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1 Introduction

This note conducts recursive Monte Carlo experiments on the Bartlett correction for a
likelihood-based test on cointegrating vectors. The introductory section brie�y reviews
the literature on cointegrated vector autoregressive (VAR) models and then describes the
most signi�cant aspect of this note.
Economic time series data often exhibit non-stationary behaviour and thus need to be

regarded as integrated processes rather than stationary. A cointegrated VAR model intro-
duced by Johansen (1988, 1996) therefore plays a critical role in time series econometrics.
The cointegrated VAR model usually assumes its innovation process to be Gaussian, so
that a likelihood-based inference on cointegrating vectors is feasible. See Juselius (2006)
and Kurita (2007), inter alia, for empirical macroeconomic research using cointegrated
VAR models.
It is known that a likelihood-based test for a hypothesis on cointegrating vectors tends

to su¤er from size distortions when the number of observations is small. Various methods
for small-sample correction are therefore introduced in the literature, such as F -type
test adjustments (Podivinsky, 1992) and the use of bootstrap methods (Fachin, 2000).
Johansen (2000), in particular, is a noteworthy achievement on the Bartlett correction
� several correction factors are analytically derived from the expansion of log-likelihood
ratio (logLR) test statistics. Simulation studies by Johansen (2000), Canepa (2006), and
Omtzigt and Fachin (2006) demonstrate that the Bartlett correction is useful for improving
the small-sample performance of a likelihood-based test on cointegrating vectors.
Although the Bartlett correction is judged to be a useful tool, a detailed simulation

analysis of the correction using a recursive Monte Carlo technique seems to be missing in
the literature. Conducting Monte Carlo experiments in a recursive way allows us to eval-
uate how fast the required convergence is accomplished. See also Doornik (2005) for the
validity of a recursive method in enhancing the generality of Monte Carlo experiments.
Such recursive experiments, therefore, provide additional information on the usefulness
of the correction. It is also of interest, in the context of applied research, to inspect how
e¤ective the Bartlett correction is in cases where regularity conditions for I(1) cointegra-
tion analysis are only marginally ful�lled, such as weak adjustment and near I(2) cases.
This note thus carries out recursive Monte Carlo experiments on these marginal cases.
Recursive Monte Carlo experiments con�rm that the Bartlett correction is very useful

for reducing size distortions when the regularity conditions are all ful�lled i.e. the speed
of convergence toward nominal signi�cance levels is satisfactorily fast. When some of the
regularity conditions are marginally satis�ed, the convergence rate is a¤ected and the
performance of the Bartlett-corrected test turns worse than that when the conditions are
fully satis�ed. The overall performance is, however, still much better than the standard
test without using the correction. These results can be treated as evidence indicating
that the use of Bartlett correction is recommended regardless of whether the regularity
conditions are fully or marginally satis�ed. Evaluating the size-adjusted power of the
tests, using various data generation mechanisms, is beyond the scope of this note, but
should be investigated in future research to reinforce the argument of this note.
This note is organised as follows. Section 2 reviews a cointegrated VAR model and
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Bartlett correction for a logLR test on cointegrating vectors. Section 3 then conducts
recursive Monte Carlo experiments on the logLR tests with and without the Bartlett
correction. Concluding remarks are provided in Section 4. All the numerical analyses and
graphics in this paper use Ox (Doornik, 2006) and OxMetrics / PcGive (Doornik and
Hendry, 2006). As a notational convention in this note, an orthogonal complement for a
certain matrix a is de�ned as a? with full column rank and a0?a = 0, so that a combined
matrix (a; a?) is of full rank.

2 Cointegrated VAR Model and Bartlett Correction

This section reviews a cointegrated VAR model and the Bartlett correction for a hypothe-
sis on the cointegrating vector. The main references are Johansen (1996, 2000). Consider
an unrestricted VAR(k) model for a p-dimensional time series Xt conditional on the initial
values X�k+1; :::; X0 as follows:

�Xt = (�;�c)

�
Xt�1

1

�
+

k�1X
i=1

�i�Xt�i + "t; for t = 1; :::; T; (1)

where �, �i 2 Rp�p and �c 2 Rp all vary freely. In order to �nd the Granger-Johansen
representation of (1), which provides a basis for an I(1) cointegrated VAR analysis, three
regularity conditions need to be introduced. These are given in Assumption 2.1.

