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Abstract

Given the preferences of players and the rules governing network formation,
what networks are likely to emerge and persist? And how do individuals and
coalitions evaluate possible consequences of their actions in forming networks?
To address these questions we introduce a model of network formation whose
primitives consist of a feasible set of networks, player preferences, the rules of
network formation, and a dominance relation on feasible networks. The rules of
network formation may range from noncooperative, where players may only act
unilaterally, to cooperative, where coalitions of players may act in concert. The
dominance relation over feasible networks incorporates not only player prefer-
ences and the rules of network formation but also assumptions concerning the
degree of farsightedness of players. A specification of the primitives induces an
abstract game consisting of (i) a feasible set of networks, and (ii) a path domi-
nance relation defined on the feasible set of networks. Using this induced game
we characterize sets of network outcomes that are likely to emerge and persist.
Finally, we apply our approach and results to characterization of equilibrium of
well known models and their rules of network formation, such as those of Jackson
and Wolinsky (1996) and Jackson and van den Nouweland (2005).
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1 Introduction

1.1 Overview of the questions, the model and the main results

In many economic and social situations the totality of interactions between individ-
uals and coalitions can be modeled as a network. We address the following question:
given preferences of individuals and rules governing network formation, what net-
works are likely to emerge and persist? To address this question we introduce a
model of network formation whose primitives consist of a feasible set of networks,
player preferences, the rules of network formation, and a dominance relation. The
rules of network formation may range from noncooperative, where players may only
act unilaterally, to cooperative, where coalitions consisting of multiple players may
act in concert. The dominance relation may be either direct or indirect. Under
direct dominance players are concerned with immediate consequences of their net-
work formation strategies whereas under indirect dominance players are farsighted
and consider the eventual consequences of their strategies. As we will discuss, our
framework can accommodate a wide variety of social and economic situations.

A specification of the primitives induces an abstract game consisting of (i) a
feasible set of networks and (ii) a path dominance relation defined on the feasible
set of networks. Under the path dominance relation, a network G path dominates
another networkG� if there is a finite sequence of networks, beginning with G and
ending with G� where each network along the sequence dominates its predecessor.1

Using this induced abstract game as our basic analytic tool we demonstrate that for
any set of primitives the following results hold:

1. The feasible set of networks contains a unique, finite, disjoint collection of
nonempty subsets each constituting a strategic basin of attraction. Given pref-
erences and the rules of governing network formation, these basins of attraction
are the absorbing sets of the process of network formation modeled via the
game.

2. A stable set with respect to path dominance consists of one network from each
basin of attraction.

3. The path dominance core, defined as a set of networks having the property that
no network in the set is path dominated by any other feasible network, consists
of one network from each basin of attraction containing a single network. Note
that the path dominance core is contained in each stable set and is nonempty

1Stated formally, given feasible set of networks G and (a direct or indirect) dominance relation
>, network G� ∈ G (weakly) path dominates network G ∈ G, written G� ≥p G, if G� = G or if
there exists a finite sequence of networks {Gk}nk=0 in G with G = G0 and G� = Gn such that for
k = 1, 2, . . . , n

Gk > Gk−1.

The path dominance relation ≥p induced by the dominance relation > is sometimes referred to as
the transitive closure of >.
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if and only if there is a basin of attraction containing a single network.2 As
a corollary, we conclude that any network contained in the path dominance
core is Pareto efficient. Thus, by considering the network formation game with
respect to path dominance— and thus, by considering the long run - we identify
networks that are both stable and Pareto-efficient with respect to the original
dominance relation.

4. From the above results it follows that if the dominance relation is transitive,
then the path dominance core is nonempty.

We also demonstrate specializations of our model to treat hedonic games and club
formation games and we discuss how our results apply to these examples.

There are interesting connections between our notions of stability (basins of at-
traction, path dominance stable sets, and path dominance core) and some of the
basic notions of stability and equilibrium found in the existing literature - such as,
strong stability (Jackson and van den Nouweland 2005), pairwise stability (Jackson
and Wolinsky 1996), consistency (Chwe 1994), and Nash equilibrium. We show that
in general (for all primitives) the path dominance core is contained in the set of
strongly stable networks. We conclude from our general results therefore that, for all
primitives, the existence of at least one basin of attraction containing a single network
is sufficient for the existence of a strongly stable network. We also demonstrate that,
depending on how we specialize the primitives of the model, the path dominance core
is equal to the set of strongly stable networks, the set of pairwise stable networks, or
the set of Nash networks.

Of particular interest are the connections between the rules of network formation,
the dominance relation inducing path dominance, and stability.3 We provide a unified
and systematic analysis of these connections. For example, we show that:

(a) If path dominance is induced by a direct dominance relation (as opposed to
an indirect dominance relation as in Chwe 1994, for example), then the path
dominance core is equal to the set of strongly stable networks.

(b) If, in addition, the rules of network formation are the Jackson-Wolinsky rules,
then the path dominance core is equal to the set of pairwise stable networks.4

(c) If path dominance is induced by a direct dominance relation and if the rules of
network formation only allow network changes brought about by individuals,
then the path dominance core is equal to the set of Nash networks.

2Put differently, the path dominance core is empty if and only if all basins of attraction contain
multiple networks.

3Although she treats a more specialized model, the questions addressed in Demange (2004) are
related.

4Under the Jackson-Wolinsky rules arc addition is bilateral (i.e., the two players that would be
involved in the arc must agree to adding the arc), arc subtraction is unilateral (i.e., at least one
player involved in the arc must agree to subtract or delete the arc), and network changes take place
one arc at a time (i.e., in any one play of the game, only one arc can be added or subtracted). See
section 3.2.1 for a formal definition.
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We then conclude from (3) above, the existence of at least one basin of attraction
containing a single network is, depending on how we specialize primitives, both nec-
essary and sufficient for either (i) the existence of a strongly stable network, or (ii) a
pairwise stable network, or (iii) a Nash network.5

When path dominance is induced by an indirect dominance relation as in Chwe
(1994), then we show that for all primitives - and in particular for all rules of network
formation - each strategic basin of attraction has a nonempty intersection with the
largest consistent set of networks (i.e., the Chwe set of networks, see Chwe 1994).6

This fact, together with (2) above, implies that there always exists a path dominance
stable set contained in the largest consistent set. Thus, the path dominance core is
contained in the largest consistent set. In light of our results on the path dominance
core and stability (both strong and pairwise), we conclude that if path dominance is
induced by an indirect dominance relation, then any network contained in the path
dominance core is not only consistent but also strongly stable, as well as pairwise
stable.7

We remark that solution concepts defined using abstract dominance relations
have a distinguished history in the literature of game theory. First, consider the
von-Neuman-Morgenstern stable set. The vN-M stable set is defined with respect to
an abstract dominance relation on a set of outcomes and consists of those outcomes
that are externally and internally stable with respect to the given dominance relation.
Similarly, Gilles (1959) defines the core based on a given abstract dominance relation.
These solution concepts, with a few exceptions, have typically been applied to models
of economies or cooperative games where the notion of dominance is based on what
a coalition can achieve using only the resources owned by its members (cf., Aumann
1964) or a given set of utility vectors for each possible coalition (cf., Scarf 1967).
Particularly notable exceptions are Schwartz (1974), Panzer, Kalai and Schmeidler
(1976), Kalai and Schmeidler (1977) and Shenoy (1980). Their motivations are in
part similar to ours in that they take as given a set of possible choices of a society and
a dominance relation and, based on these, describe a set of possible or likely social
outcomes called, by Kalai and Schmeidler, the admissible set. While their examples
treat direct dominance, their general results have wider applications. We return to a
discussion of the admissible set in our concluding section.

1.2 A further discussion of the model

In addition to introducing abstract games of network formation, our modeling ap-
proach contributes to the literature by extending the class of primitives used in the

5For Jackson-Wolinsky linking networks, Calvo-Armengol and Ilkilic (2004) provide necessary
and sufficient conditions on the network link marginal payoffs such that the set of pairwise stable,
pairwise Nash, and proper equilibrium networks coincide.

6Consistency with respect to indirect dominance and the notion of a largest consistent set were
introduced by Chwe (1994) in an abstract game setting. We provide a detailed discussion of Chwe’s
notion in Section 5.3.

7Other papers on indirect dominance and consistency in games include Xue (1998), Diamantoudi
and Xue (2003), and Mauleon and Vannetelbosch (2003).

4



analysis of network formation in three respects. These extensions, listed below, sig-
nificantly broaden the set of potential applications.
1. Directed Networks with heterogenous arcs and multiple uses of the same arc:
First, we focus on directed networks rather than on linking networks8 and distinguish
between nodes and decision making players (i.e., the set of players and the set of
nodes are not necessarily the same).9 Connections are represented by arcs and each
arc possesses an orientation or direction: arc a connecting nodes i and i� must either
go from node i to node i� or must go from node i� to node i.10 For example, an
individual may have a links on his web page to the web pages of all Nobel Laureates
in economics but it may be that no Nobel Laureate has a link to that individual’s
web page. Connections between nodes (i.e., arcs), besides having an orientation, are
allowed to be heterogeneous. To illustrate, if the nodes in a given network represent
players, an arc a going from player i to player i� might represent a particular type and
intensity of interaction (identified by the arc label a) initiated by player i towards
player i�. Player i might direct great affection toward player i� as represented by arc
a, but player i

�
may direct only lukewarm affection toward player i as represented

by arc a�. Also, under our extended definition nodes are allowed to be connected by
multiple, distinct arcs. Thus, we allow nodes to interact in multiple, distinct ways.
For example, nodes i and i� might be connected by arcs a and a�, with arc a running
from node i to i� and arc a� running in the opposite direction (i.e., from node i� to
node i).11 If node i represents a seller and node i� a buyer, then arc a might represent
a contract offer by the seller to the buyer, while arc a� might represent a counter offer
or the acceptance or rejection of the contract offer. Finally, loops are allowed and
arcs are allowed to be used multiple times in a given network.12 For example, arc a
might be used to connect nodes i and i� as well as nodes i� and i��. Thus, under our
definition nodes i and i� as well as nodes i� and i�� are allowed to engage in the same
type of interaction as represented by arc a.

