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1. Introduction 
 
Financial assets’ market risk is commonly measured by the so called Value-at-Risk (VaR), 
which is defined as the potential asset’s value loss over a prespecified holding period and for 
a predetermined confidence level. Since financial volatility is a key input in measuring and 
forecasting VaR, a plethora of volatility models have been proposed and tested in the VaR 
literature. 

  
Recently, the realized volatility (RV hereafter), i.e. the sum of squared intra-daily returns, 
which is an efficient and consistent estimator of the latent volatility (Andersen and 
Bollerslev, 1998; Andersen et al. 2001), was implemented in VaR studies. The 
Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, which accounts 
for the long memory property of the RV, is the most frequently used RV model in the VaR 
literature (e.g. see Giot and Laurent, 2004; Angelidis and Degiannakis, 2008 amongst others). 
An alternative approximate long memory RV model, is the Heterogeneous Autoregressive 
(HAR) model of Corsi (2009). Despite its good volatility forecasting performance, the HAR 
model has received limited attention in VaR applications (Martens et al., 2009; Clements et 
al., 2008).  
 
Moreover, most of the authors in the realized volatility - VaR literature account for the fat 
tails and the asymmetry of the assets returns’ density by utilizing either the fat tailed t-student 
distribution (Clements et al., 2008) or the skewed student (skst) distribution, which considers 
both of the abovementioned characteristics (Giot and Laurent, 2004; Angelidis and 
Degiannakis, 2008). 
  
In this study, we differentiate form previous works in the VaR field and we propose the use 
of HAR–type RV models in conjunction with the conditional Extreme Value Theory (EVT) 
(McNeil and Frey, 2000). To our knowledge, this is the first time that the EVT VaR method 
is combined with the informational content of high frequency intra-daily data incorporated in 
a RV model. Our empirical analysis, using thirteen years of the S&P 500 stock index from 
1997 to 2009, indicates that the proposed specification can provide statistical and regulatory 
accurate VaR estimates that minimize the Basel II capital reserves. We also show that the 
proposed model outperform its GARCH-type counterparts. These results are also confirmed 
during the highly volatile 2007-2009 period. 
 
The remaining of the paper is organized as follows. Section 2 describes the HAR-type-EVT 
VaR models, while Section 3 briefly presents the VaR evaluation metrics. In Section 4, we 
present the empirical results. Section 5 concludes this article.  

 
2. The Realized Volatility Extreme Value Theory VaR Model 

 
2.1. The AR(1)-HAR-GARCH(1,1) model 

 
The HAR model of Corsi (2009) uses daily, weekly and monthly realized volatility 

components in an autoregressive structure in order to approximate the persistence in realized 
volatility. Moreover, Corsi et al. (2008) account for the conditional heteroscedasticity of the 
HAR errors, by implementing a GARCH error process. Assuming that ( )1log /t t tr P P−=  are 
the daily returns, the AR(1)-logarithmic HAR-GARCH(1,1) model is defined as:  
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Conditional mean:  1 1t t t tr c r h zφ −= + + , with tz ~ i.i.d N(0,1) (1) 

Conditional variance: 1t tth g RV −=  (2) 

HAR-GARCH model: ( )
( )

( )
( )

( )
( )

( )
0 1 1 1

d d w m
t t t t td w mlrv a a lrv a lrv a lrv u− − −= + + + +  (3) 

 ,t u t tu σ υ=  and 2 2 2
, 1 , 1u t t u tuσ ω α βσ− −= + +  (4) 

 

where tυ ~ (0,1)N , ( )( ) logd
t tlrv RV= , ( ) ( )22 2 2

,
1

M

t oc co oc t j
j

RV rσ σ σ
=

⎡ ⎤= +⎣ ⎦∑  is the realized 

variance with ,t jr  being the j-th intraday return, 2
ocσ  and 2

coσ  are the “open-to-close” and 
“close-to-open” sample variances respectively that account for the overnight returns bias 
(Martens, 2002) and ( )h

tlrv =  ( )1 h , 1( t t tlrv lrv −+ , 2 , 1)t t t t hlrv lrv− − ++ + +K  with 5h w= =  and 
22h m= =  are the weekly and monthly volatility components respectively. We model the 

conditional mean as an AR(1) process in order to account for any autocorrelation in the 
returns series, while the conditional variance is modeled as a fraction of the estimated 
conditional realized variances, i.e. 1 t tRV − . 

