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Abstract

The effects of distortional fiscal policies are studied within a model in
which there is endogenous investment-specific technological change. Labor
is used in the production of output and also for research purposes. Labor
or capital taxes then distort the trade-off between developing new technolo-
gies, and investing in existing types of capital. It is shown that if there is
an externality in the research activity, then it may be socially optimal to
impose both a capital tax, and an investment tax credit. The growth rate
is shown to be increasing in the rate of capital taxation and decreasing in
the rate of labor taxation, although the effect of taxation on the growth
rate is modest. This supports the observation that there is relatively little
relationship between growth rates of economies, and their rates of taxation.

1. Introduction

It is common to study the impact of a change in capital or labor taxes by employing
a version of the one-sector neoclassical growth model, with neutral technological
change. In this a paper an alternative approach is adopted: technological change
is investment-specific, and is determined endogenously. Within this model it is
shown that the effects of various distortional taxes and subsidies can be quite
different than the effects that are normally observed in other more conventional
models.
∗Department of Economics, Vanderbilt University



The model here is a simple version of a neoclassical growth model. However,
it also borrows from a related literature. Greenwood Hercowitz and Krusell [4]
build on the measurement work of Gordon [2], and show that investment specific
technological change is an important ingredient in understanding the source of
growth in the US economy. They make the compelling argument that it is falling
real prices for new investment goods that accounts for most of the observed growth,
with relatively little being left over to be explained by other factors, such as
total factor productivity. Greenwood Hercowitz and Krusell [5] then utilize this
reasoning to look at certain related business cycle issues. However, in neither of
these papers do they explicitly model the mechanism by which the real price of
capital falls. Instead, they assume that this is just an exogenous process. In this
paper the changing relative price of capital is driven by research activity, which
is undertaken by means of labor effort. Increased research spending in one period
lowers the cost of producing capital in a subsequent period.
The fact that there are changes in the real price of various capital goods is

not news. This has been extensively documented by, among others, Gordon [2]
and Jorgenson [10]. The implications that this has for issues such as capital
taxation seem unexplored. However, it seems unsatisfactory to take this type
of technological change as exogenous. Instead, it is generated by the decisions to
engage in a specific amount of research activity, which is presumably an optimally-
determined decision.
It has been shown by others, such as Lucas [13], as well as Stokey and Rebelo

[16] that capital taxes on the order of 30% need not have a substantial impact on
the growth rate of an economy.1 As Stokey and Rebelo show, there is also empirical
support for the notion that the growth rate of actual economies is robust to such
a tax change. These models typically rely on the use of human capital to facilitate
aggregate balanced growth, and so the tax on physical capital then does not tax
human capital. In the model studied here there is no human capital. Nevertheless,
it is shown that the impact of a capital tax, such as that of around 30%, will have a
negligible impact on the growth rate. In fact, such a tax, though socially welfare-
reducing, can slightly increase the aggregate growth rate. By contrast a labor tax
will reduce the growth rate.
It is commonly thought that there should not be capital taxation in the steady-

state, and that such taxation can have serious welfare consequences (e.g. see
Chamley [1]) Furthermore, it is generally thought to be unnecessary to have both
an investment tax credit and capital taxation simultaneously. Therefore, it is

1However, the welfare costs of such policies can nevertheless still be substantial.
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very puzzling that since WWII, the US government has occasionally both taxed
capital, and had an investment tax credit (see Jorgenson and Yun [11]). In this
paper it is shown below why the government may wish to impose both of these
policies simultaneously in the steady-state. If there is an externality in research,
so that each agent’s research productivity is positively influenced by that of other
agents, then it turns out that a capital tax, together with a judiciously chosen
investment tax credit, can attain the socially optimal allocation.
The remainder of this paper is organized as follows. In the next section a

growth model is described in which there is also endogenous investment specific
technological change. In this model employment in a research sector can lower the
subsequent cost of producing new capital. The optimization conditions are stud-
ied so as to see how this added feature influences the decisions of agents. Then
a version of the model is studied which also has labor and capital taxation. The
model is then further modified to incorporate an externality not in the production
of output, but in the research effort that produces new vintages of capital. It is
shown that to correct this externality, it is possible to attain the optimal alloca-
tions through a combination of an investment tax credit, in conjunction with a
capital tax. It is then shown that the growth rate is increasing in the capital tax
rate, and decreasing in the labor tax rate, though these effects are quite modest.
This result is similar to that found by Lucas [13]. Some parametric examples are
presented throughout the paper to illustrate the results.

2. The Model

In this section we describe a model which with endogenous investment-specific
technological change. However, initially it will be useful to describe the basic
model without any government taxation. Then distortional taxation will be in-
troduced.
Consider a model populated by identical representative agents with preferences

written as follows ∞X
t=1

βt [log(ct) + log(1− nt)] , (2.1)

where ct is the level of consumption in period t, and nt is the total level of em-
ployment. The production technology for the economy is standard, with output
(yt) being produced from capital and labor, and a technology parameter (A). The

3



resource constraint for the economy is written as follows:

ct + It = Ak
α
t (n1,t)

1−α ≡ yt. (2.2)

