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Abstract

Although both the Johansen (1991, 1994) trace test and Bierens (1997a,b) nonparametric
lambda−min test for cointegration have good size properties in Monte Carlo studies by
Hubrich, Lutkepohl, and Saikkonen (2001) and Boswijk, Lucas, and Taylor (2000), the
Bierens test has very low power. In contrast, Bierens reports good power for his procedure.
Meanwhile, Hubrich et al. and Boswijk et al. do not include Bierens' companion method for
estimating the number of cointegrating vectors, nor do they investigate the effect of serial
correlation on Bierens' test. In the present paper, inclusion of the estimation step does not
significantly degrade size of the Bierens procedure, even with serial correlation, but power is
not improved. Serial correlation does degrade the size of the Johansen test, but it remains
superior. Analysis of Bierens' (1997b) Monte Carlo results suggests that their indication of
high power reflects the test's lack of scale invariance.
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while correcting formatting problems on its website, the journal mistakenly replaced the paper's 
PDF with its earlier unrevised version.  The text below is the correct PDF version, which has 
been restored to the EB website.  (January, 2004) 
 
 



1.  Introduction 
 
Because many time series are thought to possess unit roots but move together in equilibrium 
relationships, cointegration procedures have become widely used in empirical applications.  One 
of the most often used is that of Johansen (1988, 1991, 1994) and Johansen and Juselius (1990).  
One of their procedure’s attractions is its ability to detect and estimate multiple cointegrating 
vectors.  However, the Johansen procedure, like many others, requires estimation of various 
structural and nuisance parameters.  For example, a vector autoregressive (VAR) lag order must 
be specified and the lag parameters estimated.  To get around this problem, Bierens (1997a,b) 
has proposed a nonparametric procedure that can also detect and estimate multiple vectors.  No 
lag structure or deterministic terms need be estimated.  This would seem to provide a valuable 
supplement to other procedures such as Johansen’s. 

In their review of systems cointegration tests, Hubrich, Lütkepohl, and Saikkonen (2001) 
conclude from Monte Carlo methods that the Johansen and the Bierens tests both have good size 
properties, and that the Johansen test has good power.  Unfortunately, they also conclude that the 
Bierens test has little power in typical sample sizes.  Boswijk, Lucas, and Taylor (2000) reach 
the same conclusion.  However, these findings are perplexing and incomplete.  They are 
perplexing because a Monte Carlo analysis by Bierens (1997b) indicates good power, and they 
are incomplete because both Hubrich et al. (2001) and Boswijk et al. (2000) examine only the 
first part of the Bierens testing procedure, the λ-min test.  The λ-min test parallels the Johansen 
trace test by testing nulls of zero and other numbers of cointegrating vectors against higher 
numbers of vectors.  But Bierens (1997b, 2002) also presents a method for estimating the 
number of cointegrating vectors, and suggests that this be used as a check on the λ-min test.  It is 
the primary purpose of this paper to see whether the addition of this second step improves power 
or affects size, compared with use of the λ-min test alone.  The secondary purpose of the paper is 
to see how these matters are influenced by the presence of some serial correlation in the data 
generating process (DGP); this is not done for the Bierens test in either Hubrich et al. (2001) or 
Boswijk et al. (2000).  To accomplish this, in the present paper the complete Bierens procedure 
is applied to a number of DGP’s that have zero or one cointegrating vectors and that sometimes 
have contemporaneous and/or serial correlation.  For comparison, the results for the Johansen 
trace test are also evaluated.  The main finding from these simulations is that, even with the 
estimation method included, the Bierens procedure still has very little power compared with the 
Johansen procedure, although the performance of the latter is degraded by the presence of serial 
correlation.  The paper concludes with replication and further investigation of Bierens’ (1997b) 
contrary finding of high power for his test.  The investigation suggests that the high power 
finding reflects the Bierens procedure’s lack of scale invariance.  Therefore the main conclusion 
of lack of power is not overturned. 

