive measurement,
are all one-parameter groups . . . . (Krantz, Luce, Suppes, and
Tversky, 1971, p. 102)

The possible appeal of a non-additive representation for a closed extensive
structure, such as weight or length, can be seen by considering an alternative
empirical interpretation of the concatenation operation used in the measure-
ment of length to the one considered above. Consider the empirical relational
structure L = 〈S;�; ∗〉, where S and � have the same physical interpreta-
tions as in our earlier discussion of length. The object x ∗ y obtained by
concatenating x and y is now interpeted to be the hypotenuse of the right-
angle triangle obtained by orthogonally abutting y to one end of x.28 It is not
difficult to verify that L is a closed extensive structure, so there exists an ad-
ditive representation l of “orthogonal” length using the numerical relational
structure N1. Using Pythagoras’ Theorem, it follows that such a measure can
be obtained from an additive measure w obtained using the usual concate-
nation operator ◦ by letting l = w2. Suppose, however, that we want length
to be additive in terms of our original concatentation operator ◦, rather than
additive in terms of ∗. In that case, as has been shown by Krantz, Luce,
Suppes, and Tversky (1971, p. 99), we should use the numerical relational

28This interpetation of the empirical structure used for measuring length was initially
proposed by Ellis (1966). See also the discussion of this example in Berka (1983, pp.
155–157) and Krantz, Luce, Suppes, and Tversky (1971, Sections 3.6.1 and 3.9).
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structure N3 = 〈R+,≥,⊕〉, where

x⊕ y = x + y + 2
√
xy, ∀(x, y) ∈ R

2
+, (14)

and this results in a non-additive measure of length in terms of the operator
∗.29

In practice, it has been pragmatic considerations that have dictated the
choice of the numerical relational structure used in a measurement exer-
cise. For example, in the case of weight or length, the computations that
are required to compute the weight or height of a concatenated object are
simpler, or at least more familiar to us, when an additive representation is
used than when, say, the representation is multiplicative. Furthermore, the
methematical form of the physical laws that employ weight or length may
be simpler with an additive representation than with an alternative form.30

Nevertheless,

[t]his choice is essentially a matter of convention, although the
conventions are strongly affected by computational convenience.
(Krantz, Luce, Suppes, and Tversky, 1971, p. 102)

6. Expected Utility Theory Reconsidered

As their extensive discussion of the principles of quantitative measurement
and their discussion of measurement in the physical sciences make clear, von
Neumann and Morgenstern (1944, Chapter 1, Section 3) regard themselves
as providing a theory of measurable utility in the same sense that heat,
length, and other physical phenomena are measurable. Von Neumann and
Morgenstern are quite rightly acknowledged as being pioneers in the exten-
sion of measurement from the physical to the social sciences.31 However, von

29Berka (1983, pp. 156) argues that it is a mistake to think that abutting two rods end
to end and abutting them orthogonally are two different interpetations of the concaten-
tation operation for measuring length. He regards the two operations as relating to the
measurement of different “magnitudes” and suggests that an additive representation is ap-
propriate in either case. However, the fact that W and L are different empirical relational
structures is not at issue here. Rather, it is what numerical relational structures should
be associated with them.

30See Ellis (1966, pp. 81–86) for a defence of the view that the choice of a representation
should be determined by the simplicity of the resulting physical laws or computations.

31See, for example, Pfanzagl (1959b), who uses von Neumann–Morgenstern utility the-
ory to illustrate the then newly developed representational theory of measurement.
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Neumann and Morgenstern’s presentation of their theory is not easy to un-
derstand. In part, this is because they used “utility” both to describe the set
of objects that are being measured and as the numbers that are used in their
representation theorem.32 It is for this reason that the subsequent literature
has abandoned von Neumann and Morgenstern’s formalization of expected
utility theory in favour of models based on the reformulations of the theory
found in Marschak (1950) and Hernstein and Milnor (1953).33 However, in
these latter expositions of expected utility theory, the measurement-theoretic
role that binary operators play in the theory is less prominent than it is in
von Neumann and Morgenstern (1944).