Here kt and It are the capital stock and investment respectively in period t, α is
capital’s share of aggregate production. Additionally, It is the amount of invest-
ment, measured in units of the consumption good, while kt is measured in units
of capital. The variable n1,t represents the amount of employment in producing
the consumption good. There are no externalities in production. The production
technology is merely the conventional Cobb-Douglas type, and the constant re-
turns to scale feature allows the factors to be paid their marginal products, which
then exhausts total output in each period.
The law of motion for the capital stock, which is standard, is written as follows

kt+1 = (1− δ)kt + Itzt, (2.3)

where δ is the depreciation rate. This equation again illustrates that capital good
is not measured in the same units as the consumption good. The variable zt
represents a form of investment-specific technological change, as it shows how
investment in one period generates capital to be used for subsequent periods.
A more efficient or developed technology would have a higher value of zt. For
future reference it may be useful to denote zt as the level of investment specific
technological progress for a firm.
Here we are going to think of the technology parameter (A) as being fixed, but

let zt vary, since this is a convenient way to retain some simplicity in the model.2

We are going to think of firms as being able to lower the cost of producing
capital in the future, by devoting labor effort to research and development, which
raises the value of zt in the future. Furthermore, research effort has a prolonged
effect over many periods. Let n2,t denote the amount of labor the representative
firm devotes to research. Then we will let the relationship between this research

2This is not to suggest there has been no change in TFP during the post-war period, but
there is some evidence that the role of TFP growth in explaining the growth of output may
be overstated. Greenwood Hercowitz and Krusell [4] have shown that investment specific tech-

nological change is an important ingredient in understanding the source of growth in the US
economy. They show that if one takes into account the falling real prices for new investment
goods then this appears to explain most of the observed growth in output, with relatively little
residual to be explained by other factors, such as total factor productivity.
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effort (n2,t) and the investment-specific technological change (zt) be characterized
as follows:

zt+1 = Ψ(zt, n2,t). (2.4)

We will assume that Ψ1(·, ·) > 0, Ψ2(·, ·) > 0. The greater is the amount of
research activity, the more future capital can be produced from a given amount
of investment. An alternative way to say this is that the greater is the amount of
research activity, the lower will be the cost of producing new capital in the future.
Also, the fact that Ψ1 > 0 reflects the fact that past research has a permanent or
long-lasting impact on the future technology. This captures the notion that R&D
discoveries are permanent — they cannot be easily forgotten. It may seem sensible
that there should always be some research activity undertaken, and this can be
insured if the function has the property that ∂Ψ(z,n)

∂n
→ ∞ as n → 0. Below we

will consider an explicit parameterization for this function.
Another important point to note is that the production technology, given by

equation (2.2), also has a companion function, given by equation (2.4) for deter-
mining how future capital is produced. That is, these are really “dual technolo-
gies.” The output from a specific firm has a particular technology for converting
its output into capital. In other words, the function given by equation (2.4) is
firm-specific, and one firm (or technology) does not benefit from, or utilize the
research undertaken by another firm. This assumption prevents the concentration
of all research into one firm, and having the externalities utilized by all other
firms. However, as is shown in Appendix A, this also means that the optimization
problem faced by a firm is now intertemporal or dynamic, rather than a series of
static optimization problems.
There is a sense in which the variable “z” then represents the current state of

technology, with a higher value for “z” representing a more advanced technology.
This framework has the flavor of a quality-ladder type model, but here there are a
continuum of steps on the ladder, since rate of technological progress is determined
endogenously.
Lastly, the total amount of labor devoted to research and to production must

add up to the total amount of work effort:

n1,t + n2,t = nt (2.5)
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2.1. Optimization Conditions

The optimization condition with respect to capital accumulation can be written
as follows:µ

1

zt

¶µ
1

ct

¶
= β

µ
1

ct+1

¶"
Aα

µ
n1,t+1
kt+1

¶1−α
+

µ
1

zt+1

¶
(1− δ)

#
. (2.6)

This is a fairly normal euler equation, adjusted for the fact that the rate at which
output is converted into capital (zt) is potentially changing over time.
The optimization condition with respect to employment is a little more com-

plicated. First we have the usual condition for employment in production (n1,t),
which is written as follows:µ

1

1− nt

¶
= A (1− α)

µ
kt
n1,t

¶αµ
1

ct

¶
. (2.7)

Next the condition for employment in research (n2,t), which is written as follows:µ
1

1− nt

¶
=

∞X
j=1

βj
µ
1

ct+j

¶µ
∂Ψ(zt, n2,t)

∂n2,t

¶µ
∂zt+j
∂zt+1

¶µ
It+j
zt+j

¶
. (2.8)

The left side of equation (2.8) then is the utility cost of raising n2,t, while the
right side is the benefit of doing so, and these benefits are all in the future. The
return to raising n2,t is the discounted value of the reduction in the real cost
of investment in future periods. This extra research employment facilitates an
increase in future consumption because the reduced cost of investment engendered
by the research. Since the effects of R&D can be permanent in this framework,
increased research activity in one period lowers the cost of producing capital not
just in the subsequent period, but in future periods as well.
Another way to write this condition is the following:µ

1

1− nt

¶
= β

µ
∂Ψ(zt, n2,t)

∂n2,t

¶ ∙µ
1

ct+1

¶µ
It+1
zt+1

¶
+

µ
∂zt+2
∂zt+1

¶µ
1

1− nt+1

¶¸
.