  
2.  The Bierens procedure 

 
The Bierens λ-min test follows from different rates of convergence of appropriately weighted 
means of zt and ∆zt in the cointegrated versus non-cointegrated cases.  Random matrices are 
constructed from the weighted means: 
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where n is the sample size, and optimal values for m are determined with respect to the power 
function.  In application, the choice of m depends on the number of variables, the significance 
level, and the number of cointegrating vectors, r, under the null (Bierens, 1997b, Table 1). 

The test statistics are the ordered solutions 1, ,
ˆ ˆ...m q mλ λ≥ ≥  of the generalized eigenvalue 

problem 
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where q is the number of variables.  Under cointegration with r cointegrating vectors, the r 
smallest solutions 1, ,

ˆ ˆ( , ... , )q r m q mλ λ− +  converge in distribution to (0, ... , 0).  Thus, the smallest 
solution of (3) is the test for r = 0 versus r = 1 cointegrating vectors, the next smallest is the test 
for r = 1 versus r = 2, and so on.  One rejects for small values of the test statistic. 

Armed with the tentative outcome of the λ-min test, one can next move to the estimation 
method.  One calculates the q + 1 values of the function 
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where the first term is set to 1 for r = 0, the second term is set to 1 for r = q, and the choice of m 
now depends on the significance level and the number of cointegrating vectors from the λ-min 
test result.  Then, “ ˆ ( )mg r  converges in probability to infinity if the true number of cointegrating 
vectors is unequal to r, and ˆ ( )mg r = Op(1) if the true number of cointegrating vectors is indeed r” 
(Bierens, 1997b, 391).  Thus, the estimated r is the value that minimizes (4), and the probability 
that this value equals the true r approaches 1.0 as the sample size approaches infinity. 
 Examination of (3) and (4) indicates that the estimation conclusion will often, but not 
necessarily always, match the test conclusion in finite samples.  Thus, the estimation conclusion 
can confirm or cast doubt on the test conclusion, providing the “check” that Bierens (1997b) 
mentions.  Since it is the power of the Bierens procedure that is at issue, a concrete way to 
implement the “check” idea would be to adopt a decision rule that chooses the higher number of 
vectors indicated by the two approaches (when they differ).  For example, suppose that there are 
three variables and that the true number of cointegrating vectors is one.  There will be a tendency 
for 3,

ˆ
mλ  to be small, but for the λ-min test to reject r = 0, it is necessary for 3,

ˆ
mλ  to be less than 

the critical value.  Suppose this does not occur in a given sample.  The estimation approach could 
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still correctly indicate one vector if 3,
ˆ

mλ  were nevertheless small enough that 2 2
3, 1mn λ < .1  Thus, 

there is the possibility of a power gain with this decision rule.  Of course, a size adjustment may 
also be needed, because we may also be rejecting r = 0 more often when the number of vectors is 
truly zero than with the λ-min test alone.  Without such an adjustment, an apparent power gain 
might only reflect size distortion.  
 

3.  The corresponding Johansen trace test 
 

The Johansen test is so well known now that there is no need to repeat its details.  But it does 
require several specification decisions not needed for the Bierens procedure.  One is the 
deterministic trend specification.  I use the version where the data are allowed to be trend 
stationary; that is, a deterministic trend is allowed in any cointegrating vectors and drift is 
allowed in the first differences.  This corresponds to Case 2, p. 6, and Table B4, p. 81, in Hansen 
and Juselius (1995) and test LR+ in Hubrich et al. (2001).  This choice follows from the fact that 
the Bierens test allows for these same deterministic trends. 