 
The parameters in Equations (1)-(4) are estimated in two steps using maximum likelihood 
techniques (Giot and Laurent, 2004). In the first step, we estimate the HAR-GARCH model 
parameters and we obtain the conditional realized variance estimates as 

( )2
1 ,ˆ ˆ  exp 0.5t t t t u tRV lrv u σ− = − + . In the second step, we use the 1 t tRV −  and we estimate 

the conditional variance parameter, g , and the AR(1) parameters. This implementation 
ensures that tz  is a unit variance process. 

 
2.2. The Extreme Value Theory VaR method 

 
In statistical terms next day’s VaR is defined as ( )1 1Pr 1t t tr VaRα α+ +≤ = −F  or 

( )1
1 1  t tVaR Fα α−
+ += , where α  is the significance level and 1F −  denotes the inverse cumulative 

distribution function of the returns. For the returns process described in Equations (1)-(4) 
tomorrow’s VaR is given by: 

 

( )1
1 11̂ˆ ˆ + t t tt zVaR c r gRV F

α
φ α−

+ += +  (5) 

 
Here, we estimate the thα  quantile of the innovations, i.e. ( ) 11 1

ˆˆ ˆˆ t tt t tz r c r g RVφ −−= − − , 

using the conditional EVT method of McNeil and Frey (2000). The method models the ˆtz  
which exceed a prespecified threshold U . If the magnitude of exceedence of z  over U  is 
defined as i iy z U= − , where 1,..., Ui T=  and UT  being the total number of exceedences, then 
the distribution of z  is given by:1 

 

                                                 
1 For the choice of U we follow Chan and Gray (2006) 
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( ) ( )( )1 1U
z U

TF z F y
T

= + −  (6) 

 
where ( ) { }PrUF y z U y z U= − ≤ > . A key result in EVT is that for a sufficiently high 

threshold U , the ( )UF y  converges to the Generalized Pareto Distribution (GPD) which is 
defined as:   
  

( ) ( )
( )

1/

,
1 1 ( )

1 exp /    
yG y

- y

ζ

ζ β
ζ β

β

−⎧ − +⎪= ⎨
−⎪⎩ 0 if

0 if  
=
≠

ζ
ζ ,  for 0 y z U≤ ≤ −  (7) 

 
where ζ  and 0>β  are the shape and scale parameters respectively. Heavy tailed 
distributions correspond to 0>ζ  which implies that we expect a positive ζ , since most of 
the financial time series exhibit fat tails. Therefore, for 0≠ζ  and 01 >+ βζ y  the thα  

quantile of ( )zF z  is given by: 
 
( ) ( )1 ( ) ( ) 1z UF U T T ζα β ζ α −− ⎡ ⎤= + −⎣ ⎦  (8) 

 
We obtain the estimates of ζ and β  by maximizing the GPD log-likelihood function:  

 

( ) ( ) ( ) ( )
1

, log 1 (1 ) log 1 ( )
UT

g U i
i

L T yζ β β ζ ζ β
=

= − − + +∑  (9) 

 

3. VaR Evaluation Measures 
 
The VaR evaluation measures implemented here build on the “failure process” described by 
the following indicator function ( ){ }1:

a
t t h

t r VaR t h t
I I

+ + < +
= , which takes the value of 1 if 

1:t t hr + + < ( )VaR t h tα +  and zero otherwise. We expect that an accurate VaR model will 

generate a failure rate (FR) i.e. 1ˆ /n nα = , where 1n  and n are the number of exceptions and 
the sample size respectively, close to the predetermined coverage level, α .  
 
