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Abstract

In applied research, the Schwarz Bayesian Information Criterion (BIC) and the F-test might yield different inferences
about the causal relationships being investigated. This paper examines the relationship between the BIC and the F-tests
in the context of Granger-causality tests. We calculate the F-test significance levels as a function of the model
dimensionality and the sample size that would lead to the same conclusion as the BIC. We illustrate that the BIC
would reject the null hypothesis of no-causality less often compared to an F-test conducted at five percent significance
level for sample sizes above 50 especially when the chosen model dimensionality is small. Putting the philosophical
issues aside, we suggest that the decision to choose between the F-test and the BIC should be made in view of the

sample size.
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1. Introduction

According to Granger (1969), a (weakly) stationstgchastic variable X can be said to cause
another (weakly) stationary stochastic variablef ¥nd only if the information contained in
the history of X helps improve the prediction ofwien the prediction model already contains
the history of Y and all other relevant informatidlearly, Granger’s definition of causality
is a pragmatic one — defined in terms of predititsghi In the bivariate case, Granger-
causality from X to Y (both as defined above) caroperationalised and tested as follows.

p q
Y. =a:t Z,Bjyt-j+zijt-j+€t (1)
j=1 j=1
where:a is the constant ternfi’'s andy's are parameters to be estimated; p and q are lag-
lengths; and is a well-behaved error term. X does not Grangesea' ify; = ... =Y3=0.

In practice, the inference about whether X Grargerses Y reduces to a model
selection problem. This, in turn, is tightly linked the selection of optimal lag-lengths in
autoregressions and transfer functions, i.e., deteng the p and q in equation (1). As a
consequence, the results from Granger-causalitys tease generally sensitive to the
specification of the test equation. It should b&edahat Granger (1969) employed fixed lag-
lengths where p=q, while a flexible lag-lengthssien (where p and q are allowed to differ)
was developed by Hsiao (1982).

In order to identify what the “best” model is, v@rs model selection criteria have
been developed. The “best” model is taken as thee™tor the population model in the
classical frequentist approaches based on signdeatesting. Another widely adopted
approach is the use of a statistical model seleatigerion. Among many statistical model
selection criteria, the information criterion deygéd by Schwarz (1978) is grounded in
Bayesian principles. As such, the Schwarz Bayelsitormation Criterion (BIC) attempts to
identify a posterioriwhat the “most probable” model is. When Gaussiaorg are assumed,
the order of the most probable model for a unitariautoregressive process, AR(p), is
obtained by minimising BIC = (R$3 T) T ®*YT where T is the sample size, R3S the
residual-sum-of-squares when.Y...,Y, are used as regressors, and p+1 is the number of
estimated parameters — including the constant term.

The small- and large-sample properties of the BEveell-researched in the literature.
Mills and Prasad (1992), for instance, conduct msitee Monte-Carlo experiments and
conclude that the BIC should probably be the fitstice of the applied researchers. Among
others, Lutkepohl (1985), Nickelsburg (1985), Ydaludge (1988), Granger and Jeon (2004),
and Raffalovich et al. (2008) also document evideincfavour of the BIC over other model
selection criteria.

Testing for Granger-causality by means of the Bikes the following form. First, the
optimal order of p in equation (1) is found by mmsing the BIC. This amounts to fitting an
AR(p) model for the Y variable, with a calculatedCRr value. Then, the lags of X are
introduced given the best specification for Y, @mel order of X with the minimum BIC gives

! See Atukeren (2008) for a further discussion efitisues involved in testing for Granger causalitye notion of Granger-
causality also received attention in the philosophgcience literature. For instance, James WoodiW2008: 234) states
that:
“Roughly speaking, X Granger-causes Y if X is tenghgrprior to Y and information about X improvesroability
(relative to some baseline) to predict whether Y @gcur. Interestingly, Granger-causation turns tmube a different
notion of cause (and hence to be associated vdtffeent notion of causal correctness) than therirentionist notion.
X can be a Granger-cause of Y even though it isanotuse in the interventionist sense. It is thligseaquestion
whether we should adopt this notion of cause istéahe interventionist notion.”
2 For a Gaussian process, an alternative way oésepting optimal model order chosen by the BIGdh is
that it results from minimising Infp)+pln(T)/T, where<52p is the maximum likelihood error variance for the
AR(p) model, In is the natural logarithm operatomd T is the sample size.
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is chosen — resulting in a Bicvalue. This step amounts to fitting a transferction. Next,
the BIC values from the two steps are compare@®ITrr < BICar, X is said to Granger-
cause Y.

