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Abstract

This paper considers the distance functional weight matrix in spatial autoregressive and
spatial error models from a Bayesian point of view. We considered the Markov chain Monte
Carlo methods to estimate the parameters of the models. Our approach is illustrated with
simulated data set.
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1 Introduction

Specification of the weight matrix is one of the problems in analyzing spatial
data. There are two major approaches for specifying the weight matrix; conti-
guity dummy variables and distances among units. The latter is more flexible
in that the spatial effects are different for different distances. However, the
functional form of the weight matrix is determined in advance.

LeSage and Pace (2005) proposed a matrix exponential spatial specification
(MESS) procedure. One of the advantages of this method, which they em-
phasize, is that it saves time because it does not require the calculation of a
determinant. In addition, this method replaces the geometric pattern of de-
cay in the spatial autoregressive (SAR) model with one of exponential decay.
However this method can be only applied to the SAR model.

In empirical analysis, we are interested not only in the SAR model, but
also in the spatial error model (SEM). Moreover, someone may be interested
in both spatial interaction and spatial decay in intensities. In this paper, we
propose a distance functional weight matrix model as an alternative method
to capture both the intensity of spatial interaction and geometric pattern of
decay and consider MCMC methods to estimate the parameters of the model.
Our Bayesian approach is illustrated with simulated data set and we show the
advantages of our approach.

The rest of this paper is organized as follows. In Section 2, we summarize
the distance functional weight matrix model, which we propose in this paper
and obtain a joint posterior distribution. Section 3 discusses the computational
strategy of the MCMC method. In Section 4, our approach is illustrated using
simulated data sets. Finally, brief conclusions are given in Section 5.

2 Distance functional weight matrix model

Let yi denote a dependent variable for the ith unit, let xi denote independent
variables, where xi is a 1 × k vector of the ith unit and let wij denote the
spatial weight on the j th unit with respect to the ith unit1. Then, the SAR
model conditioned on parameters β, σ2 and ρ is written as follows;

yi = xiβ +
N∑

j=1

ρ
wij∑N

n=1 win

yj + εi, εi ∼ N(0, σ2).

The parameter ρ measures the average influence of neighboring or contiguous
obsevations on the observations. In this equation, we can capture the inten-
sity of spatial interaction, but the functional form of the weight matrix is pre-
determined. On the other hand, LeSage and Pace (2005) propose the following
MESS model;

yi = xiβ +
N∑

j=1

exp

(
λ

wij∑N
n=1 win

)
yj + εi, εi ∼ N(0, σ2).

1We will continue our discussion of the spatial autoregressive model. However, the tech-
niques introduced here can be applied to SEM easily. The procedure to estimate SEM is
introduced in Appendix A.
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In this equation, λ captures the geometric pattern of decay in the SAR model,
but the functional form of weight matrix is pre-determined as exponential and
we cannot distinguish whether λ captures the intensity of spatial interaction or
the geometric pattern of decay. In empirics, we are sometimes interested in the
intensities both of spatial interaction and of decay simultaneously, and want to
distinguish them. Therefore, we will propose the following distance functional
weight matrix model with spatial lag conditioned on parameters β, σ2, ρ and φ
given by2;

yi = xiβ +
N∑

j=1

ρ
wφ

ij∑N
n=1 w

φ
in

yj + εi, εi ∼ N(0, σ2), (1)

where φ and ρ express the intensities of spatial decay and spatial interaction,
respectively. The corresponding likelihood function of the model (1) is as follows;

p(Y |β, σ2, ρ, φ,X,W ) = (2πσ2)−N/2|IN − ρf(W |φ)| exp

(
− e′e

2σ2

)
, (2)

where IN is an N ×N unit matrix, W denotes weight matrix (see e.g., Anselin,
1988) and e = Y − ρf(W |φ)Y − Xβ, where the ij th element of f(W |φ) is

fij(W |φ) =
wφ

ij
�N

n=1 wφ
in

.

3 Posterior analysis

3.1 Joint posterior distribution

Given a prior density p(β, σ2, ρ, φ) and the likelihood function given in (2), the
joint posterior distribution can be expressed as

p(β, σ2, ρ, φ|Y,X,W )
= p(β, σ2, ρ, φ)p(Y |β, σ2, ρ, φ,X,W )
= p(β, σ2)p(ρ)p(φ)p(Y |β, σ2, ρ, φ,X,W )
= p(β|σ2)p(σ2)p(ρ)p(φ)p(Y |β, σ2, ρ, φ,X,W ). (3)

And the prior distributions are as follows;

p(β|σ2) ∼ N(β∗, σ2A−1
∗ ), p(σ2) ∼ G−1(ν∗/2, λ∗/2),
p(ρ) ∼ U(−1, 1), p(φ) ∝ const,

where subscript ∗ denotes hyperparameters of the prior distributions, G−1(a, b)
denotes an inverse gamma distribution with shape and scale parameters a and
b. In addition, we suppose that the prior space of ρ is distributed uniformly
over the interval (−1, 1). Therefore, we restrict the prior space as ρ ∈ (−1, 1).