In order to determine whether von Neumann–Morgenstern utility func-
tions are cardinal in the sense needed for Harsanyi’s theorems, it is necessary
to reconsider von Neumann–Morgenstern utility theory in terms of the rep-
resentational theory of measurement developed in the preceding section. As
in Section 2, I employ Marschak’s version of expected utility theory in my
discussion. The same conclusions can be obtained using the original formal-
ization of von Neumann and Morgenstern, as I shall briefly argue at the end
of this section.

As described in the preceding section, measurement involves specifying
empirical and numerical relational structures and a homomorphism between
them. In Marschak’s version of expected utility theory, the empirical rela-
tional structure is M = 〈L;�;αk, k ∈ [0, 1]〉, where, as in Section 2, L is a
set of lotteries on a set of sure alternatives X and � is a weak preference
binary relation on L. For all k ∈ [0, 1], αk is the binary operator defined by
setting

pαkq = kp + (1 − k)q, ∀(p, q) ∈ L × L. (15)

Note that there are an infinite number of these operators, one for each num-
ber in [0, 1]. Thus, taking convex combinations of lotteries are the binary
operators in the empirical relational structure for Marschak’s version of ex-
pected utility theory. It is these operators that are the counterparts to the
concatenation operators that appear in the measurement of closed extensive
structures such as weight and length. The standard numerical relational

32In their informal discussion, von Neumann and Morgenstern also consider the lottery
formulation of expected utility theory used here. For a very useful exegesis of the sections
on expected utility theory in von Neumann and Morgenstern (1944), see Fishburn (1989).

33Hernstein and Milnor (1953) develop their axiomatization of expected utiity theory
for general mixture sets. The set of lotteries L is a mixture set.
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structure for expected utility theory is N4 = 〈R;≥; ᾱk, k ∈ [0, 1]〉, where for
all k ∈ [0, 1], ᾱk is the numerical binary operator defined by setting

xᾱky = kx + (1 − k)y, ∀(x, y) ∈ R
2. (16)

The homomorphism relating M to N4 is a function U : L → R that
is order preserving and that preserves the linear structure of the convex
combination operators in M. The first condition simply requires that U be a
utility function; i.e., that U satisfies (1). The second condition requires that
for all k ∈ [0, 1],

U(pαkq) = U(p)ᾱkU(q), ∀(p, q) ∈ L × L, (17)

or, equivalently, that

U(kp + (1 − k)q) = kU(p) + (1 − k)U(q), ∀(p, q) ∈ L × L. (18)

It is not difficult to verify that (17) and (18) are both equivalent to (2).
Hence, U must be a von Neumann–Morgenstern utility function. From the
Expected Utility Theorem (Theorem 1), we know that such a homomorphism
exists if � satisfies Ordering, Continuity, and Independence. Furthermore, if
it is additionally assumed that Nondegeneracy is satisfied, then U is unique
up to an increasing affine transform.

It thus appears that by taking explicit note of the binary operators αk that
expected utility theory is cardinal. Indeed, according to the precepts of rep-
resentational measurement theory, it is cardinal for, given the specification of
the two relational structures M and N4, the admissible homomorphisms are
unique up to an increasing affine transform. Nevertheless, this observation
does not allow us to conclude that we must use a von Neumann–Morgenstern
representation of the preference �. This conclusion only holds if we assume
that the numerical relational structure is N4.

Suppose instead that we use the numerical relational structure N5 =
〈R;≥; α̂k, k ∈ [0, 1]〉, where for all k ∈ [0, 1], α̂k is the “Cobb–Douglas”
operator defined by setting

xα̂ky = xky(1−k), ∀(x, y) ∈ R
2. (19)

With this numerical relational structure, in order to preserve the binary
operators in M, for all k ∈ [0, 1], the utility representation U is now required
to satisfy