Christoffersen’s (1998) unconditional coverage test examines statistically if α̂ α= . Under 
the null hypothesis of accurate unconditional coverage, i.e. ( )tE I α=  and given the 
assumption of independence between the exceptions, the likelihood ratio (LR) test is: 

 
 ucLR = ( ) ( )( )0 01 1ˆ ˆ2 log 1 / 1n nn nα α α α− − ~ ( )2 1χ  (10) 

 
The complementary conditional coverage test proposed by Christoffersen (1998) is a joint 
test of correct unconditional coverage and first order independence of the failure process 
against a first order Markov failure. The corresponding LR test is:  
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 ccLR ( ) ( ) ( )( )00 10 001 11 1
01 01 11 11ˆ ˆ ˆ ˆ= 2log 1 1 / 1n n nn n np p p p α α− − − ~ ( )2 2χ  (11) 

 
where ijp = ( )1Pr t tI i I j−= =  estimated as 1

0
ˆ /ij ij ijj
p n n

=
= ∑ , with , 0,1i j =  and ijn  is the 

number of transitions from state i to state j. Note that, for both tests, the null hypothesis is 
rejected if the VaR model generates too many or too few exceptions while for the conditional 
coverage a VaR model may also be rejected if it generates too clustered exceptions. 

 
Engle and Manganelli (2004) argued that given the sequence of returns,  tr , it is 
straightforward to generate an i.i.d. failure process tI  and they proposed a more powerful 
test. Specifically, they defined t tHit I α= − , where α  is the significance level and they 
suggested a regression based approach to test whether ( ) 0tE Hit =  and also if tHit  is 
uncorrelated with the variables included in the information set, 1t−Ω . In matrix notation the 
regression equation can be written as: =Hit Xβ  where X  is the explanatory variables vector 
and β  is the coefficients vector. The authors emphasized on the use of the contemporaneous 
value of VaR, tVaRα , in the explanatory variables set, as well as the use of lagged values of 

tHit , i.e. 1 2, ,...t t t qHit Hit Hit− − − , with 5q =  in our case. Under the null hypothesis 0 :H β = 0 , 

the regressors, i.e. the five lags of tHit  and the tVaRα , should have no explanatory power. 
The corresponding test statistic is: 

 
' ' '

(1 )
LS LSDQ
α α

=
−

β X Xβ  (12) 

 
which follows an asymptotic ( )2 1pχ +  distribution, where p  is the total number of 
explanatory variables used in the regression. 
 

Finally, we use the formula for the market risk capital (MRC) requirements prescribed by 
the Banking Committee on Banking Supervision (BCBS, 2006) and it is a widely accepted 
method for evaluating alternative VaR models (e.g. see Ferreira and Lopez, 2005): 

 

( ) ( )600.01 0.01
1 1

max 10 , 10
60t t t ii

kMRC VaR VaR− −=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑   (13) 

 
where ( )0.01 10tVaR  denotes the 1% VaR estimate of day t for a holding period of ten days, 
while k  is a multiplier set by the MRA’s traffic light system.2 Specifically, the value of k  is 
based on the number of 1% daily VaR exceptions over the previous 250 trading days. If the 
model produces 4 or less violations, then it is considered sufficiently accurate and the 
multiplier k  takes its minimum value of 3. These are the so-called green zone or green light 
models. If the model generates between 5 and 9 violations over the previous trading year then 
it is placed in the yellow zone, or it is given a yellow light. It is also considered acceptable for 
regulatory purposes, with k  being set to 3.4, 3.5, 3.65, 3.75 or 3.85, for the corresponding 
                                                 
2 For the calculation of the MRC, daily VaR is expressed in dollars: ( )0.01 0.01

1$ 1 expt t tVaR P VaR−
⎡ ⎤= −⎣ ⎦ , where P  

is the asset’s price and is multiplied by 10  to get the 10 day VaR estimates as in Ferreira and Lopez (2005) . 
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exceptions in the interval [ ]5,9 . A red zone or red light model is one which generates 10 or 
more exceptions and then k  takes its maximum value of 4. In this case, the regulators can 
reject the VaR model and put a request to the financial institution to revise their risk 
management systems.  
 

4. Empirical Analysis 
 
We use five minutes previous tick interpolated prices for the S&P 500 stock index from 
1.1.1997 to 09.30.2009, obtained from Tick Data. For liquid assets, the five minutes sampling 
frequency is found to be the highest sampling frequency with acceptable market 
microstructure noise bias (Andersen et al., 2001). Fig. 1 presents the S&P 500 daily returns 
and the logarithmic RV along with their estimated densities. The departure from normality is 
evident for the daily returns, while the logarithmic RV is approximately normal.  