The term on the left side is the marginal utility of leisure, and so in an optimum
this should equal the marginal return from engaging in more research, which is
given by the right side of this equation. The first term on the right side reflects
the fact that research in period t lowers the cost of new capital construction (It+1)
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in period t + 1. The second term reflects the fact that this labor effort is also
“labor-saving”, and the utility value of this labor is captured in the second term.
Now it is quite conceivable that equation (2.8) might hold with an inequality.

That is, one could conceive of a circumstance in which the following equation
holds µ

1

1− nt

¶
>

∞X
j=1

βj
µ
1

ct+j

¶µ
∂Ψ(zt, n2,t)

∂n2,t

¶µ
∂zt+j
∂zt+1

¶µ
It+j
zt+1

¶
.

In this instance all employment would be devoted to the production of output,
and there would be no research employment because the return to the research
activity is too low. If this state of affairs persisted, then there would be no growth,
and the economy would eventually converge to some constant level of output. This
might occur, depending on the properties of the function Ψ(zt, n2,t).

2.2. A Simple Parameterization

One simple parameterization for the function characterizing the evolution of in-
vestment specific technological progress, is the following:

zt+1 = Ψ(zt, n2,t) = B (z
γ
t )
¡
nθ2,t
¢
, (2.9)

where γ ≥ 0, and θ ≥ 0. Of course, if γ = 1, then research has a permanent
impact on the cost of producing new capital. Not surprisingly, γ = 1 is also
the condition necessary for balanced growth (with α < 1). If both γ,α ∈ (0, 1),
then research employment has a prolonged impact proportional to γ, but there is
only a steady-state without balanced growth. Nevertheless, the costs of labor and
capital taxation can then be calculated for such parameterizations. But the effect
of taxation on the growth rate, with γ = 1, will be calculated below.
The appeal of this structure and parameterization is that if θ = 0, and B = 1,

then this model reverts back to the neoclassical growth model. This will then
allow for an easy comparison between these models. Furthermore, if α = 1, and
θ = 0 then the model reverts to that of the ‘A-K’ model.
Another interpretation of this function shown in equation (2.9) is as follows.

Suppose there is some stock of discoveries or knowledge, and the size of this at
date t is denoted by zt. Suppose that the period t+ 1 research knowledge can be
augmented by having some labor hired to engage in research. In other words, if n2,t
units of labor are employed in research in period t, then this results in (θ) ln(n2,t)
more units of knowledge in period t + 1. Let 1 − γ denote the depreciation rate
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of this stock of knowledge, so that knowledge does not last forever. Then the
evolution of the stock of knowledge can be written as follows:

log (zt+1) = log(B) + (γ) log (zt) + (θ) log(n2,t).

2.3. Another Interpretation

There is another interpretation of the environment that may be familiar to many.
In this environment qt ≡ (1/zt) is the cost (or value) of a unit of capital, measured
in units of the consumption good. Others have noted the secular fall in this
technical rate of substitution (see Gordon [2], Greenwood, Hercowitz, and Krusell
[5]). Obviously here the research activity then has a delayed influence on the
relative cost of capital.

3. A Few Special Examples

There is a special case of the economy described above, which happens to deliver
closed-form decision rules. This is the case in which the depreciation rate of capital
is 100% (i.e. δ = 1).

3.1. Example #1

In this instance the decision rules for this economy are easy to derive, and can be
written as follows:

ct = (1− αβ)
£
Akαt (n1,t)

1−α¤ (3.1)

It = αβ
£
Akαt (n1,t)

1−α¤ (3.2)

n1,t =
(1− γβ) (1− α)

(1− γβ) (2− α− αβ) + θαβ2

n2,t =
θαβ2

(1− γβ) (2− α− αβ) + θαβ2

There is also the special case in which there is balanced growth because γ = 1.
In this instance the balanced growth rate of the process for investment specific
technological progress is given by the following:

gz ≡
zt+1
zt

= B (n2,t)
θ = B

∙
θαβ2

(1− β) (2− α− αβ) + θαβ2

¸θ
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while the growth rate for capital is determined as gk = (gz)
1/(1−α). It is then easy

to see that the growth rate for real output, consumption and investment is given
as

gy = (gk)
α = (gz)

α/(1−α) .

Note that the growth rate is not influenced by the parameter A. It is prudent to
remember that in models of this sort, the growth rate of output is less than the
growth rate of capital. This is compatible with balanced growth because capital
is measured in different units than output, which is measured in units of the
consumption good. Balanced growth is feasible because the real price of capital
(measured in units of the consumption good) is falling along a balanced growth
path, at the rate of zt

zt+1
= g−1z .

3.2. Example #2

Suppose again that the depreciation rate of capital is 100%. However, assume
that the preferences, instead of being characterized by equation (2.1), are instead
written as follows: ∞X

t=1

βt [log(ct) + (T − n1,t − n2,t)] ,

where T is the endowment of time. These preferences are linear in labor or leisure,
as this characterization was popularized by Hansen [6]. Then the decision rules
for consumption are again determined by equations (3.1) and (3.2). However, the
decision rules for labor are now written as follows:

n1,t =
(1− α)

(1− αβ)

n2,t =
θαβ2

(1− γβ) (1− αβ)

These decision rules for both of these examples would seem to hold even if
there were uncertainty or randomness in the parameters A and B.