Allowing each type of arc to be used multiple times makes it possible to distinguish
coalitions by the type of interaction taking place between coalition members and to
give a network representation of such coalitions. For example, if the nodes in a given
network represent players, an ‘a-coalition’ could consist of all players i having an
a-connection with at least one other player i

�
. Such an a-coalition would then have a

network representation as the directed subnetwork consisting of pairs of nodes, i and
i
�
, connected by an a arc.
Until now, most of the economic literature on networks has focused on linking

networks (see Jackson 2005 for an excellent survey). In an undirected (or linking)

8 In particular, we focus on the notion of directed networks introduced in Page, Wooders, and
Kamat (2005).

9Our example of club formation demonstrates a situation where the nodes are not necessarily
decision-making players. In particular, some nodes are club locations.
10We denote arc a going from node i to node i� via the ordered pair (a, (i, i�)), where (i, i�) is also

an ordered pair. Alternatively, if arc a goes from node i� to node i, we write (a, (i�, i)).
11Under our extended definition, arc a� might also run in the same direction as arc a. However,

our definition does not allow arc a to go from node i to node i� multiple times.
12A loop is an arc going from a given node to that same node. For example, given arc a and node

i, the ordered pair (a, (i, i)) is a loop.
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network, an arc (or link) is identified with a nonempty subset of nodes consisting
of exactly two distinct nodes, for example, {i, i�}, i 9= i�. Thus, in an undirected
network, a link has no orientation and simply indicates a connection between two
players. Moreover, links are typically not distinguished by type (or by label) — that
is, links are homogeneous. By allowing arcs to possess direction and be used multiple
times and by allowing loops and nodes to be connected by multiple arcs, our definition
makes possible the application of networks to a rich set of economic environments. For
example, a job opportunity market model may embody the features introduced above;
individuals may have different relationships with their superiors in an organization
and other individuals both within and outside of the organization. This may well
affect social interactions and job opportunities.

2. The rules of network formation: We explicitly model the rules of network forma-
tion and thus provide a systematic treatment of the relationship between rules and
stability. The rules of network formation specify which players must be involved in
adding, subtracting, or replacing an arc as well as how many and what types of arcs
can be added, subtracted, or replaced in any one play of the game.

In much of the literature, it is assumed (sometimes implicitly) that network for-
mation is governed by the Jackson-Wolinsky rules.13 Other rules are possible. For
example, the addition of an arc might require that a simple majority of the players
agree to the addition while the deletion of an arc might require that a two-thirds ma-
jority agree to the deletion. Under our approach, such rules are allowed. We achieve
this flexibility by representing the rules of network formation via a collection of coali-
tional effectiveness relations, {→S}S , defined on the feasible set of networks. Given
feasible networks G and G�, if the relation G→S G

� holds, the players in coalition S
can change network G to network G�. In constructing our abstract game of network
formation, we will equip the feasible set of networks with a dominance relation which
incorporates - or represents - both the preferences of individuals and coalitions and
the rules of network formation as represented via the coalitional effectiveness relations
{→S}S . Thus, the stability results we obtain using the path dominance relation will
reflect both preferences and rules.

3. The Dominance Relation Defined on Feasible Networks: We allow the path domi-
nance relation on networks to be based on either direct dominance or indirect dom-
inance (direct and indirect dominance are formally defined in section 3). All of our
main results hold for both path dominance based on direct dominance and path
dominance based on indirect dominance.

13Jackson-van den Nouweland (2005) focus on linking networks and assume that link addition is
bilateral while link subtraction is unilateral. But in their model, network changes are not required to
take place one link at a time - multiple link changes can take place in any one play of the game. We
shall refer to these rules as the Jackson-van den Nouweland rules. Calvo-Armengol and Ilkilic (2004)
also focus on linking networks under bilateral-unilateral rules and allow multiple link changes.
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1.3 Examples: club formation and hedonic games

To demonstrate the flexibility of our approach as well as illustrate our notions of sta-
bility (i.e., basins of attraction, path dominance stable sets, and the path dominance
core), we consider two examples.

1.3.1 Club formation

Our first example relates to a number of contributions in the literature, for example,
Konishi, Le Breton and Weber (1998); we note other related literature in the pre-
sentation of the example. Our current formulation, taken from Page and Wooders
(2005), models club structures as bipartite networks and formulates the problem of
club formation as a game of network formation. In Page and Wooders (2005) we
considered only indirect dominance; here we compare and contrast the results for
path dominance defined with respect to direct and indirect dominance. For brevity,
we will call these core concepts the direct dominance core and the indirect dominance
core.

The set of stable outcomes with respect to direct dominance is not in general the
same as the set of stable outcomes with indirect dominance. For the case where the
total player set can be partitioned into clubs of optimal size and there are sufficiently
many club locations, the indirect and direct dominance cores are equivalent and
nonempty. In addition, if there are ‘too few’ club locations14, so that the average
number of members of a club must be larger than the optimal club size, then, while
the indirect dominance core is empty, the direct dominance core is nonempty and
induces a partition of players into a clubs that are all as close as possible to the same
size. Moreover, the set of networks in the direct dominance core coincide with the
set of strongly stable networks and the direct dominance core induces the same set
of partitions as the Nash club equilibrium introduced in Arnold and Wooders (2005).
This illustrates that (not surprisingly) the notion of dominance used affects the size
of the path dominance core and, the greater the extent of indirect dominance allowed,
the smaller the path dominance core.

If the rules of network formation allow only one player to move at a time, then the
direct dominance core coincides with the set of Nash networks (which coincides with
the set of strongly stable networks). This is true because only one player can move
at a time and must be made better off by changing the status quo. Some further
characterizations are discussed in the example.

1.3.2 Hedonic games

Our framework encompasses hedonic games — games where players’ preferences are
defined over the set of coalitions in which they are members. This is illustrated
by an interesting example proposed by Salvador Barbera and Michael Maschler in
private correspondence. The example also illustrates how, though indirect dominance,

14For example, if there are two clubs and seven players, one club would be of size three and another
of size four.
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outcomes in a game might move from one hedonic core point to another. From our
prior results, this demonstrates that, even though the hedonic core is nonempty,
the path dominance core with respect to indirect dominance is empty. In Page
and Wooders (2006) we investigate relationships between cores of cooperative games
(hedonic and in characteristic function form) and path dominance cores, but do not
examine the question further in this paper. We remark that a much more complete
investigation of indirect dominance for hedonic games appears in Diamantoudi and
Xue (2003).

2 Directed Networks

2.1 The Definition

Let N be a finite set of nodes, with typical element denoted by i, and let A be a finite
set of arcs, with typical element denoted by a. Arcs represent potential connections
between nodes, and depending on the application, nodes can represent economic
players or economic objects such as markets or firms. The following definition is from
Page, Wooders, and Kamat (2001).

Definition 1 (Directed Networks)
Given node set N and arc set A, a directed network, G, is a nonempty subset of
A× (N ×N). The collection of all directed networks is denoted by P (A× (N ×N)).

A directed networkG ∈ P (A×(N×N)) specifies how the nodes inN are connected
via the arcs in A. Note that in a directed network order matters. In particular, if
(a, (i, i

�
)) ∈ G, this means that arc a goes from node i to node i

�
. Also, note that

loops are allowed - that is, we allow an arc to go from a given node back to that given
node. For example, in a network model of journal citations loops could represent self-
cites.15 Finally, an arc can be used multiple times in a given network and multiple
arcs can go from one node to another. However, under our definition an arc a is not
allowed to go from a node i to a node i� multiple times.

The following notation is useful in describing changes in networks and the prop-
erties of networks. Given directed network G ∈ P (A × (N ×N)), let G ∪ (a, (i, i�))
denote the network obtained by adding arc a from node i to node i� to network G,
and let G\(a, (i, i�)) denote the network obtained by subtracting (or deleting) arc a
from node i to node i� from network G. Also, let

G(a) :=
q
(i, i

�
) ∈ N ×N : (a, (i, i

�
)) ∈ G

r
,

and

G(i) :=
q
a ∈ A : (a, (i, i�)) ∈ G or (a, (i�, i)) ∈ G

r
.

 (1)

Thus, G(a) is the set of node pairs connected by arc a in network G, and G(i) is the
set of arcs going from node i or coming to node i in network G.
15This example was suggested by a participant at the Coalition Theory Network meeting held in

January 2006. Other examples could be developed. For example, in a network model of information
sharing, the fact that each player knows his own information would be represented by a loop.
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Note that if for some arc a ∈ A, G(a) is empty, then arc a is not used in network
G.Moreover, if for some node i ∈ N , G(i) is empty then node i is not used in network
G, and node i is said to be isolated relative to network G.

