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Abstract

Kalai (2002) demonstrates that in semi anonymous Bayesian games
with sufficiently many players any Bayesian equilibrium is approximately
ex-post Nash. In this paper we demonstrate that the existence of an ap-
proximate expost Nash property implies a purification result of the stan-
dard sort for the original Bayesian game. We also provide an example
showing that the bound we obtain on the distance of a purified approxi-
mate equilibrium from an exact equilibrium is tight.
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1 Ex post Nash equilibrium and purification of
Bayesian equilibrium

For games of incomplete information, a number of papers have highlighted the
importance of ‘ex post’ properties of an equilibrium, that is, the properties of an
equilibrium after actions and player types are revealed. See, for example, Cremer
and McLean (1985), Wilson (1987), Green and Laffont (1987) and Postlewaite
and McLean (2002). Of special interest to the current paper, Kalai (2004)
introduces a notion of approximate ex post stability and demonstrates that in
semi-anonymous games with many players, with high probability the play of a
Bayesian equilibrium will yield, ex post, an approximate Nash equilibrium of
the game of complete information that results after player types are revealed.
For a strategy vector to be approximately ex post stable it must be the case that
no player has a strong incentive to change his action even after he has observed
the types and actions of all other players. Ex post stability appears to be a
powerful concept and Kalai highlights a number of interesting consequences of
his result.
In this paper we demonstrate that the existence of an ex post stable strategy

vector implies the existence of an approximate Bayesian equilibrium in pure
strategies of the original incomplete information game. One consequence is a
purification result for Bayesian equilibrium- in any semi-anonymous game there
exists an approximate Bayesian equilibrium in pure strategies. For games of
complete information, purification results have been of interest since Schmeidler
(1975); see, for examples. Mas-Colell (1984), Pascoa (1993,1998), and Khan,
Rath and Sun. Khan and Sun (2004) provide a review of this literature. In
Cartwright and Wooders (2002) we obtain a purification result for Bayesian
equilibrium in games with many players. The current paper serves to connect the
existence of approximate ex post Nash equilibria with purification of Bayesian
equilibrium of the original game of incomplete information.
That ex post stability implies the existence of a pure strategy Bayesian

approximate equilibrium may appear trivial. It is not so, however, using Kalai’s
approximate notion of ex post stability: a strategy vector is (ε, ρ) ex post stable
if with high probability (1− ρ) no player can gain, ex post, by more than some
small amount (ε) by deviating. A purification result can still easily be obtained,
as highlighted by Kalai, for the case of normal form games. To explain, if a
strategy vector is (ε, ρ) ex post stable then with positive probability it yields
a profile of actions where no player can gain by more than ε by deviating -
thus, there must exist a Nash ε equilibrium in pure strategies. In treating
Bayesian games things are not so straightforward and more work has to be
done in obtaining a purification result. This is highlighted by our results: we
show that the existence of an (ε, ρ) ex post stable strategy vector implies the
existence of a Nash α-equilibrium in pure strategies where α ≤ (1 − ρ)ε + ρD
and where D is an upper bound on payoffs. The bound on α is tight and thus,
in contrast to the special case of normal form games, the existence of an (ε, ρ)
ex post stable strategy vector is not enough to imply the existence of a Bayesian
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ε-equilibrium in pure strategies. This seems an interesting property and so we
provide an example of a semi-anonymous game to illustrate.
It is worth pointing out that our result applies to a general class of Bayesian

games and is not restricted to semi-anonymous games with many players. That
is, in any Bayesian game the existence of an ex post stable strategy vector
implies the existence of an approximate Bayesian equilibrium in pure strategies.
Semi-anonymous games merely provide one instance where the existence of an
ex post strategy vector is guaranteed. Our result thus serves to demonstrate
the strength of the ex post stability concept.

2 Model

There exists a finite set of possible player actions, denoted A, and finite set
of possible player types, denoted T . Set C ≡ T ×A will be used to denote the
possible type-action characters of a player.1 A Bayesian game is given by a
tuple G = (N,T, p,A, u) where:

N = {1, ..., n} is a finite player set.

