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1 Introduction

From the ICAPMMerton’s (1973) model, one should observe a linear relationship between

expected risk and expected return. This conclusion has only a weak support in empirical

studies, beginning with French et al. (1987) for data from 1920 to 1984. The estimation

issues are numerous when examining the risk-return tradeoff. How to form expectations?

At which horizon should the relation be recovered? Which market portfolio should be

used? Etc.

A recent strand of the literature focused attention on how to measure the expected risk.

Ghysels et al. (2005) suggest to use MIDAS regression to improve forecast of risk. Adrian

and Rosenberg (2008) consider two components for the market risk, one for the short

term and one for the long term. Bali et al. (2009) and Conrad et al. (2009) show that a

relation exists between various measures of downside risk and realized returns. Bollerslev

et al. (2009) use the variance risk premium (the difference between implied variance and

realized variance) to provide empirical evidence about the risk-return tradeoff. All these

papers are interested in examining the relation between expected mean and expected risk

at various horizons going from 1 month to 6 or more months.

One notable exception is Bali and Peng (2006) which emphasizes the very short-term

risk-return tradeoff by examining expected risk and return at the daily horizon. The

expected risk is constructed using intraday data and the so-called realized variance (or

volatility). The use of realized variance provides a very reliable and much more precise

estimate of the conditional variance. Interestingly, the authors show that the relation

between expected risk and realized return is very significant, robust to the introduction

of a number of control variables and quite stable over time.

In this note, we reinvestigate the issue of the risk-return relation at the daily horizon

and extend the Bali and Peng’s (2006) work in two dimensions. First, we show that

their results are not valid for the most recent period. In particular, using rolling window

regressions, we provide evidence that the relative risk aversion coefficient estimate is not

significant anymore after mid-2006.
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Our second empirical work is an investigation of the potential contribution of jumps in

the risk-return tradeoff. Our interest in this question comes from recent results from

the literature which has already provided evidence of the particular role of jumps for

volatility forecasting (Giot and Laurent (2007), Andersen et al. (2007), Patton and

Sheppard (2011)), in the volatility volume debate (Giot et al. (2011)), in modeling excess

bon premia (Wright and Zhou (2009)) or the credit spread at the aggregate level (Tauchen

and Zhou (2005)) or for individual firms (Zhang et al. (2009)).

We thus analyze the role of jumps in shaping the relation between risk and return and

investigate how the distinction between jumps and the continuous component can im-

prove the fit of the standard regression using standard realized variance.1 It should be

emphasized that our approach is nonparametric in essence and thus very different from

the recent contribution by Li (2011) for which a jumps risk premium has to be specified.

The next section briefly presents the methodology to detect jumps. Section 3 provides

our empirical results for a set of regressions using realized measures either robust or not

to jumps to investigate the ICAPM equation. Section 4 concludes.

2 Jumps detection methodology

We first consider the so-called realized variance. For day t, the realized variance is given

by the sum of the N equally spaced squared intraday returns:

RVt,N =

N
∑

i=1

r2t,i, (1)

where the rt,i are intraday returns computed as rt,i = pt,i − pt,i−1 for i = 1, ..., N . pt,i

are intraday observations allowing to compute N continuously compounded intraday re-

turns each day.2 The sampling frequency is then given by 1/N . When the frequency

1Identifying jumps in a stochastic process is important because it has implications for risk management,
option pricing, portfolio selection and also has consequences for optimal hedging strategies.The impact
of jumps in returns and volatility is studied in Andersen et al. (2002), Eraker et al. (2003), Chernov et

al. (2003), Eraker (2004), Broadie et al. (2007). A risk premium (jump risk premium) can be raised in
reference to jumps (Pan, 2000).

2We do note consider here the issue of the so-called microstructure noise when using high-frequency
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of observation goes to infinity, the realized variance measure permits to treat the con-

ditional volatility as if it were observable following the argument advanced in Merton

(1980).3 Nevertheless, the realized variance is not robust to jumps as it does include in

the summation returns that are too high to be likely realization of a Wiener process.