The second decision for the Johansen test is its VAR lag order.  Hubrich et al. (2001) 
simply specify for the test the lag order that is in the DGP.  Furthermore, they focus on DGP’s 
with lag order 1, with only a brief summary of results for lag order 2 that do not involve the 
Bierens test.2  Boswijk et al. (2000) also use only lag order 1.  This approach gives an unfair 
advantage to the Johansen test in a comparison with the Bierens test, because it removes from the 
Johansen test the cost of determining lag lengths and estimating lag parameters, a cost that the 
Bierens test is always, in some sense, incurring.  Therefore, in the present paper the lag order for 
each implementation of the Johansen test is chosen by using the AIC criterion calculated from 
the unconstrained VAR in levels using lag orders of 2-6.3  Since, as explained below, some of the 
DGP’s have a lag order of 4 instead of 1, the Johansen test is given a meaningful lag-order 
selection challenge.  Moreover, in view of the likelihood of longer lag lengths in the Johansen 
test implementations, I incorporate the degree-of-freedom correction suggested by Reimers 
(1992) and Reinsel and Ahn (1992).4  Although Cheung and Lai (1993) compute a more refined 
version, it is not too different than the basic one for the null of zero cointegrating vectors. 

Finally, Johansen’s trace test and not the maximum eigenvalue test is used.  This matches 
Hubrich et al. (2001), and also follows from the finding of Doornik, Hendry, and Nielson (1999) 
that the latter test is inconsistent. 

 
4.  The Data Generating Processes 

 
The DGP’s are quite similar to those in Hubrich et al. (2001), which in turn are based on some in 
Toda (1994).  In the present paper, they are variations of 
                                                 
1  This condition ensures that ˆmg (1) < ˆmg (0), so that r =1 is chosen over r = 0.  For r = 1 to also be chosen over 

r = 2, it must also be that 2 2
2,mn λ > 1, which ensures that ˆmg (1) < ˆmg (2).  Suppose this is the case.  Then 

ˆmg (2) ≤ ˆmg (3) because 2 2
1, 2,m mλ λ≥ , and thus ˆmg (1) < ˆmg (3) and r = 3 will not be chosen either. 

2 Following, for example, Johansen and Juselius (1990), the lag order is expressed in terms of levels rather than first 
differences..   
3 It is unlikely that any actual empirical situation would call for a lag order of 1. 
4 With q as the number of variables, p as the lag order, and n as the sample size, the correction is to multiply the 
trace statistics by (n – pq) / n (where n is now the sample size after conditioning on lags). 
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The important addition here to what Hubrich et al. (2001) and Boswijk et al. (2000) implement is 
the allowance for serial correlation and longer VAR lags by including ρ.  This is set at either 0 or 
0.25.  The 0.25 value combined with the lag order of 3 for ut (giving a lag order of 4 in levels for 
the VAR) creates a presumably more realistic challenge for the two cointegration tests than 
present in the work of Hubrich et al. (2001) and Boswijk et al. (2000).  Thus, we can find out 
whether in these circumstances the Johansen test (with the AIC lag selection criterion) still has 
an advantage over the Bierens test. 

Additionally, the number of variables, q, in the various systems ranges from two through 
four.  The values for ψ are 1, 0.9, 0.8, 0.6, 0.3, and 0.0.  The number of cointegrating vectors, r, 
is zero or one.  If ψ = 1, there are zero cointegrating vectors; otherwise there is one.  Next, the 
row vector Θ is either all zeros, or has one nonzero value of 0.8 for its left-hand element (this 
value is used in Hubrich, et al., 2001).  The sample sizes investigated are n = 100 and 200.5  The 
number of replications is 2000 per DGP and sample size; this would estimate the rejection 
proportion under the null within ± 0.01 with 95 percent confidence (if the true proportion is in 
the neighborhood of 0.05).6 

