Top coalitions, common rankings, and semistrict core stability

Dinko Dimitrov

Institute of Mathematical Economics, Bielefeld University

Abstract

The top coalition property of Banerjee et al. (2001) and the common ranking property of Farrell and Scotchmer (1988) are sufficient conditions for core stability in hedonic games. We introduce the semistrict core as a stronger stability concept than the core, and show that the top coalition property guarantees the existence of semistrictly core stable coalition structures. Moreover, for each game satisfying the common ranking property, the core and the semistrict core coincide.

I am grateful to two anonymous referees for their helpful comments and to the Alexander von Humboldt Foundation for financial support.

Citation: Dimitrov, Dinko, (2006) "Top coalitions, common rankings, and semistrict core stability." Economics Bulletin, Vol. 4, No. 11 pp. 1–6

URL: http://economicsbulletin.vanderbilt.edu/2006/volume4/EB−06D70002A.pdf
1 Introduction

The dependence of a player’s utility on the composition of members of her coalition can be examined in the context of hedonic coalition formation games (cf. Dréze and Greenberg (1980)). The formal model of a hedonic game was introduced by Banerjee et al. (2001) and Bogomolnaia and Jackson (2002). In their work, the focus on the identity of the members of a coalition determines the structure of the game: the latter consists of a preference ranking, for each player, over the coalitions that player may belong to. Given a hedonic game, one is usually interested in the existence of stable outcomes, i.e., partitions of the set of players into coalitions. For instance, Banerjee et al. (2001) introduce a top coalition property and show that it guarantees the existence of core stable partitions, that is, partitions for which there is no group of individuals who can all be strictly better off by forming a new deviating coalition. This condition is a weaker version of the common ranking property of Farrell and Scotchmer (1988), and it is satisfied in many interesting economic applications, e.g., in the context of cost sharing problems.

However, neither the top coalition property nor the common ranking property guarantees that the strict core of the corresponding game is non-empty, i.e., it may exist a group of players in which everyone is weakly better off and at least one player is strictly better off in comparison to the corresponding coalitions in the partition under study. In this note we introduce the semistrict core as a stability notion for hedonic games that is stronger than the core but weaker than the strict core, and present two results. First, we show that the top coalition property guarantees the existence of semistrictly core stable partitions in hedonic games. The proof of this fact in the spirit of the corresponding (core existence) proof of Banerjee et al. (2001) and it uses a construction that is well known since the seminal work of Shapley and Scarf (1974). Second, we prove that, for each game satisfying the common ranking property, the core and the semistrict core coincide.

Basic definitions are provided in Section 2, and Section 3 introduces the notion of semistrict core stability. Our results are presented in Section 4.

2 Definitions

Consider a finite set of players $N = \{1, 2, \ldots, n\}$. A coalition is a non-empty subset of N. For each player $i \in N$, we denote by $N_i = \{X \subseteq N \mid i \in X\}$ the
collection of all coalitions containing \(i \). A collection \(\Pi \) of coalitions is called a coalition structure if \(\Pi \) is a partition of \(N \). For each collection of coalitions \(\Pi \) and each \(i \in N \), by \(\Pi(i) \) we denote the coalition in \(\Pi \) containing \(i \). Each player \(i \in N \) has a preference \(\succeq_i \) over \(N \), i.e., a binary relation over \(N \) which is reflexive, complete, and transitive. We denote by \(\succeq = (\succeq_1, \ldots, \succeq_n) \) a profile of preferences \(\succeq_i \) for all \(i \in N \). Moreover, we assume that the preference of each player \(i \in N \) over coalition structures is purely hedonic, i.e., it is completely characterized by \(\succeq_i \) in such a way that, for each \(\Pi \) and \(\Pi' \), each player \(i \) weakly prefers \(\Pi \) to \(\Pi' \) if and only if \(\Pi(i) \succeq_i \Pi'(i) \). The pair \((N, \succeq)\) is called a hedonic game.

A coalition structure \(\Pi \) is strictly core stable for \((N, \succeq)\) if there does not exist a nonempty coalition \(X \) such that \(X \succeq_i \Pi(i) \) holds for all \(i \in X \) and \(X \succ j \Pi(j) \) is true for some player \(j \in X \). We say that \(\Pi \) is core stable for \((N, \succeq)\) if there does not exist a nonempty coalition \(X \) such that \(X \succeq_i \Pi(i) \) holds for each \(i \in X \).