Assumption 2.1 (cf. Theorem 4.2 in Johansen, 1996)

1. The characteristic roots obey the equation jA(z)j = 0; where

A(z) = (1� z) Ip � �z �
k�1X
i=1

�j (1� z) zi;

and the roots satisfy jzj > 1 or z = 1.

2. (�;�c) = �(�
0; 
0) for �; � 2 Rp�r and 
0 2 Rr with p > r > 0.

3. rank (�0?��?) = p� r for � = Ip �
Pk�1

i=1 �i.

The �rst condition ensures that the VAR process is neither explosive nor seasonally
cointegrated, and the second is a reduced rank condition, implying that there are at most
r cointegrating relations. The third condition prevents the process from being I(2) or of
higher order. This note is interested in cases where either the second or third condition (or
both) is satis�ed only marginally. A set of vectors � are referred to as adjustment vectors,
while � are called cointegrating vectors or cointegrating parameters. Let ��0 = (�0; 
0)

and X�
t�1 =

�
X 0
t�1; 1

�0
for future reference.

Exploring long-run economic relationships in the data is often of primary research
interest in applied macroeconomics. Applied economists therefore attach importance to
testing theory-consistent restrictions on cointegrating vectors. Restrictions on cointegrat-
ing vectors can be formulated in a number of ways, and the simplest formulation of them
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is H0: � = G'; where G is a p� s dimensional known matrix for s � r and ' represents
s� r dimensional unknown parameters to be estimated. Choosing the cointegrating rank
r using Johansen�s procedure, one can then construct the logLR test statistic for the
null hypothesis of H0 against the alternative of the cointegrating rank r. See Johansen
(1996, Ch.7) for details of the testing procedure. The test statistic is denoted as logQ
and referred to as the standard test in this note.
A corrected version of the test statistic derived by Johansen (2000) is logQ= (1 + T�1B),

where B denotes the Bartlett correction factor. The factor is explicitly given by

B =
1

2
(p+ s� r + 3) + kp+ 1

r
[(2p+ s� 3r + 1) � (�) + 2c (�)] ;

where

� (�) = tr fV�g ;
c (�) = tr

n
P
�
Ir+(k�1)p + P

��1
V�

o
+tr

n�
P 


�
Ir+(k�1)p � P

�
V�
� �
Ir+(k�1)p 
 Ir+(k�1)p � P 
 P

��1o
;

for

V� =
�
�0
�1�

��1
��1�� ;

P =

0BBBBB@
Ir + �

0� �0�1 : : : �0�k�2 �0�k�1
� �1 : : : �k�2 �k�1
0 Ip : : : 0 0
...

...
...

...
0 0 : : : Ip 0

1CCCCCA ;

and ��� denotes variance of �
�0X�

t conditional on �Xt; :::;�Xt�k+2. The corrected test
statistic, logQ= (1 + T�1B), is referred to as the Bartlett-corrected test in this note.

3 Recursive Monte Carlo Experiments

This section conducts recursive Monte Carlo experiments on both of the standard and
Bartlett-corrected tests. The data generation process (DGP) is speci�ed as follows:

�X1;t = a (X1;t�1 �X2;t�1 + 0:1) + 0:1�X1;t�1 + "1;t;

�X2;t = b�X2;t�1 + "2;t;�
"1;t
"2;t

�
� IN

�
0;

�
0:1 0:05

0:05 0:1

��
:

The number of observations, denoted by T , increases one by one from 40 to 100, so that
the experiments correspond to typical empirical macroeconomic research using quarterly
data; the initial point T = 40 coincides with the number of quarterly data available for
10 years, while the end point T = 100 agrees with that for 25 years. The number of
Monte Carlo replications is 10; 000, and the null hypothesis H0 needs to re�ect the DGP
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Figure 1: Benchmark Case

so G = (1;�1)0 : The parameters in the DGP, a and b, vary according to the following
four cases:

