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Abstract 

In applied research, the Schwarz Bayesian Information Criterion (BIC) and the F-test might yield different inferences 
about the causal relationships being investigated. This paper examines the relationship between the BIC and the F-tests 
in the context of Granger-causality tests. We calculate the F-test significance levels as a function of the model 
dimensionality and the sample size that would lead to the same conclusion as the BIC. We illustrate that the BIC 
would reject the null hypothesis of no-causality less often compared to an F-test conducted at five percent significance 
level for sample sizes above 50 especially when the chosen model dimensionality is small. Putting the philosophical 
issues aside, we suggest that the decision to choose between the F-test and the BIC should be made in view of the 
sample size.
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1. Introduction  
 
According to Granger (1969), a (weakly) stationary stochastic variable X can be said to cause 
another (weakly) stationary stochastic variable Y if and only if the information contained in 
the history of X helps improve the prediction of Y when the prediction model already contains 
the history of Y and all other relevant information. Clearly, Granger’s definition of causality 
is a pragmatic one – defined in terms of predictability.1 In the bivariate case, Granger-
causality from X to Y (both as defined above) can be operationalised and tested as follows.  

p q

1 t - j tj jt t - j
j=1 j=1

 =  +  +   + y y xβ γα εΣ Σ        (1) 

where: α is the constant term; β’s and γ’s are parameters to be estimated; p and q are lag-
lengths; and εt is a well-behaved error term. X does not Granger-cause Y if γ1 =  … = γq = 0.  

In practice, the inference about whether X Granger-causes Y reduces to a model 
selection problem. This, in turn, is tightly linked to the selection of optimal lag-lengths in 
autoregressions and transfer functions, i.e., determining the p and q in equation (1). As a 
consequence, the results from Granger-causality tests are generally sensitive to the 
specification of the test equation. It should be noted that Granger (1969) employed fixed lag-
lengths where p=q, while a flexible lag-lengths version (where p and q are allowed to differ) 
was developed by Hsiao (1982). 

In order to identify what the “best” model is, various model selection criteria have 
been developed. The “best” model is taken as the “true” or the population model in the 
classical frequentist approaches based on significance testing. Another widely adopted 
approach is the use of a statistical model selection criterion. Among many statistical model 
selection criteria, the information criterion developed by Schwarz (1978) is grounded in 
Bayesian principles. As such, the Schwarz Bayesian Information Criterion (BIC) attempts to 
identify a posteriori what the “most probable” model is. When Gaussian errors are assumed, 
the order of the most probable model for a univariate autoregressive process, AR(p), is 
obtained by minimising BIC = (RSSp / T) T (p+1)/T, where T is the sample size, RSSp is the 
residual-sum-of-squares when Yt-1,…,Yt-p are used as regressors, and p+1 is the number of 
estimated parameters – including the constant term.2 

The small- and large-sample properties of the BIC are well-researched in the literature. 
Mills and Prasad (1992), for instance, conduct extensive Monte-Carlo experiments and 
conclude that the BIC should probably be the first choice of the applied researchers. Among 
others, Lütkepohl (1985), Nickelsburg (1985), Yi and Judge (1988), Granger and Jeon (2004), 
and Raffalovich et al. (2008) also document evidence in favour of the BIC over other model 
selection criteria.  

Testing for Granger-causality by means of the BIC takes the following form. First, the 
optimal order of p in equation (1) is found by minimising the BIC. This amounts to fitting an 
AR(p) model for the Y variable, with a calculated BICAR value. Then, the lags of X are 
introduced given the best specification for Y, and the order of X with the minimum BIC gives 

                                                 
1 See Atukeren (2008) for a further discussion of the issues involved in testing for Granger causality. The notion of Granger-
causality also received attention in the philosophy of science literature. For instance, James Woodward (2008: 234) states 
that:  

“Roughly speaking, X Granger-causes Y if X is temporally prior to Y and information about X improves our ability 
(relative to some baseline) to predict whether Y will occur. Interestingly, Granger-causation turns out to be a different 
notion of cause (and hence to be associated with a different notion of causal correctness) than the interventionist notion. 
X can be a Granger-cause of Y even though it is not a cause in the interventionist sense. It is thus a live question 
whether we should adopt this notion of cause instead of the interventionist notion.”  