U(kp + (1 − k)q) = U(p)kU(q)(1−k), ∀(p, q) ∈ L × L, (20)
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rather than (18).
From the discussion in Section 4, it is clear that any utility representation

of � that satisfies (20) is an exponential transform of a utility representation
of � that satisfies (18). Thus, if Marschak’s four axioms are satisfied, the
class of admissible representations for the numerical relational structure N5

is also characterized by a two-parameter family of transformations. It fol-
lows from the arguments in Weymark (1991, pp. 283–284) that a transfrom
f : R+ → R is in this family if and only if there exist a, b ∈ R with b > 0
such that

f(t) = exp[a + b ln(t)], ∀t ∈ R+. (21)

Consider two representations U and V of � for which V = exp[a+b ln(U)],
where b > 0. Note that for all p, q, r, s ∈ L,

V (p)

V (q)
≥ V (r)

V (s)

↔
ln(V (p)) − ln(V (q)) ≥ ln(V (r)) − ln(V (s))

↔
ln(U(p)) − ln(U(q)) ≥ ln(U(r)) − ln(U(s))

↔
U(p)

U(q)
≥ U(r)

U(s)
.

(22)

Thus, the class of transforms in (21) preserves comparison of ratios of utilities,
not utility differences.

As with weight and length, the choice of N4 rather than N5 for the nu-
merical relational structure in expected utility theory has been dictated by
pragmatic considerations of the kind described in Section 2 for choosing von
Neumann–Morgenstern representations from among all the possible represen-
tations of �. This is perfectly acceptable when describing choice behaviour,
which is the objective von Neumann and Morgenstern (1944, p. 20) offer
for their theory of measurable utility. If one is only interested in describing
or predicting choice behaviour, it doesn’t matter which numerical relational
structure is used (provided that it is isomorphic to N4), and so pragmatic
considerations may be decisive. However, this is not a satisfactory basis for
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choosing a numerical relational structure for the measurement of utility when
the objective is to provide a normative foundation for utilitarianism.

As noted above, von Neumann and Morgenstern (1944) did not use M

as their empirical relational structure in their formal theory. Instead, they
used U = 〈V ;�;α∗

k, k ∈ [0, 1]〉, where V is an “abstract” set of utilities,
� is a strict preference relation on V , and the α∗

k are operators that form
“convex combinations” of ordered pairs of abstract utilities. Their numerical
relational structure is N6 = 〈R;>; α̂k, k ∈ [0, 1]〉, which is simply N4 with
the strict inequality relation > on R substituting for ≥.34 Fishburn (1989,
p. 138) suggests interpreting V as “an abstract set of indifference classes”.
The structures M and U have similar formal properties, so it is possible to
reformulate the preceding argument using von Neumann and Morgenstern’s
version of expected utility theory.

In terms of a contribution to measurement theory, von Neumann and
Morgenstern (1944, p. 24) clearly regard their discovery of a “natural” oper-
ation which can be used to restrict the class of utility transformations found
in ordinal utiity theory to the class of affine transformations that appear
in their representation theorem as constituting their greatest achievement.
Here, von Neumann and Morgenstern are referring to the operators that ap-
pear in their empirical relational structure; i.e., to the convex combination
operators. These are operators that are concerned with the “natural” world,
not the world of real numbers. For von Neumann and Morgenstern, and for
most of the scholars who have followed in their footsteps, it seems obvious
that the convex combination operator ᾱk for real numbers should be cho-
sen to correspond to the empirical operator α∗

k (or αk). According to von
Neumann and Morgenstern (1944, p. 24), these empirical and numerical op-
erators are “synonomous.” The choice of ᾱk as the numerical operator has
considerable appeal because it has many formal properties in common with
α∗

k and αk. It was only as the theory of measurement was further developed
that this choice was seen as needing further justification.

7. Broome and Risse on the Cardinality of Utility

Broome (1991, 1997) and Risse (2002) have appealed to measurement theory
to provide support for the claim that Harsanyi’s theorems have some rele-

34See Krantz, Luce, Suppes, and Tversky (1971, p. 407) for a succint formalization of
von Neumann and Morgenstern’s model.
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vance for utilitarianism. In spite of some similarities between Broome’s ar-
guments in his monograph and the latter arguments in Broome’s and Risse’s
articles, in fact these arguments are fundamentally quite different.35 Their
analyses consider many issues related to the significance of Harsanyi’s theo-
rsm for utilitarianism. It is beyond the scope of this article to consider all
of these issues here. Rather, I shall focus my attention on their claims that
their concepts of individual well-being or goodness are cardinal in the sense
needed for Harsanyi’s theorems to be interpreted as being theorems about
utilitarianism, at least in its weighted utilitarian formulation.