4. The Model With Taxation

It is illuminating to study a version of the model which includes both capital
and labor taxation. Let τk denote the level of capital taxation, and let τ i be the
investment tax credit (or subsidy), while τn will be the level of labor taxation.
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We will assume that the government levies taxation on these activities, but then
returns the proceeds to agents in the form of a lump-sum transfer.
The optimization conditions associated with optimal employment are written

as follows:

A (1− α) (1− τn)

µ
kt
n1,t

¶α

=

µ
ct

1− nt

¶
. (4.1)

(1− τ i)

zt

µ
1

ct

¶
= β

µ
1

ct+1

¶"Ã
Aα

µ
n1,t+1
kt+1

¶1−α
− δ

zt+1

!
(1− τk) +

(1− τ i)

zt+1

#
(4.2)

A (1− α)

µ
kt
n1,t

¶α

(1− τk) =
∞X
j=1

βj
µ
ct
ct+j

¶µ
∂Ψ(zt, n2,t)

∂n2,t

¶µ
∂zt+j
∂zt+1

¶
(1− τ i) It+j

zt+j

(4.3)
Equations (4.1) and (4.2) are the standard optimality conditions for labor and

capital, taking taxes into account. Equation (4.3) is the optimality condition
associated with research employment. It says that the value of the employment in
producing more output must equal the value of employment devoted to research
effort. The (1− τk) term on the left side of this equation reflects the fact that a

unit of labor devoted to producing more output produces A (1− α)
³
kt
n1,t

´α
more

output. This can then be converted to capital only after paying tax at the rate
of τk.3 On the other hand, if that same unit of labor is devoted to research
employment, then this produces

³
∂Ψ(zt,n2,t)

∂n2,t

´
It+1
zt+1

effective units of capital next
period, and the discounted value of all future effective units of capital is measured
by the right side of equation (4.3).4 The right side of equation (4.3) does not have
any terms involving (τk) because investment is paid out of retained earnings. The
wage tax does not distort this last equation because both types of labor are taxed
at the same rate. That is, the wage tax does not distort the decision about how
to allocate labor, and only influences the decision of how much (or whether) to
work.

3That is, investment in capital is financed out of retained earnings, and cannot be expensed
immediately.

4Another interpretation is that the left side is the return from employing labor in existing
technologies, while the right side is the return from using labor to develop new technologies.
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5. The Investment Tax Credit

Periodically, in the post-WWII era, the US economy has had an investment tax
credit. Jorgenson and Yun [11] present data showing that the investment tax credit
has ranged from zero to 10% since 1962.5 It is usually thought that the presence
of an investment tax credit is nothing more than a way to reduce the effective
rate of capital taxation. It makes little sense to simultaneously tax and subsidize
capital accumulation.6 Instead of subsidizing investment, the government could
instead just reduce the tax on capital. However, using the model of this paper it is
possible to propose another reason for utilizing the simultaneous use of a capital
tax, and the investment tax credit.
Researchers are used to considering the effect of externalities in the produc-

tion of output, whereby individual agents (or firms) would benefit from output
generated by others (e.g. Romer [15]). However, in such models capital taxation
is especially undesirable. But here we propose an alternative type of externality
which can motivate the positive taxation of capital, together with an appropri-
ate investment tax credit. Suppose that instead of having an externality in the
production of final output, we consider a research externality so that agents or
firms benefit indirectly from the research undertaken by others. It is not difficult
to imagine why this might be the case. We certainly witness the agglomeration
of researchers, whether they are scientists, engineers, generic academics, into re-
search laboratories or universities. Presumably this is because there are external
benefits from this activity. Our purpose here is not to model this agglomeration,
but instead to study what the effect might be from this type of externality.
In terms of this model, it makes sense to incorporate this externality by writing

the effect of research, instead of through equation (2.9), in the following form

zt+1 = Ψ(zt, n2,t, N2,t) = B (z
γ
t )
¡
nθ2,t
¢ ¡
Nω
2,t

¢
(5.1)

Here, n2,t is the quantity of labor effort employed in research by the individual, and
5This credit has been employed in a rather discriminatory fashion, with some types of invest-

ment goods receiving more favorable treatment. Many types of machinery have been eligible
for the tax credit, whereas investment in many types of structures has not. More recently, since
1986 the federal government has generally not employed the investment tax credit.

6Of course, it is well-known that a capital tax, coupled with a judiciously chosen investment
tax credit, amounts to a lump-sum tax on old capital, while leaving new capital untaxed. This
would then mean that there is no future distortion to the capital accumulation decision. However,
this reasoning would not seem to explain the periodic changes in the rate of capital taxation,
and the rate of the investment tax credit.
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N2,t is the external effect which represents the average quantity of labor effort in
the economy, that is devoted to research effort. Suppose that firms and individuals
ignore this external affect on (N2,t) when they make their employment decisions
(n2,t). Now in the presence of such an externality, the privately optimal allocations
will not coincide with the socially optimal allocations. Here the most obvious
solution to the problem of the externality is to subsidize the research activity
directly. However, it will be shown below that instead of a subsidy for research,
the desired allocations could be attained by a combination of an investment tax
credit (or subsidy), and a tax on net capital income.
In the absence of any government taxes or subsidies, the individual’s optimiza-

tion condition would be given by equations (2.6), (2.7), and (2.8). However, if
there is an externality, as given by equation (5.1), then equation (2.8) will not
be the optimization condition that characterizes the social optimum. Instead, the
corresponding condition that would hold in the social optimum is the following:µ

1

1− nt

¶
=

∞X
j=1

βj
µ
1

ct+j

¶µ
dΨ(zt, N2,t, N2,t)

dN2,t

¶µ
∂zt+j
∂zt+1

¶µ
It+j
zt+1

¶
.