3.2 Posterior simulation

The Markov chain sampling scheme can be constructed from the full conditional
distributions of β, σ2, ρ, φ.

2If we suppose ai and bi be the ith coordinates, the ij th element of the weight matrix,

wij , is calculated as wij = ((ai − aj)
2 + (bi − bj)

2)
1
2 .
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3.2.1 Sampling ρ

From (3), the full conditional distribution of ρ is written as

ρ|β, σ2, φ, Y,X,W ∝ |IN − ρf(W |φ)| exp
(
− e′e

2σ2

)
,

which cannot be sampled by standard methods (see e.g., LeSage, 2000). There-
fore, we adopt the Metropolis algorithm (see e.g., Tierny, 1994).

The following Metropolis step is used: Sample ρ from

ρ = ρ∗ + cψ, ψ ∼ N(0, 1),

where c is called a tuning parameter. Next, we evaluate the acceptance proba-
bility

α(ρ∗, ρ) = min

(
p(ρ)
p(ρ∗)

, 1
)
,

and finally set ρ = ρ with probability α(ρ∗, ρ), otherwise ρ = ρ∗. It should be
mentioned that the proposal value of ρ is not truncated to the interval (−1, 1)
since the constraint is part of the target density. Thus, if the proposed value of
ρ is not within the interval, the conditional posterior is zero, and the proposal
value is rejected with probability one. In the numerical example given below,
we choose the tuning parameter value such that the acceptance rate is between
0.4 and 0.6 (see LeSage, 2000)3.

3.2.2 Sampling φ

From (3), the full conditional distribution of φ can be written as

φ|β, σ2, ρ, Y,X,W ∝ |IN − ρf(W |φ)| exp
(
− e′e

2σ2

)
,

which cannot be sampled by standard methods. Therefore, we again adopt the
Metropolis algorithm.

The following Metropolis step is used: Sample ρ from

φ = φ∗ + dψ, ψ ∼ N(0, 1),

where d is a tuning parameter. Next, we evaluate the acceptance probability

α(φ∗, φ) = min

(
p(φ)
p(φ∗)

, 1
)
,

and finally set φ = φ with probability α(φ∗, φ), otherwise φ = φ∗. In the
numerical example given below, we also choose the tuning parameter value such
that the acceptance rate becomes between 0.4 and 0.6.

3If we choose the smaller values of c, it leads to slower exploration of the parameter space
with a higher acceptance rate. On the other hand, if we choose the larger values of c, it leads
to faster exploration of the parameter space with a lower acceptance rate. Taking this tardeoff
into account, we choose the acceptance rate, which is between 0.4 and 0.6.
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3.2.3 Sampling β and σ2

If ρ and φ are given, then Y ∗ = AY becomes a constant, where A = IN −
ρf(W |φ), and the model is reduced to a linear regression model. Therefore, for
β and σ2, it can be easily verified that

β|ρ, φ, σ2, Y,X,W ∼ N(β̃, σ2Σ̃),

σ2|ρ, φ, Y,X,W ∼ G−1

(
ν̂

2
,
λ̂

2

)
,

where β̃ = (X ′X +A∗)−1(X ′Xβ̂∗ +A∗β∗), β̂∗ = (X ′X)−1X ′Y ∗, Σ̃ = (X ′X +
A∗)−1, ν̂ = ν∗ + ν, λ̂ = λ∗ + νs2 + (β∗ − β̂∗)′Ω̃−1(β∗ − β̂∗), ν = N − k, s2 =
ν−1(Y ∗ − Xβ̂∗)′(Y ∗ − Xβ̂∗), Ω̃−1 = (X ′X)−1 + A−1. These parameters are
easily sampled from a Gibbs sampler (see e.g., Gelfand and Smith, 1990).