To disentangle jumps from the continuous component, we need a measure of realized

variance which is robust to jumps. Barndorff-Nielsen and Shephard (2004) propose to

use the bipower variation (BPV), which is a sum of products of contiguous absolute

returns or:

BPVt,N = ξ1

N−1
∑

i=1

|rt,i+1||rt,i| (2)

where ξp ≡ 2p/2Γ(1/2(p+1)
Γ(1/2)

) = E(| Z |p) denotes the mean of the absolute value of stan-

dard normally distributed random variable Z. As the sampling frequency increases, the

presence of jumps should have no impact because the return representing the jump is

multiplied by a non-jump return which tends to zero asymptotically. This is true in case

of rare jumps (one each day) when the probability of two consecutive jumps is negligi-

ble, as it is the case in the widely used Merton’s (1976) model. Because the BPV is

robust to jumps, the difference between the realized variance and the BPV can be used

to investigate the presence of jumps. However, a small difference may be due to chance.

Barndorff-Nielsen and Shephard (2004, 2006) develop a test that can be used to assess the

presence of jumps when the difference between realized variance and BPV is sufficiently

large. A possible test statistic using BPV as the robust-to-jump estimator is:

data. This issue is debated in, among others, Hansen and Lunde (2006) and a number of alternative
estimators have been proposed in the literature to deal with this problem. Because we use S&P 500
futures data, which is a very liquid asset, and has been used previously in the rest of the literature with
a 5-min sampling interval, giving satisfactory results, we adopt the same sampling frequency here. We
also computed the TSRV estimator of Zhang et al. (2005) and found similar results in all our regressions.
Results are available upon request from he authors.

3It can be noted that a similar idea was already in use in the investigation of the risk-return tradeoff in
French et al. (1987) where the authors compute the monthly conditional variance using squared daily
returns.
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ZJBPV (N, d) =
√
N

(RVd,N −BPVd,N)RV −1
d,N

(

(ξ−4
1 + 2ξ−2

1 − 5)max{1, TQd,NBPV −2
d,N}

)1/2
(3)

with TQ the realized tripower quarticity, which converges in probability to the integrated

quarticity. This test statistic in Eq. (3) has been shown to have the best small sample

properties in Huang and Tauchen (2005) and reasonable power against several empirically

realistic calibrated stochastic volatility jump diffusion models (Andersen et al. (2007)).

It has been used so far in a large number of contributions (see Giot et al. (2011), Giot

and Laurent (2007), Tauchen and Zhou (2010), Wright and Zhou (2009) among many

others).

3 Empirical analysis

From Merton’s (1973) ICAPM, we know that the conditional expected excess return of

the stock market index should be a linear function of the expectation of the conditional

variance plus a hedging component. The theoretical relation thus has the following form:

Et−1[rt − rf,t] = γEt−1[σ
2
t ] (4)

In Eq. (4), the coefficient γ is the relative risk aversion. The empirical counterpart of

Eq. (4) is Eq. (5) where the realized return is used in place of the expected return can

take the following form:

rt − rf,t = µ+ γEt−1[RISKt] + π1FEDt−1 + π2DEFt−1 + π3TERMt−1 + εt (5)

which is much more general than the theoretical relation. In particular, we will consider

different measures of expected risk : the realized variance, the realized volatility and

the implied realized variance. In addition, we explicitly model the hedging component

using control variables.4 Note that these measures of risk and hedging component are not

4Scruggs (1998) and Guo and Whitelaw (2006) are exemplified studies where the hedging component is
of utmost interest.
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original to our analysis but similar to Bali and Peng (2006) thereby ensuring comparability

with their study. We thus refer the interested reader to Bali and Peng’s (2006) article for

the construction of the FED, DEF and TERM variables and the data source employed.
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Figure 1

Autocorrelation for estimated realized variance using 5-min sampling interval

In what follows, the expected conditional market risk will be modeled using lagged valued

of market risk measures. The motivation for using the lagged realized variance or volatility

is the very strong persistence on the time series. This long-memory behavior for the

realized variance can be observed in Figure 1 where autocorrelation coefficients estimates

are significant for a large number of lags and decay hyperbolically. The long-memory

behavior of the estimated conditional variance explains why more elaborated forecasts

of the conditional variance (or volatility) do not help much in examining the risk-return

relation. Following Andersen et al. (2003), Bali and Peng (2006) use an ARMA(5,5)

to predict variance or volatility and demonstrate that their results are similar to the

case where simple lagged values are employed. We experimented with the HAR model

proposed in Corsi (2009) which mimic long-memory very accurately. As in Bali and Peng

