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Abstract 

We discuss the modeling of count data whose empirical distribution is both multi-modal and over-dispersed, and 
propose the Hermite distribution with covariates introduced through the conditional mean. The model is readily 
estimated by maximum likelihood, and nests the Poisson model as a special case. The Hermite regression model is 
applied to data for the number of banking and currency crises in IMF-member countries, and is found to out-perform 
the Poisson and negative binomial models. 
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1. Introduction 
 
Typically, models for count data (i.e., data that take only non-negative integer values) are based 
on distributions that do not allow for multi-modality. Obvious examples are the Poisson and 
negative binomial distributions. This seriously limits the usefulness of such models. We discuss 
a way of broadening the class of discrete distributions that are used in this field by adopting the 
Hermite distribution proposed by Kemp and Kemp (1965). Apart from Giles (2007), this 
distribution has not been used in the econometrics literature to date. Further, it appears that when 
it has been used in other fields, no consideration has been given to introducing covariates into the 
model, as is done with the conventional Poisson and negative binomial regression models.  
 
Two particularly appealing features of the Hermite distribution are that it is capable of modeling 
multi-modal count data without any modification, and simultaneously it can account for over-
dispersion in the sample. Some background discussion is proved in the next section. Section 3 
presents the Hermite regression model, with the covariates introduced in a more satisfactory 
manner than in Giles (2007). An application involving currency and banking crises is provided in 
section 4, and section 5 concludes. Our results suggest that the Hermite distribution, 
parameterized to incorporate covariates, offers considerable potential for modeling discrete 
economic data. 
 

2. Modeling Count Data 
 
Consider the Poisson distribution, with p.m.f.: 
 

!/)exp(]Pr[ yyY y      ;    y = 0, 1, 2, …                  (1) 
 
This distribution is “equi-dispersed” as  λ ( > 0) is both its mean and variance. In contrast, many 
data are “over-dispersed”, in that their variance exceeds their mean, so this reduces the 
usefulness of the Poisson distribution. Allowing the variance to be modeled in turn by a gamma 
distribution, leads to the familiar negative binomial distribution, which can capture over-
dispersion in the data. 
 
In linear regression we “explain” the (conditional) mean of the dependent variable as a function 
of parameters and covariates, so it is natural to introduce covariates into the model by assigning: 
 

)'exp(  x   ,                     (2) 
 
so that λ > 0.  Maximum likelihood estimation of the parameters is then straightforward, as the 
log-likelihood function is strictly concave (as it is also for the negative binomial model). In the 
ensuing discussion, it is important to recognize that the Poisson model, and standard variants that 
allow for over-dispersion, cannot describe multi-modal data.1 

                                                           
1 More correctly, if λ is integer, then the Poisson distribution has equally high modes at λ and (λ – 1), but never at 
non-adjacent values. If  λ is non-integer, the single mode occurs at [λ], the integer part of  λ. 
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The zero-inflated Poisson (ZIP) regression model (e.g., Mullahy 1986) is a modified Poisson 
regression model that allows for an excess of zero counts.2 This phenomenon is widely 
encountered in practice and it may (or may not) result in an empirical distribution that is bimodal 
and/or over-dispersed. The situation where the data exhibit an excess of counts at several integer 
values has received little attention. Santos Silva and Covas (2000) and Hellström (2006) used 
modified double-hurdle models for this problem. Melkersson and Rooth (1999) considered an 
extended ZIP model when there was count inflation at the values zero and two; and Giles (2007) 
discussed a full generalization of the ZIP model to allow for count-inflation at multiple values. 
We now consider an alternative distribution for modeling count data that allows for both multi-
modality and over-dispersion, namely the Hermite distribution (Kemp and Kemp 1965). 
 

3. A More General Model 
 
The Hermite distribution is a generalized Poisson distribution, taking its name from the fact that 
its probabilities and factorial moments can be expressed in terms of the coefficients of (modified) 
Hermite polynomials. The bivariate Poisson and the Poisson-binomial distributions are special 
cases of the Hermite distribution. An Hermite variate also arises as the sum of an ordinary 
Poisson variate and an independent Poisson ‘doublet’ variate; and the distribution of the sum of a 
finite number of correlated Poisson variates is also Hermite (McKendrick, 1926 and Maritz 
1952).  
 