T = ×iTi is the set of type profiles where each Ti ⊆ T describes the feasible
types of player i.

p : T → [0, 1] is a prior probability function where p(t) gives the probability of
type profile t ∈ T .

A = ×iAi is the set of action profiles where each Ai ⊆ A describes the feasible
actions of player i.

u = (u1, ..., un) is a vector describing the players utility functions. Let Ci =
Ti ×Ai denote the feasible type action characters of player i and let C =
×iCi denote the set of feasible profiles of type-action characters. Each ui
takes the form ui : C → [0,D].

A Bayesian game G is played as follows: According to the prior probabil-
ity function p each player i is assigned a type ti. Informed of his type (but
not the types of the other players) a player chooses an action (possible using
some randomization). This determines the type-action character of each player
and payoffs can be calculated according to the realized profile of type-action
characters.
A strategy of player i is defined by a vector σi where σi(ai|ti) gives the

probability of player i choosing action ai if of type ti. Given a vector of strategies
σ and the prior probability function p one can determine the probability of each
possible profile of type-action characters. This allows utility functions to be
extended to strategy vectors by assuming that Ui(σ) = E[ui(c)] for each i.
We say that strategy σi is a pure strategy if for each ti ∈ Ti there exists

some ai such that σi(ai|ti) = 1. A strategy vector σ is said to be a pure strategy
1For example, a character may be weak type who eats quiche etc.
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vector if σi is a pure strategy for each i. We say that a set of pure strategy
vectors {s1, ..., sM} constitute a support for a strategy vector σ if and only if
there exists real numbers β1, ..., βM where

1. 1 ≥ βm > 0 for all m,

2.
P

m βm = 1 and

3. σi(ai|ti) =
P

m βms
m
i (ai|ti) for all i, ai and ti.

Clearly every feasible strategy vector σ has a support.

3 A purification result for Bayesian games
We begin by defining two distinct equilibrium concepts. As is standard, we say
a strategy vector σ is a Bayesian (Bayesian Nash) ε-equilibrium if and only if:

Ui(σi, σ−i|ti) ≥ Ui(σ
0
i, σ−i|ti)− ε

for all σ0i, ti ∈ Ti and i ∈ N .2 Thus, if σ is a Bayesian ε-equilibrium no player i
expects to gain by more than ε by deviating from σi. If s is a pure strategy vector
and a Bayesian ε-equilibrium then we say that s is a Bayesian ε-equilibrium in
pure strategies.
We now introduce the notion of ex post Nash as defined by Kalai (2004). A

profile of type-action characters c = (c1, ..., cn) = ((t1, a1), ..., (tn, an)) is an ε
best response for player i if

ui(c) ≥ ui(a
0
i, ti, c−i)− ε

for every action a0i ∈ Ai. A profile of type-action characters is ε Nash if it is an
ε best response for every player i ∈ N . Finally, a strategy profile is (ε, ρ) ex post
Nash if the probability that it yields an ε Nash profile of type-action characters
is at least 1− ρ.
We provide our main result.

Theorem 1: Take as given a Bayesian game G and small, non-negative real
numbers ε and ρ (both less than 1). If a strategy vector σ is (ε, ρ) ex post Nash
then in the support of σ there is a pure strategy vector s that is a Bayesian
α-equilibrium where α ≤ (1− ρ)ε+ ρD.