The next issue is to investigate whether it is possible to construct government
policies that might support the socially optimal allocations, in the presence of such
an externality. One obvious policy would be to have the government institute a
subsidy to research, possibly by subsidizing the wages paid to employees working
in this sector. However, here we will contemplate an alternative set of policies. Let
us consider a government that is imposing a capital tax (τk), and labor tax (τn),
and an investment tax credit (τ i). In this instance the optimization conditions
for capital, labor and research are now written as follows:

A (1− α) (1− τn)

µ
kt
n1,t

¶α

=

µ
ct

1− nt

¶
. (5.2)

1

zt
(1− τ i)

µ
1

ct

¶
= β

µ
1

ct+1

¶"
Aα

µ
n1,t+1
kt+1

¶1−α
(1− τk) +

δτk
zt+1

+
(1− τ i) (1− δ)

zt+1

#
(5.3)

(1− τk)A (1− α)

µ
kt
n1,t

¶α

=
∞X
j=1

βj
µ
ct
ct+j

¶µ
∂Ψ(zt, n2,t, N2,t)

∂n2,t

¶µ
∂zt+j
∂zt+1

¶µ
It+j
zt+j

¶
(1− τ i)

(5.4)
Equations (5.3) and (5.2) are the standard equations for the optimal labor and
capital decisions. As can be seen, for a given value of the capital tax τk, there is
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always a value for the investment tax credit τ i which will then leave both sides of
equation (5.3) at the optimal level (i.e. the capital-labor ratio that would prevail
at the social optimum).
Equation (5.4) is then the optimal decision for research. We have also imposed

an investment tax credit, and this is denoted by τ i.7

The following Proposition characterizes the set of policies would support the
optimal allocations.

Proposition 5.1. In a the steady-state, with the research technology given by
equation (5.1), there exists a government policy that delivers the optimal alloca-
tions, and this policy has the following characteristics: 0 = τn ≤ τ i ≤ τk , where
the inequalities are strict if ω > 0.
Proof: See Appendix B.

The proof is by construction. As such, these are unique tax and subsidy rates
that support the optimal allocations. That is, given that there are these three
policy tools, there are unique values that deliver the optimal allocations. However,
there are combinations of other policy tools, that could also accomplish the same
goal. These might include research subsidies, or consumption taxes.
The proof above is likely to be much more general that it appears. That

is, there seems to be little reliance on the specific production function given by
equation (2.2), or the functional for given by equation (2.9). It is easy to show
that the result also hold away from the steady-state as well, but he notation is
simpler this way.
The externality implies that there is not enough research being undertaken in

equilibrium. In other words, the social return on the right side of equation (5.4)
is larger than the private return. To get more research, it is beneficial to raise the
rate of capital taxation (τk). This raises the cost of using labor in production, and
thereby encourages the firm to utilize more labor in research. However, raising
the capital taxation rate (τk) now distorts the capital accumulation decision in
equation (5.3), and discourages capital accumulation. But this latter distortion
can be offset by also employing the investment tax credit.8 Hence a simultaneous

7This should be compared with what you get if you combine equations (2.7) and (2.8).
8It is crucial to this argument that the depreciation of capital is tax-deductible, so that the

term (δτkz
−1
t+1) is present on the right side of equation (5.3). If this term were absent, then it

would be necessary to have τ i = τk in equation (5.3), but the externality in equation (5.4) needs
to have τ i < τk.
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utilization of the investment tax credit and a capital tax can help to offset this
research externality.
Another way to think of this result is as follows: A capital tax, accompanied

by an appropriate investment tax credit is really equivalent to a subsidy to the
research activity. If one does not observe a direct subsidy to an activity, this does
not necessarily mean that the subsidy does not exist. Instead, it may merely mean
that it is hidden in other taxes or subsidies to related activities.
This is illustrated in Figure 1 where the desired level of the capital tax (τk)

and the investment tax credit (τ i) as a function of the size of the externality.9

Here we are measuring the size of the external effect by ratio of the parameters
(ω/θ). It turns out that in this example that the optimal level of labor taxation
is zero. For a moderate size of the externality (ω/θ ≈ .25), the capital tax rate is
close to 30%, while it is then optimal to have an investment tax credit of around
10%.
Jorgenson and Yun [11] describe the levels of capital taxation and the in-

vestment tax credits for the US economy from 1946 until 1986. Their average
corporate tax rates are close to 50% fluctuate very little. Their data for the in-
vestment tax credit fluctuate substantially between zero and 10%, but seem to
average close to 7%.
House and Shapiro [7] have also updated the work done by Jorgenson and Yun,

and compiled a data set for the investment tax credits from 1948 until 2002, for a
wide variety of investment goods. While this credit was as high as 10% in 1985, it
has most recently been zero.10 However, many states have investment tax credits,
and in many instances these credits are targeted to particular types of investment
goods.
From a normative point of view, one might also wish to understand why the

investment tax credit, and the capital tax rate should have changed so much over
post WWII era. The model suggests that if the size of this research externality
should have changed then it would have been appropriate to change these tax
parameters. In particular if the size of the externality (ω/θ) were to rise (fall),
then it would be fitting to raise (lower) the capital tax rate and the investment

9The parameter values chosen for this example are the following: β = .95, α = .35, A = B =
1, δ = .08, θ = .20,and γ = .50.
10I am grateful to Christopher House for sending me his data set. It should also be noted

that accelerated depreciation allowances, which are not included in the model, have essentially
the same impact as investment tax credit. Hence, even if the credit is not explicitly in the tax
code, the same impact can be generated through this other means.
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tax credit. But it is again important to remember that these dual policies are
really a roundabout way to encourage research in this environment. This same
goal can be achieved in more than one manner.