2 For a Gaussian process, an alternative way of representing optimal model order chosen by the BIC criterion is 
that it results from minimising ln(σ2

p)+pln(T)/T, where σ2
p is the maximum likelihood error variance for the 

AR(p) model, ln is the natural logarithm operator, and T is the sample size. 
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is chosen – resulting in a BICTF value. This step amounts to fitting a transfer function. Next, 
the BIC values from the two steps are compared. If BICTF < BICAR, X is said to Granger-
cause Y. 
 In this paper, we investigate the relationship between the F-test and the BIC in the 
context of Granger-causality tests. We first calculate the required significance levels for 
conducting an F-test that would yield equivalent results as the application of the BIC. Then, 
we examine the behaviour of the required significance levels of the F-test as a function of the 
sample size and the model order. Conclusions follow.  
 
2. Relationship between the F-test and the BIC in the context of Granger-causality tests 
 
In the context of equation (1), the BIC for the AR(p) model for Y (BICAR ) and the BIC for 
the transfer function involving the X variable (BICTF) can be calculated from: 
 
BICAR = (RRSS / T) T((p+1)/T)          (2) 
BICTF = (URSS / T) T((p+q+1)/T)        (3) 
 
where RRSS stands for the restricted residual sum of squares (i.e., q = 0), URSS stands for the 
unrestricted residual sum of squares (q > 0), and T is the sample size. Note that, including the 
constant term, we have (p+1) and (p+q+1) parameters to estimate in BICAR and in BICTF, 
respectively. In other words, the order q gives the number of restrictions to be tested.  

Let us denote (p+1) with m and (p+q+1) with k. Then, in a conventional F-test, the 
statistical validity of the restrictions would be tested by comparing the computed F-statistic 
with the table value – given the number of observations, the number of restrictions, and the 
degrees of freedom. 

 
( ) /( )

  1  
/( )

RRSS URSS k m RRSS T k
F

URSS T k URSS k m

− − −   = = −   − −   
     (4) 

 
As stated above, if BICTF < BICAR, then “X can be said to Granger-cause Y”. If BICTF 

≥ BICAR, then “X does not Granger-cause Y”. Let us reconsider the borderline between the 
rejection and the non-rejection of Granger-causality, i.e., when BICTF = BICAR. Setting 
equations (2) and (3) equal and after manipulation, we get: 
 
(RRSS / URSS) = T (k-m)/T         (5) 
 
Further substituting (5) into (4), we obtain: 
 
F* = (T (k-m)/T - 1) [(T-k) / (k-m)]        (6) 

 
The F* value is the critical F-value beyond which the BIC rejects non-causality. In 

other words, BICTF < BICAR implies F > F*. As a numerical example, let us assume that Y is 
modelled as an AR(2) process (p=2) and X appears with one lag (q=1) in the transfer 
function. Hence, we have k = 4 and m=3. Let us further assume that T = 100. 

According to (6), the critical F-value is: F*1,96 = 4.5243. This results in a p-value of 
0.0360. That is, rejecting the null hypothesis “X does not Granger-cause Y” if BICTF < BICAR 

corresponds to a conventional F-test with a statistical significance level of 3.6 per cent. Note 
that this is a stronger requirement than the conventional 5 per cent statistical significance 
yardstick. Hence, a conventional F-test would reject the null hypothesis at the 5 per cent level 
whereas the BIC would not.  
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Let us take another example. Let k = 5, m = 3 and T = 100. That is, we again have an 
AR(2) process for Y, but we now include two lags of X in the transfer function. Then, F*2,95 = 
4.5827, with the p-value of only 0.0126, or 1.26 per cent statistical significance level. For the 
same sample size and the same AR order for Y but with just one more additional lag of the X 
variable, the rejection of the null hypothesis of non-causality on the basis of the BIC-criterion 
corresponds to a much lower (stricter) significance level in terms of a conventional F-test. 