The following two properties have been shown to suffice for nonemptiness of the core (but not of the strict core) of a hedonic game. Let \((N, \succeq)\) be a hedonic game. Given a player set \(V \subseteq N \), a coalition \(S \subseteq V \) is a top coalition of \(V \) if for any \(i \in S \) and any \(T \subseteq V \) with \(i \in T \), we have \(S \succeq_i T \). We say that \((N, \succeq)\) satisfies the top coalition property if every player set has a top coalition. A game \((N, \succeq)\) satisfies the common ranking property if there exists an ordering \(\succeq \) over \(2^N \setminus \{\emptyset\} \) such that for any \(i \in N \) and any \(S, T \in N_i \), we have \(S \succeq_T T \) if and only if \(S \succeq T \). Clearly, the common ranking property implies the top coalition property; the fact that the converse relation does not hold is illustrated by means of Game 4 in the work of Banerjee et al. (2001).

3 Semistrict core stability

Let \((N, \succeq)\) be a hedonic game. For any coalition \(X \subseteq N \) and for any coalition structure \(\Pi \) of \(N \), let \(\mathcal{X}^\Pi := \{X \cap P \mid P \in \Pi\} \). We say that \(\Pi \) is semistrictly core stable if there does not exist a nonempty coalition \(X \subseteq N \) such that

\[
\text{for all } i \in X : X \succeq_i \Pi(i),
\]

and

\[
\text{for all } X' \in \mathcal{X}^\Pi : X \succ j \Pi(j) \text{ for some } j \in X'.
\]
Put in other words, in the definition of the semistrict core the requirement for some players being strictly better off is more subtle. For this, the deviating coalition X is partitioned into groups that come from the same coalition in Π. Then, to make X a profitable deviation, it is required that in each such group there has to be some player who is strictly better off in the new coalition.\(^1\)

In order to illustrate this solution concept, let us consider the following two examples. The first one is meant to present the discriminative power of the semistrict core, while the second shows that the semistrict core may be empty even if the core of the corresponding game is nonempty.

Example 1 Consider a hedonic game with player set $N = \{1, \ldots, 5\}$ and players’ preferences as displayed in the following table\(^2\):

\[
\begin{array}{cccc}
\succeq_1 & \succeq_2 & \succeq_3 & \succeq_4 \\
12, 123, 124, 125, 1345 & 12, 123, 124, 125, 2345 & 134, 135, 145, 1234, 1235, 1245 & 134, 135, 145, 234, 235, 245, 1234, 1235, 1245 \\
12345 & 12345 & 2345 & 12345 \\
1, \ldots & 1, \ldots & 2, \ldots & 2, \ldots \\
\succeq_5 & \succeq_6 & \succeq_7 & \succeq_8 \\
1234, 1235, 1345, 2345 & 1234, 1245, 1345, 2345 & 1235, 1245, 1345, 2345 & 1235, 1245, 1345, 2345 \\
12345 & 12345 & 12345 & 12345 \\
3, \ldots & 4, \ldots & 5, \ldots & 5, \ldots \\
\end{array}
\]

One can easily check that the strict core of this game is empty (cf. Dimitrov and Haake (2005)). Let us examine in more detail the core stable partitions $\Pi' = \{12, 345\}$ and $\Pi'' = \{123, 45\}$. Consider the coalition $X = 1345$ and the following partitions of it - $X^{\Pi'} = \{1, 345\}$ and $X^{\Pi''} = \{13, 45\}$. Clearly, each player in X weakly prefers to be in X instead to be in her corresponding coalition either according to Π' or according to Π''. Notice however the following difference between Π' and Π'' in terms of $X^{\Pi'}$ and

\(^1\)The idea of semistrict core stability can already be found in the work of Kirchsteiger and Puppe (1997).