Suppose that the node set N is given by N = {i1, i2, . . . , i5} , while the arc set A
is given by A = {a1, a2, . . . , a5, a6, a7} . Consider network G in Figure 1.

i 1

i 2

i3

i4 i5

a1

a1

a2
a3

a1

a6

a5

a4

Figure 1: Network G

Note that in network G nodes i1 and i2 are connected by two a1 arcs running in oppo-
site directions and that nodes i1 and i3 are connected by two arcs, a1 and a3, running
in the same directions from node i3 to node i1. Thus, G(a1) = {(i1, i2), (i2, i1), (i3, i1)}
and G(a3) = {(i3, i1)}. Observe that (a6, (i4, i4)) ∈ G is a loop. Thus, G(a6) =
{(i4, i4)}. Also, observe that arc a7 is not used in network G. Thus, G(a7) = ∅.16
Finally, observe that G(i4) = {j4, j5, j6}, while G(i5) = ∅. Thus, node i5 is isolated
relative to G.17

2.2 Linking Networks and Directed Graphs

Our notion of a directed network can be formally related to the notion of a linking
network. As before, let N denote a finite set of nodes. A linking network, say g,
consists of a finite collection of subsets of the form {i, i�}, i 9= i�. Thus, {i, i�} ∈ g
means that nodes i and i� are linked in network g. For example, g might be given
by g = {{i, i�},{i�, i��}} for i, i�, and i�� in N . Note that all connections or links are
the same (i.e., connection types are homogeneous), direction does not matter, and
loops are ruled out. Letting gN denote the collection of all subsets of N of size 2,
the collection of all linking networks given N is given by P (gN ) where, recall, P (gN )

16The fact that arc a7 is not used in network G can also be denoted by writing

a7 /∈ projAG,
where projAG denotes the projection onto A of the subset

G ⊆ A× (N ×N)
representing the network.
17 If the loop (a7, (i5, i5)) were part of network G in Figure 1, then node i5 would no longer be

considered isolated under our definition. Moreover, we would have G(i5) = {a7}.
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denotes the collection of all nonempty subsets of gN (e.g., see the definition in Jackson
and Wolinsky 1996).

A directed graph, say E, consists of a finite collection of ordered pairs (i, i�) ∈
N × N . For example, E might be given by E = {(i, i�), (i�, i�)} for (i, i�) and (i�, i�)
in N ×N . Stated more compactly, a directed graph E is simply a subset of N ×N .
Thus, in any directed graph connection types are again homogeneous but direction
does matter and loops are allowed.

Under our definition, a directed network G is a subset of A× (N ×N), where as
before A is a finite set of arcs. Thus, in a directed network, say G ∈ P (A × (N ×
N)), connection types are allowed to be heterogeneous (distinguished by arc labels),
direction matters, and loops are allowed.

3 Preferences, Rules, and Dominance Relations

3.1 Preferences

Let D denote the set of players (or economic decision making units) with typical
element denoted by d, and let P (D) denote the collection of all coalitions (i.e., non-
empty subsets of D) with typical element denoted by S. Note that, the set of players
D and the set of nodes N are not necessarily the same set.

Given a feasible set of directed networks G ⊆ P (A× (N ×N)), we shall assume
that each player’s preferences over networks in G are specified via an irreflexive
binary relation "d. Thus, player d ∈ D prefers network G� ∈ G to network G ∈ G
if G� "d G and for all networks G ∈ G, G 
d G (irreflexivity). Coalition S� ∈ P (D)
prefers network G� to network G, written G� "S G, if G� "d G for all players d ∈ S�.

In many applications, an player’s preferences are specified via a real-valued net-
work payoff function, vd(·). For each player d ∈ D and each directed network G ∈ G,
vd(G) is the payoff to player d in network G. Player d then prefers network G� to
network G if vd(G�) > vd(G). Moreover, coalition S� ∈ P (D) prefers network G� to
network G if vd(G�) > vd(G) for all d ∈ S�. Note that the payoff vd(G) to player d
depends on the entire network. Thus, the player may be affected by directed links
between other players even when he himself has no direct or indirect connection with
those players. Intuitively, ‘widespread’ network externalities are allowed.

Remark 1 All of our results on basins of attraction, path dominance stable sets, and
the path dominance core (Theorems 1-4 below) remain valid even if coalitional pref-
erences {"S}S∈P (D) over networks are based on weak preference relations { d}d∈D.
If G� d G then player d either strictly prefers G� to G (denoted G� "d G) or is
indifferent between G� and G (denoted G� ∼d G). Given weak preferences { d}d∈D,
coalition S� ∈ P (D) prefers network G� to network G, written G� "S� G, if for all
players d ∈ S�, G� d G and if for at least one player d� ∈ S�, G� "d� G. Note
that if coalitional preferences {"S}S∈P (D) are defined in this way (i.e., using weak
preferences { d}d∈D), then they are irreflexive (i.e., G 
S G for all G ∈ G and
S ∈ P (D)).
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3.2 Rules

The rules of network formation are specified via a collection of coalitional effectiveness
relations {→S}S∈P (D) defined on the feasible set of networks G. Each effectiveness
relation →S represents what a coalition S can do. Thus, if G→S G

� this means that
under the rules of network formation coalition S ∈ P (D) can change network G ∈ G
to network G� ∈ G by adding, subtracting, or replacing arcs in G.

3.2.1 Examples of Network Formation Rules

Jackson-Wolinsky Rules: To illustrate, consider Figure 2 depicting two networks G1
and G2 in which the nodes represent players. Thus, D = N = {i1, i2, i3} .

i 1

i 2

i3

a1

a1

a2
a3

Network G1

i 1

i 2

i3

a1

a1

a2
a3

a1

Network G2

Figure 2

Observe that

G2 = G1 ∪ (a1, (i3, i1)) and G1 = G2\(a1, (i3, i1)).

Assume that

(i) adding an arc a from player i to player i� requires that both players i and i� agree
to add arc a (i.e., arc addition is bilateral);

(ii) subtracting an arc a from player i to player i� requires that player i or player i�

agree to subtract arc a (i.e., arc subtraction is unilateral);

(iii) for any pair of networks G and G� in G, if G→S G
�, then G 9= G� and

either G� = G ∪ (a, (i, i�)) for some (a, (i, i�)) ∈ A× (N ×N)
or

G� = G\(a, (i, i�)) for some (a, (i, i�)) ∈ A× (N ×N).

For the case D = N (i.e., players = nodes), we shall refer to rules (i)-(iii) above as
Jackson-Wolinsky rules. Note that rules (i) and (ii) imply that if G →S G

�, then
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1 ≤ |S| ≤ 2. Referring to Figure 2, the effectiveness relations over networks G and
G� under Jackson-Wolinsky rules are given by

G1 −→{i1,i3}
G2 G2 −→{i1,i3}

G1 G2 −→{i1} G1 G2 −→{i3} G1.

Under the Jackson-Wolinsky rules arc addition is bilateral, arc subtraction is unilat-
eral, and network changes take place one arc at a time.

Jackson-van den Nouweland rules: Consider networks G0 and G3 depicted in Figure
3 and again suppose that nodes represent players.

i 1

i 2

i3

a1

a1

a2

Network G0

i 1

i 2

i3

a1

a2
a3

a1

Network G3

Figure 3

Observe that

G3 = (G0\(a1, (i2, i1))) ∪ (a1, (i3, i1)) ∪ (a3, (i3, i1))
and

G0 = (G3\ ((a1, (i3, i1)) ∪ (a3, (i3, i1)))) ∪ (a1, (i2, i1)).
Assume that

(i) adding an arc a from player i to player i� requires that both players i and i� agree
to add arc a (i.e., arc addition is bilateral);

(ii) subtracting an arc a from player i to player i� requires that player i or player i�

agree to subtract arc a (i.e., arc subtraction is unilateral);

For the case D = N (i.e., players = nodes), we shall refer to rules (i)-(ii) above as
Jackson-van den Nouweland rules. Thus, the Jackson-van den Nouweland rules are
the Jackson-Wolinsky rules without the one-arc-at-a-time restriction. Note that if arc
addition is bilateral and arc subtraction is unilateral (i.e., if rules (i) and (ii) hold),
then G→S G

� implies that G� is obtainable from G via coalition S, that is,

(i) (a, (i, i�)) ∈ G� and (a, (i, i�)) /∈ G
⇒ {i, i�} ⊆ S;

(ii) (a, (i, i�)) /∈ G� and (a, (i, i�)) ∈ G
⇒ {i, i�} ∩ S 9= ∅.

12



Referring to Figure 3, the effectiveness relations over networks G and G� under
Jackson-van den Nouweland rules are given by

G0 −→
{i1,i2,i3}

G3 G0 −→{i1,i3}
G3 G3 −→{i1,i2}

G0 G3 −→
{i1,i2,i3}

G0.

Noncooperative Rules: Now assume that

(i) adding an arc a from player i to player i� requires only that player i agree to add
the arc (i.e., arc addition is unilateral);

(ii) subtracting an arc a from node i to node i� requires only that player i agree to
subtract the arc (i.e., arc subtraction is unilateral);

(iii) G→S G
� implies that |S| = 1 (i.e., only network changes are brought about by

individual players are allowed).

We shall refer to rules (i)-(iii) as noncooperative. Note that an player i can add or
subtract an arc to player i� without regard to the preferences of player i�.

Under noncooperative rules, the effectiveness relations over networks G1 and G2
in Figure 2 are given by

G1 −→{i3} G2 G1 −→{i3} G1.

Note that under noncooperative rules, networks G0 and G3 in Figure 3 are not related
under the effectiveness relations

�→{i}
�
i∈N . However, referring to the networks in

Figures 2 and 3, under the noncooperative rules we have, for example, the following
effectiveness relations

G3 →{i2} G2 G2 →{i3} G0
and

G0 →{i3} G2 G2 →{i2} G3.