In general, the corresponding F-test significance levels (p-values) to the BIC 
thresholds can be calculated for different sample sizes and model dimensions. In Table 1, we 
tabulate the statistical significance levels of the F-tests that would be required to reject the 
null hypothesis of no-causality from X to Y in the context of equation (1). Note that the 
maximum AR order for Y and the maximum lags of the X variable in the transfer function 
specification are taken as eight, i.e., pmax=8 and qmax=8, and the considered sample sizes are 
25, 50, 75, 100, and 200. In principle, the corresponding significance levels can be calculated 
for any sample size and the model order using the equation (6) and a p-value calculator. 

A number of conclusions can be drawn from the results presented in Table 1. In small 
samples, the BIC may lead to the conclusion that “X Granger-causes Y” more often than an F-
test conducted at the five per cent significance level. This is in line with the BIC philosophy. 
It is harder to detect the most probable model in small samples. In large samples, however, the 
BIC will tend to reject causality from X to Y more often than the F-test with a conventional 
uniform significance level (e.g., five per cent).  

However, one also has to consider whether it is the F-test that rejects the null 
hypothesis of no-causality too often or whether it is the BIC that is too conservative in making 
Granger-causal inferences. For instance, the BIC is known to select more parsimonious 
models than chosen by other criteria. In our context, the question becomes whether selecting a 
small model dimension changes the qualitative conclusions reached by the BIC compared to 
the F-test. In this respect, Table 1 illustrates that the BIC does (not) lead to “X Granger-causes 
Y” conclusions more frequently than the F-test conducted at five per cent significance level 
for the case of p=1 and q=1 for sample sizes below (above) 50. Hence, putting the 
philosophical issues aside, the decision to choose between the F-test and the BIC should be 
made in view of the sample size.  
 
3. Discussion 
 

This study investigates the implications of using the F-test and the Schwarz Bayesian 
Information Criterion in testing for Granger non-causality. We demonstrate that the 
application of a uniform statistical significance level that does not vary with the sample size 
might lead to different causal inferences than those obtained by the BIC. This is often the case 
in applied research: conflicting results about Granger-causality from X to Y can arise if the 
BIC is used as the decision criterion rather than the F-test. This paper calculates the threshold 
values of the F-statistic and their associated significance levels, for a given sample size and 
model dimension, that would be required to reach the same conclusion as the BIC.  

Overall, we show that for small sample sizes and large model dimensions, the BIC 
might conclude in favour of Granger-causality from X to Y more frequently than the F-test 
conducted at five per cent level. In samples with more than 50 observations, however, the 
application of the F-test at the five per cent significance level for Granger-causal inference 
would lead to the less frequent rejections of the null hypothesis of no causality compared to 
the BIC. In this sense, the BIC behaves more conservatively compared to an F-test conducted 
at the five per cent significance level.  

Of course, the choice between the F-test and the BIC is a philosophical issue. 
However, our results illustrate the connections between the two approaches and provide the 
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threshold significance levels (in the frequentist sense) that correspond to the application of a 
Bayesian model selection criterion in view of the sample size and model dimensionality.  
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Table 1. Statistical Significance Level Equivalency of the F-test to the BIC 