 
5.  Results 

 
Tables I and II contain the rejection proportions for the null of r = 0 for the various tests, DGP’s, 
and sample sizes.7  The critical values used are for the 0.05 level of significance, from Bierens 
(1997b) and Hansen and Juselius (1995).  For each DGP and sample size, there are two Bierens 
results.  The first is the proportion of rejections of zero cointegrating vectors from the λ-min test 
alone, and the second is the proportion of rejections from either the λ-min test or the estimation 
result (for the estimation result, this means estimating one or two vectors).  This corresponds to 
the possibly power-enhancing decision rule discussed in section 2.  Thus, the rejection 
proportion will always be at least as high as for the λ-min test alone, and there could be size 
distortion as well as power improvement. 
 The results confirm a number of observations made by Hubrich et al. (2001) and Boswijk 
et al. (2000).  With ρ = 0 and n = 100, both the λ-min test and the LR+ tests are approximately 
correctly sized (the rejection proportions under ψ = 1.0 are approximately 0.05), and the Bierens 
test is a bit more conservative.  Also confirmed is that, as ψ falls, the Johansen test has vastly 
                                                 
5 Hubrich et al. (2001) investigate two- and three- but not four-variable systems.  On the other hand, they also 
investigate the hypothesis of one versus two cointegrating vectors, which, as mentioned earlier in the paper, I do not 
address.  This means that they sometimes include two cointegrating vectors in their three-variable DGP’s.  Hubrich 
et al. (2001) also include deterministic trends in some DGP’s.  They find that the presence of an actual trend in the 
DGP does not cause significantly mis-sized results for the Johansen test when the test is specified for this possibility, 
but certainly does when it is not.  This issue is not a focus of the present paper.  Boswijk et al. (2000) consider only 
two-variable systems, but include a sample size of 1000 in addition to 100. 
6 The possible influence of initial values is controlled for generating 50 pre-sample values in each replication. 
7 All tests and Monte Carlo procedure were programmed in TSP 4.5.  The Bierens procedure can be also be found in 
Professor Bierens’ own econometrics program, EasyReg International (Bierens, 2002), which can be downloaded 
from http://econ.la.psu.edu/~hbierens/EASYREG.HTM.  The Johansen procedure can be found in CATS in RATS 
(see Hansen and Juselius, 1995).  
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superior power compared to the Bierens λ-min test.  In fact, the power of the λ-min test is 
essentially trivial, except perhaps when ψ is zero, which would be the extreme case of the error 
correction parameter restoring the equilibrium relationship fully in one time period.  Moving on 
to the case of n = 200 (not reported by Hubrich et al., 2001), power for λ-min is not much 
improved.8  Finally, for either sample size, some contemporaneous error correlation from θ = 0.8 
raises the power of LR+, but has no significant effect on the λ-min test. 
 Now let us consider the addition of the Bierens estimation method to the λ-min test (still 
with ρ = 0).  With ψ = 1.0 and n = 100, there are no additional rejections for the two-variable 
models, but the combined procedure becomes a bit oversized as the number of variables 
increases.  However, this tendency is absent when n = 200.  Unfortunately, as ψ declines there is 
no improvement in power for either sample size under the combined procedure, except some that 
corresponds to the size distortion with n = 100. 
 Incorporating serial correlation into the DGP’s generates several additional findings.  
First, the rejection proportions under zero cointegrating vectors remain essentially unchanged for 
the Bierens procedures.  Thus, the Bierens nonparametric correction for serial correlation 
performs well in this respect.  Unfortunately, this is offset by the power remaining as abysmal as 
before.  Meanwhile, the Johansen LR+ test becomes somewhat oversized, particularly with 
larger numbers of variables and lags, and at the same time power is compromised (even without 
size adjustment).  Consequently, the superiority of the Johansen test over the Bierens test is 
tempered as compared with the presumably less realistic cases without serial correlation.   
 The oversized characteristic of the Johansen test under serial correlation, particularly 
evident in the lower sample-size cases of Table I, is primarily the result of the AIC frequently 
picking too low a lag order.  Consider Table I’s four-variable cases with serial correlation, which 
are the cases where the size distortion is worst.  On average, the AIC picks too low a lag order 
(i.e., less than 4) in about sixty percent of the replications.  To allow an adjusted comparison of 
these cases with the Bierens procedure, I re-calculate rejection proportions in two alternative 
ways for several of these cases.  The first alternative is to simply size-adjust the λ-min and LR+ 
test results from Table I.9  The second is to re-run the replications of the LR+ tests, always 
setting the lag equal to that of the DGP, which in these cases is 4, rather than using the AIC.  The 
results are given in Table III (which also includes the Table I results for the same cases for ease 
of comparison).  It can be seen that always choosing lag order 4 substantially diminishes the size 
distortion of LR+, but the effect on power is different than in the size-adjusted calculations.   
Anyway, in either case the power superiority of the Johansen test over the Bierens test remains, 
although it is less striking.10 
 Another matter relevant to size distortion in the Johansen test is the degree of freedom 
correction.  This becomes significant when more variables and longer lags are specified.  As an 
example of its impact on size distortion under the null of no cointegration, I re-calculate without 
using the correction the LR+ rejection proportions for the cases where n = 100, q = 4, and 