(2006), our results are worse when the time-series model forecast is used. Hence, we

do not report this set of results here but these results remain naturally available upon

request.
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3.1 Data

The time period for our intraday (transaction) data is from January 2, 1996 to July 31,

2008. We consider a continuous time series constructed using the most active contract

each day and rolling over when needed.5 With a sampling interval of 5 minutes, we should

obtain 81 intraday returns each day.6 We do not consider days with less than 81 intraday

returns, which are indicative of a shortened trading period using standard filters. In

addition, we ensure that our sample only includes days with sufficient trading activity.

We end with 3166 days where all these requirements are met. The average number of

trades for these days is 3,090 and this variable is quite stable during the period under

consideration.

In contrast with Bali and Peng (2006), we only consider the S&P 500 futures contract.

This appears to be relevant in light of the consistency of empirical results when either

the S&P 500 cash index or the CRSP value-weighted index are used. In addition, it can

be emphasized that both the cash index and the CRSP have some notable drawbacks. In

particular, these are not tradable assets and thus no available transaction data exist.
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Figure 2

Annualized volatility computed from realized variance

Figures 2 and 3 represent the realized volatility (square root of realized variance) in

annualized term (multiplied by
√
252) and the corresponding jumps extracted following

5To avoid calendar effects, we do not build our continuous series using a fixed number of days prior to
maturity but adapt our rollover procedure to the observed trading activity.

6Trading of the S&P 500 futures contract occurs from 8:30 AM to 3:15 PM.
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Figure 3

Annualized squared jump component computed using the Barndorff-Nielsen and
Shephard (2004) test statistic

the methodology exposed in section 2, respectively. We can observe the time-varying

behavior of the volatility and the clustering of associated jumps.

3.2 Empirical findings for full sample

We first consider the full sample with and without control variables as noted in Eq. (5).

Regression results are reported in Table 1. These regressions provide a direct reassessment

of the main result in Bali and Peng (2006). The first row of Table 1 is an estimation

of the linear relation between daily excess return in the S&P 500 futures contract and

the estimated realized variance for the previous day constructed using S&P 500 futures

intraday data. The estimated relative risk aversion for this regression is 6.16. This

estimate is shown to be significant at the 1% level in light of the reported t-statistic using

Newey-West (1987) adjustment.7 The explanatory power of the regression is rather low

but in line with previous contributions using daily data, which are known to be very

noisy.

Rows 2 to 4 in Table 1 complement our first finding. In row 2, the relation is investigated

using the estimated realized volatility. Results are qualitatively similar in that the slope

7Bali and Peng (2006) note that the estimated relative risk aversion is upward biased because the overnight
return is not considered when computing the realized measures of risk. This remark is valid for all our
regressions in the present paper.
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coefficient is significant at the 1% level and the explanatory power is pretty much the

same. Row 3 provides results of the regression when the measure of risk is the lagged

VIX. To obtain comparable results with the realized variance regression, we use the daily

implied variance which is obtained from the VIX as follows: [VIX/(100×
√
252)]2. While

the estimate of the relative risk aversion is of the same order, it is only significant at the

5% threshold. A possible explanation is that the VIX is calibrated to give an expectation

of the risk associated with the index at an horizon of 22 days and not of a single day. The

last regression includes control variables in addition of the realized variance. As noted

above, the aim is to consider alternative investment opportunities. We confirm results in

Bali and Peng (2006) in that FED, DEF and TERM variables are never significant in

our regressions.

