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1. Introduction

The RESET is the most widely used general specification test in the context of linear
(Ramsey 1969) and nonlinear (Pagan and Vella 1989) single index regression models,
consisting of a simple test for the significance of some fitted powers of the index function.
This paper focus on the application of the RESET test in the binary regression frame-
work, for which Ramalho and Ramalho (2012) have recently found that test versions
using only one or two fitted powers are clearly the best RESET performers. However,
while both RESET versions exhibit a similar behaviour in terms of size, their power
performance is sometimes quite distinct. In fact, depending on the type and degree of
misspecification considered, it may make a huge difference to use one version or the other.
This compromises the usefulness of the RESET test in applied work, since, on the one
hand, in general it is not possible to know a priori which RESET version is better and,
on the other hand, using both RESET versions may lead to contradictory conclusions
too often.
In order to circumvent the mentioned drawback of RESET tests, this note proposes a

supremum-type RESET statistic. Supremum test statistics are commonly used in infer-
ence problems involving a nuisance parameter that is present only under the alternative
hypothesis; see inter alia Andrews and Ploberger (1994) and Hansen (1996). In this
note, it is argued that the choice of the number of fitted powers to include in the RESET
test may be seen as an analogous problem to that of the choice of an arbitrary value for
the nuisance parameter. The supremum-type RESET statistic is defined as the RESET
version that exhibits the lowest p-value and the bootstrap is employed to approximate
its empirical distribution. The finite sample properties of the new statistic are examined
through a Monte Carlo analysis.

2. The supremum-type RESET test

Consider a sample of i = 1, ..., N individuals and let y = {0, 1} be the response variable
of interest and x a vector of exogenous variables. The conditional expected value of y
given x is defined as

E (y|x, θ) = G (xθ) , (1)

where G (·) is a cumulative density function and θ is the vector of parameters of interest.
Typically, θ is estimated by (Bernoulli-based) maximum likelihood.
To investigate whether G (xθ) is a correct specification for E (y|x, θ), the RESET

test may be employed. This test relies on the idea that any index model of the form

E (y|x) = F (xθ) can be arbitrarily approximated by G
[
xθ +

∑J

j=1 γj (xθ)
j+1
]
for J

large enough. Therefore, testing the hypothesis H0: E (y|x) = G (xθ) is equivalent
to test for H0: γ = 0 in the augmented model E (y|x, z) = G (xθ + zγ), where z =[(
xθ̂
)2
, ...,

(
xθ̂
)J+1]

and J is the dimension of z. According to the number of test

variables included in z, different is the variant of the RESET test, denoted in this paper
by RESETJ . Following Ramalho and Ramalho (2012), this paper considers only two
RESET statistics: RESET1 and RESET2.
Given that RESET1 and RESET2 may have very different power properties in finite

samples and that none of those RESET versions displays the best performance in all
cases, combining somehow RESET1 and RESET2 into a single statistic may yield to a
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test that is sensitive to a wider variety of model misspecifications. In econometrics, the
issue of combining different test versions into a single statistic is frequently addressed
when a nuisance parameter is present only under the alternative hypothesis. In such a
case, although the simple replacement of the nuisance parameter by any admissible value
produces a valid test, it is much more common to compute a single test statistic that
summarizes, according to a suitable criterion, the results calculated over a range of values
of the unidentified nuisance parameter. The computation of the latter statistic requires
in general that the bootstrap or similar procedures be used to obtain critical values, but
avoids the choice of a particular value for the unidentified parameter that may sacrifice
the power of the test. Clearly, this is a problem similar to that considered in this paper,
since defining previously the number of test variables to compute the RESET test may
compromise its small sample power performance. This paper focusses on the construction
of a supremum version of the RESET test (Sup-RESET), but other criteria like simple
or weighted averages could also be used; see Andrews and Ploberger (1994).
In general, computing a supremum statistic in the conventional nuisance parameter

case involves the calculation of the supremum of the test statistics obtained for each value
of a grid defined over many different values of the nuisance parameter. However, this pro-
cedure is valid only when all test variants share the same asymptotic distribution, which
is not the case of RESET tests. Indeed, each RESET version assesses the significance of a
different number of test variables and, hence, has a chi-square distribution with different
degrees of freedom. Therefore, in the present framework, the Sup-RESET statistic is
computed using the following procedures:

(i) Estimate model (1) in order to obtain estimates θ̂ for the parameters of interest.

(ii) Construct
(
xθ̂
)2
and

(
xθ̂
)3
and compute RESET1 and RESET2 tests using Wald,

LR, LM or any other approach valid for testing the omission of covariates in non-
linear models;

(iii) Calculate the p-values associated to each RESET version;

(iv) Denote the lowest p-value by p∗ and define as the Sup-RESET statistic the RESET
version that yielded p∗.