It is my contention that Broome (1991) has provided an account of utility
in which intrapersonal comparisons of utility differences are meaningful, but
he has only done this by introducing an additional quaternary operator that
is not part of the von Neumann–Morgenstern approach to expected utility
theory. On the other hand, Broome (1997) and Risse (2002) suffer from
the problems related to the choice of numerical relational structure raised in
the preceding section. Broome recognizes that the choice of this structure
requires justification, but does not offer a normatively compelling reason for
his choice of the standard structure N4. Risse does not comment on this
issue.

Of course, in order for Harsanyi’s theorems to provide support for utili-
tarianism, differences in utility must be comparable interpersonally, not just
intrapersonally. However, if, as I believe the preceding section has demon-
strated, von Neumann–Morgenstern utility theory does not supply a norma-
tively compelling cardinal measure of individual utility, then Harsanyi has
not demonstrated what he set out to achieve. Nevertheless, if one is con-
vinced by the arguments in Broome (1991) and is willing to go beyond the
von Neumann–Morgenstern theory by supposing that differences in utility
are quantitatively measurable, then a case can be made for the relevance of
Harsanyi’s theorems for utilitarianism.

7.1. Broome (1991)

For Broome (1991), utility is a measure of the goodness of alternatives and
goodness in turn is described in terms of a betterness binary relation (“weakly
better than”) on these alternatives. In Broome’s formulation of Harsanyi’s

35Indeed, as we shall see, Risse explicitly appeals to an argument made by Broome
(1991) when presenting his case for the cardinality of well-being.
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Aggegation Theorem, individual and social betterness relations are used in-
stead of individual and social preference relations. Broome employs a state-
contingent alternatives version of expected utility theory.36 There are S
states of nature, s = 1, . . . , S. Each of these states occurs with some fixed
positive probability. An act (or prospect) a is a mapping that assigns a sure
outcome from some set X to each state. Let A denote the set of acts. For
each xm ∈ X, A includes the constant act in which xm is obtained in every
state.

My concern is with what can be said about the measurability of goodness
as described by an individual betterness relation �b on A. While expressing
some reservations, Broome argues that it is reasonable to require this relation
to conform to the expected utility axioms for the state-contingent model
with fixed probabilities. If this is the case, then �b can be represented by an
expectational utility function; i.e., a function for which the utility of an act is
the expected utility of its state-contingent outcomes, where the utility of an
outcome xm ∈ X is simply the utility assigned to the constant act associated
with xm. Such an expectational representation is unique up to an increasing
affine transform. However, as Broome recognizes, any increasing transform
of an expectational representation also represents the betterness relation �b.
The claim that only expectational representations measure goodness is what
Broome (1991, p. 142) calls Bernoulli’s hypothesis. It is to provide support
for this hypothesis that Broome appeals to measurement theory, albeit rather
informally.

The title, Weighing Goods, of his monograph suggests that Broome draws
an analogy between the measurement of weight and the measurement of good-
ness. However, the sense in which he uses “weighing” is very different from
that used in Section 5 when discussing weight measurement. For Broome, it
appears that “weighing” is best thought of as referring to weighing reasons
for and against different choices. This difference is not immediately appar-
ent because Broome never provides a complete mathematical description of
the model he employs, relying instead on verbal arguments illustrated with
numerical examples. By analyzing the example Broome (1991, pp. 146–148)
uses to defend Bernoulli’s hypothesis, we can see why I believe that his argu-
ment depends on the use of a second relation to supplement the information
provided by �b.