Constant RVt−1

√

RVt−1 V IXt−1 FEDt−1 DEFt−1 TERMt−1 Adj. R2

-0.0004* 6.1615*** 0.48%
(-1.6616) (2.9517)
-0.0011** 0.1523*** 0.31%
(-2.3945) (2.6315)
-0.0007* 5.1644** 0.26%
(-1,9394) (2.2742)
0.0009 6.5224*** -7.4461e-06 -0.0016 5.4517e-05 0.47%
(0.4707) (3.0335) (-0.0301) (-1.4082) (0.1707)

Table 1

Relation between daily excess market return and daily estimated risk (realized
variance using 5-minute returns in this table). The dependent variable is the one-
day-ahead excess return on the S&P 500 index futures and the risk free rate is the
equivalent one-day rate computed from the three month Treasury bill. The rows
beginning with OLS are estimated using ordinary least square. Standard deviations
are computed using Newey-West (1987) HAC. Estimated coefficients are those of
Eq. (5). Asterisks indicate statistical significance at the 1% (***), 5% (**) or 10%
(*) level.

.

Table 2 reports regression results for the BPV estimator of realized variance. Results

are qualitatively similar to those in Table 1. We only note that the estimate for the

relative risk aversion is slightly larger when BPV is used in place of realized variance

and that the explanatory power for all three regressions is very slightly larger. However,

these differences are not significant and we can unambiguously conclude that the jump

component does not play any role in shaping the risk-return relation, at least when jumps
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are extracted following the nonparametric method we adopt in this paper.

Constant BPVt−1

√

BPVt−1 FEDt−1 DEFt−1 TERMt−1 Adj. R2

-0,0004* 6.5752*** 0.52%
(-1.7298) (2.9767)
-0.0011** 0.1595*** 0.34%
(-2.4572) (2.6858)
0.0009 6.9554*** -1.2716e-05 -0.0016 5.0493e-05 0.51%
(0.4837) (3.0551) (-0.0512) (-1.4317) (0.1577)

Table 2

Relation between daily excess market return and daily estimated risk (realized
variance using 5-minute returns in this table). The dependent variable is the one-
day-ahead excess return on the S&P 500 index futures and the risk free rate is the
equivalent one-day rate computed from the three month Treasury bill. The rows
beginning with OLS are estimated using ordinary least square. Standard deviations
are computed using Newey-West (1987) HAC. Estimated coefficients are those of
Eq. (5). Asterisks indicate statistical significance at the 1% (***), 5% (**) or 10%
(*) level.

.

3.3 Rolling window analysis

As in Bali and Peng (2006), we rely on rolling window regressions to assess the stability

of the estimated risk-return tradeoff. An alternative method would be to adopt the time-

varying coefficients approach but our aim in this note is to make our results comparable

with previous literature. In addition, empirical assessments based on rolling windows are

generally very reliable.

Plots of our rolling estimates are provided in Figures 4 and 5 for the lagged realized

variance and lagged realized BPV, respectively. Following results in the previous section,

the regressions do not include control variables in light of their insignificancy. In each

Figure, the top panel reports the estimated value for the relative risk aversion coefficient

and the bottom panel reports its associated t-statistic with the 5% threshold given by the

red dashed line. Two conclusions are in order. First, the two graphical representations

are undistinguishable, which reinforces our finding that realized variance and BPV yield

similar results. Second, we observe that the estimated relative risk aversion coefficient is

not more significant after mid-2006 and this result holds until the end of our period of
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investigation.
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Figure 4

Rolling window estimation of the RRA coefficient using 1500 observations and RV
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Figure 5

Rolling window estimation of the RRA coefficient using 1500 observations and the
continuous component

4 Conclusion

In this note, we showed that the risk-return tradeoff at the daily horizon is questionable in

recent years and that jumps do not seem to play a significant role in the relation between
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risk and return. Of course, our conclusion are dependent on the methodology we adopt,

which is similar to the methodology presented in Bali and Peng (2006).

As a potential extension of the present work, we may investigate the explanatory power

of signed jumps as defined in Patton and Sheppard (2011). Signed jumps are defined

as the difference between positive and negative realized semivariance. The authors show

that signed jumps significantly help to forecast volatility at horizons going from 1 to 60

days. Interestingly, signed jumps can be estimated each day and are not “rare events” as

in the case of the methodology we employ here.
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