\(^2\)Each player is indifferent between any two coalitions on the same row in the table and strictly prefers a coalition on a higher row over a coalition on a lower row; in particular, each player is indifferent between being single and any coalition (she is a member of) not displayed in the corresponding column. We simplify notation for coalitions by using, e.g., “134” instead of $\{1, 3, 4\}$.
\(X^{\Pi'}\): in each element of \(X^{\Pi'}\) there is at least one player who strictly benefits from being in \(X\), while for \(X^{\Pi'}\) this is not the case (we have \(X \sim_1 \Pi'(1)\) and \(X^{\Pi'}(1) = \{1\}\)). One can easily check that there is no coalition that is a deviation from \(\Pi'\) in the described sense. Hence, \(\Pi'\) is semistrictly core stable.

Example 2 Let \(N = \{1, 2, 3\}\) and players’ preferences be as follows:

\[
\begin{array}{ccc}
\geq_1 & \geq_2 & \geq_3 \\
13 & 12 & 123 \\
123, 12 & 123 & 23 \\
1 & 23 & 13 \\
2 & 3 &
\end{array}
\]

The coalition structure \(\{123\}\) is the unique core stable element for this game. However, this coalition structure is neither strictly core stable nor semistrictly core stable since 12 is a deviation from \(\{123\}\) in the sense of the strict core and in the sense of the semistrict core. To see this, note that 12 \(\sim_1 123\), 12 \(\succ_2 123\) and the projection of \(\{123\}\) on 12 is \(\{12\}\).

4 Results

For a hedonic game \((N, \succeq)\), we denote by \(C(N, \succeq)\) and \(SSC(N, \succeq)\) its core and semistrict core, respectively.

Proposition 1 If \((N, \succeq)\) satisfies the top coalition property, then \(SSC(N, \succeq) \neq \emptyset\).

Proof. Let \(V_0 = N\) and \(S_1 \subseteq V_0\) be a top coalition of \(V_0\). Next, define \(V_1 = V_0 \setminus S_1\) and let \(S_2\) be a top coalition of \(V_1\). Continue in this way till the set \(N\) is exhausted, i.e., till \(V_K = \emptyset\) and \(V_{K-1} \neq \emptyset\) for some positive integer \(K\). Let \(\Pi = \{S_1, \ldots , S_K\}\). We show that \(\Pi\) is semistrictly core stable.

Suppose to the contrary that there is a deviation from \(\Pi\), i.e., there exists a nonempty coalition \(X \subseteq N\) satisfying (1) and (2). If \(S_1 \cap X \neq \emptyset\), then, by the top coalition property, \(S_1 \succeq_i X\) for all \(i \in S_1 \cap X\). Thus, by noticing that \(S_1 \cap X \in X^{\Pi}\), we have a contradiction to (2), i.e., it is not possible \(X\) to contain members from \(S_1\). If \(S_2 \cap X \neq \emptyset\), then, again by the top coalition property, \(S_2 \succeq_i X \setminus S_1 = X\) for all \(i \in S_2 \cap X\). Since \(S_2 \cap X \in X^{\Pi}\), we have again a contradiction to (2). Thus, \(X\) does not include any members from
S_2 either. By the same argument repeatedly applied, we conclude that no deviation (satisfying (1) and (2)) from Π is possible. Hence, $\Pi \in SSC(N, \succeq)$.

Since the common ranking property implies the top coalition property, the following result follows immediately.

Corollary 1 If (N, \succeq) satisfies the common ranking property, then $SSC(N, \succeq) \neq \emptyset$.

Finally, we show that the common ranking property is strong enough to guarantee that all core stable partitions in a hedonic game are semistrictly core stable as well.

Proposition 2 If (N, \succeq) satisfies the common ranking property, then $SSC(N, \succeq) = C(N, \succeq)$.

Proof. Suppose to the contrary that $C(N, \succeq) \setminus SSC(N, \succeq) \neq \emptyset$ and let $\Pi \in C(N, \succeq) \setminus SSC(N, \succeq)$. Then, there is a deviation from Π, i.e., there exists a nonempty coalition $X \subseteq N$ satisfying (1) and (2). Since $\Pi \in C(N, \succeq)$, there is a player $i^* \in X$ such that $\Pi(i^*) \succeq_{i^*} X$ which, in combination with (1), implies $\Pi(i^*) \sim_{i^*} X$. Thus, by the common ranking property, $\Pi(i^*)$ and X are commonly indifferent. Hence, again by the common ranking property, we have $\Pi(i^*) \sim_j X$ for all $j \in \Pi(i^*) \cap X$ in contradiction to (2).

References