(12 ,
2
3)-Voting Rules: All of the rules above require that arc addition and arc subtrac-

tion involve at least one player who is a party to the arc. Consider now arc addition
and arc subtraction based on voting. If nodes represent players, then under certain
voting rules, arcs can be imposed on players. To see this, consider the following rules
for arc addition and arc subtraction.

(i) adding an arc a from player i to player i� requires a simple majority agree to add
arc a;

(ii) subtracting an arc a from player i to player i� requires a 2
3 majority agree to

subtract arc a;

(iii) for any pair of networks G and G� in G, if G→S G
�, then G 9= G� and

either G� = G ∪ (a, (i, i�)) for some (a, (i, i�)) ∈ A× (N ×N)
or

G� = G\(a, (i, i�)) for some (a, (i, i�)) ∈ A× (N ×N).

13



We shall refer to rules (i)-(iii) above as (12 ,
2
3)-voting rules. Note that rules (i) and

(ii) imply that if G→S G
�, then

G→S G ∪ (a, (i, i�)) for some (a, (i, i�)) ∈ A× (N ×N)
⇔

G ∪ (a, (i, i�)) "S G and |S|
|D| >

1
2 ;

and
G→S G\(a, (i, i�)) for some (a, (i, i�)) ∈ A× (N ×N)

⇔
G\(a, (i, i�)) "S G and |S|

|D| >
2
3 .

Referring to Figure 2, if players i2 and i3 prefer network G2 to network G1 while
player i1 prefers network G1 to network G2, then under (12 ,

2
3)-voting rules

G1 −→{i2,i3}
G2,

where G2 = G1 ∪ (a1, (i3, i1)). Thus, arc a1 from player i3 to player i1 is imposed on
player i1 under majority rule. Note that under (12 ,

2
3)-voting rules it is not possible

to move from network G2 back to network G1.

Nonuniform Rules and the Network Representation of Network Formation Rules: In
all of the examples above, the rules for arc addition and arc subtraction are uniform
across pairs of networks. In some applications, such uniformity is not present. One
very concise way to write down such nonuniform network formation rules is to use a
network representation. In particular, suppose we write

(S, (G,G�)) if and only if G→S G
�.

Thus, (S, (G,G�)) if and only if under the rules coalition S ∈ P (D) can change
network G to network G�. Letting the set of arcs be given by the collection of all
coalitions P (D) and letting the set of nodes be given by the feasible set of networks G,
the rules of network formation can be represented by a networkG ⊂ P (D)×(G×G).
Then the set of all possible network formation rules is given by the set of all such
networks.

3.3 Dominance Relations

We will consider two types of dominance relations on the feasible set of networks
G ⊆ P (A× (N ×N)), direct and indirect dominance.

3.3.1 Direct Dominance

Network G� ∈ G directly dominates network G ∈ G, sometimes written G� G, if for
some coalition S ∈ P (D),

G ≺S G�
and

G −→
S
G�.

14



Thus, network G� directly dominates network G if some coalition S prefers G� to G
and if under the rules of network formation coalition S has the power to change G
to G�.

3.3.2 Indirect Dominance

Network G� ∈ G indirectly dominates network G ∈ G, written G� G, if there is a
finite sequence of networks,

G0, G1, . . . ,Gh,

with G = G0, G� = Gh, and Gk ∈ G for k = 0, 1, . . . , h, and a corresponding sequence
of coalitions,

S1, S2, . . . , Sh,

such that for k = 1, 2, . . . , h
Gk−1 −→

Sk
Gk,

and
Gk−1 ≺Sk Gh.

Note that if network G� indirectly dominates network G (i.e., if G� G), then what
matters to the initially deviating coalition S1, as well as all the coalitions along the
way, is that the ultimate network outcome G� = Gh be preferred. Thus, for example,
the initially deviating coalition S1 will not be deterred from changing network G0 to
network G1 even if network G1 is not preferred to network G = G0, as long as the
ultimate network outcomeG� = Gh is preferred toG0, that is, as long asG0 ≺S1 Gh.18

3.3.3 Path Dominance

Each dominance relation >, whether it be direct or indirect (i.e., whether >= or
>= ), induces a path dominance relation on the set of networks. In particular,
corresponding to dominance relation > on networks G there is a corresponding path
dominance relation ≥p on G specified as follows: network G� ∈ G (weakly) path
dominates network G ∈ G with respect to > (i.e., with respect to the underlying
dominance relation >), written G� ≥p G, if G� = G or if there exists a finite sequence
of networks {Gk}hk=0 in G with Gh = G� and G0 = G such that for k = 1, 2, . . . , h

Gk > Gk−1.

We refer to such a finite sequence of networks as a finite domination path and we say
network G� is >-reachable from network G if there exists a finite domination path
from G to G�. Thus,

G� ≥p G if and only if
�
G� is > -reachable from G, or
G� = G. (2)

18 In order to capture the idea of farsightedness in strategic behavior, Chwe (1994) analyzes abstract
games equipped with indirect dominance relations in great detail, introducing the equilibrium notions
of consistency and largest consistent set. The basic idea of indirect dominance goes back to the work
of Guilbaud (1949) and Harsanyi (1974).
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If network G is reachable from network G, that is, if there is a finite domination
path from G back to G then we call this path a circuit. Finally, if network G is not
reachable from any network in G and if no network in G is reachable from G, then
network G is isolated (i.e., network G ∈ G is isolated if there does not exist a network
G� ∈ G with G� ≥p G or G ≥p G�).

3.3.4 The Directed Graph of a Dominance Relation

It is often useful to represent the dominance relation over networks using a directed
graph. For example, Figure 3 depicts the graph of a direct dominance relation > on
the feasible set of networks G = {G0,G1, . . . , G7} .

G0

G2

G4

G2 G3G2G2G5

G1 G6

G7G2

Figure 3: Directed Graph of Dominance Relation >

The arrow (or >-arc) from network G3 to network G4 in Figure 3 indicates that G4
dominates G3. Given primitives (G, {"S} , {→S} , >)S∈P (D) and given that > is a
direct dominance relation, the >-arc from network G3 to network G4 means that for
some coalition S, G4 is preferred to G3 and more importantly, that coalition S has
the power to change network G3 to network G4. Thus, G3 ≺S G4 and G3 →S G4.
But notice also that there is a >-arc in the opposite direction, from network G4
to network G3. Thus, G3 also dominates G4, and thus for some other coalition S�

distinct from coalition S, that is, some coalition S� with S� ∩ S = ∅, G4 ≺S� G3 and
G4 →S� G3.

Note that network G3 is >-reachable from network G3 via two paths. Thus, the
graph of dominance relation > depicted in Figure 3 contains two circuits. Defining
the length of a domination path to be the number of >-arcs in the path, these two
circuits are of length 4 and length 2.

Because networksG2 andG5 in Figure 3 are on the same circuit, G5 is >-reachable
from G2 and G2 is >-reachable from G5. Thus, G5 path dominates G2 (i.e., G5 ≥p
G2) and G2 path dominates G5 (i.e., G2 ≥p G5). The same cannot be said of networks
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G1 and G5 in Figure 3. In particular, while G5 ≥p G1, it is not true that G1 ≥p G5
because G1 is not >-reachable from G5. Finally, note that network G0 is isolated.

4 Network Formation Games and Stability

We can now present our main results. Using the abstract network formation game
with respect to path dominance given by the pair

( G,≥p) (3)

and induced by primitives

(G, {"S} , {→S} , >)S∈P (D) , (4)

we introduce and characterize the notions of (i) strategic basins of attraction, (ii)
path dominance stable sets, and (iii) the path dominance core. All of the results pre-
sented in this section hold for path dominance relations induced by direct dominance
relations or by indirect dominance relations.

4.1 Networks Without Descendants

If G1 ≥p G0 and G0 ≥p G1, networks G1 and G0 are equivalent, written G1 ≡p G0.
If networks G1 and G0 are equivalent then either networks G1 and G0 coincide or
G1 and G0 are on the same circuit (see Figure 3 above for a picture of a circuit). If
G1 ≥p G0 but G1 and G0 are not equivalent (i.e., not G1 ≡p G0), then network G1
is a descendant of network G0 and we write

G1 >p G0. (5)

Referring to Figure 3, observe that network G5 is a descendant of network G1, that
is, G5 >p G1.

Network G� ∈ G has no descendants in G if for any network G ∈ G
G ≥p G� implies that G ≡p G�.

Thus, if G� has no descendants then G ≥p G� implies that G and G� coincide or lie
on the same circuit.19

In attempting to identify those networks which are likely to emerge and persist,
networks without descendants are of particular interest. Here is our main result
concerning networks without descendants.

Theorem 1 (All path dominance network formation games have networks without
descendants)

Let (G,≥p) be a network formation game. For every network G ∈ G there exists
a network G� ∈ G such that G� ≥p G and G� has no descendants.
19Note that any isolated network is by definition a network without descendants (e.g., network G0

in Figure 3).
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Proof. Let G0 be any network in G. If G0 has no descendants then we are done.
If not choose G1 such that G1 >p G0. If G0 has no descendants then we are done.
If not, continue by choosing G2 >p G1. Proceeding iteratively, we can generate a
sequence, G0, G1, G2, . . . . Now observe that in a finite number of iterations we must
come to a network Gk� without descendants. Otherwise, we could generate an infinite
sequence, {Gk}k such that for all k,

Gk >p Gk−1.

However, becauseG is finite this sequence would contain at least one network, sayGk� ,
which is repeated an infinite number of times. Thus, all the networks in the sequence
lying between any two consecutive repetitions of Gk� would be on the same circuit,
contradicting the fact that for all k, Gk is a descendant of Gk−1 (i.e., Gk >p Gk−1).