One convenient expression for the p.m.f. for the Hermite distribution is: 
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The mean and variance are (α + 2γ) and (α + 4γ) respectively, and [x] denotes the integer part of 
x. Unless γ = 0 (implying a Poisson distribution) we have over-dispersion. In all generalized 
Poisson distributions the probabilities follow some recursion scheme. In the case of the Hermite 
distribution: 
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Apart from Giles (2007) we are not aware of any previous discussion of introducing covariates 
into models based on the Hermite distribution. Here, we achieve this in a new and natural way 
that follows the approach adopted by Ferrari and Cribari-Neto (2004) for regression based on the 
beta distribution. The parameterization in (3) and (4) can be  
modified by assigning3 

                                                           
2 The negative binomial regression model may also be extended to allow for zero-inflation of the data in a 
corresponding and straightforward manner. 
3 Alternative parameterizations were used by Giles (2007) in his empirical illustrations, but these were less intuitive 
than the one suggested here, and are not recommended.  
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 2  ;  2  ,                         (5) 
so   
    ;  2/  .               (6) 
 
Then, (3) and (4) become 
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As )(YE  and  ).(YVar , for a given value for the mean of the distribution,   is a 
dispersion parameter – the variance increases with  . Figures 1 and 2 show the Hermite p.m.f. 
for particular choices of  and  , and illustrate its ability to exhibit multi-modality.  
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Figure 1: Probability mass function for Hermite distribution; μ = 3.1,   = 3.0 
 



 3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4 5 6 7 8 9 10 11 12

r

P
r.

(Y
 =

 r
)

 

Figure 2: Probability mass function for Hermite distribution; μ = 2.2,  =1.8 

 

The introduction of covariates is achieved by mimicking (2) and setting )'exp(  ii x  in (7) 

and (8). The marginal effects of continuous covariates take the same form as in the Poisson 
regression model, namely for the kth covariate: 
  

kiikii xxxyE  )'exp(/]|[  .           (9) 

 
The coefficients and the corresponding marginal effects have the same signs. As usual, in the 
case of a “dummy” covariate, the marginal effect is the difference between the conditional mean 
of the dependent variable, )'exp(  ii x , when the dummy variable is unity, and this mean 

when the dummy variable is zero. The other regressors can be set to their sample mean values. 
 
The formulae in (8) facilitate the construction of the log-likelihood function. Assuming n 
independent observations, 
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where  )( ir yI  is an indicator function taking the value unity if  yi = r, and zero otherwise; rmax is 

the highest count value in the sample; and pr(.) comes from (8) with )'exp(  ii x . This 

log-likelihood is easily programmed in standard econometrics packages. 
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4. Modelling Currency and Banking Crises 
 
We now apply the Hermite regression model to data on the number of currency and banking 
crises occurring in all IMF member countries between 1970 and 1999. These data are supplied 
by Ghosh et al. (2002). The currency crisis data are based on the Glick and Hutchinson (2001) 
classification, which measures exchange market pressure by using monthly changes in both the 
real exchange rate and the level of foreign reserves. The data for banking crises are from 
Alexander et al. (1997) and Glick and Hutchinson (2001). Based on the raw data we have 
constructed a data-set for the combined number of such crises for each of 167 countries. The 
frequency distribution for these crises is shown in Figure 3. Its characteristics are typical of those 
of an Hermite distribution, and the sample data are over-dispersed. 
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Figure 3: Number of currency and banking crises in IMF-member countries 

         Source: Ghosh et al. (2002), data CD. 

 
Some initial estimation results (ignoring covariates) are given in Table 1. Maximum likelihood 
estimation of the Hermite model was undertaken by coding a LOGL object in the EViews 
package (Quantitative Micro Software 2007). The (more restricted) Poisson model is rejected in 
favour of the negative binomial model using a likelihood ratio test (p = 0), and also using the 
Wald test of the hypothesis that the exponential of the shape parameter is zero.4 Recalling that 
the Hermite distribution collapses to the Poisson distribution when γ = 0 (and hence  = 0), we 
also reject the Poisson model in favour of the Hermite model using a likelihood ratio test (p = 0) 
and a Wald test (z-test). The Hermite model is favoured on the basis of the AIC values. The 
corresponding actual and fitted counts are shown in Table 2, where the Hermite model provides 
the best fit to the data for six of the eight counts and the second-best fit for one of the remaining 
categories. The fit of the Hermite model is especially impressive at the higher counts. 

                                                           
4 The negative binomial distribution collapses to the Poisson distribution, and the over-dispersion vanishes, as 

02  . See Quantitative Micro Software (2007, p.248). The Wald test statistic is 0.7731 (p = 0.3793). 
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Table 1: Maximum likelihood estimation results (no covariates) 

Poisson   NegBin   Hermite  

 

log(λ)  0.7051   0.7051 
  (0.0743)  (0.0743) 
 
log(η2)     -0.5905 
     (0.2404) 
 
μ        2.0070     

       (0.1253)  
 
         1.0710  
        (0.2092)  
 
    
logL  -339.5187  -316.8905  -305.4095 
AIC  4.0781   3.8190   3.6816 
 
Asymptotic standard errors appear in parentheses. These are Huber-White robust standard errors in the case of the 
Poisson and NegBin models. log(η2) is the shape parameter, as defined in the EViews package (Quantitative Micro 
Software 2007, p.248). 
 