5.1. Another Extension

At this point there is a natural question that arises: How special or important is
the assumption that labor is the key input into the development of new types of
capital? That is, would the results change materially if capital were an input into
equation (5.1)? To be more precise, suppose that the firm’s optimization problem,
given in Appendix A, is similar. That is, suppose that the firm produces capital
(k1,t) that is used in producing output, and also produced identical capital (k2,t)
that is used for research purposes. Assume that this technology is then written
as follows:

zt+1 = Ψ(zt, n2,t, N2,t, k2,t) = B (z
γ
t )
¡
nθ2,t
¢ ¡
Nω
2,t

¢ ¡
kε2,t
¢

Then it is possible to show that if investment is again financed out of retained
earnings, then the result of the proposition still holds. The reason is that in this
case the distortions that are faced by the firm, through either the capital tax or
the investment tax credit, do not affect the optimization decision faced by the firm
for (k2,t). The investment tax credit, for example, reduces the cost of producing
(k2,t), but it also reduces the benefit of raising (k2,t) by the same proportion. This
is because the benefit is that the reduced cost of future investment is also offset
by the investment tax credit. Hence, it would appear that the result from the
proposition is more general than it might first appear.

6. The Impact of Taxation on Growth

It is now of interest to investigate how the growth rate of this economy is influ-
enced by these tax rates. To facilitate such a study it is important to have some
benchmark against which such a comparison can be made. Figure 2 shows the
growth rate of an economy would be influenced by various tax rates, in the case of
a Romer-style economy with an externality and with logarithmic preferences, but
with the parameters otherwise chosen to be the same as those of our benchmark
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model (i.e. β = .95,α = .35, δ = .08).11 The model is parameterized so that it
has a growth rate of 3% when the tax rates are all zero. The effect that capital
taxation can have on the growth rate is clearly seen. Obviously a 30% tax rate
can have a considerable influence on the growth rate of such an economy.
Also shown in Figure 2 is the effect of taxation on the ‘A-K’ version of the

model. This is the case where α = 1, and where the parameter A is chosen so
that it has a growth rate of 3% when the tax rates are all zero. In this case, the
capital tax has an even larger influence on the growth rate.12

By comparison, Figure 3 shows how varying these tax rates can have an in-
fluence on our benchmark model with investment-specific technological change.
The parameter values chosen for this example are the following: β = .95, α =
.35, A = 1, B = 1.49, δ = .08, θ = .20,and γ = .50. First, it is important to note
the dramatically smaller nature of the scale on the vertical axis of this diagram,
in contrast with Figure 2. This shows that in this model the growth rate is barely
influence by these tax rates at all: an increase in the either of labor or capital
tax rate barely changes the growth rate. Furthermore, the labor tax rate has a
negative influence on the growth rate, but the capital tax has a small positive
influence on the growth rate. The reason for this result is that an increase in
the capital tax rate deters capital accumulation, which ordinarily retards growth.
But this also encourages more research activity, which can offset this first effect.
The labor tax discourages work in producing goods (n1), which in turn lowers the
return to capital accumulation and retards growth. But in this model the labor
tax also lowers the return to working in research (n2) as well, which also helps to
lower the growth rate.
That the effects illustrated in Figures 2 and 3 are so different may not be

so surprising when one considers the differences in the technology of the two
economies. In the A-K model, there is only one technology or sector, which
produces output and is the sole “engine of growth.” By contrast in the present
model, a tax may cause substitution of labor from the sector producing output
to the research sector. Such avenues of substitution must inevitably change the
quantitative results.
Nevertheless, it should also be noted that neither of these taxes are optimal,

since they both create distortions and lower welfare through lower consumption.
11In other words, the preferences are given by equation (2.1), z = 1 in each period, but the

technology is written as Atkαt , but there is an externality such that At = K
1−α
t , where Kt is the

average capital stock in the economy, which assumed to be exogenous by each (identical) agent.
12But obviously the labor tax has no influence, since labor is not a factor of production.
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It is just that the distortional impact on the growth rate does not appear to be
too pronounced in this case.