By Theorem 1, in any network formation game (G,≥p), corresponding to any
network G ∈ G there is a network G� ∈ G without descendants which is >-reachable
from G. Thus, in any network formation game the set of networks without descen-
dants is nonempty. Referring to Figure 3, the set of networks without descendants is
given by

{G0,G2, G3, G4,G5, G7} .
We shall denote by Z the set of networks without descendants.

4.2 Basins of Attraction

Stated loosely, a basin of attraction is a set of equivalent networks to which the
strategic network formation process represented by the game might tend and from
which there is no escape. Formally, we have the following definition.

Definition 2 (Basin of Attraction)
Let (G,≥p) be a network formation game. A set of networks A ⊆ G is said to be

a basin of attraction for (G,≥p) if

1. the networks contained in A are equivalent (i.e., for all G� and G in A, G� ≡p
G), and

2. no network in A has descendants (i.e., there does not exist a network G� ∈ G
such that G� >p G for some G ∈ A).

As the following characterization result shows, there is a very close connection
between networks without descendants and basins of attraction.

Theorem 2 (A characterization of basins of attraction)
Let (G,≥p) be a network formation game and let A be a subset of networks in G.

The following statements are equivalent:

1. A is a basin of attraction for (G,≥p).
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2. There exists a network without descendants, G ∈ Z, such that

A =
�
G� ∈ Z : G� ≡p G

�
.

Proof. (1) implies (2): Because the sets A and {G� ∈ Z : G� ≡p G}, G ∈ Z, are
equivalence classes, A 9= {G� ∈ Z : G� ≡p G} implies that

A∩�G� ∈ Z : G� ≡p G� = ∅ for all G ∈ Z.
Thus, if (2) fails, this implies that A contains a network with descendants. Thus, A
cannot be a basin of attraction for (G,≥p), and thus, (1) implies (2).20

(2) implies (1): Suppose now that

A =
�
G� ∈ Z : G� ≡p G

�
for some network G ∈ Z. If A is not a basin of attraction, then for some network
G�� ∈ G, G�� >p G� for some G� ∈ A. But now G�� >p G� and G� ≡p G imply that
G�� >p G, contradicting the fact that G ∈ Z. Thus, (2) implies (1).

In light of Theorem 2, we conclude that in any network formation game (G,≥p), G
contains a unique, finite, disjoint collection of basins of attraction, say {A1,A2, . . . ,Am},
where for each k = 1, 2, . . . ,m (m ≥ 1)

Ak = AG : =
�
G� ∈ Z : G� ≡p G

�
for some network G ∈ Z. Note that for networks G� and G in Z such that G� ≡p G,
AG� = AG (i.e. the basins of attraction AG� and AG coincide). Also, note that if
network G ∈ G is isolated, then G ∈ Z and

AG : =
�
G� ∈ Z : G� ≡p G

�
= {G}

is, by definition, a basin of attraction - but a very uninteresting one.

Example 1 (Basins of attraction)
In Figure 3 above the set of networks without descendants is given by

Z = {G0, G2, G3, G4, G5, G8} .

Even though there are six networks without descendants, because networks G2,G3, G4,
and G5 are equivalent, there are only three basins of attraction:

A1 = {G0} , A2 = {G2,G3, G4, G5} , and A3 = {G7} .

Moreover, because G2, G3, G4, and G5 are equivalent,

AG2 = AG3 = AG4 = AG5 = {G2,G3, G4, G5} .
20Note that if G ∈ Z and G� ≡p G, then G� ∈ Z.
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4.3 Stable Sets with Respect to Path Dominance

The formal definition of a ≥p-stable set is as follows.21

Definition 3 (Stable Sets with Respect to Path Dominance)
Let (G,≥p) be a network formation game. A subset V of networks in G is said to

be a stable set for (G,≥p) if

(a) (internal ≥p -stability) whenever G0 and G1 are in V, with G0 9= G1, then
neither G1 ≥p G0 nor G0 ≥p G1 hold, and

(b) (external ≥p -stability) for any G0 /∈ V there exists G1 ∈ V
such that G1 ≥p G0.

In other words, a nonempty subset of networks V is a stable set for (G,≥p) if
G0 and G1 are in V, with G0 9= G1, then G1 is not reachable from G0, nor is G0
reachable from G1, and if G0 /∈ V, then there exists G1 ∈ V reachable from G0.

We now have our main results on the existence, construction, and cardinality of
stable sets.22

Theorem 3 (Stable sets: existence, construction, and cardinality)
Let (G,≥p) be a network formation game, and without loss of generality assume

that (G,≥p) has basins of attraction given by

{A1,A2, . . . ,Am} ,

where basin of attraction Ak contains |Ak| many networks (i.e., |Ak| is the cardinality
of Ak). Then the following statements are true:

1. V ⊆ G is a stable set for (G,≥p) if and only if V is constructed by choosing one
network from each basin of attraction, that is, if and only if V is of the form

V = {G1, G2, . . . , Gm} ,

where Gk ∈ Ak for k = 1, 2, . . . ,m.
2. (G,≥p) possesses

|A1| · |A2| · · · · · |Am| :=M
many stable seats and each stable set, Vq, q = 1, 2, . . . ,M , has cardinality

|Vq| = |{A1,A2, . . . ,Am}| = m.
21By equipping the abstract network formation game with the path dominance relation rather

than the original dominance relation, we entirely avoid the famous Lucas (1968) example of a game
with no stable set.
22These results can be viewed as applications of some classical results from graph theory to the

theory of network formation games (e.g., see Berge 2001, Chapter 2).
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Proof. It suffices to prove (1). Given (1), the proof of (2) is straightforward. To
begin, let

V = {G1, G2, . . . ,Gm} ,
where Gk ∈ Ak for k = 1, 2, . . . ,m, and suppose that for Gk and Gk� in V, Gk� ≥p Gk.
Since Gk ∈ Ak has no descendants, this would imply that Gk� ≡p Gk. But this is a
contradiction because Gk ∈ Ak and Gk� ∈ Ak� and the basins of attraction Ak and
Ak� are disjoint. Thus, V is internally ≥p-stable. Now suppose that network G is not
contained in V. By Theorem 1, there exists a network G� ∈ G such that G� ≥p G,
and Γ>p(G

�) = ∅ (i.e., G� is a network without descendants). By Theorem 2, G� is
contained in some basin of attraction Ak and therefore G� ≡p Gk where Gk is the
kth component of {G1, G2, . . . ,Gm}. Thus, we have Gk ≥p G� ≥p G implying that
Gk ≥p G, and thus V is externally ≥p-stable.

Suppose now that V ⊆ G is a stable set for (G,≥p). First note that each network
G in V is a network without descendants. Otherwise there exists G� ∈ G\V such that
G� >p G. But then because V is externally ≥p-stable, there exists G�� ∈ V, G�� 9= G,
such that G�� ≥p G� implying that G�� ≥p G and contradicting the internal ≥p-
stability of V. Because each G ∈ V is without descendants, it follows from Theorem
2 that each G ∈ V is contained in some basin of attraction Ak. Moreover, because V is
internally ≥p-stable and because all networks contained in any one basin of attraction
are equivalent, no two distinct networks contained in V can be contained in the same
basin of attraction. It only remains to show that for each basin of attraction, Ak,
k = 1, 2, . . . ,m,

V ∩Ak 9= ∅.
Suppose not. Then for some k�, V ∩ Ak� = ∅. Because all networks in Ak� are without
descendants, for no network G ∈ Ak� is it true that there exists a network G� ∈ V
such that G� ≥p G. Thus, we have a contradiction of the external ≥p-stability of V.
Example 2 (Basins of attraction and stable sets)

Referring to Figure 3, it follows from Theorem 3 that because

|A1| · |A2| · |A3| = 1 · 4 · 1 = 4,
the network formation game (G,≥p) has 4 stable sets, each with cardinality 3. By
examining Figure 3 in light of Theorem 3, we see that the stable sets for (G,≥p) are
given by

V1 = {G0, G2,G7} ,
V2 = {G0, G3,G7} ,
V3 = {G0, G4,G7} ,
V4 = {G0, G5,G7} .

4.4 The Path Dominance Core

Definition 4 (The Path Dominance Core)
Let (G,≥p) be a network formation game. A subset C of networks in G is said to

be the path dominance core of (G,≥p) if for each network G ∈ C there does not exist
a network G� ∈ G, G� 9= G, such that G� ≥p G.
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Our next results give necessary and sufficient conditions for the path dominance
core of a network formation game to be nonempty, as well as a recipe for constructing
the path dominance core.

Theorem 4 (Path dominance core: nonemptiness and construction)
Let (G,≥p) be a network formation game, and without loss of generality assume

that (G,≥p) has basins of attraction given by

{A1,A2, . . . ,Am} ,

where basin of attraction Ak contains |Ak| many networks. Then the following state-
ments are true:

1. (G,≥p) has a nonempty path dominance core if and only if there exists a basin
of attraction containing a single network, that is, if and only if for some basin
of attraction Ak, |Ak| = 1.

2. Let
{Ak1 ,Ak2 , . . . ,Akn} ⊆ {A1,A2, . . . ,Am} ,

be the subset of basins of attraction containing all basins having cardinality 1.
Then the path dominance core C of (G,≥p) is given by

C = {Gk1 , Gk2 , . . . , Gkn} ,

where Gki ∈ Aki, for i = 1, 2, . . . , n.