As the Sup-RESET statistic does not have a known asymptotic null distribution, the
bootstrap may be employed to approximate its empirical distribution in the following
way:

(v) Generate B bootstrap samples by drawing with replacement the explanatory vari-
ables from the original sample and using (1) and θ̂ to generate the dependent
variable;

(vi) For each bootstrap sample, use steps (i)-(iv) to compute the corresponding Sup-
RESET statistic and save the associated p-value;

(vii) Compute the α quantile of the empirical distribution of the B bootstrap p-values,
where α is the desired level of significance of the test, and denote it by pboot;

The null hypothesis of correct specification of E (y|x, θ) is rejected in case p∗ < pboot.
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3. A Monte Carlo simulation study

In order to examine the finite sample properties of the Sup-RESET test, we conducted
a small Monte Carlo simulation study based on the experimental design of Ramalho
and Ramalho (2012). In all experiments we generated 2500 Monte Carlo samples of
size 500. In most cases, we assumed a linear index with two covariates, xθ = θ0 +
θ1x1 + θ2x2, with x1 generated either as a standard normal or a displaced exponential
variate and x2 as a Bernoulli variate with mean 2/3. In the construction of the Sup-
RESET statistic, we considered only LM versions of RESET1 and RESET2 and used 399
bootstrap replications. The empirical size and power of the Sup-RESET test is compared
to that of RESET1 and RESET2, for which both asymptotic and bootstrap-based results
are reported.
The size of RESET tests may be sensitive to the structural model that underlies the

data and to the percentage of zeros/ones observed. Therefore, the results of Table 1 were
obtained from data generated according to three models (cauchit, probit and loglog),
with (θ1, θ2) = (1, 1) and θ0 = {0,−2, 2}. All tests based on the use of bootstrap critical
values exhibit a suitable size performance, since their actual sizes are not significantly
different from the nominal size at a 5% level in all cases, unlike the RESET tests based
on asymptotic theory.
The power of the Sup-RESET test is expected to depend on the type and degree of

misspecification generated. We performed 28 experiments, described in Table 2, which
concern the following issues:

(i) Misspecification of the link function G (·). In this case, the data was generated
using a specification different from the one being tested.

(ii) Misspecification of the index function. We considered the omission of the covariate
x3 (associated to the parameter θ3), which was generated as a displaced exponen-
tial variate with variance one, the omission of the square of x1 (associated to the
parameter θ4), and the presence of heteroskedasticity determined by the skedastic
function s (x1, γ) = e2γx1 . The degree of misspecification increases as θ3 and γ
increase and θ4 decreases.

(iii) Misspecification due to sampling issues: covariate measurement error, response
misclassification and endogenous sampling. In order to control for the mechanism
that governs those deviations, the functional form µ that describes the data is
written as a function of G (xθ) and one or two additional parameters that define
the misspecification mechanism: the variance of the measurement error, σ2, the
probability of observing 1 (0) when the actual response is 0 (1), δ1 (δ0), and the
proportion of individuals for which y = 1 in the sample and in the population, H
and Q. The degree of misspecification increases when σ2, δ1 and/or δ0, and the
difference between H and Q increase.

Figure 1 illustrates the power results of the Sup-RESET test along with those of
bootstrap versions of RESET1 and RESET2. Results are reported only for experiments
involving the probit model but similar findings were obtained for the other models. From
Figure 1, it is clear that the power of Sup-RESET is not in general as large as the power
of the best RESET version, be it RESET1 or RESET2, but is much closer to it than to
the power of the least powerful RESET variant. For example, in experiment 3 the power
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of Sup-RESET is 83.3% while that of RESET1 and RESET2 are respectively 85.7% and
37.3%. A similar scenario occurs when RESET2 is more powerful than RESET1, see for
instance experiments 1, 19, 20, 23 and 24, where the gains in power that result from using
Sup-RESET instead of RESET2 range from 34.5% to 68.9%. Therefore, the Sup-RESET
test has the very attractive property of avoiding the cases of low power that RESET1
and RESET2 sometimes exhibit.

4. Concluding remarks

This note proposes a new RESET test for binary choice models that presents a more
reliable behaviour in finite samples than the conventional versions of the test. The im-
plementation of the new test is very simple, since only involves the calculation of two
conventional RESET statistics and the use of a bootstrap procedure that is easily im-
plemented in most econometric software packages. Moreover, the test also presents the
advantage of being straightforwardly extensible to test any other type of single index
regression model and to incorporate other RESET versions.1
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