36See Blackorby, Donaldson, and Weymark (1999) for a formal statement and proof of
Harsanyi’s Aggregation Theorem for this model of uncertainty.
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In Broome’s example, there are two equally-likely states of nature, H and
T (e.g., the outcomes obtained by flipping a fair coin). In prospect a1, the
individual receives £100 if state H occurs and £200 if state T occurs, whereas
in prospect a2 the outcomes are £20 and £320, respectively. Determining
which prospect is better is for Broome (1991, p. 146)

. . . a matter of weighing against each other differences in good
located in different states of nature. The consideration in favour
of prospect [a1] is that if state H occurs, it gives you the good of
£100 rather than the good of £20. The consideration in favour of
[a2] is that if state T occurs, it gives you the good of £320 rather
than the good of £200. These two differences—each a difference
in good—have to be weighed against each other. (my emphasis)

In the case in which these differences exactly balance each other, the
utility representation must equate the utility difference in going from £20 to
£100 with the utility difference in going from £200 to £320. Broome (1991,
pp. 147) continues by saying that:

The fact that the two utility differences are the same tells us,
from the definition of utility, that the consideration in favour of
[a1] exactly balances the consideration in favour of [a2]. Utility,
that it to say, tells us how much the differences in good count
in determining the overall goodness for you of the alternative
prospects.

Since the two differences in good are exactly balanced in de-
termining the overall goodness of the prospects, it would be very
natural to express this fact by saying that the differences are ac-
tually the same. . . . So to deny they are actually the same would
be to insist on a distinction between amounts of good and how
much those amounts count in determining overall goodness. And
it is natural to think this an empty distinction. (emphasis in the
original)37

If I have interpreted Broome correctly, he has supplemented the binary re-
lation �b with a quaternary relation �d on X. The statement that (x1, x2) �d

(x3, x4) is interpreted as saying that the difference in goodness obtained by

37Note that Broome’s use of “natural” in this quotation is different in meaning from the
use of “natural” in von Neumann and Morgenstern (1944).
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replacing x2 with x1 is at least as great as the difference in goodness ob-
tained by replacing x4 with x3.

38 It is this“difference in goodness” relation
that provides the cardinality that Broome needs.39 In effect, Broome has
combined the von Neumann and Morgenstern (1944) approach to expected
utility with a theory based on directly comparing differences in the goodness
of alternatives, as in Pareto (1906).

Note that it is possible to restate this argument in terms of the lotteries
L. Simply let X = {£20,£100,£200,£320} and let a1 (resp. a2) be the
lottery that assigns 50% probability to both £100 and £200 (resp. £20 and
£320). With this reinterpretation, everything Broome says about the state-
contingent model applies equally well to the lottery model.

7.2. Risse (2002)

As in Broome (1991), Risse (2002) is concerned with a betterness relation
that satisfies the axioms of expected utility theory. In his case, the betterness
relation is entailed by an idealized desire satisfaction concept of well-being
and the set of alternatives is the set of lotteries L. Risse provides a clear and
accurate account of von Neumann and Morgenstern’s contribution to mea-
surement theory. In particular, he recognizes the importance of the convex
combination operators in von Neumann and Morgenstern’s axiomatization
of expected utility theory. Risse (2002, p. 563) says that:

The additional natural operation (i.e., in addition to “preferring”)
that von Neumann and Morgenstern think they discovered is the
concatenation of events with probabilities. . . . And then it only
takes the axiomatic postulation of properties of the concatenation
operation to obtain a measurement of utility based on these two
natural operations. Those properties must be chosen so that the
behavior of numerical utilities captures the expectational nature
of utility.40 (emphasis in the original)

38See also Broome (1993, Section 2), where it is said that “betterness” is a cardinal con-
cept, and cardinality is defined in terms of the meaningfulness of difference comparisons.

39For consistency, the ranking of certain acts by �b must coincide with the ranking of
the outcomes in X that is implicit in �d. See Krantz, Luce, Suppes, and Tversky (1971,
Chapter 4) and Roberts (1979, Chapter 3) for discussions of difference measurability that
employ the framework of formal measurement theory.