Proof. It suffices to show that a network G is contained in the path dominance
core C if and only if G ∈ Ak for some basin of attraction Ak, k = 1, 2, . . . ,m, with
|Ak| = 1. First note that if G is in the path dominance core, then G is a network
without descendants. Thus, G ∈ Ak for some basin of attraction Ak. If |Ak| > 1,
then there exists another network G� ∈ Ak such that G� ≡p G. Thus, G� ≥p G
contradicting the fact that G is in the path dominance core. Conversely, if G ∈ Ak
for some basin of attraction Ak with |Ak| = 1, then there does not exist a network
G� 9= G such that G� ≥p G.

Remark 2 If coalitional preferences {"S}S∈P (D) over networks are based on weak
preference relations { d}d∈D rather than on strong preference relations {"d}d∈D (see
Remark 1 above), then the corresponding path dominance core - the weak path domi-
nance core - is contained in the path dominance core (i.e., the path dominance core
based on strong preference relations).

Example 3 (Basins of attraction and the path dominance core)
It follows from Theorem 4 that the path dominance core of the network formation

game (G,≥p) with feasible set

G = {G0, G1, . . . , G7}

22



and path dominance relation ≥p induced by the dominance relation depicted in Figure
3 is

C = {G0, G7} .
Figure 4 contains the graph of a different dominance relation on G = {G0,G1, . . . , G7} .

G0

G2

G4

G2 G3G2G2G5

G1 G6

G7G2

Figure 4: Graph of a different dominance relation k

Denoting the new dominance relation by k,the network formation game
�
G,kp

�
with

respect to the path dominance relation kp induced by the dominance relation k has
3 circuits and 2 basins of attraction,

A1= {G2, G3, G4, G5} and A2= {G6, G7} .

Because |A1| = 4 and |A2| = 2, by Theorem 4 the path dominance core of
�
G,kp

�
is empty. By Theorem 3,

�
G,kp

�
has 8 stable sets each containing 2 networks (i.e.,

each with cardinality 2). These stable sets are given by

V1 = {G2, G6} ,
V2 = {G3, G6} ,
V3 = {G4, G6} ,
V4 = {G5, G6} ,
V5 = {G2, G7} ,
V6 = {G3, G7} ,
V7 = {G4, G7} ,
V8 = {G5, G7} .

4.4.1 The Path Dominance Core and Pareto Efficiency

Given primitives (G, {"S} , {→S} , >)S∈P (D), we say that a network G ∈ G is Pareto
Efficient if there does not exist another network G� ∈ G such that (i) G →S G

� for
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some coalition S ∈ P (D) and (ii) G ≺d G� for all players d ∈ D. Let E denote the
set of Pareto efficient networks and let C denote the path dominance core of network
formation game (G,≥p). It is easy to see that C ⊆ E.

5 Other Stability Notions for Network Formation Games

5.1 Strongly Stable Networks

We begin with a formal definition of strong stability for abstract network formation
games.

Definition 5 (Strong Stability)
Given primitives (G, {"S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

network G ∈ G is said to be strongly stable in (G,≥p) if for all G� ∈ G and S ∈ P (D),
G→S G

�
implies that G ⊀S G

�
.

Thus, a network is strongly stable if whenever a coalition has the power to change
the network to another network, the coalition will be deterred from doing so because
not all members of the coalition are made better off by such a change.23 If nodes
represent players and arc addition is bilateral while arc subtraction is unilateral, then
our definition of strong stability is essentially that of Jackson-van den Nouweland but
for directed networks rather than linking networks. Note that under our definition
of strong stability a network G ∈ G that cannot be changed to another network by
any coalition is strongly stable.

We now have our main result on the path dominance core and strong stability.
Denote the set of strongly stable networks by SS.

Theorem 5 (The path dominance core and strong stability)
Given primitives (G, {"S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

the following statements are true.

1. If the path dominance core C of (G,≥p) is nonempty, then SS is nonempty and
C ⊆ SS.

2. If the dominance relation > underlying ≥p is a direct dominance relation, then
C = SS and SS is nonempty if and only if there exists a basin of attraction
containing a single network.

Proof. 1. Let C ⊆ G, C 9= ∅, be the path dominance core of (G,≥p) and let network
G be contained in C. Then there does not exist a network G� ∈ G, G� 9= G, such that
G� ≥p G. If for some coalition S and some network G� ∈ G, G→S G

� and G ≺S G�,
23Our definition of a strongly stable network differs slightly from the definition given in Jackson-van

den Nouweland (2005). In particular, under their definition, a network is strongly stable if whenever
a coalition has the power to change the network to another network, the coalition will be deterred
from doing so because at least one member of the coalition is made worse off by the change.
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then G� ≥p G trivially, a contradiction. Thus, for G contained in C, G →S G
� for

coalition S implies that G ⊀S G
�
, and thus G ∈ C implies G ∈ SS.

2. To see that SS ⊆ C if the dominance relation > underlying ≥p is a direct
dominance relation, consider the following. If G /∈ C, then there exists a network
G� 9= G which path dominates G, that is, G� ≥p G. This implies that there exists
a network G�� such that G� ≥p G�� > G. Because > is a direct dominance relation,
for some coalition S we have G →S G

�� and G ≺S G��. Thus, G /∈ SS. By part 1
of Theorem 4, C = SS is nonempty if and only if there exists a basin of attraction
containing a single network.

Note that the set of strongly stable networks is contained in the set of Pareto
efficient networks. Thus, C ⊆ SS ⊆ E.

5.2 Pairwise Stable Networks

The following definition is a formalization of Jackson-Wolinsky (1996) pairwise sta-
bility for abstract network formation games.

Definition 6 (Pairwise Stability)
Given networks P (A×(N ×N)) where nodes represent players (i.e., N = D) and

given feasible networks G ⊆ P (A×(N×N)) and primitives (G, {"S} , {→S} , >)S∈P (D),
network G ∈ G is said to be pairwise stable in network formation game (G,≥p) if for
all (a, (i, i�)) ∈ A× (N ×N),

1. G→{i,i�} G ∪ (a, (i, i�)) implies that G ⊀{i,i�} G ∪ (a, (i, i�));
2. (a) G→{i} G"(a, (i, i�)) implies that G ⊀{i} G"(a, (i, i�)), and
(b) G→{i�} G"(a, (i, i�)) implies that G ⊀{i�} G"(a, (i, i�)).

Thus, a network is pairwise stable if there is no incentive for any pair of players
to add an arc to the existing network and there is no incentive for any player who
is party to an arc in the existing network to dissolve or remove the arc. Note that
under our definition of pairwise stability a network G ∈ G that cannot be changed to
another network by any coalition, or can only be changed by coalitions of size greater
than 2, is pairwise stable.

Let PS denote the set of pairwise stable networks. It follows from the definitions
of strong stability and pairwise stability that SS ⊆ PS. Moreover, if the full set of
Jackson-Wolinsky rules are in force, then SS = PS.

We now have our main result on the path dominance core and pairwise stability.

Theorem 6 (The path dominance core and pairwise stability)
Given primitives (G, {"S} , {→S} , >)S∈P (D) where nodes represent players (i.e.,

N = D) and given network formation game (G,≥p), the following statements are
true.

1. If the path dominance core C of (G,≥p) is nonempty, then PS is nonempty and
C ⊆ PS.
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2. If the dominance relation > underlying ≥p is a direct dominance relation and if
the Jackson-Wolinsky rules hold, then C = PS and PS is nonempty if and only
if there exists a basin of attraction containing a single network.

Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that
SS ⊆ PS. For the proof of part 2, note that under the Jackson-Wolinsky rules
SS = PS. Thus, we have C ⊆ SS = PS. If in addition the path dominance relation
is induced by a direct dominance relation, then we have PS = SS ⊆ C. Thus, if the
path dominance is induced by a direct dominance and if the Jackson-Wolinsky rules
hold, then we have C = SS = PS. By part 1 of Theorem 4, C = SS = PS is nonempty
if and only if there exists a basin of attraction containing a single network.

Theorem 6 can be viewed as an extension of a result due Jackson and Watts (2002)
on the existence of pairwise stable linking networks for network formation games
induced by Jackson-Wolinsky rules. In particular, Jackson and Watts (2002) show
that for this particular class of Jackson-Wolinsky network formation games, if there
does not exist a closed cycle of networks, then there exists a pairwise stable network.
Our notion of a strategic basin of attraction containingmultiple networks corresponds
to their notion of a closed cycle of networks. Thus, stated in our terminology, Jackson
and Watts show that for this class of network formation games, if there does not exist
a basin of attraction containing multiple networks, then there exists a pairwise stable
network. Following our approach, if we specialize to this class of Jackson-Wolinsky
network formation games, then by part 2 of Theorem 6 the existence of at least one
strategic basin containing a single network is both necessary and sufficient for the
existence of a pairwise stable network.

5.3 Consistent Networks

We begin with a formal definition of farsighted consistency (Chwe 1994).

Definition 7 (Consistent Sets)
Let (G,≥p) be a network formation game where path dominance ≥p is induced by

an indirect dominance relation . A subset F of directed networks in G is said to
be consistent in (G,≥p) if

for all G0 ∈ F,
G0 →S1 G1 for some G1 ∈ G and some coalition S1 implies that

there exists G2 ∈ F
with G2 = G1 or G2 G1 such that,

G0 ⊀S1 G2.

In words, a subset of directed networks F is said to be consistent in (G,≥p) if
given any network G0 ∈ F and any deviation to network G1 ∈ G by coalition S1 (via
adding, subtracting, or replacing arcs in accordance with effectiveness relations→S),
there exists further deviations leading to some network G2 ∈ F where the initially
deviating coalition S1 is not better off - and possibly worse off. A network G ∈ G is
said to be consistent if G ∈ F where F is a consistent set in (G,≥p). There can be
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many consistent sets in (G,≥p). We shall denote by F∗ is largest consistent set (or
simply, the largest consistent set). Thus, if F is a consistent set, then F ⊆ F∗.