TF-Order (↓) AR order (→) 
T = 25 1 2 3 4 5 6 7 8 

1 0.096066 0.104141 0.112965 0.122620 0.133199 0.144807 0.157566 0.171619 

2 0.066947 0.076146 0.086610 0.098511 0.112047 0.127444 0.144956 0.164875 

3 0.047945 0.057000 0.067706 0.080348 0.095254 0.112797 0.133405 0.157560 

4 0.036185 0.044859 0.055508 0.068542 0.084445 0.103776 0.127177 0.155374 

5 0.028849 0.037224 0.047882 0.061382 0.078393 0.099705 0.126227 0.158981 

6 0.024290 0.032563 0.043457 0.057710 0.076220 0.100060 0.130469 0.168833 

7 0.021587 0.030012 0.041471 0.056923 0.077553 0.104789 0.140280 0.185834 

8 0.020237 0.029122 0.041578 0.058845 0.082479 0.114352 0.156612 0.211530 

T = 50 AR order (→) 
TF-Order (↓) 1 2 3 4 5 6 7 8 

1 0.056453 0.059173 0.062033 0.065041 0.068205 0.071534 0.075038 0.078726 

2 0.027349 0.029575 0.031982 0.034585 0.037399 0.040443 0.043734 0.047294 

3 0.013610 0.015162 0.016886 0.018804 0.020935 0.023302 0.025932 0.028853 

4 0.007070 0.008107 0.009292 0.010646 0.012192 0.013957 0.015970 0.018264 

5 0.003830 0.004518 0.005327 0.006276 0.007389 0.008694 0.010221 0.012007 

6 0.002160 0.002620 0.003176 0.003846 0.004653 0.005624 0.006791 0.008190 

7 0.001266 0.001579 0.001967 0.002448 0.003042 0.003775 0.004678 0.005790 

8 0.000771 0.000988 0.001265 0.001616 0.002062 0.002626 0.003340 0.004239 

T = 75 AR order (→) 
TF-Order (↓) 1 2 3 4 5 6 7 8 

1 0.042473 0.043945 0.045470 0.047051 0.048691 0.050390 0.052153 0.053981 

2 0.016786 0.017780 0.018834 0.019950 0.021132 0.022384 0.023711 0.025116 

3 0.006812 0.007380 0.007996 0.008662 0.009382 0.010162 0.011006 0.011919 

4 0.002872 0.003181 0.003524 0.003902 0.004320 0.004783 0.005293 0.005858 

5 0.001255 0.001421 0.001609 0.001820 0.002060 0.002330 0.002634 0.002978 

6 0.000567 0.000656 0.000759 0.000877 0.001014 0.001172 0.001353 0.001562 

7 0.000264 0.000313 0.000369 0.000436 0.000515 0.000608 0.000717 0.000845 

8 0.000127 0.000153 0.000185 0.000223 0.000269 0.000325 0.000391 0.000470 

T = 100 AR order (→) 
TF-Order (↓) 1 2 3 4 5 6 7 8 

1 0.035021 0.035979 0.036965 0.037979 0.039021 0.040094 0.041199 0.042335 

2 0.012023 0.012589 0.013183 0.013804 0.014454 0.015136 0.015849 0.016596 

3 0.004238 0.004520 0.004821 0.005142 0.005483 0.005847 0.006235 0.006649 

4 0.001548 0.001681 0.001826 0.001983 0.002153 0.002337 0.002537 0.002754 

5 0.000584 0.000646 0.000714 0.000789 0.000872 0.000964 0.001065 0.001177 

6 0.000227 0.000255 0.000287 0.000323 0.000364 0.000409 0.000460 0.000517 

7 0.000091 0.000104 0.000119 0.000136 0.000156 0.000178 0.000204 0.000234 

8 0.000037 0.000043 0.000050 0.000059 0.000068 0.000080 0.000093 0.000108 

T = 200 AR order (→) 
TF-Order (↓) 1 2 3 4 5 6 7 8 

1 0.022514 0.022859 0.023211 0.023568 0.023930 0.024299 0.024673 0.025053 

2 0.005559 0.005708 0.005861 0.006019 0.006180 0.006346 0.006517 0.006692 

3 0.001411 0.001465 0.001521 0.001579 0.001639 0.001701 0.001766 0.001833 

4 0.000369 0.000388 0.000407 0.000427 0.000448 0.000470 0.000493 0.000518 

5 0.000099 0.000105 0.000112 0.000119 0.000126 0.000133 0.000141 0.000150 

6 0.000027 0.000029 0.000031 0.000034 0.000036 0.000039 0.000041 0.000044 

7 0.000008 0.000008 0.000009 0.000010 0.000011 0.000011 0.000012 0.000013 

8 0.000002 0.000002 0.000003 0.000003 0.000003 0.000003 0.000004 0.000004 

 