40An “event” is what von Neumann and Morgenstern (1944) call a sure outcome.
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At this point in the discussion, Risse’s argument becomes a bit unclear. If
I have understood him correctly, he does not recognize that von Neumann and
Morgenstern’s choice of a numerical relational structure needs justification,
and so accepts the conclusion that von Neumann and Morgenstern have
determined

. . . a family of functions closed under positive affine transforma-
tions that measure utility just as positive affine transformations of
the Celsius scale measure heat. The family of functions, of course,
is the family of expectational representations. (Risse (2002, pp.
563–564))

For (Risse, 2002, p. 564), what remains to be established is “that the
family of expectational representations does indeed measure well-being.” In
other words, a representation of the betterness relation measures well-being
(not just utility) if and only if it is a von Neumann–Morgenstern utility func-
tion. To complete this final step in his argument, Risse (2002, pp. 564–565)
appeals to Broome’s argument described above, but now applied to an ide-
alized desire satisfaction interpretation of well-being, rather than goodness.
However, as I shall explain, it seems to me that Risse’s argument differs from
Broome’s in a fundamental way.

Although in the rest of his article, alternatives are lotteries, for simplicity,
Risse switchs to state-contingent alternatives when appealing to Broome’s
argument, fully recognizing that this argument can be restated in terms of
lotteries. He uses the same example as Broome, but with the probabilities of
the two states O1 (H) and O2 (T ) now 1/3 and 2/3, respectively, and dollars
substituted for pounds. He assumes that the two prospects are indifferent to
each other according to the betterness relation.

Risse (2002, pp. 564) says that:

Since we are assuming that the betterness-relation entailed by
your well-being can be represented by an expectational function
u, we obtain the following equation:

1

3
u($100) +

2

3
u($200) =

1

3
u($20) +

2

3
u($320) (23)

Simple algebraic transformations show that

{u($100) − u($20)}/{u($320) − u($200)} = 2 (24)
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That is, the utility difference between the two amounts of money
you could obtain were O1 to occur is twice as big as the utility
difference between the two amounts you could obtain were O2 to
occur. (equation numbers added)

Using phraseology similar to that of Broome (1991, p. 147), Risse (2002,
pp. 564) goes on to talk about considerations in favour of one prospect or
the other, concluding that

. . . the utility values tell us how much differences in well-being
count proportionately in the determination of the comparative
overall well-being pertaining to those prospects.

But if the difference in well-being between $100 and $20 counts
for twice as much as the difference between $320 and $200 in the
determination of your overall well-being, it is plausible to infer
that these differences measure genuine differences in well-being.
(emphasis in the original)

It might seem that Risse is simply endorsing Broome’s argument, and I
believe that this is what he intended. However, Broome has an independent
basis for measuring utility differences (the degree of goodness or well-being).
Risse does not. Risse makes inferences about utility differences by assuming
that only von Neumann-Morgenstern utility functions represent his better-
ness relation (the move from (23) to (24)), whereas Broome starts with an
independent quantititive measure of the degree of well-being.

I am not suggesting that Risse has made the fallacious inference concern-
ing the meaningfulness of intrapersonal utility differences that I discussed
in Section 4. Risse explicitly takes account of the convex combination op-
erators in von Neumann and Morgenstern’s theory, and this is what allows
Risse to regard von Neumann–Morgenstern utility theory as being cardinal,
provided that it is accepted that the numerical relational structure is what
I have called N4, which Risse implicitly does. But the choice of numerical
relational structure is exactly what is at issue. Unless some compelling jus-
tification can been offered for the choice of N4, not simply that the choice is
“natural” or convenient, Risse’s argument does not establish that individual
well-being is cardinal in the sense required by utilitarianism.
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7.3. Broome (1997)

Broome (1997) is concerned with whether a preference-based version of util-
itarianism, such as Harsanyi’s, is coherent. He ultimately argues that it is
not, but this is because he believes that Harsanyi’s account of how interper-
sonal comparisons of goodness are made contains non-preferencist features.
Broome now distinguishes between the betterness relation that describes
what is good for an individual (and that should form the basis for utili-
tarian comparisons of alternatives) and this individual’s preference relation.
For intrapersonal comparisons, Broome identifies the betterness relation with
the preferences of an individual in certain ideal circumstances (well informed,
calm, etc.) who makes judgments on behalf of herself in her actual nonideal
circumstances. For my purposes, we can then simply speak of an individual
preference relation.