Before detailing the proof we provide a simple example to illustrate Theorem
1 and demonstrate that the bound provided is tight. There are three players,
two types H and L and two actions B and G. Player 1, called nature, is of type
H with probability ρ and type L with probability 1− ρ. Nature always receives
a payoff of zero. Players 2 and 3 are always of type L. When nature is of type
L players 2 and 3 are seen to play the matrix game:

2More formally we only require for ti ∈ T where there is a positive probability that player
i may be of type ti.
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B G
B 1, 0 0, 1
G 0, 1 1, 0

and if nature is of type H players 2 and 3 play matrix game:

B G
B D, 0 0,D
G 0,D D, 0

where D > 1. Consider the pure strategy vector s = (B,B,B). Given that
player 2 is playing B player 3 expects to gain by (1− ρ) + ρD ≡ k by deviating
to G instead of B. From this, it can be seen that s is a Nash k equilibrium
and, furthermore, there can be no pure strategy vector that is a Bayesian α-
equilibrium for any α < k. Next note that strategy vector s is (1, ρ) ex post
Nash. This follows in that with probability 1− ρ nature is of type L and when
this happens no player can gain by more than 1 by deviating.

Proof of Theorem 1: Let σ∗ be (ε, ρ) ex post Nash and let P ≡ {s1, ..., sM} be
a support of σ∗. We proceed by contradiction. Thus, suppose that there exists
no sm ∈ P such that sm is a Bayesian α-equilibrium for α = (1− ρ)ε+ ρD.3

We introduce some notation: Let C∗ denote the set of ε Nash composition
profiles of game Γ. Given a strategy vector σ0 let y(c, σ0) denote the probability
of composition profile c occurring. 2

Take any sm ∈ P . By our supposition, sm is not a Bayesian α equilibrium.
Given that s is not a Bayesian α-equilibrium it must be that the probability of
a composition profile c /∈ C∗ occurring is greater than ρ; that is,X

c/∈C∗
y(c, sm) > ρ. (1)

Suppose otherwise: with probability at least 1−ρ an ε Nash composition profile
arises; if a composition profile c /∈ C∗ arises then each player can gain at most
D by changing his action; thus, ex-ante the maximum a player can gain by
changing his strategy is (1− ρ)ε+ ρD leading to the desired contradiction.
The set P = {s1, ..., sM} is a support for strategy vector σ and thus there

exists real numbers β1, ..., βM where (1)1 ≥ βm > 0 for all m, (2)
P

m βm = 1
and (3) σ∗i (ai|ti) =

P
m βms

m
i (ai|ti) for all i, ai and ti. Thus,

y(c, σ∗) =
X
m

βmy(c, s
m) (2)

for all c ∈ C. Thus,

X
c/∈C∗

y(c, σ∗) =
X
c/∈C∗

"X
m

βmy(c, s
m)

#
=
X
m

βm

ÃX
c/∈C∗

y(c, sm)

!
(3)

3Note that if sm is not a Bayesian α-equilibrium then it cannot be a Bayesian α0 equilibrium
for any α0 < α.
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Note, however that σ∗ is (ε, ρ) ex post Nash which by definition implies,X
c/∈C∗

y(c, σ∗) < ρ. (4)

Clearly (1), (3) and (4) are incompatible if
P

m βm = 1. This gives the desired
contradiction.¥

A corollary of this result and results due to Kalai (2004) is that, given any
ε > 0, for any semi-anonymous game with sufficiently many players and for
any equilibrium σ of that game there exists a Bayesian ε-equilibrium in pure
strategies in the support of σ.4

3.1 Example: (ε, ρ) ex post Nash does not imply Bayesian
ε purification

In this section we provide an example to demonstrate that the existence of an
(ε, ρ) ex post Nash strategy vector does not imply the existence of a Bayesian ε-
equilibrium in pure strategies even if ρ is arbitrarily small. As pointed out in the
introduction this is not the case in normal form games. In normal form games
the existence of an (ε, ρ) ex post Nash strategy vector implies the existence of
a Nash ε-equilibrium in pure strategies irrespective of ρ. The example treats a
class of semi-anonymous games as defined by Kalai (2004).
There are, for notational simplicity, 3n players where n is odd. There are two

actions B and G and four types Poor (P ), Rich (R),High (H) and Low (L).
Players 1, 2, ..., n (called rich) have type R with probability 1. Players n+1, n+
2, ..., 2n (called poor) have type P with probability 1. Players 2n + 1, ..., 3n
(called managers) have type H with probability 1

n and type L with probability
(1− 1

n). Managers are assigned types independently.
Given an action profile a, type t0 and action a0 let w(t0, a0, a) be the number

of players with type t0 who choose action a0. Thus, for example, w(R,B, a)
denotes the number of players who are rich and choose action B. If player i is
poor then his payoff function is given by,

ui(ai, a−i, t) =
w(R, ai, a)

n
.