                                                 
8 The effects of increasing sample size reported by Boswijk et al. (2000) are not easily compared with those here, 
because they have set up their DGP’s so that the error correction parameter (if nonzero) declines in size as the 
sample increases in size. 
9 The Bierens estimation result does not lend itself to size adjustment, so the results of the complete Bierens 
procedure are not size-adjusted in Table III.  For the two size-adjusted tests, the critical values for a given DGP are 
the 5th percentile for λ-min and the 95th percentile for LR+ of the simulated distributions obtained with the DGP’s ρ 
and θ values under ψ = 1 (and for the same sample size). 
10 Given the very low power of the Bierens test for the null of zero cointegrating vectors, I do not investigate 
performance with respect to the nulls of one or more vectors. 
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ψ = 1.0.  The four values rise from 0.055, 0.061, 0.145, and 0.147 (in Table I) to 0.159, 0.156, 
0.401, and 0.389, all far in excess of the desired value of 0.05.  Thus, the correction seems 
useful, in contrast with the concern expressed about it in Doornik et al. (1999).11 
 

6.  Analysis of the Bierens simulations 
 
Bierens (1997b) provides some simulation evidence in which his nonparametric procedure 
actually appears to have more power than the Johansen test (in the form of the maximum 
eigenvalue test).  This obviously contradicts the evidence in Hubrich et al. (2001), Boswijk et al. 
(2000), and the present paper, and thus calls out for an explanation.  Bierens (1997b) begins his 
empirical and Monte Carlo analysis by applying his procedure and the Johansen test to annual 
U.S. GNP and wages, both in logs, 1909-1988.12  He concludes from the λ-min test, the non-
parametric estimation procedure, and the Johansen test that there is one cointegrating vector.  He 
then simulates the behavior of these procedures, where the DGP is an error correction model 
(ECM) estimated from the data.  The ECM has one cointegrating vector (with a time trend) and 
eight lags in levels (seven in first differences).  The residuals are randomly drawn from a bi-
variate normal distribution with a covariance matrix equal to that of the estimated errors of the 
ECM.  The initial values of the simulated data sets are the first eight values of the actual data.  
Using the 0.10 level of significance, Bierens reports that the nonparametric approach has a 
rejection proportion for the null of zero vectors of 0.904 (but does not distinguish what role, if 
any, the estimation step plays in this result).  He then reports that the Johansen maximum 
eigenvalue test (with eight lags) has a rejection proportion of 0.854.   