In this paper, we investigate the relationshipMeen the F-test and the BIC in the
context of Granger-causality tests. We first calteilthe required significance levels for
conducting an F-test that would yield equivalerstutes as the application of the BIC. Then,
we examine the behaviour of the required signiftealevels of the F-test as a function of the
sample size and the model order. Conclusions follow

2. Relationship between the F-test and the BIC in the context of Granger-causality tests

In the context of equation (1), the BIC for the ARModel for Y (BIGr ) and the BIC for
the transfer function involving the X variable (Bi can be calculated from:

BICar = (RRSS / T) fP*1/D (2)
BICt = (URSS / T) ftPrar/D (3)

where RRSS stands for the restricted residual suisguares (i.e., g = 0), URSS stands for the
unrestricted residual sum of squares (q > 0), amltfie sample size. Note that, including the
constant term, we have (p+1) and (p+q+1) parameteestimate in Blgz and in BIGk,
respectively. In other words, the order g givesrthmber of restrictions to be tested.

Let us denote (p+1) with m and (p+qg+1) with k. Thena conventional F-test, the
statistical validity of the restrictions would bested by comparing the computed F-statistic
with the table value — given the number of obséowat the number of restrictions, and the
degrees of freedom.

- _ (RRSS URSH + )m ( RR_S:F] (;T} @
URSS( T- K URSS *

As stated above, if Bz < BICag, then “X can be said to Granger-cause Y”. If BIC
> BICar, then “X does not Granger-cause Y”. Let us reatersthe borderline between the
rejection and the non-rejection of Granger-caugalie., when BIGr = BICar. Setting
equations (2) and (3) equal and after manipulatanget:

(RRSS / URSS) = ™7 (5)
Further substituting (5) into (4), we obtain:
Fr= (T T2 1) [(T-k) 1 (k-m)] (6)

The F* value is the critical F-value beyond whidte tBIC rejects non-causality. In
other words, BIGr < BICar implies F > F*. As a numerical example, let usuass that Y is
modelled as an AR(2) process (p=2) and X appeats wme lag (g=1) in the transfer
function. Hence, we have k = 4 and m=3. Let usherassume that T = 100.

According to (6), the critical F-value is: Fs = 4.5243. This results in a p-value of
0.0360. That is, rejecting the null hypothesis ‘@ed not Granger-cause Y” if B}{€< BICar
corresponds to a conventional F-test with a steaissignificance level of 3.6 per cent. Note
that this is a stronger requirement than the cotimeal 5 per cent statistical significance
yardstick. Hence, a conventional F-test would tteflee null hypothesis at the 5 per cent level
whereas the BIC would not.



Let us take another example. Let k =5, m = 3 amdIDO. That is, we again have an
AR(2) process for Y, but we now include two lagsxah the transfer function. Then, Fgs=
4.5827, with the p-value of only 0.0126, or 1.26 pent statistical significance level. For the
same sample size and the same AR order for Y kihtjust one more additional lag of the X
variable, the rejection of the null hypothesis ohftausality on the basis of the BIC-criterion
corresponds to a much lower (stricter) significalesel in terms of a conventional F-test.