 

 
Fig. 1. S&P 500 stock index daily returns, logarithmic realized variance and their 
corresponding densities  
 
For comparison reasons we also implement the GJR-GARCH3 model of Glosten et al. (1993) 
combined with the skewed student distribution (Lambert and Laurent, 2001) and the EVT 
method as well as the HAR model without a GARCH error process and a HAR model with 
the realized power variation (RPV) (Barndorff-Nielsen and Shephard, 2004) used as 
regressors. The RPV uses absolute intraday returns that mitigate extreme price movements 
and it has superior predictive ability in volatility forecasting (e.g. see Louzis et al., 2012). 
However, its forecasting performance has not been extensively tested in VaR applications 
(Clements et al., 2008). 

  

                                                 
3 For the GJR-GARCH VaR models see the Appendix. 
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We use a rolling sample of 1,250 observations in order to produce 1,946 out-of-sample day-
ahead VaR forecasts from 12.20.2000 to 09.30.2009. Table I presents the FR and p-values for 
the (un)conditional coverage and DQ tests for the 5%, 1% and 0.5% quantiles. 

  
Table I. Failure rates, (un)conditional coverage and dynamic quantile tests 

 

Failure Rate (%)  

Unconditional 
Coverage test (p-

values)   

Conditional 
Coverage test (p-

values)  
Dynamic Quantile 

test (p-values) 
Models 5% 1% 0.5%  5% 1% 0.5%  5% 1% 0.5%  5% 1% 0.5% 
GJR-skst 5.04* 1.13 0.46  0.94* 0.57 0.81  0.62 0.66 0.93  0.55 0.63 0.97 
GJR-EVT 5.29 1.28 0.51*  0.56 0.23 0.93*  0.41 0.35 0.95*  0.56* 0.04 1.00* 
HAR -EVT 5.09 0.92* 0.46  0.86 0.74* 0.81  0.87 0.80* 0.93  0.39 0.80 0.99 
HAR-RPV-EVT 5.04* 0.92* 0.46  0.94* 0.74* 0.81  0.90* 0.80* 0.93  0.39 0.80 0.99 
HAR-GARCH-EVT 5.14 0.82 0.46  0.78 0.42 0.81  0.83 0.63 0.93  0.40 0.86* 0.99 
Notes: The asterisk (*) indicates the best performing model 
            The bold faced number indicates rejection of the null hypothesis at a 5% significance level 
 
The results indicate that all models can generate FRs that are closed to the predetermined 
coverage level. However, a closer examination of the results reveals some interesting points. 
First, for the 5% quantile the inclusion of the RPV improves slightly the forecasting ability of 
the HAR model, but this is not evident for the lower quantiles (1% and 0.5%). Second, the 
HAR-type-EVT models outperform the GJR-EVT model across quantiles, with the exception 
of the 0.5% quantile. Third, the GJR-skst model has comparable forecasting behaviour with 
the HAR-type-EVT models. However, for the 1% coverage level the GJR-skst model 
overestimates the FR, while the HAR-GARCH-EVT model generates the most conservative 
VaR estimates.  

 
The results for the (un)conditional coverage and the DQ tests are in accordance with the 
above analysis, since all models reject the hypothesis of incorrect VaR estimates at a 5% 
significance level. The only exception is the GJR-EVT model for the 1% VaR forecasts, 
which rejects the DQ test null hypothesis. Nonetheless, it should be noted that the HAR-type-
EVT models generate the highest p-values for the 1% quantile, which bears the greatest 
practical interest.  
 
In Table II, we present the Basel II market risk capital requirements analysis. The most 
striking feature of Table 3 is that the GJR models generate red zone days, failing to comply 
with regulators’ VaR accuracy mandates. On the contrary, the HAR-type-EVT models have 
zero red zone days with the HAR-GARCH-EVT maximizing the green zone days. The latter 
also minimizes the regulatory capital, producing the most efficient VaR estimates. This has 
significant economic consequences for the financial institutions, as now they can utilize the 
released capital in more productive and efficient ways. 
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Table II. Basel II market risk capital requirements 

 Basel II zones  Basel II Capital requirements 

Models Green (%) Yellow (%) Red (%)  Average St. Deviation 
GJR-skst 74.9 24.9 0.2  318 178 
GJR-EVT 71.5 27.1 1.5  303 182 
HAR-EVT 77.6 22.4 0.0  306 169 
HAR-RPV-EVT 77.6 22.4 0.0  306 169 
HAR-GARCH-EVT 82.3 17.7 0.0  300 164 
Note: The table presents the percentage of days during the out of sample forecasting period that the model is 
placed in the green, yellow and red zone according to the Basel traffic light system, the average and the standard 
deviation of the daily capital requirements. 
 