My replication of Bierens’ Monte Carlo study generates similar numbers; in fact, I find 
even higher powers.  The rejection proportions (at the 0.10 level) are 0.943 (λ-min), 0.986 (λ-
min-estimation), and 0.961 (LR+).13  However, let us now use the same data to estimate an eight-
lag VAR with no cointegration (a seven-lag first difference VAR), using this for the DGP.  Now 
the rejection proportions are 0.870 (λ-min), 0.953 (λ-min-estimation), and 0.068 (LR+).  Thus, it 
turns out that the Bierens procedure in this case is grossly oversized and so the power 
calculations for it are not meaningful.  The reason for this is probably the lack of scale invariance 
for the Bierens procedure.  Although this property is noted in Bierens (1997a) and Bierens 
(2002), his solution of using data in logs is clearly inadequate in the present case because the 
GNP and wage data are already in logs.  A second solution given by Bierens (2002) involves 
standardizing the data prior to running the tests.  With this applied to the present data set, the 
Bierens rejection proportions (at the 0.10 level) with zero vectors in the DGP become 0.131 (λ-
min), 0.205 (λ-min-estimation), while with one vector they become 0.145 (λ-min), 0.211 (λ-min-
estimation).  Thus, size distortion is greatly reduced, but there is also no significant size-adjusted 
power.  The conclusions of section 5 are confirmed.  

 
7.  Concluding summary 

 
The Monte Carlo analysis presented in this paper confirms the findings of Hubrich et al. (2001) 
that the Johansen (1991, 1994) and Bierens (1997a,b) tests generally have good size properties 

                                                 
11 Further evidence in favor of the correction is in Cushman, Lee, and Thorgeirsson (1996) and Cushman(2000) . 
12 This data set is available in Bierens (2002). 
13 As in the rest of the paper, I use the Johansen trace test rather than the maximum eigenvalue test, and I have 
applied the degree-of-freedom correction.  Bierens (1997b) does not apply the degree-of-freedom correction. 
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while the Bierens (1997a,b) nonparametric λ-min cointegration test has little power.  The primary 
finding here is that, while size properties remain good, power is not improved by supplementing 
the λ-min test with Bierens’ (1997b) companion method for estimating the number of 
cointegrating vectors.  An additional finding is that the size and power properties are not 
noticeably influenced by the presence of some autoregressive serial correlation in the data 
generating process.  On the other hand, serial correlation degrades the performance of the 
Johansen trace test.  It nevertheless remains superior to the Bierens procedures under these 
conditions.  Finally, Bierens (1997b) own report of good power for his tests appears to be the 
consequence of lack of scale invariance. 
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Table I: Rejection proportions by test and DGP, n = 100 

 
 ρ = .00 θ = .0 ρ = .00 θ = .8 ρ = .25 θ = .0 ρ = .25 θ = .8 
 
q ψ λ-min λ/E LR+ λ-min λ/E LR+ λ-min λ/E LR+ λ-min λ/E LR+ 
 
2 1.0 .047 .047 .076 .052 .052 .064 .055 .055 .088 .044 .044 .080 
2 .9 .051 .051 .114 .060 .060 .335 .053 .053 .095 .049 .049 .293 
2 .8 .059 .059 .239 .070 .070 .766 .057 .057 .148 .067 .067 .511 
2 .6 .072 .072 .673 .085 .085 .977 .071 .071 .320 .078 .078 .684 
2 .3 .092 .092 .959 .098 .098 .989 .077 .077 .564 .091 .091 .749 
2 .0 .138 .138 .985 .138 .138 .989 .088 .088 .652 .094 .094 .776 

 
3 1.0 .047 .056 .064 .049 .059 .064 .046 .058 .108 .042 .051 .102 
3 .9 .054 .063 .067 .046 .058 .227 .040 .049 .102 .057 .066 .283 
3 .8 .060 .070 .138 .057 .067 .527 .056 .068 .124 .049 .057 .460 
3 .6 .068 .079 .407 .058 .071 .935 .052 .063 .235 .068 .080 .646 
3 .3 .078 .092 .840 .084 .102 .983 .066 .073 .513 .068 .085 .713 
3 .0 .082 .096 .971 .091 .100 .987 .082 .095 .650 .075 .094 .717 
 