In general, the corresponding F-test significanegels (p-values) to the BIC
thresholds can be calculated for different samiessand model dimensions. In Table 1, we
tabulate the statistical significance levels of Freests that would be required to reject the
null hypothesis of no-causality from X to Y in tlwentext of equation (1). Note that the
maximum AR order for Y and the maximum lags of ¥@ariable in the transfer function
specification are taken as eight, i.€"¥p8 and §#=8, and the considered sample sizes are
25, 50, 75, 100, and 200. In principle, the coroesiing significance levels can be calculated
for any sample size and the model order using go@téeon (6) and a p-value calculator.

A number of conclusions can be drawn from the tequiesented in Table 1. In small
samples, the BIC may lead to the conclusion thaGtdnger-causes Y” more often than an F-
test conducted at the five per cent significaneelleThis is in line with the BIC philosophy.

It is harder to detect the most probable modeimalssamples. In large samples, however, the
BIC will tend to reject causality from X to Y mowadten than the F-test with a conventional
uniform significance level (e.qg., five per cent).

However, one also has to consider whether it is RHest that rejects the null
hypothesis of no-causality too often or whethés the BIC that is too conservative in making
Granger-causal inferences. For instance, the BI®nmswn to select more parsimonious
models than chosen by other criteria. In our cantée question becomes whether selecting a
small model dimension changes the qualitative emichs reached by the BIC compared to
the F-test. In this respect, Table 1 illustrated the BIC does (not) lead to “X Granger-causes
Y” conclusions more frequently than the F-test eaartdd at five per cent significance level
for the case of p=1 and =1 for sample sizes bef{alove) 50. Hence, putting the
philosophical issues aside, the decision to chbeteeen the F-test and the BIC should be
made in view of the sample size.

3. Discussion

This study investigates the implications of usihg F-test and the Schwarz Bayesian
Information Criterion in testing for Granger norusality. We demonstrate that the
application of a uniform statistical significanavél that does not vary with the sample size
might lead to different causal inferences thanehastained by the BIC. This is often the case
in applied research: conflicting results about @ercausality from X to Y can arise if the
BIC is used as the decision criterion rather tlnenR-test. This paper calculates the threshold
values of the F-statistic and their associatedifsigmce levels, for a given sample size and
model dimension, that would be required to reaehstéime conclusion as the BIC.

Overall, we show that for small sample sizes amgelanodel dimensions, the BIC
might conclude in favour of Granger-causality frodrto Y more frequently than the F-test
conducted at five per cent level. In samples witbrenthan 50 observations, however, the
application of the F-test at the five per cent Bigance level for Granger-causal inference
would lead to the less frequent rejections of thk mypothesis of no causality compared to
the BIC. In this sense, the BIC behaves more coatieely compared to an F-test conducted
at the five per cent significance level.

Of course, the choice between the F-test and th@ Bl a philosophical issue.
However, our results illustrate the connectionsveen the two approaches and provide the



threshold significance levels (in the frequentstse) that correspond to the application of a
Bayesian model selection criterion in view of thenple size and model dimensionality.
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Table 1. Statistical Significance Level Equivalency of theeist to the BIC

TF-Order () AR order ()

T=25 1 2 3 4 5 6 7 s
1| 0.096066( 0.104141 0.112965 0.122420 0.133199 4604 0.157569 0.17161P
2] 0.066947| 0.076146 0.0866]10 0.098911 0.112047 704¥| 0.14495¢ 0.16487p
3| 0.047945| 0.057000 0.067706 0.080348 0.099254 2091 0.13340§ 0.15756p
4 | 0.036185| 0.044859 0.0555(08 0.068542 0.084445 307/8)| 0.127177 0.155374
5] 0.028849| 0.037224 0.04788%2 0.061382 0.078§393 90(®| 0.126227 0.158941L
6| 0.024290| 0.032568 0.0434%7 0.057410 0.076220 006 0.130469 0.168833
71 0.021587| 0.030012 0.041471 0.056923 0.077553 408 0.14028(0 0.18583¢%
8| 0.020237| 0.029122 0.041578 0.05845 0.082479 483P1| 0.1566174 0.21153p

T=50 AR order ()