1. Benchmark case: a = �0:2 and b = 0:2
2. Weak adjustment case: a = �0:05 and b = 0:2
3. Near I(2) case: a = �0:2 and b = 0:9
4. Weak adjustment and near I(2) case: a = �0:05 and b = 0:9

The benchmark case clearly ful�lls all the regularity conditions in Assumption 2.1, while
the weak adjustment case marginally satis�es the second condition and the near I(2) case
marginally ful�lls the third condition. The �nal case corresponds to a combination of the
weak adjustment and near I(2) cases.
Recursive empirical sizes (rejection frequencies) of both standard and Bartlett-corrected

tests are presented in �gures of this note; the empirical sizes of the standard test are ex-
pressed as thick dotted lines, while those of the Bartlett-corrected test are represented by
solid lines. The �gures also provide 95% con�dence bands, denoted by thin dotted lines.
The objective of calculating empirical sizes recursively is to see how size distortions vary
according to T . Four nominal sizes are under investigation: (a)10%, (b)5%, (c)2.5% and
(d)1%.
Figure 1 shows various recursive empirical sizes for the benchmark case. According

to the �gure, all of the empirical sizes of the Bartlett-corrected test converge to the
corresponding nominal sizes as the number of observations increases; they coincide with
the corresponding nominal sizes around T = 80, a typical number of observations available
in applied macroeconomic research. In contrast, the empirical sizes of the standard test
converge much more slowly to the corresponding nominal levels; the standard test su¤ers
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Figure 2: Weak Adjustment Case

from serious size distortions even around T = 80: Figure 1 demonstrates the validity of
the Bartlett correction when the regularity conditions are fully satis�ed.
Figure 2 displays recursive empirical sizes for the weak adjustment case. Size dis-

tortions in Figure 2 are uniformly larger than those in Figure 1 � evidence that the
magnitude of the adjustment parameter can have a signi�cant e¤ect on the size prop-
erties of both of the standard and Bartlett-corrected tests. However, size distortions of
the Bartlett-corrected test are much smaller than those of the standard test, suggesting
that the correction is still useful even in such a case as the adjustment mechanism is not
strong.
Figure 3 then shows recursive empirical sizes for the near I(2) case. In contrast to Fig-

ure 2, the empirical sizes of the Bartlett-corrected test tend to lie below the corresponding
nominal levels i.e. the Bartlett-corrected test in this case is liable to be conservative. It is
worth bearing in mind that the Bartlett correction can give rise to over-correction like in
this case. However, size control is a fundamental requirement in a classical statistical in-
ference and a conservative test is therefore favourable in comparison with a size-distorted
test. According to Figure 3, the standard test again su¤ers from size distortions, thus
lending weight to the validity of the Bartlett-corrected test in this case as well.
Finally, Figure 4 displays recursive empirical sizes for the case where weak adjust-

ment and near I(2) roots are both involved in the DGP. It seems that impacts of weak
adjustment and near I(2) roots cancel out each other, leading to an improvement in the
overall performance of both of the tests. It is again found that size distortions of the
Bartlett-corrected test are uniformly smaller than those of the standard test, in line with
the preceding �gures.
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Figure 3: Near I(2) Case

40 50 60 70 80 90 100

10

15

20

25

30

(%)
(a)

Nominal Size: 10%

Standard Test
Bartlett­Corrected Test

40 50 60 70 80 90 100

5

10

15

20

(%)
(b)

Nominal Size: 5%

(T) (T)

40 50 60 70 80 90 100

2.5

7.5

12.5

(%)

(c)

Nominal Size: 2.5%

40 50 60 70 80 90 100

1

3

5

7

9

(%)

(d)

Nominal Size: 1%

(T) (T)

Figure 4: Weak Adjustment and Near I(2) Case

6



4 Concluding Remarks

This note carries out recursive Monte Carlo experiments on the Bartlett correction for a
likelihood-based test on cointegrating vectors. The experiments demonstrate that the cor-
rection can be useful for reducing size distortions even in circumstances where regularity
conditions for I(1) cointegration analysis are satis�ed only marginally.
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