 
Table 2: Actual and predicted counts (currency and banking crises) 

 
r  Actual  Poisson  NegBin  Hermite  
 
 
0  45  83  92  38   
1  44  58  47  36 
2  19  21  18  37 
3  17  45  7  24 
4  19  1  2  16 
5  13  0  1  14 
6  6  0  0  7 
7  4  0  0  5 
 

Predicted values are rounded to the nearest integer. 

 
In Table 3 we report some estimated count-data regression models. We focus on covariates 
associated with the (de jure) exchange rate regime in place (pegged, intermediate or floating); 
and income levels (upper, upper middle, lower middle or lower). We use two dummy variables: 
DUMIC, which is unity only if the country is an upper middle income country; DUMFLT, which 
is unity only if a country experienced one or more crises under a (de jure) intermediate exchange 
rate regime; and DUMFLT, which is unity only if a country experienced one or more crises 
under a (de jure) floating exchange rate regime. Although we experimented with various other 
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covariates, these were found to be statistically insignificant. The Poisson model is rejected in 
favour of the negative binomial model on the basis of a likelihood ratio test (p = 0), but the 
opposite conclusion is reached using the Wald test of the hypothesis that the exponential of the 
shape parameter is zero.(In this case the Wald test statistic is 23.3186, with p = 0). The Poisson 
model is also rejected in favour of the Hermite model (a) on the basis of a likelihood ration test 
(p = 0) and the z-test of the hypothesis that  = 0. The Hermite regression models again dominate 
both of the other two models on the basis of the AIC values, with the simpler Hermite model (b) 
being preferred overall on the basis of its AIC and the insignificance of the interaction term’s 
coefficient (β4). 
 
 

Table 3: Maximum likelihood estimation results (models with covariates) 

Poisson   NegBin    Hermite  

 

            (a)    (b) 

β1   0.2742   0.2595   0.2430  0.2396 
[const.]   (0.0974)  (0.0963)  (0.0892)           (0.0892) 
 
β2   0.2878   0.3128   0.2933  0.3101 
[DINT]   (0.0599)  (0.0667)  (0.0930)           (0.0917) 
 
β3   0.8676   0.8776   0.8908  0.9259 
[DFLT]   (0.1175)  (0.1138)  (0.1770)           (0.1643) 
 
β4   0.3149   0.3068   0.3072   
[DFLTDUMIC] (0.1385)  (0.1531)  (0.3667) 
 
          0.4212  0.4266 
         (0.1500)           (0.1488) 
 
log(η2)      -2.5034 
      (1.1373) 
    
logL   -283.0836  -282.3039  -272.7315      -273.5905 
AIC        3.4381       3.4408       3.3261  3.3244 
 
 
Asymptotic standard errors appear in parentheses. These are Huber-White robust standard errors in the case of the 
Poisson and NegBin models. log(η2) is the shape parameter, as defined in the EViews package (Quantitative Micro 
Software 2007, p.248). 
 
 
The results for the Hermite model (b) can be interpreted in terms of the marginal effects 
associated with the covariates. As these covariates are dummy variables the marginal effects are 
computed as described in section 3, yielding values of 0.46 and 2.15 respectively for the 
intermediate and floating exchange rate dummies. So, ceteris paribus, moving from a (de jure) 
pegged exchange rate to an intermediate exchange rate would have led a country to experience 
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the same number of crises, or perhaps one more crisis, over the period in question. Similarly, 
moving from a pegged exchange rate to a (de jure) floating exchange rate would have led a 
country to experience approximately two more crises over this period. This last result accords 
with the findings of Domaç and Martinez Peria (2003), based on a logit model for banking 
crises.5  
 
 

5. Conclusions 
 

The Hermite distribution provides a useful basis for modeling count data whose empirical 
distribution is multi-modal, and it nests the Poisson distribution. Covariates can be incorporated 
into the model in a natural way, and the associated maximum likelihood estimates of the 
parameters are readily obtained. We find that the Hermite regression model out-performs other 
standard count data models in our illustrative application involving the incidence of financial 
crises under different exchange rate regimes.  
 

                                                           
5 Our own conclusions are not affected when banking and currency crises are modeled separately. 
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