TF-Order () 1 2 3 4 5 6 7 ts
1| 0.056453( 0.059178 0.062033 0.065Q041 0.068205 1B3W| 0.075038 0.07872B
2| 0.027349( 0.029575 0.03192|32 0.034385 0.037399 084BY 0.043734 0.047294%
3| 0.013610] 0.015169 0.0168%6 0.018404 0.0200935 38a®| 0.025934 0.02885B
41 0.007070] 0.008107Y 0.0092%2 0.010646 0.012192 303yl 0.015970 0.01826¢
5| 0.003830[ 0.004518 0.005327 0.006276 0.007389 86%®D| 0.010221 0.01200F
6 | 0.002160( 0.002620 0.003176 0.003846 0.004653 560D 0.006791 0.00819D
7 | 0.001266| 0.001579 0.0019¢7 0.002448 0.003042 3014D| 0.004678 0.00579D
8 | 0.000771f 0.000988 0.0012¢5 0.001616 0.002062 264®W| 0.00334Q0 0.00423P

T=75 AR order ()

TF-Order () 1 2 3 4 5 6 7 g
1| 0.042473( 0.043945 0.045470 0.047051 0.048691 089mb( 0.052153 0.0539q|].
2 | 0.016786 0.017781) 0.018834 0.019950 0.021132 268®| 0.023711 0.02511"5
3| 0.006812| 0.007380 0.007996 0.008¢62 0.009382 006R| 0.011004 0.01191p
4 | 0.002872| 0.00318] 0.003524 0.003902 0.004320 4v8B®| 0.005293 0.00585B
5] 0.001255| 0.001421 0.001609 0.001§20 0.002060 283W| 0.002634 0.00297B
6 | 0.000567| 0.000656 0.0007%9 0.000§77 0.001014 104D| 0.001353 0.00156p
7 | 0.000264| 0.000318 0.0003¢9 0.000436 0.000515 06(®| 0.000717 0.00084p
8| 0.000127| 0.000158 0.000185 0.000423 0.000269 08| 0.00039) 0.00047p

T =100 AR order ()

TF-Order () 1 2 3 4 5 6 7 ts
1| 0.035021| 0.035979 0.0369¢5 0.037979 0.039021 00M¥| 0.041199 0.04233p
2] 0.012023| 0.012589 0.013183 0.013§04 0.014454 503H| 0.015849 0.01659p
3| 0.004238| 0.004520 0.004821 0.005342 0.005483 56410 0.00623H 0.00664p
4 | 0.001548| 0.00168]1 0.001826 0.001983 0.002153 2B8310| 0.002537 0.002734
5| 0.000584( 0.000646 0.000714 0.000489 0.000872 0060 0.001065 0.00117F
6 | 0.000227| 0.000255 0.000287 0.000323 0.000364 0@@W| 0.00046Q0 0.00051
7 | 0.000091| 0.000104 0.000119 0.000136 0.000156 OQA®| 0.000204 0.000234
8 | 0.000037| 0.000048 0.0000%0 0.000Q059 0.000068 008w 0.000093 0.00010B

T =200 AR order ()

TF-Order () 1 2 3 4 5 6 7 g
1| 0.022514 0.022859 0.023211 0.023568 0.023930 429 0.024673 0.025058
2 | 0.005559( 0.005708 0.00586¢1 0.006Q19 0.006180 684 0.006517 0.00669p
3| 0.001411f 0.00146p5 0.001521 0.001579 0.001639 1b@O| 0.001764 0.00183B
4| 0.000369| 0.000388 0.000407 0.000427 0.000448 084D 0.000493 0.00051B
5| 0.000099| 0.000105 0.000112 0.000119 0.000126 OQ@3®W| 0.000141 0.00015p
6 | 0.000027| 0.000029 0.000031 0.0009034 0.000036 003w 0.000041 0.00004“4
7 | 0.000008] 0.000008 0.000009 0.000410 0.000011 00XO[ 0.000012 0.00001B
8 | 0.000002| 0.000002 0.000003 0.000Q03 0.000003 00OG®| 0.000004 0.00000¢