6.1. Example #3

For the economy described above in Example #1, if there is a capital tax (τk)
then the decision rules for this economy can be written as follows:

ct = (1− αβ (1− τk))
£
Akαt (n1,t)

1−α¤
It = αβ (1− τk)

£
Akαt (n1,t)

1−α¤
n1,t =

∙
(1− α)

[1− (βα) (1− τk)]
+

µ
αθβ2

(1− γβ) (1− βα)

¶
+ 1

¸−1 ∙
(1− α)

1− (βα) (1− τk)

¸
n2,t =

∙
(1− α)

[1− (βα) (1− τk)]
+

µ
αθβ2

(1− γβ) (1− βα)

¶
+ 1

¸−1 ∙
αθβ2

(1− γβ) (1− βα)

¸
It is straightforward to show that the capital tax results in a growth rate for zt of

gz = B

"∙
(1− α)

[1− (βα) (1− τk)]
+

µ
αθβ2

(1− γβ) (1− βα)

¶
+ 1

¸−1 ∙
αθβ2

(1− γβ) (1− βα)

¸#θ
,

which, of course, is increasing in the capital tax rate (τk).
Now consider the same economy in which there is a labor tax, and the capital

tax and investment tax credit are both zero. It is possible to show that the
investment and consumption decision rules are unaffected by this. However, the
employment decision rules are then as follows:

n2 =

∙
(1− α) (1− τn) +

µ
αθβ2

1− γβ

¶
+ (1− βα)

¸−1 ∙
αθβ2

1− γβ

¸

n1 =

∙
(1− α) (1− τn) +

µ
αθβ2

1− γβ

¶
+ (1− βα)

¸−1
[(1− α) (1− τn)] .

In this case employment in production (n1) is decreasing in the tax rate, while
employment in research (n2) is increasing in the labor tax rate (τn). Of course,
this latter result then implies that when γ = 1, when there is growth, the growth
rate is a strictly increasing function of the labor tax rate.
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7. Final Remarks

The role of endogenous research spending in traditional growth models is a rel-
atively unexplored topic. This is somewhat surprising since it seems undeniable
that research into new types of technologies seems manifest in consumer and in-
vestment goods all around us. New technologies do not just appear like manna,
but instead are the outcome of deliberate decisions. In the model presented here,
research effort is measured solely in units of employment devoted to this activity,
but it is also shown else where (see Huffman [8]) that interesting effects arise if
labor is not a factor, and instead research is measured instead by forgone goods
(or capital).
The model studied here suggests that the effects that distortional taxation can

have on the growth rate are sensitive to the mechanism by which growth takes
place. In this model employment in the research sector essentially generates new
types of capital goods, and so the effect of capital or labor taxation can be quite
different from what one might normally expect.
It has been a puzzle as to why we witness such persistently high levels of capital

taxation when the costs of such a policy appear to be so large. It is also somewhat
puzzling that occasionally economies simultaneously tax capital and also subsidize
investment through such avenues as an investment tax credit. The model studied
here gives a motivation for why such a policy may be quite sensible. Capital
taxation may help to offset externalities that result in the under-investment in
research. But it also contains another puzzle: If the model’s explanation for the
use of a capital tax and an investment tax credit are to be taken seriously, then it
is a mystery why there would be a tax on labor, since the proposition in the text
suggests that this should be set to zero.
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8. Appendix A

8.1. The Firm’s problem With Taxation

Let the problem of the firm be described as follows. Consider a firm that currently
has capital stock kt and a level of investment specific technological change denoted
by zt. To reduce the burdensome nature of the notation, we will dispense with the
investment tax credit, or just set τ i = 0. Let v(zt, kt) denote the value function
for the firm. Then this firm’s optimization problem is written as follows.

v(zt, kt) = max
kt+1,n1,t,n2,t

( £
Akαt (n1,t)

1−α − wt (n1,t + n2,t) (1− τn)
−1¤ [1− τk]−³

1
zt

´
[kt+1 − (1− δ)kt] +

³
δτkkt
zt

´
+
¡
1
1+r

¢
v(zt+1, kt+1)

)
.

subject to the constraint that zt+1 = Ψ(zt, n2,t). Obviously, here r denotes the

equilibrium interest rate. Note here that the term
³
δτkkt
zt

´
reflects the depreciation

allowance given by the government. As such the term zt should be thought of as
being distinct from zt, although in equilibrium zt = zt. The latter is the cost of
producing capital, and is endogenous to the firm. The former is determined by
the government, and is taken as given by the firm. Of course, in equilibrium the
two are equivalent.
For convenience it is assumed that the tax on wage income is paid by the firm

prior to dispensing the labor income to the worker. Therefore, wt is the after-tax
wage paid to labor, and wt(1− τn)

−1 is the before tax wage, which is paid by the
firm.
The optimization conditions are written as follows

A (1− α)

µ
kt
n1,t

¶α

= wt(1− τn)
−1 (8.1)

z−1t =

µ
1

1 + r

¶"
Aα

µ
n1,t+1
kt+1

¶1−α
(1− τk) + z

−1
t+1δτk + z

−1
t+1 (1− δ)

#
(8.2)

wt(1− τn)
−1 [1− τk] =

µ
1

1 + r

¶
v1(zt+1)

∙
∂Ψ(zt, n2,t)

∂n2,t

¸
(8.3)

=

µ
1

1 + r

¶ ∙
∂Ψ(zt, n2,t)

∂n2,t

¸µ
It+1
zt+1

¶
+
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µ
1

1 + r

¶2
v1(zt+1)

∙
∂Ψ(zt, n2,t)

∂n2,t

¸ ∙
∂Ψ(zt+1, n2,t+1)

∂zt+1

¸
=

∞X
j=1

µ
1

1 + r

¶j ∙
∂Ψ(zt, n2,t)