Thus, the payoff of a poor player depends positively on the proportion of rich
players who choose the same action as himself. Given a type profile t let h(t)
denote the proportion of managers who are type high. If player i is rich then
his payoff is given by,

ui(ai, a−i, t) = D− w(P,ai,a)
n if h(t) ≤ 2

3 ,

ui(ai, a−i, t) = D− w(P,ai,a)
n − (D − 1)

³
h(t)−2

3
1
3

´
w(P,ai,a)

n

otherwise

4See Kalai (2004) for a definition of a semi-anonymous game.
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Thus, the payoff of a rich player depends negatively on the proportion of poor
players playing the same action as himself. As the proportion of managers
who have type H increases above 2

3 then his payoff is influenced more by the
actions of the poor players. Let the payoff of a manager be 1 independent of
the composition profile.5

First, consider the existence of a Bayesian ε equilibrium in pure strategies.
Given a strategy vector in which all rich players or all poor players play the
same strategy there must exist at least one player who can gain by 1 or more
by changing strategy. Thus, assume there to be at least one rich player and one
poor player playing G and one rich player and one poor player playing B. As n
is odd the number of poor players playing G is distinct to the number playing
B. Given that Pr[h(t) > 2/3] > 0, for any pure strategy vector s there must be
at least one rich player i who can expect, ex-ante, to gain by strictly more than
1
n if he changes strategy. Thus, there does not exist a Bayesian ε equilibrium in
pure strategies for any ε ≤ 1

n .

Let s0 be the pure strategy vector whereby n−1
2 rich players choose action B

and n+1
2 choose action G and similarly n−1

2 poor players choose action B and
n+1
2 choose action G. With some probability 1− ρ0 strategy vector s0 will yield
a composition profile c where h(t) ≤ 2/3. When this occurs c is 1

n Nash. Thus,
s0 is ( 1n , ρ

0) ex post Nash. We shall now show that ρ0 → 0 as n→∞. Assuming,
for simplicity that n is divisible by 3, we obtain,6

ρ0 =
nX

x= 2
3n

µ
n

x

¶µ
1

n

¶xµ
1− 1

n

¶n−x
= Pr

"
Fv1,v2 ≤

v2
1
n

v1
¡
1− 1

n

¢#

where Fv1,v2 is the F distribution with parameters v1 and v2 and where v1 =
4
3n

and v2 =
2
3n+ 2. Note that,

v2
1
n

v1
¡
1− 1

n

¢ = 2
3 +

2
n

4
3n−

4
3

→ 0 as n→∞.

Also note that v1, v2 → ∞ as n → ∞. It follows that ρ0 → 0 as n → ∞. An
alternative, if less formal, way of obtaining the same result is to note that if we
let p denote the probability that a manager has type H then as n→∞, p→ 0
but np = 1. Thus, as n becomes large the binomial distribution determining
the number of managers who have type H can be approximated by a Poisson
distribution with parameter 1. It follows that the Pr[x ≥ 2

3n]→ 0 as n→∞.
5 Intuitevely it may be that if managers have type H they prefer some policy or action

that makes the payoff of rich players more sensitive to the actions of poor players. This is,
however, not neccessary for the example.

6A known result (see p110 of Johnson, Kotz qnd Kempis 1993) is that,
n

x=r

n

x
pxqn−x = Pr Fv1,v2 ≤

v2p

v1q

where Fv1,v2 is the F distribution with parameters v1 = 2r and v2 = 2(n− r + 1). See,
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