In his article, Broome adopts the lottery model of uncertainty. Using a
variant of his earlier example, but with only three possible sure outcomes,
Broome argues for the use of only expectational representations of the indi-
vidual preference relation. Compared to his analysis in Broome (1991), the
link to measurement theory is made more explicit. In Broome’s example, (i)
sure outcome A is preferred to sure outcome B which in turn is preferred to
sure outcome C and (ii) the lottery in which A is received with probability
1/3 and C is received with probability 2/3 is indifferent to B for certain.

In singling out the von Neumann–Morgenstern utility functions from the
set of all utility functions representing the individual preference relation,
Broome (1997, pp. 15–16 in manuscript) says that:

The use of probabilities provides a natural analogue of a pair
of scales for measuring the strength—analogous to weight—of
preferences. In the example, two chances of the loss from B to
C balance the scales against one chance of the gain from B to
A, so we naturally take the preference for the gain to be twice
as strong as the preference against the loss. The rival concepts
are less natural. Compare our concept of physical weight. Any
increasing transform of weight could supply a rival concept of
weight, but it would be less natural than our present concept.
We use our concept because it has the natural and convenient
feature that two objects each weighing one pound balance in a
scale against one object weighing two pounds.
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The use of the weight analogy in this quotation is not particularly apt as
the concatenation operator used to measure weight is formally quite distinct
from the convex combination operators used in expected utility theory, but
this is a minor quibble. What is more important about this quotation is that
it appears that, unlike in Broome (1991), this argument does not utilize an
independent quantitative measure of degree of preference. Rather, strength
of preference is inferred from the expectational representations. Expressed
in the language of measurement theory, Broome clearly recognizes that some
justification for the choice of numerical relational structure N4 in expected
utility theory is required. His justification echoes the one offered by von
Neumann and Morgenstern (1944)—this choice is “natural and convenient.”
But, as I have argued above, this is an unsatisfactory basis on which to
determine the choice of the numerical relational structure in a normative
theory.

8. Concluding Remarks

The criticism first raised by Sen (1976) and later formalized by Weymark
(1991) that the utility functions that Harsanyi has used in his Aggregation
and Impartial Observer Theorems are ordinal and therefore cannot serve
a basis for utilitarianism was based on an incompete description of von
Neumann–Morgenstern expected utility theory. Missing from their accounts
is the fundamental role that the operators for combining events plays in the
von Neumann–Morgenstern representation theorem.

What I have attempted to show here is that even if full account is taken of
these operators, von Neumann–Morgenstern utility functions are not cardinal
in a normatively compelling way. The problem is that the cardinality of a
von Neumann–Morgenstern utility function is dependent on the choice of N4

as the numerical relational structure used to measure utility. The rationales
that have been offered for this choice suffice when the objective is to explain
individual behaviour, but they do not suffice when the objective is to use
utility functions in a normative theory such as utilitarianism. I therefore
conclude that Sen’s criticism that von Neumann–Morgenstern utility theory
is an inadequate basis for Harsanyi to build a case for utilitarianism is also
valid when the more complete description of the empirical relational structure
employed by von Neumann and Morgenstern (1944) is taken into account.
The interpersonal and intrapersonal utility comparisons that are required for
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utilitarianism to be a meaningful doctrine must be found elsewhere.
Given that the main elements of the representational theory of measure-

ment were not systematized until the late 1950s, it is perhaps not surprising
that Harsanyi, writing in the early 1950s, appears not to have appreciated the
significance for his theory of von Neumann and Morgenstern’s remarks that
they had “discovered” a natural operation that permitted them to quantita-
tively measure utility. But he was not alone in this respect. To the best of
my knowledge, in his published writings, Harsanyi never explicitly made ref-
erence to the ways in which utility differences are quantified in measurement
theory. However, in the letter cited in footnote 18 above, Harsanyi draws an
analogy between the measurement of utility differences and the measurement
of differences in weight. He goes on to describe an operational procedure for
measuring weight differences. It is a pity that he never presented these ideas
in print, as they provide valuable insight into Harsanyi’s views about the
issues that I have considered in this article.
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