∂n2,t

¸ ∙
∂zt+i
∂zt+1

¸µ
It+j
zt+j

¶
Equation (8.1) says that the marginal product of labor must equal the mar-

ket wage. Equation (8.2) says that the marginal cost of capital must equal the
after-tax market return. Equation (8.3) says that the after-tax cost of labor (or
real wage) must be equated to the return from engaging more labor in the re-
search activity. This last part is the discounted value derived from a lower cost of
producing new investment goods in the future. It is important to note that the
left side of this last equation has the term [1− τk]. This is because if the firm
hires another unit of labor for research, the cost to the firm’s profits of this really
wt(1 − τn)

−1 [1− τk] , because the firm gets to deduct labor costs before paying
its capital taxes.
For the functional form given by equation (2.9), we have ∂zt+i

∂zt
= γi

³
zt+i
zt

´
,

while, ∂Ψ(zt,n2,t)

∂n2,t
= θ

³
zt+1
n2,t

´
and so equation (8.3) then becomes

wt(1− τn)
−1 [1− τk] =

∞X
j=1

µ
1

1 + r

¶j µ
θzt+1
n2,t

¶¡
γj
¢µIt+j

zt

¶
It is straightforward to verify that with the investment tax credit, equations (8.2)
and (8.3) become equations (5.3) and (5.4).
Lastly, the consumer then consumes their labor income, plus the after-tax

capital income from that period. Therefore, the period t budget constraint for the
individual in this problem is then written as follows:

ct =
£
Akαt (n1,t)

1−α − wt (n1,t + n2,t) (1− τn)
−1¤ [1− τk]− z−1t [kt+1 − (1− δ)kt]

+z−1t δτkkt + wt (n1,t + n2,t)

=
£
αAkαt (n1,t)

1−α¤ [1− τk]− qt [kt+1 − (1− δ)kt] + z
−1
t δτkkt + wt (n1,t + n2,t)

Of course, it is straightforward to show that in an equilibrium in which agents
can borrow and lend, the following euler equation must holdµ

1

ct

¶
= β

µ
1

ct

¶
(1 + r) . (8.4)
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Also, the following condition must hold for the optimal labor/leisure decision:

wt
ct
=

1

1− nt
. (8.5)

Substituting equation (8.1) into equation (8.5) yields equation (4.1). Also, sub-
stituting equations (8.2) and (8.3) into (8.4) yields equations (4.2) and (4.3) re-
spectively.
It is straightforward to verify that if there is an investment tax credit that

subsidizes the firm’s investment, then this alters equations (8.2) and (8.3) so that
the investment tax credit appears as in equations (4.2) and (4.3).

9. Appendix B

Proof of the Proposition
After some algebra, it can be shown that the steady-state allocations that are

produced by the solving the social planner’s problem are the following:

z−1 = β

∙
Aα

³n1
k

´1−α
+ z−1 (1− δ)

¸
(9.1)

A (1− α)

µ
k

n1

¶α

=

µ
Akαn1−α1 − z−1kδ
1− n1,t − n2,t

¶
(9.2)

A (1− α)

µ
k

n1

¶α

=
β (θ + ω)

1− βγ

µ
δk

zn2

¶
(9.3)

These equations, together with equation (5.1) constitute 4 equations in 4 un-
knowns (k, n1, n2, z). Since the value of n2 determines the value of z in the steady-
state, we can just consider the latter to be a function of the former. Denote the
optimal values of these variables to be (k∗, n∗1, n

∗
2, z

∗). Now consider the optimiza-
tion conditions that are derived in the presence of government taxation:

z−1∗ (1− τ i) = β

"
Aα

µ
n∗1
k∗

¶1−α
(1− τk) +

¡
z−1∗δτk

¢
+ z−1∗ (1− τ i) (1− δ)

#
(9.4)

A (1− α) (1− τn)

µ
k∗

n∗1

¶α

=

µ
Ak∗αn∗1−α1 − z−1∗k∗δ

1− n∗1 − n∗2

¶
. (9.5)
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A (1− α) (1− τk)

µ
k∗

n∗1

¶α

=
βθ

1− βγ

µ
δk∗

z∗n∗2

¶
(1− τ i) (9.6)

Now, the trick is to develop a set of tax policies in order to get equations(9.4)
- (9.6) to mimic equations (9.1) - (9.3). Notice that equation (9.6) can mimic
equation (9.3) if

(1− τ i)

(1− τk)
=

θ + ω

θ
≥ 1 (9.7)

which, of course, implies that 0 ≤ τ i ≤ τk when there is an externality present
(ω ≥ 0). Furthermore ω > 0 implies that τ i < τk. Equation (9.4) can then be
re-written as follows:

z−1∗ [1− β (1− δ)] (1− τ i) = β

"
Aα

µ
n∗1
k∗

¶1−α
(1− τk) + z

−1∗δτk

#
(9.8)

which, using equation (9.7) can be re-written as follows:

z−1∗ [1− β (1− δ)] (1− τk)

∙
θ + ω

θ

¸
= β

"
Aα

µ
n∗1
k∗

¶1−α
(1− τk) + z

−1∗δτk

#

Now, this equation is really one linear equation in one unknown: τk. After solving
this equation or τk, τ i can be determined from equation (9.7). With τk and τ i
now determined, notice that equation (9.5) and (9.2) are identical iff τn = 0. ¤
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