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Abstract

The benefit function, introduced by Luenberger, provides a tool for well−defined cardinal
comparisons of different bundles of goods. It also allows to study in an orignal way optimal
consumers and firms choices, Pareto−optimality etc... In this note we prove that the benefit
function is differentiable under standard conditions. This property is useful in order to study
optimal choices.
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1. Introduction

This note studies the differentiability of the benefit function introduced in Luen-
berger (1992 a,b) and (1995 a). The benefit function is based on a reference bundle
g and allows a well-suited cardinal comparison of different bundles of goods. Let
a bundle x and a reference utility level α be given. The benefit function b(x, α)
measures how many units of g an individual would be willing to give up to move
from a utility level α to the point x. There is a corresponding notion in produc-
tion theory, the Chambers, Chung, Fare’s directional distance function. The benefit
function has been used in various settings: production theory (Chambers, Chung,
Färe (1995), (1998)), consumer theory (Luenberger (1992 a,b, 1995 a, 1996)), risk
theory (see e.g. Quiggin and Chambers (1998)), general equilibrium theory (Luen-
berger 1992 b, 1995 b, 1996). It has also been generalized (see Briec and Gardères
(2004)). In these papers, differentiability of the benefit function enables to get inter-
esting results such as: equality of marginal benefits across consumers at an interior
Pareto-optimum, equality of marginal benefits with prices at a consumer optimum.
Furthermore, Blume-Hudgins and Primont (2003) derive a set of useful restrictions
on the first and second derivatives of the directional distance function in order to
build an econometric model.
The preceding results are not fully satisfactory since differentiability of the benefit
function is assumed. But as benefit function is a derived concept, this amounts
to implicitely imposing conditions on the primitives of the models. If the utility
function is quasi-concave, then the benefit function is concave and it is differentiable
almost everywhere. However, this statement does not provide information about
differentiability at a given arbitrary bundle (and even less if the utility function
fails to be quasi-concave). Hence, it would be interesting to have conditions on the
primitives of the model that ensure differentiability of the benefit function.
In this paper, we shall prove that for any interior bundle x such that b(x, α) is a real
number and x−b(x, α)g is in the interior, under a classical regularity condition, b(., .)
is continuously differentiable in a neighborhood of (x, α). We also give the expressions
of the partial derivatives in terms of the exogenous variables of the model (to the
best of our knowledge these expressions are new). The argument relies upon a simple
application of the Implicit Function Theorem. We do not assume quasi-concavity nor
concavity. We also show that under some (standard) conditions whenever a bundle x
is interior and b(x, α) is a real number, then x− b(x, α)g is indeed an interior point.

2. Setup and Results

Let us summarize the notions used in this note. We assume that a consumer is
endowed with a utility function U : Rn

++ → R that is continuously differentiable on
its domain. We let the benefit function b(., .) be defined as b : Rn

+ ×R → R ∪ {−∞},
(x, α) 7→ b(x, α) = sup{λ ∈ R;x−λg ∈ Rn

++, U(x−λg) ≥ α}, where g is a fixed vector
in Rn

+ \{0}. If there does not exist λ such that x−λg ∈ Rn
++, and U(x−λg) ≥ α, we

set b(x, α) = −∞. Notice that when the set {λ ∈ R;x−λg ∈ Rn
++, U(x−λg) ≥ α} is
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non empty, being upper bounded in R, it has a finite supremum. We shall consider a
pair (x0, α0) for which the following assumption is satisfied.

(H1). We assume that: x0 ∈ Rn
++ and x0 − b(x0, α0)g ∈ Rn

++. We also suppose
that 〈∇U(x0 − b(x0, α0)g), g〉 6= 0 and that g is locally good at x0, i.e.: there is
a neighborhood Wx0of x0 such that for all x in Wx0 , for all positive β, one has:
U(x+ βg) > U(x).

Note that when U(.) is strictly increasing (i.e. x ≥ y, x 6= y, implies U(x) > U(y)),
then g is locally good at each x.

Proposition 1. Assume H1. Then there exist two neighborhoods of x0 and α0, Vx0

and Vα0 respectively, such that the benefit function b(., .) is continuously differentiable

at each point (x, α) of Vx0 × Vα0 . Moreover, one has: ∇xb(x, α) = ∇U(x−b(x,α)g)
〈∇U(x−b(x,α)g),g〉

and ∇αb(x, α) = − 1
〈∇U(x−b(x,α)g),g〉 .

Proof. We shall first show that U(x0− b(x0, α0)g) = α0, and then we shall apply the
Implicit Function Theorem to obtain our result.
Let us show that U(x0 − b(x0, α0)g) = α0. Since b(x0, α0) = sup{λ ∈ R;x0 − λg ∈
Rn

++, U(x0 − λg) ≥ α0}, there is a non-decreasing sequence (λn)n which goes to
b(x0, α0) such that for all n, U(x0 − λng) ≥ α0. By continuity, one has U(x0 −
b(x0, α0)g) ≥ α0. Suppose that U(x0−b(x0, α0)g) > α0. Then, since x0−b(x0, α0)g is
in Rn

++ and U(.) is continuous, there would exist λ > b(x0, α0) such that: U(x0−λg) >
α0, which contradicts the definition of b(x0, α0).

Now, under H1 there exist neighborhoods V ′x0
⊂Wx0 and V ′b(x0,α0)

of x0 and b(x0, α0)
respectively such that: for all (x, λ) in V ′x0

×V ′b(x0,α0)
, x−λg is in Rn

++. Let us define
the function H : V ′x0

× V ′b(x0,α0)
→ R, (x, λ) 7→ H(x, λ) = U(x − λg). One has

H(x0, b(x0, α0)) = U(x0 − b(x0, α0)g) = α0.