We now have our main result on the relationship between basins of attraction,
stable sets, the path dominance core, and the largest consistent set.

Theorem 7 (Basins of attraction, the path dominance core, and the largest consis-
tent set)

Given primitives (G, {"S} , {→S} , >)S∈P (D) and given network formation game
(G,≥p),where path dominance is induced by an indirect dominance relation , as-
sume without loss of generality that (G,≥p) has nonempty largest consistent set given
by F∗ and basins of attraction given by

{A1,A2, . . . ,Am} .

Then the following statements are true:

1. Each basin of attraction Ak, k = 1, 2, . . . ,m, has a nonempty intersection with
the largest consistent set F∗, that is

F∗ ∩Ak 9= ∅, for k = 1, 2, . . . ,m.

2. If (G,≥p) has a nonempty path dominance core C, then

C ⊆ F∗.

Proof. In light of Theorem 4, (2) easily follows from (1). Thus, it suffices to prove
(1). Suppose that for some basin of attraction Ak�

F∗ ∩Ak� = ∅.

Let G� be a network in Ak� . Because F∗ is externally stable with respect to the
indirect dominance relation , G� /∈ F∗ implies that there exists some network
G∗ ∈ F∗ such that G∗ G�. Thus, G∗ ≥p G�. Because the networks in Ak� are
without descendants, it must be true that G� ≥p G∗. But this implies that G∗ ≡p G�,
and therefore that G∗ ∈ Ak� , a contradiction.

Remark 3 Recently, Herings, Mauleon, and Vannetelbosch (2005) introduced a no-
tion of pairwise farsighted stability. If in our model coalitional preferences {"S
}S∈P (D) over networks are based on weak preference relations { d}d∈D (see Remark
1 above), if nodes represent players (i.e., N = D), and if the dominance relation un-
derlying the path dominance relation is indirect, then under Jackson-Wolinsky rules
the corresponding weak path dominance core is contained in the set of pairwise far-
sightedly stable networks.
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5.4 Nash Networks

Definition 8 (Nash Networks)
Given primitives (G, {"S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

network G ∈ G is said to be a Nash network in (G,≥p) if for all G� ∈ G and S ∈ P (D)
such that |S| = 1 , G→S G

�
implies that G ⊀S G

�
.

Thus, a network is Nash if whenever an individual player has the power to change
the network to another network, the player will have no incentive to do so. We
shall denote by NE the set of Nash networks. Note that our definition of a Nash
network does not require that the network formation rules, as represented via the
effectiveness relations {→S}S∈P (D), be noncooperative (see subsection 3.2.1). Also,
note that under our definition any network that cannot be changed to another network
by a coalition of size 1 is a Nash network. Finally, note that the set of strongly stable
networks SS is contained in the set of Nash networks NE.

We now have our main result on the path dominance core and strong stability.

Theorem 8 (The path dominance core and Nash equilibrium)
Given primitives (G, {"S} , {→S} , >)S∈P (D) and network formation game (G,≥p),

the following statements are true.

1. If the path dominance core C of (G,≥p) is nonempty, then NE is nonempty and
C ⊆ NE.

2. If the dominance relation > underlying ≥p is a direct dominance relation and if
the rules of network formation are such that G→S G

�
implies that |S| = 1, then

C = NE and NE is nonempty if and only if there exists a basin of attraction
containing a single network.

Proof. The proof of part 1 follows from part 1 of Theorem 5 and the fact that
SS ⊆ NE. For the proof of part 2, note that if the rules of network formation are
such that G→S G

�
implies that |S| = 1, then SS = NE. Thus, we have C ⊆ SS = NE.

If in addition the path dominance relation is induced by a direct dominance relation,
then we have NE = SS ⊆ C, and we conclude that C = SS = NE. Thus, if the path
dominance is induced by a direct dominance and if the rules are such that G →S

G
�
implies that |S| = 1, then we have C = SS = NE. By part 1 of Theorem 4,

C = SS = NE is nonempty if and only if there exists a basin of attraction containing
a single network.

We close this section by noting that if the dominance relation > underlying ≥p
is a direct dominance relation and if the rules of network formation are such that
G→S G

�
implies that |S| = 1, then the set of Nash networks NE is contained in the

set of Pareto efficient networks E. Thus, for this case we have C = SS = NE ⊆ E.
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6 Examples

6.1 Club Networks

The following version of a club network formation game is taken from Page and
Wooders (2005) on club formation games. There are a number of models in the
literature that use some of the same specification of primitives. Our network club
model can be viewed as a network version of the local public good games analyzed by,
among others, Konishi, Le Breton and Weber (1997a, 1998). Konishi et al. (1997a),
and, for an even more general model including external effects of group formation
on non—members, Hollard (2000), prove existence of Nash equilibrium when players
unilaterally chose clubs. Holzman and Law—Yone (1997), Konishi et al. (1997b), and
Milchtaich (1996) are concerned with the special case of congestion games, where each
player’s payoff is non—increasing in the number of players choosing the same strategy
as himself. The latter two articles also provide conditions for the existence of strong
Nash equilibria. Club games with positive externalities are analyzed in Konishi et al.
(1997b).

For noncooperative network formation rules, the setup of our model is closely
related to the model of Konishi, Le Breton and Weber (1997a). They define a free
mobility equilibrium of a local public goods economy as an assignment of players to
clubs (locations, or jurisdictions) that partitions the population and has the property
that no individual can gain by either moving to any other existing club, or creating
his own club.24 The partition derived from the players’ strategy choices is thus stable
against unilateral deviations by individuals. For our network club model, one possible
specification of the rules of the game is to allow only individual deviations and it is for
this specification that our model most closely resembles that of Konishi, Le Breton
and Weber (1997a).

For a specification of the rules of network formation that allows all subsets of de-
cision makers to form coalitions and act in concert, our model is also closely related
to models of economies with clubs or local public goods as in, for example, Conley
and Wooders (2001) and papers cited therein, that study both price-taking equilib-
rium and the core of the cooperative game derived from their underlying economic
principles. When there are ‘enough’ clubs, our model is closely related to the partic-
ular case, treated in Wooders (1980) and other papers, where crowding is anonymous
(that is, only club size is relevant and not the characteristics of club members) but
is more restrictive in that in our model, all players have identical preferences.25

Since we allow coalitional moves, our research is also related to Arnold and Wood-
ers (2005), who consider a dynamic formulation of a game arising from the same sort
of primitives as described below. Arnold and Wooders restrict coalitions to subsets
of members of clubs, but also show the set of ‘Nash club equilibrium’ outcomes is
equivalent to the set of strong equilibrium outcomes.

24Such an equilibrium is sometimes called a free entry equilibrium.
25A possible modification of the model is to allow multiple types of players — heterogeneous play-

ers. With such a modification, we could then examine additional questions, for example, whether
equilibrium club networks generate homogenous clubs.
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Overall, our club example illustrates several relationships between concepts shown
in this paper and also indicates the importance of the network formation rules and the
nature of the dominance relation (direct or indirect) in determining the equilibrium
which emerges from the process of network formation represented by the game. In the
case of ‘too few’ clubs, our example also highlights that our model and results cannot
be presented in the framework of cooperative games or hedonic games. With too few
clubs, a group of players larger than a singleton can only ensure themselves the worst
possible outcome, the outcome which is least preferred. In the case of ‘too few’ clubs,
it also highlights that our model and results cannot be presented in the framework of
cooperative games or hedonic games. With too few clubs, a group of players larger
than a singleton can only ensure themselves the worst possible outcome, the outcome
which least preferred.

6.1.1 Basic Ingredients and Assumptions

Let D be a finite set of players with typical element denoted by i and let C be a
finite set of club types - or alternatively, a set of club labels or club locations - with
typical element denoted by c. Assume that the set of nodes is given by N = D ∪ C,
while the set of arcs is given by a singleton, A = {1}. The set of all club networks
consists of the collection of all nonempty subsets of A× (D×C), a collection denoted
by P (A× (D ×C)). Note that P (A× (D×C)) is a subset of P (A× (N ×N)). For
any club network G ∈ P (A× (D ×C))

(1, (i, c)) ∈ G means that player i is a member of club c.

Given club network G ∈ P (A× (D × C)),

G(c) := {i ∈ D : (1, (i, c)) ∈ G}

(i.e., the section of G at c) is the set of members of club c in network G, while the
set

G(i) := {c ∈ C : (1, (i, c)) ∈ G}

(i.e., the section of G at i) is the set of clubs to which player i belongs in network G.
We shall maintain the following assumptions throughout:

A-1 (single club membership) The feasible set of club networks, G ⊂P (A×(D×C)),
is given by

G := {G ∈ P (A× (D × C)) : |G(i)| = 1 for all i ∈ D} .

Thus, in each feasible club network G ∈ G each player is a member of one and
only one club. Note that under assumption [A-1] the collection {G(c) : c ∈ C}
forms a partition of the set of players.
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A-2 (identical payoff functions depending on club size) Players have identical payoff
functions, u(·) and payoffs are a function of club size only. In general, given any
club network G,

��G2(i)�� denotes the total number of club members in the club to
which player i belongs in network G. In particular, G(i) = c denotes the single
club to which player i belongs and G(G(i)) := G2(i) is the set of members of the
club to which player i belongs. Thus,

��G2(i)�� is the total number of members
in the club to which player i belongs in club network G and

u(
��G2(i)��) = the payoff to player i in club network G.