The results for the 2007-2009 crisis period and for the 1% VaR, presented in Table III, are 
unequivocal. The HAR-type-EVT models clearly outperform their GJR counterparts, in both 
statistical and regulatory accuracy terms, while the HAR-GARCH-EVT model has the overall 
best forecasting performance as it generates accurate and efficient VaR estimates that 
minimize the regulatory capital.  

 
Table III. 1% VaR forecasting performance during the 07.01.2009 – 09.30.2009 period 

Models 
Failure 

Rate (%) 

Unconditional 
Coverage test 

(p-values) 

Conditional 
Coverage test 

(p-values) 

Dynamic 
Quantile test 

(p-values) 

Basel II 
Red zone 
days (%) 

Average Basel II 
Capital 

Requirements 
GJR-skst 2.66 0.01 0.02 0.00 0.7 507 
GJR-EVT 2.31 0.00 0.00 0.00 4.4 515 
HAR-EVT 1.42 0.35 0.57 0.46 0.0 503 
HAR-RPV-EVT 1.42 0.35 0.57 0.47 0.0 503 
HAR-GARCH-EVT 1.07* 0.88* 0.93* 0.95* 0.0 487* 
Notes: The asterisk (*) indicates the best performing model 
            The bold faced numbers indicates rejection of the null hypothesis at a 5% significance level 

 

5. Concluding remarks 
 
In this study, we propose the use of HAR-type realized volatility models combined with the 
Extreme Value Theory method. The proposed model is used in order to produce day-ahead 
out-of-sample VaR forecasts using a forecasting period of eight years for the S&P 500 stock 
index. The results indicate that HAR-type-EVT model can produce superior VaR forecasts 
compared to their GARCH-type counterparts in terms of regulatory and statistical accuracy. 
The HAR-GARCH-EVT model is, however, the best performing model as it generates 
accurate and efficient VaR forecasts that minimize the regulatory capital especially during the 
turbulent 2007-2009 period. Moreover, the realized power variation (RPV) does not help 
improve HAR’s VaR forecasting ability. This study can be extended to other stock indices 
and asset classes in order to gain more insights on the proposed methodology.  
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Appendix 
 

The AR(1)- CJR-GARCH(1,1) model (GJR in short) of Glosten et al. (1993) is given 
by:    
 

1 1 1 1t t t t t tr c r c r h zφ ε φ− −= + + = + +  (14) 

( )2 2
1 1 1 1  0t t t t th hω αε γ ε ε β− − − −= + + Ι < +  (15) 

 
where ( )Ι ⋅  is an indicator function which equals one if the condition in the 
parenthesis is satisfied and zero otherwise. For positive and statistically significant 
asymmetry parameter γ  the impact of past negative returns on conditional variance is 
greater than the impact of positive returns. 
 
In the GJR-EVT model the innovations quantiles are estimated using the EVT method 
described in Section 2.2. For the GJR-skst model next day’s VaR is given by: 

1, 1, 1, , ,
ˆˆ skst

T j T j T jVaR h c
α

α ν ξμ+ + += + , with 
  

( ){ }
( ){ }

21
, 2 2

, ,
21

, 2 2

11 /s  if  
1

11 /s  if       
1

st

skst

st

c m
c

c m

α
α νξ

α ν ξ
α

α ν

ξ α
ξ

ξ ξ α
ξ

−−

⎧ ⎡ ⎤+ − <⎪ ⎣ ⎦ +⎪= ⎨
⎪ ⎡ ⎤− + − ≥⎣ ⎦⎪ +⎩

 (16) 

 
where , ,

skstcα ν ξ  is the thα  quantile of the unit variance skewed student distribution with 

2ν >  degrees of freedom and asymmetry parameter 0ξ > , ,
stcα ν  denotes the quantile 

function of the standardized Student-t density function, while ( )
( ) ( )

1
2

2

2 1m
ν

ν

ν
ξπ

ξ
+Γ −

Γ
= −  

and ( )2
2 21 1s m

ξ
ξ= + − −  are the mean and the standard deviation of the non-

standardized skst distribution respectively.  
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