4 1.0 .055 .100 .055 .053 .099 .061 .047 .085 .145 .049 .091 .147 
4 .9 .064 .105 .070 .054 .097 .188 .056 .092 .115 .055 .094 .277 
4 .8 .053 .093 .099 .054 .099 .391 .056 .110 .144 .054 .091 .432 
4 .6 .060 .110 .241 .059 .104 .786 .065 .100 .202 .053 .092 .627 
4 .3 .063 .114 .654 .061 .112 .963 .055 .102 .441 .065 .111 .747 
4 .0 .071 .119 .883 .071 .127 .981 .061 .102 .679 .052 .100 .756 
 
Note:  The λ-min column gives the proportion of the 2000 replications with a rejection from the 
Bierens λ-min test, the λ/E column gives the proportion with a rejection from either the λ-min or 
Bierens estimation result, and the LR+ column gives the proportion with a rejection from the 
Johansen test with linear trends.   
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Table II: Rejection proportions by test and DGP, n = 200 

 
 ρ = .00 θ = .0 ρ = .00 θ = .8 ρ = .25 θ = .0 ρ = .25 θ = .8 
 
q ψ λ-min λ/E LR+ λ-min λ/E LR+ λ-min λ/E LR+ λ-min λ/E LR+ 
 
2 1.0 .039 .039 .051 .050 .050 .062 .049 .049 .069 .035 .035 .067 
2 .9 .062 .062 .265 .063 .063 .869 .060 .060 .192 .058 .058 .581 
2 .8 .069 .069 .769 .076 .076 .999 .069 .069 .450 .075 .075 .871 
2 .6 .089 .089 .994 .110 .110 1.00 .071 .071 .816 .085 .085 .969 
2 .3 .141 .141 1.00 .145 .145 1.00 .099 .099 .952 .115 .115 .993 
2 .0 .189 .189 1.00 .199 .199 1.00 .146 .146 .984 .154 .154 .995 

 
3 1.0 .054 .054 .058 .047 .047 .057 .054 .054 .075 .047 .047 .078 
3 .9 .048 .048 .157 .049 .049 .670 .063 .063 .147 .058 .058 .454 
3 .8 .060 .060 .518 .061 .061 .987 .055 .055 .275 .060 .060 .694 
3 .6 .062 .062 .978 .079 .079 1.00 .062 .062 .613 .062 .062 .868 
3 .3 .084 .084 1.00 .100 .100 1.00 .069 .069 .825 .080 .080 .927 
3 .0 .118 .118 .999 .139 .139 1.00 .087 .087 .901 .086 .086 .943 
 
4 1.0 .060 .060 .064 .061 .061 .060 .057 .057 .090 .052 .052 .090 
4 .9 .054 .054 .116 .053 .053 .529 .058 .058 .122 .059 .059 .377 
4 .8 .046 .046 .347 .064 .064 .948 .055 .055 .210 .059 .059 .585 
4 .6 .078 .078 .900 .061 .061 1.00 .062 .062 .463 .064 .064 .738 
4 .3 .075 .075 .999 .077 .077 1.00 .067 .067 .697 .067 .067 .824 
4 .0 .085 .085 1.00 .095 .095 1.00 .074 .074 .783 .083 .083 .864 
 
Note:  See note to Table I. 
 
 
 

Table III: Some alternative rejection proportions, n = 100 
 

 ρ = .25    θ = .0 ρ = .25    θ = .8 
 
q ψ λ-min LR+  λ-min LR+ LR+ λ-min LR+  λ-min LR+ LR+ 
 (from Table 1) (adj.) (adj.) (4) (from Table 1) (adj.) (adj.) (4) 
 
4 1.0 .047 .145  .050 .050 .074 .049 .147  .050 .050 .083  
4 .6 .065 .202  .071 .078 .116 .053 .627  .055 .442 .188 
4 .3 .055 .441  .061 .252 .135 .065 .747  .067 .627 .204 
 
Note:  See note to Table I.  In addition, “(adj.)” indicates size-adjusted, and “(4)” indicates the 
use of lag order 4 in the Johansen test.  
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