4 Numerical example

To illustrate the Bayesian approach discussed in the previous section, yi was
generated from the normal distribution

yi = 1.0 + 1.0x1i + 1.0x2i +
N∑

j=1

0.6
w−8

ij∑N
n=1 w

−8
in

yj + uit, uit ∼ N(0, 2)

where x1it and x2it were standard normal variates and where coordinates of
W were log normal variates with mean 1 and variance 10002. For the prior
distributions, the hyper-parameters are set as follows;

β∗ = 0, A∗ = 100−1 · Ik, ν∗ = 2, λ∗ = 0.01,

Since it is interesting to see the effect of misspecification of the weight matrix,
we estimated the model with the restriction φ = 1 and φ = −1 as well as the
model without the restriction. With the simulated data, we ran the MCMC
algorithm, using 20000 iterations and discarding the first 5000 iterations. The
chain was considered to have practically converged after 5000 iterations based
on a diagnostic proposed by Geweke (1992). All results reported here were
generated using Ox version 3.4 (see Doornik, 2001).

Table 1 shows the posterior estimates of the parameters4. From the table,
we see that the estimated φ is far from the true value. However, from Figure
1, we see that the approximated posterior mode is around the true value5.
Moreover, the other parameters are centered around the true value, which is
not the case when φ = −1 and φ = 1. In the case of φ = −1, not only is ρ
overestimated, but β0 is underestimated. In the case of φ = 1, not only is ρ
estimated with a different sign, but β0 is overestimated. These results imply
that the misspecification of the weight matrix leads to serious misspecification
biases in ρ and β0.

4The p-values of Geweke’s diagnostic are β0 = 0.901, β1 = 0.107, β2 = 0.348, ρ = 0.567,
φ = 0.405 and σ2 = 0.179, respectively. It implies that all the chains converge.

5We also try a much smaller tuning parameter d to make the convergence fast. However, if
we use it, the chain does not converge. Therefore the posterior distribution for the parameter
φ so diffuse.
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Table 1: Simulation results

True value without restriction φ = −1 φ = 1

β0 1.00 0.909 (0.284) 0.351 (0.593) 4.316 (0.732)
β1 1.00 1.009 (0.237) 1.050 (0.383) 1.111 (0.418)
β2 1.00 0.742 (0.245) 1.151 (0.387) 1.139 (0.418)
ρ 0.60 0.605 (0.069) 0.756 (0.155) −0.699 (0.254)
φ −8.00 −26.322 (23.880)
σ2 2.00 2.350 (0.542) 6.097 (1.329) 7.079 (1.528)

Posterior means and standard deviations (in parentheses) are shown.

5 Conclusion

This paper has examined the distance functional weight matrix model from
a Bayesian point of view. We expressed the joint posterior distribution and
proposed MCMC methods to estimate the parameters of the model. We have
illustrated our approach using simulated data.

From the results, we found serious misspecification biases in ρ and β0. If
we are interested in ρ and β0, it may lead to misinterpretation. Therefore we
can conclude that our approach can avoid the misspecification problem of the
weight matrix if we use the distance data as a weight matrix. In addition, our
approach is also superior to LeSage and Pace’s (2005) approach in that our
approach can be also applied to SEM. However, our approach is more time
consuming because it requires the calculation of a determinant. In addition,
the posterior distribution for the parameter φ is diffuse. These problems are
remaining issues.

A Spatial error model (SEM)

The distance functional weight matrix model with spatial error conditioned on
parameters β, σ2 ρ and φ is written as follows;

yi = xiβ +
N∑

j=1

ρ
wφ

ij∑N
n=1 w

φ
in

(yj − xjβ) + εi, εi ∼ N(0, σ2). (4)

Then, we will introduce the likelihood function of the model (4) as follows;

p(Y |β, σ2, ρ, φ,X,W ) = (2πσ2)−N/2|IN − ρf(W |φ)| exp

(
− e′e

2σ2

)
,

where e = Y −Xβ − ρf(W |φ)(Y −Xβ).
Suppose X∗ = AX and if we replace the e above and change the sampling

scheme of β and σ2 as follows;

β|ρ, φ, σ2, Y,X,W ∼ N(β̃, σ2Σ̃),

σ2|ρ, φ, Y,X,W ∼ G−1

(
ν̂

2
,
λ̂

2

)
,
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Figure 1: The approximate posterior distribution of φ

where β̃ = (X∗′
X∗ + A∗)−1(X∗′

X∗)β̂∗ + A∗β∗), β̂∗ = (X∗′
X∗)−1X∗′

Y ∗, Σ̃ =
(X∗′

X∗ + A∗)−1, ν̂ = ν∗ + ν, λ̂ = λ∗ + νs2 + (β∗ − β̂∗)′Ω̃−1(β∗ − β̂∗), ν =
N − k, s2 = ν−1(Y ∗ −X∗β̂∗)′(Y ∗ −X∗β̂∗), Ω̃−1 = (X∗′

X∗)−1 +A−1, then we
can apply our method to the spatial error model.
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