A-3 (single-peaked payoffs) There exists a club size s∗ with 1 ≤ s∗ < |D| such that
payoffs are increasing in club size up to club size s∗ and decreasing thereafter.

A-4 (free mobility) Each player can move freely and unilaterally from one club to
another. This means that an player can drop his membership in any given
club and join any other club without bargaining with or seeking the permission
of any player or group of players. Put differently, an player i can unilaterally
change his 1-arc from player node i to club node c to a 1-arc from player node i
to any other club node c�. Moreover, any number of players acting unilaterally
and noncooperatively can change the existing or status quo club network by
switching their arcs (i.e., by switching their club memberships).

6.1.2 Preferences, Rules, and Dominance

Given club networks G0 and G1 in G, we say that players i ∈ S prefer G1 to G0,
denoted G0 ≺S G1,

if u(
��G20(i)��) < u(��G21(i)��) for players i ∈ S.

We say that players i ∈ S can change G0 to G1, denoted G0 →S G1, if the move
from G0 to G1 only involves a change in club memberships by players in S, leaving
unchanged the memberships of players outside group S, that is,

if G0(i) = G1(i) for all players i ∈ N\S (i.e, i not contained in S).

Given these preferences and rules, equip the feasible set of club networks with the
indirect dominance relation (i.e., >= ). Thus, club network G� ∈ G indirectly
dominates club network G ∈ G, that is G G�, if there exists a finite sequence of
club networks, G0, . . . ,Gn in G, with G := G0 and G� := Gn, and a corresponding
sequence of groups of players, S1, . . . , Sn, such that for k = 1, 2, . . . , n,

Gk−1 →Sk Gk and Gn "Sk Gk−1.
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6.1.3 Nonemptiness of the Path Dominance Core with Indirect Domi-
nance

Given primitives (G, {"S} , {→S} , >)S∈P (D) as specified above, Page and Wooders
(2005) consider the network club formation game (G,≥p). Under assumptions [A-1]-
[A-4], they show that if

|C| ≥ |D|
s∗

and |D| = rs∗ + l for nonnegative integers r and l, l < s∗,

then the path dominance core of (G,≥p) is nonempty if and only if l = 0 or u(l) ≥
u(s∗ + 1). Moreover, they show that club network G∗ is contained in the path
dominance core if and only if G∗ has r clubs of size s∗ and one club of size l. Thus,
if there are enough clubs (or club locations) to allow for the formation of all possible
clubs of optimal size (i.e., |C| ≥ |D|

s∗ ), then a necessary and sufficient condition for
nonemptiness of the path dominance core is that no player in a club of suboptimal size
has an incentive to join an already existing club of optimal size (i.e., u(l) ≥ u(s∗+1)).
In addition, if the maximum number of clubs of optimal size is r, then a club network
is contained in the path dominance core if and only if it has r clubs of optimal size
and one club containing the “left overs.”

6.1.4 Nonemptiness of the Path Dominance Core with Direct Dominance

One can also define path dominance with respect to direct dominance. In this case,
the result above continues to hold. Moreover, if there are ‘too few’ clubs, that is, if

|C| < |D|
s∗

and |D| = rs∗+ l for positive integer r and nonnegative integer l, l < s∗,

then the path dominance core defined with respect to direct dominance is nonempty.
The induced partition of players into clubs will have the property that all clubs are
as close to the same size as possible. For example, if there are two clubs, s∗ = 5,
and there are 17 players, outcomes in the path dominance core induce partitions
of the player set into two clubs, one with eight members and the other with nine
members. In this case the set of ‘core club structures’ coincides with the set of ‘Nash
club equilibrium’ clubs in Arnold and Wooders (2005) and also with the set of Nash
equilibrium outcomes as defined in their model.

6.2 Hedonic games

In the abstract game ( G,≥p) that we have considered, the set of outcomes G is a
set of networks. However, our main results, Theorems 1-4, hold for any finite set of
outcomes. With this in mind, consider the following hedonic eight-person game where
G consists of coalition structures (where each coalition structure is a partition of the
total player set) proposed to us by Salvador Barbara and Michael Mashler (2006).
A move from one coalition structure to another can be brought about by any group
of players defecting from the original structure, but unlike the club example above,
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free entry is not assumed. The example illustrates that our framework encompasses
hedonic games and that with indirect dominance the hedonic core is not necessarily
equivalent to the path dominance core.

Let the players be denoted by D = {1, 2, 3, 4, 5, 6, 7, 8}. Player preferences over
coalitions is as follows:

player 1 (1, 2, 3, 4) (1, 2, 3) (1, 2) (1) . . .
player 2 (1, 2, 3, 4) (1, 2, 3) (1, 2) (2) . . .
player 3 (1, 2, 3, 4) (3, 4, 5, 6) (1, 2, 3) (3) (3, 6)
player 4 (3, 4, 5, 6) (1, 2, 3, 4) (4, 5) (4) . . .
player 5 (3, 4, 5, 6) (5, 6, 7, 8) (4, 5) (5) . . .
player 6 (5, 6, 7, 8) (3, 4, 5, 6) (6, 7, 8) (6) (3, 6)
player 7 (5, 6, 7, 8) (6, 7, 8) (7, 8) (7) . . .
player 8 (5, 6, 7, 8) (6, 7, 8) (7, 8) (8) . . .

Players’ Preferences Over Coalitions

Consider the row for player 1 in the table above. The interpretation is that 1 prefers
the coalition (1, 2, 3, 4) to the coalition (1, 2, 3), to the coalition (1, 2), and so on.
Player 1’s preferences over the remaining coalitions are irrelevant to the following
example so they are not specified. The same interpretation applies to the rows cor-
responding to other players.

A coalition structure is in the hedonic core if there does not exist a coalition
that is preferred by all its members to their coalitions of membership in the original
coalition structure. Consider the coalition structure ((1, 2, 3, 4), (5, 6, 7, 8)) ∈ G. This
is a core point for the hedonic game because the only coalition that is preferred by
players 5 and 6 is (3, 4, 5, 6) but two members of this coalition, 3 and 4, do not prefer
it. If players 4 and 5 are farsighted, however, and domination is indirect, 4 and 5
can decide to form a coalition (4, 5) - thus bringing about the coalition structure
((1, 2, 3), (4, 5), (6, 7, 8)). Now players 3, 4, 5, and 6 could all benefit from forming a
coalition. This brings us to the coalition structure ((1, 2), (3, 4, 5, 6), (7, 8)) a hedonic
core point in which 4 and 5 are better off than in the original hedonic core point.

But the story is not finished. Starting from ((1, 2), (3, 4, 5, 6), (7, 8)), players 3 and
6 can separate and form their own coalition. Using an argument similar to the one
above, this move by 3 and 6 can then lead back to the original coalition structure.

We see here that, even though the hedonic core is nonempty, the path dominance
core, defined with respect to indirect dominance, is empty. (Note that, in contrast, if
the path dominance core is defined with respect to direct dominance then the path
dominance core is nonempty and is equivalent to the hedonic core). Another point
illustrated is that for path dominance, it is only necessary that a coalition perceive
some path that would lead to a preferred situation; it is not required that a coalition
perceive some preferred final (and presumably stable) outcome. The example also
suggests for those special cases of cooperative games and hedonic games that if the
core (or the hedonic core) is non-empty and not a singleton, then the path dominance
core with respect to indirect dominance is empty while the path dominance core
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with respect to direct dominance is equivalent to the core of the hedonic game. We
investigate this further in Page and Wooders 2006.

7 Conclusions

From the viewpoint of the path-dominance core with direct or indirect dominance,
there are a number of potential questions to be addressed. For example, what is the
relationship, if any, between basins of attraction and the path dominance core and
partnered (or separating) collections of coalitions, as in for example Page and Wood-
ers (1995), Reny and Wooders (1997) or Maschler and Peleg (1967) and Maschler,
Peleg and Shapley (1971)? Or what is relationship between basins of attraction and
the path dominance core and the inner core, as in Qin (1993,1994)?

To conclude, we return to the prior research introducing concepts similar to the ab-
stract game defined in this paper and the union of basins of attractions; see Schwartz
(1974), Panzer, Kalai and Schmeidler (1976), Kalai and Schmeidler (1977) and Shenoy
(1980).26 For specificity, we focus on Kalai and Schmeidler (1977). These authors take
as given a set of feasible alternatives, denoted by S, a dominance relation, denoted by
M , and the transitive closure of M , denoted by fM . Their admissible set is the set
A(S,M) := {x ∈ S : y ∈ S and yfMx imply xfMy}.27 Besides non-emptiness of the
admissible set, they also shown that the admissible set is equal to the union of certain
subsets — in our terminology, basins of attraction. While Kalai and Schmeidler apply
their concept to cooperative games and games in normal (strategic) form, they do not
consider networks, the focus of our research. Once our model of network formation is
developed, then our abstract game is a particular case of the abstract game of these
earlier authors. Our contribution differs in that we develop the network framework
and characterize several equilibrium concepts from network theory in terms of their
relationships to each other and to basins of attraction and the path dominance core.
In addition, we characterize the set of von-Neumann-Morgenstern solutions and the
path-dominance core (a case of the abstract core notion introduced in Gilles 1959) in
terms of their relationships to basins of attraction. It may well be that the insightful
examples developed by these authors will lead to new sorts of examples for networks,
a question we are currently addressing. Also, Kalai and Schmeidler (1977) allow an
infinite set of possibilities, which, in a network framework, introduces a host of new
questions. We plan to address some of these in future research.
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