Hence, since 〈∇U(x0− b(x0, α0)g), g〉 6= 0, one can apply the Implicit Function Theo-
rem to H (e.g. Florenzano and Levan (2002) (Theorem A.4.1, page 146)). There exist
neighborhoods Vx0 ⊂ V ′x0

, Vb(x0,α0) ⊂ V ′b(x0,α0)
, Vα0 of x0, b(x0, α0) and α0 respec-

tively; a function ψ : Vx0 × Vα0 → Vb(x0,α0), such that: for all x ∈ Vx0 , λ ∈ Vb(x0,α0),
α ∈ Vα0 , H(x, λ) = U(x − λg) = α ⇔ λ = ψ(x, α). Moreover, ψ is continuously
differentiable on Vx0 × Vα0 .

It remains to show that for all (x, α) in Vx0 × Vα0 , b(x, α) = ψ(x, α). So let (x, α) be
in Vx0 × Vα0 . We have ψ(x, α) is in Vb(x0,α0) and satisfies: x − ψ(x, α)g ∈ Rn

++ and
U(x−ψ(x, α)g) = α. This implies that the set {λ ∈ R;x−λg ∈ Rn

++, U(x−λg) ≥ α} is
non empty. So b(x, α) is finite and b(x, α) ≥ ψ(x, α). Suppose that b(x, α) > ψ(x, α).
We have α = U(x−ψ(x, α)g) = U(x−b(x, α)g+(b(x, α)−ψ(x, α))g) > U(x−b(x, α)g)
since g is locally good by assumption. But this contradicts the definition of b(x, α).
Thus b(x, α) = ψ(x, α).
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Finally, since the partial derivatives of b(., .) are locally that of ψ(., .), the Implicit
Function Theorem yields also:

∇xb(x, α) =
∇U(x− b(x, α)g)

〈∇U(x− b(x, α)g), g〉

∇αb(x, α) = − 1
〈∇U(x− b(x, α)g), g〉

This ends the proof. Q.E.D.

The previous proposition raises an immediate question: when is x− b(x, α)g a point
in Rn

++ ? We have already mentionned that this is true when b(x, α) is a non-positive
real number. In order to give an answer to this question, let us first assume:

(H2). For all x ∈ Rn
++, {z : U(z) ≥ U(x)} ⊂ Rn

++, that is: the closure of the set of
the bundles giving a utility level at least as great as U(x) is in the interior of Rn

+.

This assumption was introduced by Debreu (1972) and is rather standard in the
theory of general equilibrium (see e.g. Magill and Quinzi (1998), page 50).

Proposition 2. Assume H2. Also assume that x is in Rn
++, that b(x, α) is a real

number and that there is y ∈ Rn
++ such that U(y) = α. Then x− b(x, α)g is in Rn

++

and U(x− b(x, α)g) = α.

Proof. It suffices to consider the case b(x, α) > 0 (i.e U(x) ≥ α), otherwise, x −
b(x, α)g is always in Rn

++. Since b(x, α) is finite, there is a non-decreasing sequence
of real numbers (λn)n that goes to b(x, α) such that for all n, x − λng ∈ Rn

++, and
U(x− λng) ≥ α. Clearly (x− λng)n goes to x− b(x, α)g and since there is y ∈ Rn

++

such that U(y) = α, assumption H2 implies that x− b(x, α)g ∈ Rn
++. The rest of the

proof is similar to the beginning of the proof of proposition 1. Q.E.D.

This result is interesting since Luenberger takes Rn
+ × U instead of Rn

+ × R as the
definition set of b(., .); U being the range of U(.). Hence, using Luenberger’s definition
of b(., .), assuming H2 and 〈∇U(x− b(x, α)g), g〉 6= 0 would yield differentiability. We
shall now introduce an assumption that implies H2 and makes the requirement that
α is in the range of U(.) unnecessary.

(H3). Let x be a boundary point of Rn
++.

Then limz∈Rn

++→x U(z) = −∞.

An assumption similar to H3 has been used in the context of Optimal Growth Theory
(e.g. McKenzie (1986), assumption (I) page 1285, or McKenzie (2002), Assumption
5, page 249). This assumption implies H2. Suppose not. Then there would exist an
x in Rn

++ and a sequence (xn)n in Rn
++ converging to a boundary point z such that

for all n, U(xn) ≥ U(x). Then limn→∞ U(xn) = −∞ ≥ U(x) which is impossible.
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Note that H3 is indeed stronger than H2 (e.g., U : (x, y) ∈ R2
++ 7→ U(x, y) = xy does

satisfy H2 but not H3).

Using H3 yields an interesting differentiability result.

Proposition 3. Assume H3 and that g is good, i.e.: for all x in Rn
++, for all positive

β, one has U(x + βg) > U(x). Let x be in Rn
++ and b(x, α) be a real number.

Then x − b(x, α)g is in Rn
++ and if 〈∇U(x − b(x, α)g), g〉 6= 0, b(., .) is continuously

differentiable in a neighborhood of (x, α).

Proof. Again, the only interesting case is when b(x, α) > 0. Let x be in Rn
++ and

assume that b(x, α) is a real number. Suppose that x − b(x, α)g is in the boundary
of Rn

+. By definition of b(x, α), there is a non-decreasing sequence (λn)n that goes
to b(x, α) such that U(x− λng) ≥ α. Then, under H3, limn→∞ U(x− λng) = −∞ ≥
α, which is impossible. Hence, x − b(x, α)g is an interior point. Since g is good,
proposition 1 yields the result. Q.E.D.
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